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We study biantisymmetric tensor quantum field theories with OðN1Þ ×OðN2Þ symmetry. Working in
4 − ϵ dimensions we calculate the beta functions up to second order in the coupling constants and analyze
in detail the renormalization group (RG) flow and its fixed points. We allow N1 and N2 to assume general
real values and treat them as bifurcation parameters. In studying the behavior of these models in a
nonunitary regime in the space of N1 and N2 we find a point where a zero-Hopf bifurcation occurs. In the
vicinity of this point, we provide analytical and numerical evidence for the existence of Shilnikov
homoclinic orbits, which induce chaotic behavior in the RG flow of a subset of nearby theories. As a simple
warm-up example for the study of chaotic RG flows, we also review the non-Hermitian Ising chain and
show how, for special complex values of the coupling constant, its RG transformations are equivalent to the
Bernoulli map.
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I. INTRODUCTION

Science abounds with examples of systems governed by
simple rules yet exhibiting marvelously complex behaviors.
A broad class of instances of this phenomenon is the
occurrence of chaos in dynamical systems. By a dynamical
system, we mean a system of autonomous first-order
differential equations or discrete maps,

_gi ¼ βiðgjÞ; gðnþ1Þ
i ¼ RiðgðnÞj Þ; ð1Þ

where the variables gi are either real or complex valued.
The study of chaos in such systems dates back to the work
of Henri Poincaré on the three-body problem. In the
Hamiltonian formalism, the trajectories of particles in
phase space are described precisely by the kind of first-
order differential equations listed in (1). In his investigation
of the three-body equations of motion, Poincaré was
startled to discover that the solution space is vastly more
intricate than he had anticipated, encompassing meander-
ing curves of ever-increasing wiggles and an infinitude of
periodic orbits dispersed unevenly in phase space. Since the
time when Poincaré caught his first glimpse of chaos, the
characteristic properties by which one can identify chaos

have become much better understood. In addition to the
presence of an infinite number of periodic orbits with an
infinite range of periodicities, sometimes forming compli-
cated fractal structures, chaotic systems are characterized
by an extreme sensitivity to initial conditions as well as by
the property that open sets of initial states evolve in time to
spread out densely in the space of all possible states. For a
more detailed discussion of what is meant by the term
chaos, we refer the reader to Appendix A.
Dynamical systems have a wide range of applications in

science and technology, and the emergence of chaos is a
commonplace occurrence in these applications, be they
planetary orbits, atmospheric convection [1], string theory
[2–5], or population dynamics [6]. In modern theoretical
physics, an important class of dynamical systems are
furnished by the beta functions of quantum field theories
(QFTs) and their associated renormalization group (RG)
flows. Rather than trajectories of particles in phase space,
these systems describe the flow of coupling constants in a
given theory as we vary the length or energy scale at which
we view the theory, but the flow equations remain of the
form (1). Consequently, in their most general form, QFTs
should admit chaotic RG flows, and already Wilson and
Kogut entertained this possibility in their classic review [7].
However, the theories typically studied by physicists
exclusively exhibit a RG flow of a simpler kind, namely
heteroclinic flow between fixed points. Associated here-
with is the idea of universality: we can modify the details of
the high-energy (UV) theory and still flow to the same low-
energy (IR) theory if we remain in the same basin of
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attraction. Contrariwise, chaos would spell the doom of
universality, with even the tiniest change to the UV theory
drastically altering the IR theory. In two, three, and four
dimensions it is known that unitarity prevents this kind of
behavior by guaranteeing the existence of c-, F-, or
a-functions that change monotonically under RG flow
[8–13], and the same may be true in higher dimensions.
It has further been suggested [14] that universality may
extend beyond the realm of unitary theories. Nevertheless,
the 1980s and 1990s bore witness to a number of ideas for
and examples of chaotic RG flows in certain simple
systems [15–20], see also [19] for a general discussion.
In all these examples, the RG transformations are discrete.
The realization of chaos here hinges on the underlying
model being nonunitary or involving an unusual hierarchi-
cal coupling pattern of spins with no conventional con-
tinuum limit, or the chaos arises as an artifact of discrete
and approximate RG transformations, in the same manner
as the logistic map is chaotic while the solution to the
logistic differential equation is monotonic.
In this paper, we present a family of QFTs of which a

subset of nonunitary theories exhibit continuous RG flows
that are chaotic. The models arise on analytic continuation
of conventional theories by allowing symmetry groups of
matrices of noninteger size. The specific models have no
concrete experimental motivation and are intended rather to
serve as a proof of principle, but nonunitary theories
generally, as well as theories with symmetry groups of
noninteger size specifically, are capable of describing
physical phenomena that can be realized experimentally.
The list of nonunitary models of interest in theoretical
physics includes such theories as the q state Potts model
with q > 4 [21–23], logarithmic conformal field theories
(CFTs) [24,25], and Liouville theory in dimensions greater
than 2 [26]. Furthermore, we observe that analytical
continuation of RG flows of conventional field theories
provides a method of generating a vast range of dynamical
systems. This suggests the possibility of studying systems
of interest outside of theoretical physics using QFT
methods. As a point in case, we demonstrate in the next
section that the Bernoulli map is secretly identical to the
RG transformations of the 1D Ising model at special
complex values of the coupling constant.
In general, it is very difficult to conclusively prove the

presence of chaos in a system, but some tools are available.
One method is to map a system onto one of the few well-
studied systems that are known to be chaotic. We apply this
method in Sec. II, where, as a toy model with chaotic
behavior, we analyze the complexified Ising chain, which
was previously studied and shown to be chaotic in [20]. For
continuous dynamics, a set of necessary conditions for the
onset of chaotic dynamics, involving the presence of a
homoclinic orbit, was put forward by Shilnikov [27]. We
review his construction in Sec. III. Subsequent to Shilnikov’s
discovery, mathematicians were able to show that his

conditions are met generically in the vicinity of certain kinds
of bifurcations [28]. In Sec. IV, we present a tensor model
with OðN1Þ ×OðN2Þ symmetry whose beta functions
undergo such a bifurcation at the special valuesN1 ¼ 2.521,
N2 ¼ 1.972, and we provide numerical evidence that there
exists a Shilnikov homoclinic orbit among the RG trajecto-
ries of the model, thereby establishing that this QFTexhibits
chaotic RG flow.

II. THE COMPLEX ISING CHAIN
AND THE BERNOULLI MAP

In this section, as an illustration of the ideas of chaos
discussed in the Introduction and as an example of how
universality extends beyond unitarity but breaks down
in special chaotic regions, we will consider the one-
dimensional Ising model with a complex coupling. This
model and its chaotic behavior was also studied in [20].
Once coupling constants in a theory are complex, all sorts
of RG flows become possible. For instance, it is quite easy
to find limit cycles [29]. The consideration of complex RG
fixed points was previously proposed in [23,30] and further
carried out in the context of tensor models in [31]. The
complex Ising model in this section serves as a warm-up for
the more intricate model in Sec. IV, where we will realize
chaos in the RG flow of real-valued coupling constants.
In the absence of an external magnetic field, the

Hamiltonian of the one-dimensional Ising model is given by

H ¼ g
X
i

σiσiþ1; ð2Þ

where i runs over some set of integer labels, and the spin
variablesfσig can assume thevalues�1. The 1D Isingmodel
has been studied extensively in the literature, and there are
numerous methods to solve it numerically and analytically.
The system does not exhibit a phase transition, and we can
compute the correlation functions exactly. Themost common
method of solving the model involves the use of a transfer
matrix, which can also be used to implement the RG flow of
the model. The idea is the following: the partition function is
given by

Z ¼
X

fσi¼�1g

Y
i

Ce−gσiσiþ1 ; ð3Þ

where we allow for a normalization constant C. Supposing
we have N spin variables σi and impose periodic boundary
conditions σi ¼ σNþi, we notice that we can introduce a
matrix T such that

T ¼ C

�
e−g eg

eg e−g

�
; Z ¼ tr½TN �: ð4Þ

Now let us carry out one step of a RG flow by integrating out
some degrees of freedom of themodel, for example the spins
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with odd indexes in the chain. It is possible to express the
partition function in terms of the remaining degrees of
freedom by an equation still of the form (3), except
that the coupling constant g has to be replaced by a dif-
ferent coupling constant g1 and C by a new normalization
constant C1,

Z ¼
X

fσi¼�1g

Y
i even

C1e−g1σiσiþ1 : ð5Þ

The new constants g1 and C1 can be computed by noticing
that integrating out the odd spins formally leads to the
replacement T → T2 ≡ T1. Demanding that T1 has the same
form as the original transfer matrix T gives the equation

C2

�
e−2g þ e2g 2

2 e−2g þ e2g

�
¼ C1

�
e−g1 eg1

eg1 e−g1

�
: ð6Þ

This equation implies that the RG step relates the old
coupling g to the new coupling g1 via the relation

e−2g1 ¼ ðT2Þ11
ðT2Þ12

¼ 1

2
ðe−2g þ e2gÞ ¼ cosh 2g: ð7Þ

For convenience we introduce a new parameter z ¼ e−2g, in
terms of which the RG step assumes the simple form

z1 ¼
1

2

�
zþ 1

z

�
≡ RðzÞ: ð8Þ

Let us first consider the unitary Isingmodel, whichmeanswe
take z to be real and positive. In this case, the sequence zn ¼
Rðzn−1Þ is convergent. To see this, note that, for any positive
real z, we have that z1 ¼ 1

2
ðzþ 1

zÞ ≥ 1. Furthermore, for any
zn > 1, we have that znþ1 ¼ RðznÞ ≤ 1

2
ðzn þ 1Þ < zn.

