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Abstract: We consider the flow of two immiscible fluid phases in a porous medium. At the
scale of pores, the two fluid phases are separated by interfaces that are transported by the flow.
Furthermore, the surface tension at such interfaces depends on the concentration of a surfactant
dissolved in one of the fluids. Here we discuss a two-scale model for two-phase porous-media
flow, in which concentration-dependent surface tension effects are incorporated. The model is
obtained by employing formal homogenization methods and relies on the phase-field approach,
in which thin, diffuse interface regions approximate the interfaces. We propose a two-scale
numerical scheme and present numerical results revealing the influence of various quantities on
the averaged behaviour of the system.

1 INTRODUCTION

Porous media are complex domains involving many alternating solid grains surrounded by
void spaces (the pores). These form hierarchically organized structures in which various pro-
cesses take place at different scales. Prominent examples in this sense are the fluid flow through
the pores of the medium, the transport of chemically reactive substances, or mechanical de-
formation. In situations like the ones mentioned here, there are processes taking place at the
scale of pores (from now on called the micro scale), whereas the main interest is in the averaged
behavior of the system at a larger scale (the laboratory or even the field scale, from now on
called the macro scale).

Two-phase flow in porous media are encountered in several real-life situations of practical
relevance. Prominent examples in this sense are geological CO2 sequestration or oil recovery.
Here we consider the flow of two immiscible fluid phases in a porous medium. At the micro scale,
one encounters an interface separating the two fluids transported by the flow. Furthermore,
we assume that the surface tension may change depending on the concentration of a surfactant
dissolved in one of the fluid phases. Since the location of the interface is not known a-priori
but depends on the (unknown) fluid velocities and the surfactant concentration, the resulting
mathematical model involves free boundaries at the micro scale. Hence, the model equations
are defined in time-dependent a-priori unknown micro-scale domains.

Two significant challenges can be identified in this context: the free boundaries at the
micro scale and the complex structure of the micro-scale domain. To deal with the former, we
consider a phase-field approach, in which the evolving interfaces are approximated by narrow
diffuse-interface regions, which allows defining all model components on the entire micro-scale
domain. For the latter, we recall that in practical applications, the main interest is in the
system’s behavior at the macro scale, not necessarily in the complex, micro-scale behavior.
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Therefore, we apply formal homogenization techniques to derive a two-scale phase-field model,
approximating the averaged, macro-scale behavior of the system. In the resulting two-scale
model, the effective (macro-scale) parameters required at the macro scale are determined by
solving micro-scale cell problems, which, in their turn, depend on the macro-scale quantities.

Similar situations are considered in [1,2], where macro-scale models are derived for two-phase
porous-media flow, accounting for the evolving interfaces at the micro scale. Such results are
extended in [3], where dynamic and hysteretic contact angles are incorporated in the micro-
scale model before deriving macro-scale ones. Closest to the present contribution is the case
involving a concentration-dependent surface tension studied in [4]. However, all these results
are obtained for sharp-interface micro-scale models.

Phase-field models for two-phase porous-media flow, including the derivation of macro-scale
models are discussed in [5–10]. More precisely, in [5, 6] phase-field pore-scale models are dis-
cussed, and the convergence to the corresponding sharp-interface model is proved when passing
the diffuse-interface parameter to zero. A macro-scale model is derived in [9] under certain
scaling assumptions, but without accounting for variable surface-tension effects. A macro-scale
phase-field model for compressible fluids is derived in [8]. Here we consider a two-scale phase-
field model derived by formal homogenization techniques [11]. The model includes variable
surface-tension effects, depending on the concentration of a surfactant dissolved in one of the
fluid phases. We propose an explicit numerical scheme, accounting for the coupling between
the two scales.

The paper is organized as follows. In Section 2, the two-scale model is presented, and the
interaction between the scales is highlighted. Then, in Section 3, an explicit numerical scheme
is proposed for the numerical solution of the two-scale model. Finally, in Section 4, a numerical
example is presented, for which the necessity of using adaptive meshes at the micro scale is
discussed, and the influence of the macro-scale quantities on the micro-scale results is studied.

2 THE TWO-SCALE MODEL

At the macro scale, the porous medium is a bounded domain Ω ⊂ R2, having Lipschitz-
continuous boundary ∂Ω. Let T ∈ (0,∞) be the final time. To each macro-scale point x ∈ Ω,
one micro-scale cell Y = [0, 1]2 is associated. The micro-scale cell is divided into two sub-
domains: the inner grain G surrounded by the pore space P . We denote by ∂G the boundary
of G and by n the unit normal to ∂G pointing into G. One has Y = G ∪ P ∪ ∂G, and we
assume that the pore space P is filled by two fluids, “Fluid 1” and “Fluid 2”. A sketch of the
two-scale domain is shown in Figure 1.