Hence, the sequence z1; z2; z3;… is decreasing, and since
it is also bounded below, it is convergent. The fixed point that
the sequence converges to is situated at z ¼ 1, i.e., g ¼ 0,
corresponding to a high temperature fixed point.
Suppose now that we do not constrain ourselves to

unitary theories and allow g and z to assume complex
values. By an argument analogous to the above, one can
show that as long as Rez ≠ 0, the sequence remains
convergent, converging to the value signðzÞ. However, as
wewill now demonstrate, when z is imaginary, the behavior
of the sequence changes drastically and chaos emerges. It is
not hard to see that when zn ≡ ixn is imaginary, then
R̃ðixnÞ≡ ixnþ1 is also imaginary, and we have

xnþ1 ¼ R̃ðxnÞ; R̃ðxÞ≡ 1

2

�
x −

1

x

�
: ð9Þ

We now introduce a parameter tn ∈ ½0; 1Þ related to xn via
the equation xn ¼ tanðπðtn − 1

2
ÞÞ. Then the RG step acts on

tn as

tnþ1 ¼ 2tn mod 1: ð10Þ

This map is known as the dyadic map or the Bernoulli map
and was introduced by Rényi [32] as part of a larger class of
transformations that he proved to be ergodic. Despite the
simplicity of the map, it exhibits all the characteristics of
chaotic flow.One immediate observation is that themap has a
nonzero Lyapunov exponent: δtnþk ¼ 2kδtn for sufficiently
small δtn, although this behavior breaks down at large values
of k since t is constrained to a finite interval. It is also not hard
to see that for any finite interval I ⊂ ½0; 1� of initial values of
t0, the image of I under repeated RG steps will eventually
spread out over the whole interval [0, 1]. Furthermore,
suppose we decompose the starting value t0 of t in a binary
expansion,

t0 ¼
X∞
i¼1

ai2−i; ð11Þ

where ai ∈ f0; 1g. The semi-infinite sequence A ¼ faig∞i¼1

provides all information concerning the initial state and
subsequent evolution of the system. And the application of a
RG step (10) corresponds to discarding a1 and shifting
aiþ1 → ai. From this point of view, we can exactly predict
the evolution of the system when the initial state is known
exactly, but any variation whatsoever of the initial state will
eventually lead to the largest possible fluctuations in future
values of the state of the system. Thus, if t0 ∈ Q, the
sequence A will be periodic after a finite number of initial
digits, meaning that the RG flow becomes cyclic. More
precisely, we can express any t0 ∈ Q as a reduced frac-
tion t0 ¼ 2m q

r where m; q ∈ Z, r ∈ N, and gcd ðq; rÞ ¼
gcdðq; 2Þ ¼ gcdðr; 2Þ ¼ 1, in which case the periodicity of
the RG flow is simply r, while maxð−m; 0Þ equals the
number of initial digits in A before the sequence becomes
periodic. From the above it follows that all periodicities are
realized for some initial values of t and that any finite interval
of initial values induces RG flows with an infinite set of
different periods. Meanwhile, if t0 ∉ Q, then the sequence A
does not have a limit cycle. Moreover, one can show that the
set t ¼ ftng∞i¼1 will be dense in the interval I. Since both the
rational and irrational numbers are dense in the space of
values for t0, it requires infinite precision to determine
whether a given initial state gives rise to periodic flow or not.
The full phase diagram of the complexified Ising chain is

shown in Fig. 1. Since g appears in an exponent accom-
panied by a factor of plus or minus one, we can restrain the
imaginary values of g to the interval ð− iπ

2
; iπ
2
� so that g is

valued over an infinite complex cylinder. One way to
understand the phase diagram is to think in terms of the
eigenvalues λþ and λ− of the transfer matrix T,

λþ ¼ 2C coshðgÞ; λ− ¼ −2C sinhðgÞ: ð12Þ

The partition function, being the trace of the Nth power of
the transfer matrix, can be expressed as

CHAOTIC RG FLOW IN TENSOR MODELS PHYS. REV. D 105, 065021 (2022)

065021-3



Z ¼ λNþ þ λN− : ð13Þ

The blue region in Fig. 1 corresponds to the range
− π

2
< ℑ½g� < π

2
, where jλþj > jλ−j. This means that for

large systems, λþ dominates the free energy

F ¼ logZ ≈ N log½C coshðgÞ�; ð14Þ

which is the regular behavior of the Ising model.
Meanwhile, the green region is the regime where jλ−j >
jλþj so that λ− dominates the free energy. When g ¼ xþ i π

4

for some real number x, then jλ1j ¼ jλ2j, and we are in
the chaotic regime. In this case, for a modulus and phase
given by

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2xÞ

2

r
; ϕ ¼ arctan½tanhðxÞ�; ð15Þ

we have that the eigenvalues and free energy equal

λ� ¼ ρe�iϕ; F ¼ N logðρÞ þ log½2 cosðNϕÞ�: ð16Þ

Because of the phase in the argument of the cosine, the
second contribution could be arbitrarily large, depending
on the exact number of sites in the Ising model. Moreover,
let us consider the two-point functions and its large N
behavior when jλþj > jλ−j,

hσiσiþki ¼
tr½TN−kσ3Tkσ3�

tr½TN � ¼ λkþλN−k
− þ λk−λ

N−kþ
λNþ þ λN−

≈
�
λ−
λþ

�
k
;

N ≫ k: ð17Þ

This correlation function behaves smoothly in the thermo-
dynamic limit N → ∞. Meanwhile, on the special line
g ¼ xþ i π

4
,

hσiσiþki ¼
cosðN − 2kÞϕ

cosNϕ
; ð18Þ

which is highly sensitive to the total number of the sites and
does not admit a simple thermodynamic limit.

Having closely studied this simple chaotic chain, it is not
hard to conceive the implications of chaotic RG trans-
formation in systems in higher dimensions or composed of
different types of spin sites. Roughly speaking, while an
ideal gas is well described simply by specifying temper-
ature, pressure, and volume, for a RG chaotic gas com-
posed of a macroscopic number of particles it would
require knowledge of on the order of 1023 parameters to
make accurate predictions.

III. BAKER’S MAP, THE SMALE HORSESHOE,
AND SHILNIKOV HOMOCLINIC ORBITS

In this section, we review one of the few general tools for
diagnosing chaos in a continuous dynamical system:
Shilnikov homoclinic orbits. In order to properly under-
stand these orbits, we will need to review certain facts
concerning chaos in discrete dynamical systems. Consider
therefore the discrete map known as the baker’s map [33],
which acts on the unit square I ¼ fðx; yÞ∶0 ≤ x; y ≤ 1g as

Bðx; yÞ ¼
�
2x − b2xc; yþ b2xc

2

�
; B∶ I → I: ð19Þ

On an intuitive level, we simply stretch the unit square by a
factor of 2 in the x direction and squeeze it by a factor of 2 in
the y direction such that the total area is preserved, and
afterward we cut off the right half of the stretched shape and
place it on top of the left half.1 See Fig. 2. It can be seen that
the map is chaotic by associating to each point ðx; yÞ of the
unit square I an infinite sequence of numbers σ ¼ fσig∞i¼−∞,
σi ∈ f0; 1g, defined via the binary expansions of x and y as

x ¼
X∞
i¼1

σi
2i
; y ¼

X∞
i¼0

σ−i
2iþ1

: ð20Þ

The baker’s map acts on σ by shifting each number one step
to the right,

σ̃ ≡ BðσÞ ¼ fσ̃i ¼ σi−1g∞i¼−∞: ð21Þ

From this fact one can immediately infer certain chaotic
properties of the systemaswedid for theBernoullimap in the
previous section. For instance, given any sequence σT that is
periodic with a given period T, the orbit of σT under repeated
applications of the mapBwill in turn be periodic with period
T. And the set of all points ðx; yÞwith a periodic sequence σ is
dense in the unit square. If we take x and y to be irrational, the
orbit of ðx; yÞ never returns to the original point. And the set
of points ðx; yÞwith irrational x and y is also dense in the unit

FIG. 1. Phase diagram of the complexified Ising chain. The
blue region indicates the basin of attraction of the trivial fixed
point at g ¼ 0, while the green region indicates the basin of
attraction of the imaginary fixed point at g ¼ iπ

2
. The two basins

are separated by a chaotic region drawn in red.

1The name baker’s map derives from the similarity of this
process with the kneading of dough.
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square. Hence, the fate of any orbit of the baker’s map is
infinitely sensitive to initial conditions.
The baker’s map is a limiting case of a more general

chaotic map known as the Smale horseshoe map [34] and
depicted in Fig. 3. We will denote this map by S. One can
argue that the map is chaotic by showing that it contains a
fractal set of periodic orbits. To see why this is so, consider
the two highlighted regions on the lower left in Fig. 3. Each
of these regions must necessarily contain a fixed point
under the horseshoe map. Take for example the pink region.
In this region, red is mapped to red in the color scheme of
the top part of Fig. 3. Since the preimage in this region
sweeps through the entire red palette, there must neces-
sarily be some horizontal line where image and preimage of
S have identical hues, i.e., where the y component is
unchanged by S. By instead drawing the horseshoe map
with a color palette that runs from left to right, one can
similarly argue that there exists a vertical line in the pink
region, where the x component is unchanged by S. At the
intersection of the vertical and horizontal lines just
described, there must be a fixed point. By the same
argument, it is not hard to see that S2 must have a fixed
point in each of the four regions highlighted in the lower
right of Fig. 3, and that in general Sn must have 2n fixed

points. From this line of reasoning, it becomes apparent that
S contains a Cantor set of periodic orbits with all possible
periods, which furnishes evidence to the fact that the Smale
horseshoe map is chaotic. Furthermore, it can be rigorously
proved that any map topologically equivalent to the Smale
horseshoe map is also chaotic [35].
So far we have reviewed discrete dynamical systems, but

we now turn to continuous dynamical systems described by
a set of autonomous first-order differential equations. For
such systems, it is also possible to establish the presence of
chaos via the horseshoe map. To do this, one needs a way
of deriving a two-dimensional discrete map from a system
of differential equations. This is achieved with the Poincaré
map: given a continuous dynamical system in more than
two dimensions, we consider some fixed two-dimensional
surface S that is traversed by the trajectories of the
dynamical system. For any point s0 ∈ S there is a unique
solution curve that passes through s0. Suppose this curve is
such that we can follow it forward in time starting at s0 until
we find that it crosses S again at some point s1. For all such
points s0, the Poincaré map π is defined by the relation
πðs0Þ ¼ s1.
From the above discussion, we see that whenever in a

continuous dynamical system we are able to find a Poincaré
map that induces a Smale horseshoe map, then we know
that the system is chaotic. A simple set of sufficient criteria
for making this determination was found by Shilnikov [27],
who managed to prove that a three-dimensional system is
chaotic if it contains a homoclinic orbit originating and
terminating at a fixed point such that the stability matrix at
this point has a pair of complex conjugate eigenvalues λ� ¼
−ρ� iω and a real eigenvalue λ3 ¼ γ > ρ. The proof runs
roughly as follows: In the vicinity of the fixed point, the
dynamical system can be described by coordinates x, y, and
z satisfying the equations

_x ¼ −ρx − ωyþ F1ðx; y; zÞ;
_y ¼ ωx − ρyþ F2ðx; y; zÞ;
_z ¼ γzþ F3ðx; y; zÞ; ð22Þ

whereFiðx; y; zÞ, i ∈ f1; 2; 3g, are functions of second order
or higher in the coordinates. Suppose now we surround the
fixed point by a cylindrical shell whose curved surface is
given by C ¼ fðx; y; zÞ∶x2 þ y2 ¼ r2; jzj ≤ hg, see Fig. 4.
The homoclinic orbit enters the cylinder through the curved
surface at some pointp (marked in brown in Fig. 4) and exits
at some point q (marked in teal in Fig. 4) on the flat top of the
cylinder. By taking r and h to be very small, we can assume
that q is situated on the z axis and that p lies in the ðx; yÞ
plane so that we can choose to write q ¼ ð0; 0; hÞ and
p ¼ ðr; 0; 0Þ. Disregarding the higher-order terms Fiðx;
y; zÞ, we determine that the solution curves near p are given
in terms of local coordinates ðζ; θÞ by

FIG. 2. Baker’s map.

FIG. 3. Above: the Smale horseshoe map. We extend the square
in the vertical direction and then bend it in the middle. Below:
regions that necessarily contain fixed points under one and two
applications of the horseshoe map. The total point set that is
periodic under the horseshoe map forms an infinite fractal set.
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xðtÞ ¼ re−ρt cosðωtþ θÞ;
yðtÞ ¼ re−ρt sinðωtþ θÞ;
zðtÞ ¼ ζeγt: ð23Þ

In this approximation, any given solution curve, intersecting
C at time t ¼ 0 at a positive value ζ of z, subsequently
intersects the plane z ¼ h at the coordinates

8<
:

xðθ; ζÞ ¼ r
�
ζ
h

�ρ
γ cos

�
θ − 1

λ log
ζ
h

�
;

yðθ; ζÞ ¼ r
�
ζ
h

�ρ
γ sin

�
θ − 1

λ log
ζ
h

�
:

ð24Þ

For tiny values of x and y, the solution curve will be close to
the homoclinic orbit and will flow back to again intersect the
surfaceC at somepoint close to the pointp. Thereby, the flow
induces a Poincaré map that maps points on C with z > 0
back to C. To first order in x and y we can approximate this
map by a linear transformation,

�
ζ0 ¼ Axðθ; ζÞ þ Byðθ; ζÞ;
θ0 ¼ Cxðθ; ζÞ þDyðθ; ζÞ: ð25Þ

CombiningEqs. (24) and (25)we arrive at the followingmap:

8>><
>>:

ζ0 ¼ r
�
ζ
h

�ρ
γ

h
A cos

�
θ − 1

λ log
ζ
h

�
þ B sin

�
θ − 1

λ log
ζ
h

�i
;

θ0 ¼ r
�
ζ
h

�ρ
γ

h
C cos

�
θ − 1

λ log
ζ
h

�
þD sin

�
θ − 1

λ log
ζ
h

�i
:

ð26Þ

For generic values ofA,B,C, andD, vertical lines of constant
θ and increasing ζ are mapped to spirals that wind outward
around the origin as sketched in Fig. 4. Now, the key
observation is that for ν≡ ρ

γ < 1, when ζ
h is small as required

for the approximation (26) to be valid, points ðζ; θÞ are
mapped to points ðζ0; θ0Þ that are farther from the origin. For
this reason, drawing a plot of the map (26) as in Fig. 4, one
finds that when the Shilnikov condition

ν < 1 ð27Þ

is satisfied, then generically it is always possible to find a
region of C that undergoes a Smale horseshoe map. This
concludes our proof sketch of Shilnikov’s theorem. In the
next section, we present examples of Shilnikov homoclinic
orbits that occur in the context of RG flow.

IV. CHAOTIC BIANTISYMMETRIC
TENSOR MODEL

In this section, we present a family of tensor models
[36,37] with OðN1Þ ×OðN2Þ symmetry and show that for
special noninteger values ofN1 andN2, the RG flows of the
models become chaotic.2 In studying the RG flow of a
model whose symmetry group is of noninteger size, we
follow the program of [40,41], which in this setting
discovered the existence of RG limit cycles and homoclinic
orbits. Generally, models with noninteger dimensional
symmetry groups can be studied numerically and

FIG. 4. Homoclinic orbit and the Poincaré map (26) that it induces for different values of the ratio ν ¼ ρ
γ. For ν < 1 it is always possible

to find a subregion that undergoes a Smale horseshoe map as shown on the right. For ν > 1 this is not the case.

2For an interesting large N limit of a model with SOðN1Þ ×
SOðN2Þ we refer the reader to [38,39].
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analytically [14,22], can describe real physical phenomena
[42], and can avoid the famous a-, c-, F-theorems [8–
10,12] at the price of nonunitarity. To study nonmonotonic
RG flow it is necessary to consider regimes where the
Zamolodchikov metric has negative eigenvalues, which
implies that some of the two-point functions are equipped
with negative coefficients.
Themain advantage to treatingN1 andN2 as real numbers

that we can tune to any desired value lies in the fact that this
approach allows us to apply theorems of bifurcation theory,
which provide one of the sole means of firmly establishing
that a dynamical system is chaotic. The idea to treatN in the
OðNÞ model as a bifurcation parameter was suggested
already in Ref. [19]. Reference [43] proved that in a general
class of four-parameter dynamical systems, it is possible to
tune the parameters to such values that generically Shilnikov
chaos is guaranteed to occur. In Ref. [44] these results were
improved, by proving that Shilnikov homoclinic orbits arise
in the vicinity of a certain kind of codimension-3 bifurcation.
Finally, in 2020 [28] provided rigorous evidence for the
generic presence of Shilnikov chaos in dynamical systems
that undergo a subtype of the codimension-2 bifurcation
knownas the zero-Hopf (ZH)bifurcation. In the tensormodel
we shall present shortly, this kind of bifurcation is realized.
We consider a family of scalar models described by rank-

four tensor fields ϕab
αβ where the upper indices run from one

to N1: a1; a2 ∈ f1;…; N1g and belong to the antisymmet-
ric representation of the OðN1Þ group, while the lower
indices run from one to N2: α; β ∈ f1;…; N2g and also
belong to the antisymmetric representation of the OðN2Þ
group,

ϕab
αβ ¼ −ϕba

αβ ¼ ϕba
βα: ð28Þ

Wework in d ¼ 4 − ϵ Euclidean dimensions, where quartic
interactions in the fields are marginally relevant. Unlike the
case for N1 and N2, the number of spacetime dimensions d
being noninteger valued is not crucial to the realization of
RG chaos in this section. The effect of working in slightly
less than four dimensions is to introduce small linear terms
into the beta functions for the coupling constants we
introduce below. The same effect can be achieved by
coupling the model to gauge fields, but for simplicity of
presentation we do not adopt this approach but work in
4 − ϵ dimensions instead.
In total the family of models has eight marginal, quartic

interactions Oi, and we take the action to be

S ¼
Z

ddx

�
1

2
ð∂μϕ

ab
αβÞ2 þ

1

4!

X8
i¼1

giOiðxÞ
	
; ð29Þ

where the operators Oi are given by

O1 ¼ ðϕab
αβϕ

ab
αβÞ2; O2 ¼ ϕab

αβϕ
ab
γδ ϕ

cd
γδϕ

cd
αβ;

O3 ¼ ϕab
αβϕ

ab
γβϕ

cd
γδϕ

cd
αδ; O4 ¼ ϕab

αβϕ
cb
αβϕ

cd
γδϕ

ad
γδ ;

O5 ¼ ϕab
αβϕ

ab
γδ ϕ

cd
αδϕ

cd
γβ ; O6 ¼ ϕab

αβϕ
cd
αβϕ

ad
γδ ϕ

cb
γδ ;

O7 ¼ ϕab
αβϕ

cb
γβϕ

cd
γδϕ

ad
αδ ; O8 ¼ ϕab

αβϕ
cb
γδϕ

cd
γβϕ

ad
αδ : ð30Þ

Diagrammatically, these operators can be represented as in
Fig. 5. The beta functions for the coupling constants
associated to these operators admit a perturbative expan-
sion

βgi ¼ μ
dgi
dμ

¼ −ϵgi þ βð2Þgi þOðkg⃗k3Þ; ð31Þ

where μ is the renormalization group scale. The first term
on the rhs represents the naive scalings of the interactions

and the terms βð2Þgi indicate the lowest-order loop correc-
tions, which are quadratic in the coupling constants. Owing
to the large number of operators that mix under the RG
flow, analyzing the dynamics of this family of tensor
models, even numerically, poses a challenge. Future
exploration of exotic QFTs may uncover chaos in smaller
systems. But since perturbative beta functions are poly-
nomials with a finite number of roots, by the Poincaré-
Bendixson theorem chaos cannot occur in continuous
theories unless there are at least three coupling constants.
We will adopt the perspective of thinking of the beta
functions abstractly as an eight-dimensional two-parameter
dynamical system,

dgi
dt

¼ βgiðgj; N1; N2Þ: ð32Þ

Here t ¼ log μ. Using general formulas for perturbative
beta functions in 4 − ϵ dimensions, a straightforward

computation yields βð2Þgi as functions of the ranks N1 and
N2 of the symmetry groups. We list the results in

Appendix B, where explicit formulas for βð2Þgi are given.
Since the upper and lower indices of the fundamental fields
ϕab
αβ transform in the same kind of representation, in the

family of QFTs we are considering, the theory with
OðN1Þ ×OðN2Þ symmetry is the same as the theory with
OðN2Þ ×OðN1Þ. This fact is reflected in the beta functions,

FIG. 5. Graphical representation of the operators (31).
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which are invariant under the simultaneous interchange of
N1 ↔ N2, g3 ↔ g4, and g5 ↔ g6.
When we take N1 and N2 to be integers greater than 3,

the system of beta functions describes the behavior of a real
unitary quantum field theory, and therefore we expect only
regular solutions to the system. The solutions curves are all
heteroclinic orbits—trajectories that connect separate fixed
points—and one can find a Zamolodchikov metric for the
system and check that indeed the a-theorem is satisfied. In
Appendix B we show the precise form of the metric to
leading order in perturbation theory, where the metric is
independent of the coupling constants but depends only on
N1 and N2. Meanwhile, if N1 or N2 is equal to two or three,
the eight operators (30) will no longer be independent as
there will exist vanishing linear combinations. And if N1 or
N2 is equal to one, all eight operators vanish.
In the following, we continue the system to fractional

values of N1 and N2. The regime where either N1 or N2 lies
between −2 and 3 is particularly interesting for our
purposes, for here the Zamolodchikov metric becomes
sign indefinite so that the RG flow is no longer constrained
to be monotonic. It therefore becomes possible for the RG
flow to exhibit limit cycles, homoclinic orbits, and chaos.
Our focus will be on investigating the presence of chaos. To
this end, we look for ZH bifurcations [35,45,46] in the
space of N1 and N2. In other words, we are interested in the
existence of special fixed points such that
8>>>>><
>>>>>:

βiðgj;N1;N2Þ ¼ 0;

det
�∂βi∂gj

�
¼ 0;

det
�∂βi∂gj − λ

�
− has a pair of imaginary roots in λ:

ð33Þ

The last requirement can be formulated in terms of a closed
algebraic equation, but for brevitywewill skip it and refer the
reader to [41]. In total, the conditions (33) consist of 8þ 2
equations, so that generically one expects a discrete set of
solutions in the space of eight couplings gi and two
parameters N1 and N2. In the vicinity of a ZH point it is
possible to make a coupling constant redefinition
fgig → fx; y; z; gig, a parameter redefinition ðN1; N2Þ →
ða; b; ηÞ, and a reparametrization t → τðtÞ in such a way that
the system of differential equations furnished by the beta
functions can be brought into the so-called truncated normal
form parametrized by coordinates x, y, z,8>><

>>:

dx
dτ ¼ yþ ηx − axz;
dy
dτ ¼ −xþ ηy − ayz;
dz
dτ ¼ −β þ z2 þ bðx2 þ y2Þ:

ð34Þ

These equations are approximate in that we are omitting
terms of cubic and higher order in the coordinates. The
parameters a, b, η, β depend on N1 and N2, with a, μ, and η
being real valued, while b ¼ �1. Right at the ZH point β and

η equal zero. The other coupling constants gi decouple from
the rest at this order of expansion. The two-parameter
invariant manifold given by gi ¼ 0 is known as the center
manifold. There is a definite procedure for computing the
higher-order terms on the center manifold, order by order,
although the higher-order terms never terminate. In
Appendix C we present the explicit transformation that puts
the beta functions into the truncated normal form.
The system of equations (34) has six topologically

distinct types of behaviors, depending on whether b equals
plus or minus one and on whether a > −1, a ∈ ð−1; 0Þ, or
a > 0. We are interested in the type with a, b > 0. The
recent result of [28] is that in two-parameter dynamical
systems with ZH points of this type, there will generically
exist nearby parameter values for which the systems exhibit
Shilnikov homoclinic orbits and hence chaos. For the
system of beta functions governing the RG flows of the
tensor models (29), as given in Eqs. (B1)–(B2) in
Appendix B, it can be verified that there is a ZH point
of the particular type in question situated at

�
N�

1

N�
2

�
¼

�
2.520

1.972

�
;

g� ≡ ð31.01; 14.90; 8.880; 136.2; 3.811;
− 143.5;−18.64; 18.16Þϵ: ðZHÞ

For this ZH point the quadratic normal form coefficients a,
b, η, β in (34) are given to leading order in δN1 ≡ N1 − N�

1

and δN2 ≡ N2 − N�
2 by

a ¼ 0.8826; b ¼ 1;

η ¼ −40.59δN1 − 208.3δN2;

β ¼ −89.05δN1 − 456.9δN2: ð35Þ
If we restrict ourselves to the second-order normal form in
(34) and disregard the higher-order corrections for a
moment, we do not find any homoclinic solutions.
Depending on the values of δN1 and δN2, the value of β
will be either negative or positive. In the latter case, there is
a pair of fixed points located at x ¼ y ¼ 0 and z ¼ � ffiffiffi

β
p

.
This pair of fixed points is connected by heteroclinic
solutions. And therefore, at quadratic order in the dynami-
cal variables, we do not get any new phenomena—the
system simply flows from one fixed point to another in a
regular way. One of these heteroclinic solutions runs
vertically between the two fixed points, the z axis being
an invariant manifold of the flow (34). In the special case
when we tune δN1 and δN2 so as to set η ¼ 0, the
remaining heteroclinic solutions admit a simple descrip-
tion, being orbits that wind around the invariant ellipsoid
given by

z2 þ b
1þ a

ðx2 þ y2Þ ¼ β: ð36Þ
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Once we cease to neglect higher-order terms in the normal
form, these terms mix the heteroclinic solutions, and
homoclinic solutions emerge. Essentially, once we perturb
the system, an initially vertical orbit flowing from one fixed
point will now stray slightly from the z axis and miss the
other fixed point and can instead merge onto the erstwhile
invariant ellipsoid and flow back to the fixed point whence
it originated. Whenever these homoclinic solutions satisfy
the Shilnikov condition (27), chaos ensues.
For a given ZH point in parameter space, it is a nontrivial

task to determine the nearby parameter values for which the
dynamical systems exhibit Shilnikov homoclinic orbits.
There are no homoclinic asymptotics available as is the
case for example in the generic Bogdanov-Takens bifurca-
tion, see [47]. Our approach has been to first search for
homoclinic solutions in the parameter space of N1 and N2

in the three-dimensional reduced and truncated system
(C14) on the center manifold with cubic terms added in.
Subsequently, we were able to uplift these approximate
solutions to convergent homoclinic solutions in the full
eight-dimensional system. This was achieved as follows: a
homoclinic orbit starts and ends at a fixed point. The fixed
points are not hard to find numerically, since this amounts
to setting the beta functions equal to zero and solving the
resulting algebraic equations. Once we have a fixed point,
we numerically integrate the system, searching for solu-
tions where the one-dimensional unstable manifold of the
fixed point is reinjected into its two-dimensional stable
manifold. In Fig. 6 such a solution in the reduced system is
shown, while in the left panel of Fig. 7 the profiles are
given. This solution is then translated to the full system and
subsequently corrected by applying Newton’s method to a
special boundary value problem, see [48]. The right panel

FIG. 6. Homoclinic orbit to the saddle focus at ðu; v; xÞ ≈
ð0.0008;−0.0001; 0.0152Þ in the RG flow of coupling constants
at parameter values ðN1 − N�

1; N2 − N�
2Þ ¼ ð7.412 × 10−8;

−5.054 × 10−7Þ. Here u, v, and x are three independent functions
of the couplings gi, with their precise forms given in Appendix C.
For computational reasons, we additionally scaled the variables u,
v, and x by a factor 10000=ð6ð32πÞ2ϵÞ. In the language of
Sec. III, the fixed point of the homoclinic orbit has eigenvalues
λ� ≈ −0.0020� 0.0307i and λ3 ≈ 0.0047. Thus, the Shilnikov
condition is satisfied, and the dynamics near the saddle focus are
complex.

FIG. 7. In the left panel the profiles of the homoclinic orbit in the reduced system at parameter values
ðN1 − N�

1; N2 − N�
2Þ ¼ ð7.412 × 10−8;−5.054 × 10−7Þ, see Fig. 6, are shown. In the right panel, a homoclinic solution in the full

eight-dimensional space of coupling space at the parameter values ðN1 − N�
1; N2 − N�

2Þ ≈ ð1.053 × 10−7;−6.655 × 10−7Þ. The abscissa
represents the span of t ¼ log μ truncated to the interval ½−5000; 5000�, the ordinate indicates values of the eight coordinates ḡ of the
system obtained translating the ZH point to the origin in (32) and scaling the resulting coordinates by a factor 10000=ð6ð32πÞ2ϵÞ. The
solid lines represent the approximated solution, while the circles are the Newton corrected solution. We see that at this scale they are
indistinguishable.
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of Fig. 7 displays an example of a Shilnikov homoclinic
orbit that we located in the vicinity of the ZH bifurcation
point [see (ZH) equation after Eq. (34)] in the full system.
This solution is then continued using standard pseudo-
arclength continuation, see for example [49]. In the two-
dimensional parameter space spanned by N1 and N2, we
observe Shilnikov homoclinic orbits to occur along a one-
dimensional subspace that constitutes a wiggling curve
emanating from the ZH point, as shown in Fig. 8. Note that
there are two wiggling curves. Indeed, by reversing time,
we can use the same method as outlined above to find the

second curve of homoclinic orbits. This behavior in
parameter space conforms to the general pattern for ZH
points of this subtype, as explained in Ref. [50], of
homoclinic orbits occurring along an oscillating curve in
a wedge-shaped region whose thickness decays exponen-
tially as you approach the ZH point.
We have now ascertained that for a special curve of

values for N1 and N2, Shilnikov homoclinic orbits are
present in the two-parameter class of dynamical systems
(32). This means that in the family (29) of tensor models,
there exists a special codimension-1 subset of theories

FIG. 8. Left: entwined wiggling of loci of homoclinic orbits emanating from the zero-Hopf bifurcation point in the shifted parameter
space ðN1 − N�

1; N2 − N�
2Þ. Right: same curves as in the left panel, but rotated clockwise through the angle 0.1925. Also, a bifurcation

curve (purple) of three-pulse Shilnikov homoclinic orbits is shown in the right panel.

FIG. 9. Left: three-pulse homoclinic orbit to the saddle focus at ðu; v; xÞ ≈ ð0.0153; 0.0008;−5.0736 × 10−5Þ in the RG flow of
coupling constants at parameter values ðN1 − N�

1; N2 − N�
2Þ ¼ ð5.145 × 10−8;−3.916 × 10−7Þ. Here u, v, and x are three independent

functions of the couplings gi, with their precise forms given in Appendix C. Right: the profile of the three-pulse homoclinic solution in
the shifted and scaled eight-dimensional phase space.
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whose RG flows contain Shilnikov homoclinic orbits. By
the argument reviewed in Sec. III it follows that for each of
these theories, with fixed N1 and N2, the space of coupling
constants contains, in addition to a homoclinic orbit, a
fractal set of periodic orbits with an infinite range of
periodicities. Hence, we conclude that each of these
theories exhibits a chaotic RG flow: an arbitrarily tiny
change of initial values for the coupling constants can spell
the difference between the couplings flowing to a fixed
point or them winding endlessly around a loop.
One can object that we are merely working at leading

order in perturbation theory in ϵ ¼ 4 − d, and that higher
loop corrections will modify the RG flow. But the presence
of a ZH bifurcation is stable under small deformations, and
[28] proved rigorously that the presence of Shilnikov
homoclinics in a subspace of systems near a ZH point is
a generic phenomenon. Since higher-order corrections are
suppressed in ϵ, as long as we take ϵ to assume a tiny value
we can reliably state that the RG flow is in fact chaotic.
As a symptom of the chaos, it is possible to find a

number of interesting or bizarre RG trajectories that arise as
we slightly change the initial conditions. We saw above that
a homoclinic orbit arises as a heteroclinic orbit is disturbed,
such that an orbit originating from one fixed point misses
the other fixed point, but winds back to its starting point. By
further perturbing this orbit, it is possible to make it miss
the starting point and instead flow once more toward the
other fixed point, miss it again, and wind back whence it
originated. Such an orbit is called a two-pulse homoclinic
orbit. Through additional careful deformations, one can
find three-, four-, five-… pulse homoclinic obits, which
densely occupy the neighborhood of the Shilnikov homo-
clinic orbit. As an example, we display a three-pulse
homoclinic orbit in Fig. 9.

V. DISCUSSION AND OUTLOOK

In this paper, we have presented examples of QFTs with
chaotic RG flows. Usually, in the study of the renormal-
ization group, one considers flows that are nonchaotic and
thereby give rise to universality—the behavior of a system
at the macroscopic level is insensitive to the precise
microscopic configuration of the system. Imagine that
we have two adjacent balls made of the same metal. If
we measure their macroscopic properties, such as the
specific heat, speed of sound, and density, we would find
them to be identical. But if we use an electronic microscope
and discern the internal structure of these objects we would
find them tobe completely different: the distance between the
atoms would vary, the number of atoms would be different,
the exact distribution of isotopes and defects would differ,
and so on. Generally, when a RG flow is nonchaotic, some
parameters are irrelevant at large distances so that small
alterations at short length scales do not affect the large scale
description of the system. But one of the key features of any
chaotic mapping is an extreme sensitivity to initial con-
ditions. If we imagine aworld with a chaotic renormalization
group, macroscopic systems would be sensitive to the
properties of each individual atom. In this sense, chaotic
RG flows generally, and our example specifically, present a
new and peculiar instance of a UV/IR mixing, where the IR
behavior is extremely sensitive to the UV properties. For this
reason, the study of chaotic RG flows and the demarcation of
the instances where they occur pose an interesting problem.
In the examples we considered, it was necessary to relax the
condition of unitary, but such theories can nonetheless be
studied on a lattice or find realization in cold atom experi-
ments. And so to the question raised in the title of the paper
[51], we respond that “yes, RG flows can indeed end up in a
total mess.”

FIG. 10. Left: a spiral attractorlike solution of the reduced system (C14) obtained by integrating backward in time starting in the one-
dimensional unstable manifold of the equilibrium located at ðu; v; xÞ ≈ ð−0.02473;−0.02190; 0.001417Þ with parameter values
ðN1 − N�

1; N2 − N�
2Þ ¼ ð−3.489 × 10−6; 1.774 × 10−5Þ. The solution converges to a two-dimensional torus, shown in the right panel.
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Having established the existence of QFTs with chaotic
RG flows, it is reasonable to expect these theories to
manifest period-doubling cascades, Feigenbaum scaling,
strange attractors, and other interesting phenomena. For the
tensor model (29) studied in this paper, it is a formidable
numerical challenge to reliably investigate exotic RG
trajectories because the flow equations are eight-dimen-
sional. But as an approximate probe of the behavior of the
full system, we can study the truncated flow equations
describing the reduced system on the center manifold in the
hope that these solution curves can be uplifted to the full
system, like we were able to do for the Shilnikov homo-
clinic orbits. Generally, when searching for exotic trajec-
tories in the reduced system, we observe three kinds of
solution curves:
(1) The solution grows without bound.
(2) The solution converges to a periodic cycle.
(3) The solution converges to a torus.

An example of the third scenario is depicted in Fig. 10.
It is a well-known and much appreciated fact that

Lagrangians, in furnishing virtually all the essential infor-
mation of the QFTs they represent, provide a beautifully
compact way of encoding a tremendous amount of infor-
mation. We leave it as a question for future work
whether this information includes the geometry of fractal
patterns.
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APPENDIX A: GENERAL DISCUSSION
OF CHAOS

The least initial deviation from the truth is multiplied
later a thousandfold.—Aristotle [52].
It is rather hard to formulate a precise mathematical

definition of chaos, and for this reason one sometimes
encounters definitions of chaos of a speculative or even
philosophical nature. From a pedestrian point of view, if by
“chaos” we have in mind something unpredictable, Eqs. (1)
should not contain any chaos: if we know the initial state of
a system, we can evolve it forward in time and predict all
future states exactly. Due to the uniqueness and existence
theorems for systems of differential equations, we know
that systems subject to the same initial conditions will
follow the same evolution. Therefore, we would not expect
randomness or chaos in our dynamical system (1). The
imaginary intellect whose full knowledge of the present
Universe allows it to know with certitude all future courses

of history is sometimes referred to as Laplace’s demon. But
of course in actuality, we never know exactly the initial
state of a system, and one of the most intuitive features of
chaos is the dependence on initial conditions. Due to finite
experimental precision and unknown aspects of the system,
we can at best know the initial state to within a finite degree
of precision. Therefore, one could reasonably say that we
should study the dynamics of an ϵ-domain of the initial
state of the system Uϵðg0Þ ¼ fgj∶jjgi − g0i jj < ϵg. And if
the evolution of this ϵ-domain leaves the domain still of
finite size or even shrinking in time, we would expect the
system in question not to be chaotic. For any initial point
g� ∈ Uϵðg0Þ, we have some information about the future of
its trajectory, namely, g�ðtÞ ∈ Uϵðg0ðtÞÞ. If this region
Uϵðg0ðtÞÞ grows larger and larger in time and even covers
the whole phase space, then we would not be able to make
any predictions as to the state of the dynamical system far
into the future. Such a system we could say is chaotic for
which a small perturbation of the initial state drastically
changes the behavior of the system, as in the famous
butterfly effect. In classical and quantum mechanics, one
usually associates such a behavior where the initial
ϵ-domain Uϵ grows uncontrollably large by the appearance
of a nonzero Lyapunov exponent λL,

jjδqðtÞjj ∼ jjδqðt ¼ 0Þjj exp ½λLt�: ðA1Þ

A small perturbation of the initial state leads to an expo-
nential error in the later observables. This property of
dynamical systems is sometimes referred to as strong
sensitive dependence. Lyapunov exponents have been com-
puted for some famous models like the Sachdev-Ye-Kitaev
model [2]. The existence of a positive Lyapunov exponent is
suggestive of chaos, but it is not a sufficient condition.
Indeed, consider the following dynamical system:

gðxÞ ¼ 2x; gnðxÞ ¼ 2nx: ðA2Þ

Obviously this systemhas a positive Lyapunov exponent, but
it is nevertheless not considered chaotic. In the setting of RG
flows, local exponential behavior as in (A2) is commonplace
for systems that exhibit universality and eventually flow to
gapped theories or CFTs. Another issue with the condition
(A1) as a criterion for chaos is that for systems with compact
phase spaces, it cannot be satisfied for all times. Moreover,
the existence of a global Lyapunov exponent can in some
cases be an observer-dependent phenomenon, for example a
system with a nonzero Lyapunov exponent in Minkowski
space can have a vanishing Lyapunov exponent in Rindler
space [53]. So we see that the condition (A1) is neither a
necessary nor a sufficient diagnostic for chaos.
To resolve the above issues, one of the most dominant

ideas is to replace the condition of strong sensitivity
dependence with a weak sensitivity condition:
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(1) The distance between the initial conditions grows
with time: jjδqðt2Þjj > jjδqðt1Þjj if t2 > t1.
Then add the following two additional condi-

tions [54]:
(2) There is a dense set of periodic orbits in the phase

space.
(3) The dynamical system is topologically transitive on

the phase space, meaning that if we take any two
open regions U and W of phase space, then the
evolution of U along the dynamical system would
bring it to intersect with W: gtðUÞ ∩ W ≠ ∅.

In the examples of chaotic systems provided in the main
text, one can check that these three conditions are indeed
satisfied. To systems with RG flows that are chaotic
according to these conditions, the concept of universality

does not apply. Arbitrarily small changes in the initial
conditions, say any slight tweak of the coupling constants
in the UV theory or the replacement of a square lattice with
a triangular lattice, drastically alter the behavior of the
system and can spell the difference between periodic orbits
and ergodic motion in phase space.

APPENDIX B: THE TWO-LOOP BETA
FUNCTIONS AND THE ZAMOLODCHIKOV

METRIC

By the use of the general formulas for any marginal
scalar field theory in four dimensions [55], one finds that
the beta functions for the eight couplings of the family of
the models (29) are given by

βð2Þg1 ¼ 1

16π2

�
N2

1N
2
2 − N2

1N2 − N1N2
2 þ N1N2 þ 32

12
g21 þ

N2
1 þ N2

2 − N1 − N2 þ 2

3
g1g2

þ N2
1N2 − N2

1 − N1N2 þ N1 þ 2N2

6
g1g3 þ

N1N2
2 − N1N2 − N2

2 þ 2N1 þ N2

6
g1g4

þ N2
1 − N1 þ 4N2 − 4

6
g1g5 þ

N2
2 þ 4N1 − N2 − 4

6
g1g6 þ

2N1N2 − 2N1 − 2N2 þ 3

6
g1g7

þ N1N2 − 1

6
g1g8 þ g22 þ

N2 − 1

3
g2g3 þ

N1 − 1

3
g2g4 þ

g2g5
3

þ g2g6
3

þ N2
1 − N1 þ 6

24
g23

þ ðN1 − 1ÞðN2 − 1Þ
6

g3g4 þ
g3g5
3

þ N2 − 1

6
g3g6 þ

N1 − 1

6
g3g7 þ

N1

12
g3g8

þ N2
2 − N2 þ 6

24
g24 þ

N1 − 1

6
g4g5 þ

g4g6
3

þ N2 − 1

6
g4g7 þ

N2

12
g4g8 þ

g5g6
6

þ g27
8
þ g7g8

12
þ g28
48

�
; ðB1Þ

βð2Þg2 ¼ 1

16π2

�
4g1g2 þ

N2
1 þ N2

2 − N1 − N2 þ 8

6
g22 þ

N2

3
g2g3 þ

N1

3
g2g4 þ

2ðN2 − 1Þ
3

g2g5

þ 2ðN1 − 1Þ
3

g2g6 þ
1

6
g23 þ

2

3
g3g5 þ

1

6
g24 þ

2

3
g4g6 þ

N2
1 − N1 þ 4

12
g25 þ

1

6
g5g7

þ N1 − 1

6
g5g8 þ

N2
2 −M þ 4

12
g26 þ

1

6
g6g7 þ

N2 − 1

6
g6g8 þ

1

24
g27 þ

1

12
g28

�
; ðB2Þ

βð2Þg3 ¼ 1

16π2

�
4g1g3 þ

N2
1 − N1 þ 6

3
g2g3 þ

8

3
g2g5 þ

2ðN1 − 1Þ
3

g2g7 þ
N1

3
g2g8

þ N2
1N2 − 2N2

1 − N1N2 þ 2N1 þ 6N2 − 4

24
g23 þ

N1

3
g3g4 þ

N2
1 − N1 þ 2N2

6
g3g5

þ 2ðN1 − 1Þ
3

g3g6 þ
N1N2 − 2N1 − N2 þ 3

6
g3g7 þ

N1N2 − 2

12
g3g8 þ

2

3
g4g7 þ

1

3
g4g8

þ N2

3
g25 þ

N1 − 1

3
g5g7 þ

N1

6
g5g8 þ

2

3
g6g7 þ

1

3
g6g8 þ

N2 − 3

12
g27 þ

N2 − 1

12
g7g8 þ

N2

24
g28

�
; ðB3Þ
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βð2Þg4 ¼ 1

16π2

�
4g1g4 þ

N2
2 − N2 þ 6

3
g2g4 þ

8

3
g2g6 þ

2ðN2 − 1Þ
3

g2g7 þ
N2

3
g2g8 þ

N2

3
g3g4

þ 2

3
g3g7 þ

1

3
g3g8 þ

N1N2
2 − N1N2 − 2N2

2 þ 6N1 þ 2N2 − 4

24
g24 þ

2ðN2 − 1Þ
3

g4g5

þ 2N1 − N2 þ N2
2

6
g4g6 þ

N1N2 − N1 − 2N2 þ 3

6
g4g7 þ

N1N2 − 2

12
g4g8 þ

2

3
g5g7

þ 1

3
g5g8 þ

N1

3
g26 þ

ðN2 − 1Þ
3

g6g7 þ
N2

6
g6g8 þ

N1 − 3

12
g27 þ

N1 þ 1

12
g7g8 þ

N1

24
g28

�
; ðB4Þ

βð2Þg5 ¼ 1

16π2

�
4g1g5 þ

4

3
g2g3 þ

N2
1 −N1 þ 2

3
g2g5 þ

1

3
g2g7 þ

N1 − 1

3
g2g8 þ

1

6
g23 þ

N1

3
g4g5

þ 1

3
g4g8 −

N1ðN1 − 1Þ
12

g25 þ
2ðN1 − 1Þ

3
g5g6 −

1

6
g5g7 −

N1 − 1

6
g5g8 þ

1

3
g6g8 þ

1

12
g7g8 þ

N2 − 4

48
g28 þ

N2 − 2

3
g3g5

�
;

ðB5Þ

βð2Þg6 ¼ 1

16π2

�
4g1g6 þ

4

3
g2g4 þ

N2
2 − N2 þ 2

3
g2g6 þ

1

3
g2g7 þ

N2 − 1

3
g2g8 þ

N2

3
g3g6 þ

1

3
g3g8

þ 1

6
g24 þ

N1 − 2

3
g4g6 þ

2ðN2 − 1Þ
3

g5g6 −
N2ðN2 − 1Þ

12
g26 þ

1

3
g5g8 −

1

6
g6g7

−
N2 − 1

6
g6g8 þ

1

12
g7g8 þ

N1 − 4

48
g28

�
; ðB6Þ

βð2Þg7 ¼ 1

16π2

�
4g1g7 þ

2

3
g2g7 þ

2

3
g2g8 þ

4

3
g3g4 þ

N2 − 2

3
g3g7 þ

1

3
g3g8 þ

N1 − 2

3
g4g7 þ

1

3
g4g8

þ 8

3
g5g6 þ

N2 − 1

3
g5g8 þ

N1 − 1

3
g6g8 þ

N1N2 − 2N1 − 2N2 þ 7

12
g27 þ

N1 þ N2 − 3

12
g7g8 þ

N1N2

48
g28

�
; ðB7Þ

βð2Þg8 ¼ 1

16π2

�
4g1g8 þ

4

3
g2g7 þ

4

3
g2g8 þ

4

3
g3g4 þ

8

3
g3g6 þ

2

3
g3g7 þ

N2 − 1

3
g3g8 þ

8

3
g4g5

þ 2

3
g4g7 þ

N1 − 1

3
g4g8 þ

2ðN2 − 1Þ
3

g5g7 þ
N2 − 1

3
g5g8 þ

2ðN1 − 1Þ
3

g6g7

þ N1 − 1

3
g6g8 þ

1

6
g27 þ

N1N2 − N1 − N2 − 3

12
g7g8 þ

1

12
g28

�
: ðB8Þ

These beta functions are gradient βi ¼ Gij∂jA. The Zamolodchikov metric Gij that governs the flow has, up to a
convention-dependent overall normalization, the following components:

G11 ¼ 4ð8þ N1N2 − N2
1N2 − N1N2

2 þ N2
1N

2
2Þ;

G12 ¼ 8ð2 − N1 þ N2
1 − N2 þ N2

2Þ;
G13 ¼ 4ðN1 − N2

1 þ 2N2 − N1N2 þ N2
1N2Þ;

G14 ¼ 4ð2N1 þ N2 − N1N2 − N2
2 þ N1N2

2Þ;
G15 ¼ 4ð−4 − N1 þ N2

1 þ 4N2Þ;
G16 ¼ 4ð−4þ 4N1 − N2 þ N2

2Þ;
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G17 ¼ 4ð3 − 2N1 − 2N2 þ 2N1N2Þ;
G18 ¼ 4ð−1þ N1N2Þ;
G22 ¼ 2ð12 − 2N1 þ 2N2

1 − 2N2 þ N1N2 − N2
1N2 þ 2N2

2 − N1N2
2 þ N2

1N
2
2Þ;

G23 ¼ 2ð−4þ 6N2 − N1N2 þ N2
1N2Þ;

G24 ¼ 2ð−4þ 6N1 − N1N2 þ N1N2
2Þ;

G25 ¼ 4ðN1 − N2
1 þ 2N2 − N1N2 þ N2

1N2Þ;
G26 ¼ 4ð2N1 þ N2 − N1N2 − N2

2 þ N1N2
2Þ;

G27 ¼ 4ð−1þ N1N2Þ;
G28 ¼ 2ð2 − 2N1 − 2N2 þ 3N1N2Þ;

G33 ¼
1

2
ð8 − 4N1 þ 4N2

1 þ 2N1N2 − 2N2
1N2 þ 2N2

2 − N1N2
2 þ N2

1N
2
2Þ;

G34 ¼ 2ð2 − 2N1 − 2N2 þ 3N1N2Þ;
G35 ¼ 8 − 4N2 − N1N2 þ N2

1N2 þ 2N2
2;

G36 ¼ 4ð−1þ N1N2Þ;
G37 ¼ −4þ 4N1 þ 3N2 − 2N1N2 − N2

2 þ N1N2
2;

G38 ¼
1

2
ð4N1 − 2N2 þ N1N2

2Þ;

G44 ¼
1

2
ð8þ 2N2

1 − 4N2 þ 2N1N2 − N2
1N2 þ 4N2

2 − 2N1N2
2 þ N2

1N
2
2Þ;

G45 ¼ 4ð−1þ N1N2Þ;
G46 ¼ 8 − 4N1 þ 2N2

1 − N1N2 þ N1N2
2;

G47 ¼ −4þ 3N1 − N2
1 þ 4N2 − 2N1N2 þ N2

1N2;

G48 ¼
1

2
ð−2N1 þ 4N2 þ N2

1N2Þ;
G55 ¼ −4N1 þ 4N2

1 þ 4N2 þ 3N1N2 − 3N2
1N2 − N1N2

2 þ N2
1N

2
2;

G56 ¼ 4ð3 − 2N1 − 2N2 þ 2N1N2Þ;
G57 ¼ 4 − 5N2 þ 2N1N2 þ N2

2;

G58 ¼ −4þ 4N1 þ 3N2 − 2N1N2 − N2
2 þ N1N2

2;

G66 ¼ 4N1 − 4N2 þ 3N1N2 − N2
1N2 þ 4N2

2 − 3N1N2
2 þ N2

1N
2
2;

G67 ¼ 4 − 5N1 þ N2
1 þ 2N1N2;

G68 ¼ −4þ 3N1 − N2
1 þ 4N2 − 2N1N2 þ N2

1N2;

G77 ¼
1

4
ð16 − 12N1 þ 4N2

1 − 12N2 þ 11N1N2 − 3N2
1N2 þ 4N2

2 − 3N1N2
2 þ N2

1N
2
2Þ;

G78 ¼
1

4
ð4N1 þ 4N2 − 5N1N2 þ N2

1N2 þ N1N2
2Þ;

G88 ¼
1

8
ð16 − 8N1 − 8N2 þ 4N2

1 þ 6N1N2 þ 4N2
2 − 2N2

1N2 − 2N2N2
2 þ N2

1N
2
2Þ: ðB9Þ

The determinant of this metric is given by

detG ¼ 1

16
ðN1 − 3Þ4ðN1 − 2Þ6ðN1 þ 1Þ2ðN1 þ 2Þ4ðN2 − 3Þ4ðN2 − 2Þ6ðN2 þ 1Þ2ðN2 þ 2Þ4:
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When −2 < N1 < 3 or −2 < N2 < 3, the metric has
both positive and negative eigenvalues. If N1 and N2

are each greater than 3 or less then −2, it is positive-
definite. In Fig. 11 we plot the eight eigenvalues of the
Zamolodchikov metric for various values of N1 and N2.

In general it is not possible to provide closed-form
expressions for the eigenvalues, since they are roots of
an eighth-order polynomial. An exception occurs at
N1 ¼ 2, where six eigenvalues equal zero, while the
remaining two are given by

FIG. 11. Eigenvalues of the Zamolodchikov metric at various values of N1 and N2.
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λ� ¼ 100−25N2þ25N2
2

2

�5

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
208−328N2þ337N2

2−18N3
2þ9N4

2

q
: ðB10Þ

APPENDIX C: REDUCED EQUATIONS
ON THE CENTRAL MANIFOLD

In this Appendix we derive the reduced equations on the
parameter-dependent center manifold of the system of
ordinary differential equations given by

_gi ¼ βiðg⃗; α⃗Þ ¼ −gi þ βð2Þi ðg⃗; α⃗Þ; ðC1Þ

at the (numerically derived) zero-Hopf point located at
α� ¼ ðN�

1; N
�
2Þ, see (ZH) equation. Here the functions βð2Þ

are listed in Eqs. (B1)–(B2) and depend on the vector-
valued function g⃗∶ R → R8 and the vector α⃗ ¼ ðN1;
N2Þ ∈ R2. For brevity of notation, we use units where
ϵ ¼ 1. The analysis is general and applies to any two-
parameter dynamical system exhibiting a ZH bifurcation.
For readability, all calculations will be rounded up to four
figures from here on out, although to reproduce the figures
in Sec. 4 it is necessary to work at significantly higher
precision. The derivation of the normal form is also
carefully worked out in the textbook [56], see also [46].
First, we translate the bifurcation point to the origin by

introducing new variables ḡ≡ g⃗ − g� and parameters
ᾱ≡ α⃗ − α�. We immediately drop the bars again for read-
ability. Thus, the ZH point is now located at ðg⃗; α⃗Þ ¼
ð0; 0Þ ∈ R8þ2. The right-hand side of (C1) can be
expanded as

βðg⃗; α⃗Þ ¼ Ag⃗þ Bðg⃗; α⃗Þ ¼ β0;1ðα⃗Þ þ
1

2
β2;0ðg⃗; g⃗Þ

þ β1;1ðg⃗; α⃗Þ þ
1

2
β0;2ðα⃗; α⃗Þ þ

1

2
β2;1ðg⃗; g⃗; α⃗Þ

þ 1

2
β1;2ðg⃗; α⃗; α⃗Þ þ

1

6
β0;3ðα⃗; α⃗; α⃗Þ þ � � � ; ðC2Þ

where Aij ¼ ∂giβ
jðg⃗; α⃗Þ is the Jacobian of βjðg⃗; α⃗Þ at the ZH

point, the notation βi;j means that we expand to the ith order
in coupling constant and to the jth order in parameters

βi;jðg⃗1; g⃗2;…; g⃗i; α⃗1; α⃗2 � � � ; α⃗jÞ

¼ ∂i

∂t1∂t2…∂ti
∂j

∂s1∂s2…∂sjβ
�Xi

r¼0

trg⃗r;
Xj

r¼0

srα⃗r

�





tr¼sr¼0

:

ðC3Þ

Note that we did not include the multilinear form β3;0 in (C2)
since it is identically zero in the perturbative approximation
we are working at, where βðg; αÞ is only computed up to

second order in the coupling constants. Now we truncate the
expansion (C2) at the third order in the sum I ¼ iþ j ≤ 3.
The reason we perform this double expansion and truncate
parameters and couplings together is that we are interested in
RG trajectories near the ZH point that do not run away but
exhibit fluctuations in coupling space that scale with the
magnitude of α⃗.
To confirm that the point under consideration is indeed a

ZH point we inspect the eigenvalues of the linearization of
(C1) at the (ZH) equation, i.e., the eigenvalues of the matrix
A. This set can be divided into three parts

σs ¼ f−0.4878;−0.2207;−0.1137g;
σc ¼ f�0.02756i; 0g; σu ¼ f0.4001; 1g;

corresponding to the UV-stable, center, and UV-unstable
eigenspaces of A, respectively. The eigenvalue 1 is exact at
second order in perturbation theory and owes to the
homogeneity of β þ g [40]. As a shorthand we introduce
ω ¼ 0.02756. Then, since the eigenvalues in σc are non-
degenerate or simple, there are eigenvectors p0 ∈ R8 and
p1 ∈ C8 and adjoint eigenvectors q0 ∈ R8 and q1 ∈ C8

such that the following relations hold:

Aq0 ¼ 0; Aq1 ¼ iωq1; Aq̄1 ¼ −iωq̄1;

ATp0 ¼ 0; ATp1 ¼ −iωp1; ATp̄1 ¼ iωp̄1: ðC4Þ

Furthermore, letting ha; bi ¼ a†b, the eigenvectors can be
normalized such that

hp0; q0i ¼ hp1; q1i ¼ hp̄1; q̄1i ¼ 1 ðC5Þ

while the other scalar products vanish, thus hp1; q0i ¼
hp1; q̄1i ¼ 0. Specifically, we may choose

q0 ¼

0
BBBBBBBBBBBBBBB@

−0.02496
−0.1020
0.1371

−0.1819
0.1036

0.3948

0.3868

−0.7880

1
CCCCCCCCCCCCCCCA

; q1 ¼

0
BBBBBBBBBBBBBBB@

0.02738− 0.003734i

0.09744− 0.002053i

−0.1377þ 0.008072i

0.1318þ 0.07592i

−0.1046þ 0.009853i

−0.3439− 0.06262i

−0.3982− 0.03841i

0.8089

1
CCCCCCCCCCCCCCCA

;

ðC6Þ

and
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p0 ¼

0
BBBBBBBBBBBBB@

0

290.4

−27.72
222.0

197.5

246.9

65.73

86.99

1
CCCCCCCCCCCCCA

; p1 ¼

0
BBBBBBBBBBBBB@

0

134.6þ29.92i

−12.38−31.11i

102.5þ19.82i

96.22þ34.47i

114.3þ21.68i

31.13−8.470i

41.96−2.626i

1
CCCCCCCCCCCCCA

: ðC7Þ

Note that the above normalization does not uniquely define
the eigenvectors. For example, we can scale ðp0; q0Þ →
ðcp0; 1c q0Þ for c ≠ 0 while leaving (C4) and (C5) invariant.
To write the equations below in a compact form it is

convenient to introduce the matrices Φ ¼ ðq0 q1 q̄1Þ and
Ψ ¼ ðp0 p1 p̄1Þ. Due to the normalization (C5), we have
the identity hΨ;Φi ¼ Ψ†Φ ¼ I3, where In is the n × n
identity matrix. Moreover Pc ¼ ΦΨ† is a projector on the
center subspace: P2

c ¼ Pc. Right at α ¼ 0 there exists a
unique manifold tangent to q0, q1, and q̄1. For nonzero α
this manifold can be continued into a one-parameter family
of three-dimensional invariant manifolds known as the
center manifold. Any real vector g⃗ ∈ R8 that belongs to the
central manifold can be represented as

g⃗ ¼ xq0 þ zq1 þ z̄q̄1 þ wðx; z; z̄; αÞ; ðC8Þ

where x ¼ hp0; gi ∈ R, z ¼ hp1; gi ∈ C, and hpj; wi ¼ 0

for j ¼ 0, 1. The time derivatives of x and z are given by

�
_xðtÞ ¼ f0ðx; z; z̄; αÞ;
_zðtÞ ¼ f1ðx; z; z̄; αÞ; ðC9Þ

where

fjðx; z; z̄; αÞ ¼ p̄jβðxq0 þ zq1 þ z̄q̄1 þ wðx; z; z̄;αÞ; αÞ;
j ¼ 0; 1: ðC10Þ

Meanwhile, w cannot be an arbitrary function of its
arguments but must satisfy the differential equation

_w ¼ ðI8 − PcÞβðxq0 þ zq1 þ z̄q̄1 þ wðx; z; z̄; αÞ; αÞ:
ðC11Þ

Next we expand the mappings f0, f1, and w as follows:

f0ðx; z; z̄; αÞ ¼
X

f0ijklmx
izjz̄kαl1α

m
2

¼ f000010α1 þ f000001α2 þ
1

2
f0200x

2 þℜðf0020z2Þ þ f0011zz̄þ 2xℜðf0110zÞ

þ f010010xα1 þ f010001xα2 þ
1

6
f0300x

3 þ f0111xjzj2 þ x2ℜðf0210zÞ þ jzj2ℜðf0021zÞ;
f1ðx; z; z̄; αÞ ¼

X
g1ijklmx

izjz̄kαl1α
m
2

¼ iωzþ f100010α1 þ f100001α2 þ
1

2
f1200x

2 þ 1

2
f1020z

2 þ 1

2
f1002z̄

2 þ f1011jzj2 þ f1110xz

þ f1101xz̄þ f101010zα1 þ f101001zα2 þ
1

6
f1300x

3 þ f1111xjzj2 þ
1

2
f1210x

2zþ 1

2
f1021zjzj2;

wðx; z; z̄; αÞ ¼
X

wijklmxizjz̄kαl1α
m
2

¼ w00010α1 þ w00001α2 þ
1

2
w200x2 þ 2ℜðw110xzÞ þ w011zz̄þℜðw020z2Þ; ðC12Þ

where f0;1μ ∈ C and wν ∈ C8, with multi-indices μ and ν parametrizing the degrees of expansion in couplings and in
parameters. We also used an abbreviated notation where f0;1ijk ¼ f0;1ijk00. Since f0 is a real-valued function, we have the

identities f0ijkmn ¼ f̄0ikjmn and f0ijjmn ∈ R. Since w is also a real-valued function, the same symmetry holds for the
coefficients of w.
Comparing Eqs. (C2) and (C10) we can fix the coefficients in (C12),

fj200 ¼ p̄j · β2;0ðq0; q0Þ; fj110 ¼ p̄j · β2;0ðq0; q1Þ; fj020 ¼ p̄j · β2;0ðq1; q1Þ;
fj002 ¼ p̄j · β2;0ðq̄1; q̄1Þ; fj101 ¼ p̄j · β2;0ðq0; q̄1Þ;

for j ¼ 0, 1. And
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fj00010α1 þ fj00001α2 ¼ p̄j · β0;1α; j ¼ 0; 1; ðC13Þ

for the higher-order parameter-dependent terms fj10010 and f
j
10001 could be computed in a similar way. Then we decompose

z ¼ uþ iv, with u and v real, in (C9) to obtain the three-dimensional real system given by

_x ¼ p0 · β0;1αþ 1

2
f0200x

2 þ f0011ðu2 þ v2Þ þ 2ðℜðf0110Þu − ℑðf0110ÞÞvxþℜðf0020Þðu2 − v2Þ

− 2ℑðf0020Þuvþℜðf010010Þxα1 þℜðf010001Þxα2 þ
1

6
f0300x

3 þℜðf0210Þux2 − ℑðf0210Þvx2

þℜðf0021Þuðu2 þ v2Þ − ℑðf0021Þvðu2 þ v2Þ þℜðf0111Þxðu2 þ v2Þ;

_u ¼ −ωvþℜðp1Þ · β0;1αþ 1

2
ℜðf1200Þx2 þ

1

2
ðℜðf1020Þ þℜðf1002ÞÞðu2 − v2Þ

þ ðℑðf1002Þ − ℑðf1020ÞÞuvþ ðℜðf1110Þ þℜðf1101ÞÞxuþ ðℑðf1101Þ − ℑðf1110ÞÞvx
þℜðf1011Þðu2 þ v2Þ þℜðf101010Þuα1 − ℑðf101010Þvα1 þℜðf101001Þuα2 − ℑðf101001Þvα2
þ 1

6
ℜðf1300Þx3 þ

1

2
ℜðf1210Þx2u −

1

2
ℑðf1210Þx2vþ

1

2
ℜðf1021Þuðu2 þ v2Þ

−
1

2
ℑðf1021Þvðu2 þ v2Þ þℜðf1111Þxðu2 þ v2Þ;

_v ¼ ωuþ ℑðp1Þ · β0;1αþ 1

2
ℑðf1200Þx2 þ

1

2
ðℑðf1020Þ þ ℑðf1002ÞÞðu2 − v2Þ

þ ðℜðf1020Þ −ℜðf1002ÞÞuvþ ðℑðf1110Þ þ ℑðf1101ÞÞxuþ ðℜðf1110Þ −ℜðf1101ÞÞxv
þ ℑðf1011Þðu2 þ v2Þ þ ℑðf101010Þuα1 þℜðf101010Þvα1 þ ℑðf101001Þuα2 þℜðf101001Þvα2
þ 1

6
ℑðf1300Þx3 þ

1

2
ℑðf1210Þx2uþ 1

2
ℜðf1210Þx2vþ

1

2
ℑðf1021Þuðu2 þ v2Þ

þ 1

2
ℜðf1021Þvðu2 þ v2Þ þ ℑðf1111Þxðu2 þ v2Þ: ðC14Þ

The truncated normal form (34) exhibits a rotational
symmetry in the ðu; vÞ plane. This symmetry is not a
symmetry of the full system. Consequently, the approxi-
mation (34) misrepresents essential qualitative properties of
the RG flow around the bifurcation point. For this reason
we retained cubic terms in the above expansions so that the
symmetry is broken. Incidentally, the cubic terms are

nonresonant, meaning that one could get rid of them by
a suitable change of variables and thereby restore the ðu; vÞ
rotation symmetry at cubic order. But in doing so, one
generates new symmetry-breaking terms at higher order. In
principle, one could retain the symmetry at any desired
order by iterating this procedure, but retaining the sym-
metry at all orders requires a singular change of variables.
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