Following the phase-field approach, the (micro-scale) sharp interface separating the two fluids
is replaced by a narrow, diffuse interface. Consequently, the two fluids are identified at the micro
scale through the phase field ϕ, ranging from 1 (corresponding to Fluid 1) to −1 (for Fluid
2). At the micro scale, this allows defining the velocity, pressure, and solute concentration for
the mixture over the entire pore space P , without separating between the fluid phases. The
corresponding macro-scale quantities are v̄, v̄ϕ, p and c. Also, S stands for the macro-scale
saturation of Fluid 1. We consider the following macro-scale model for x ∈ Ω and t ∈ (0, T ]

(Pp)

{
v̄ = −K∇p−Mγ(c),

∇ · v̄ = 0,

(PS)

v̄ϕ = −Kϕ ∇p−Mϕ γ(c),

Φ ∂tS +
1

2
∇ · v̄ϕ = 0,
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Figure 1: The porous medium: the macro-scale domain Ω (left) and the micro-scale domain Y
(right) corresponding to a point x ∈ Ω.

(Pc) Φ ∂t(Sc) +
1

2
∇ · (c(v̄ + v̄ϕ)) =

1

Pec
∇ · (B∇c+Hc).

Initial and boundary conditions complete the model. Here Pec is the non-dimensional Péclet
number and Φ denotes the medium porosity. The definition of the effective parameters Kϕ,
K, Mϕ, M, B, H depend on the micro-scale structure and on the evolution of the micro-scale
phase field ϕ, as explained below. Note that v̄ is the velocity of the mixture of the two fluids,
while v̄ϕ accounts for the phase distribution. Hence 1

2
(v̄+ v̄ϕ) reflects the macro-scale velocity

of Fluid 1.
At each micro-scale cell Y , the phase field ϕ and the potential ψ are computed by solving

the following micro-scale cell problem

(Pϕ)



∇ · (vϕ) = Aϕλ∆ψ, in P,

ψ =
Aψγ(c)

λ

(
CP ′(ϕ) + I ′(ϕ)− Cλ2∆ϕ

)
, in P,

∇ϕ · n = 0, on ∂G,

∇ψ · n = 0, on ∂G,

ϕ, ψ are Y -periodic,

1

Φ

∫
P

ϕ dy = (2S − 1) .

Observe that t enters in (Pϕ) as a parameter, through the macro-scale saturation S and concen-
tration c. Here Aϕ,Aψ are non-dimensional quantities and γ(c) is the concentration-dependent
surface tension, which introduces a coupling with the macro scale. The micro-scale velocity v
is defined below and its average is by construction v̄. Moreover, we choose P (ϕ) = 1

4
(1− ϕ2)2

as the double-well type potential and I(ϕ) = 1
2
(1 + ϕ) as a characteristic function which is 1 in

Fluid 1 and 0 in Fluid 2. The parameter λ is the diffuse interface thickness and C = 3
2
√
2
is a

calibration constant.
The components of the effective matrices K and Kϕ, appearing in the Darcy-type laws in

(Pp) and in the evolution equation for the saturation (PS), are found through

Ks,r =

∫
P

(wr)s dy and (Kϕ)s,r =

∫
P

(wr)sϕ dy, for r, s = 1, 2. (1)

Here (wr)s are the components of wr = ((wr)1, (wr)2)
t, where (wr,Πr) solve the following
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Stokes-type cell problems

(Pr
K)



Eu (er +∇Πr) = − 1

Re
∇ · (2µ(ϕ)ε(wr)) , in P,

∇ ·wr = 0, in P,

wr = 0, on ∂G,

Πr,wr are Y -periodic and

∫
P

Πr dy = 0.

Here ε(wr) = 1
2

(
(∇wr) + (∇wr)

T
)

is the symmetric stress tensor and er is the unit basis

vector. The Euler and Reynolds numbers are denoted by Eu and Re, respectively. Moreover,

µ(ϕ) = µ2·(1+ϕ)
2

+ µ1·(1−ϕ)
2

is the viscosity of the mixture of the two fluids and µi with i = 1, 2
correspond to the viscosity of Fluid i. As before, t enters in (Pr

K) as a parameter through ϕ.
Additionally, the components of the effective vectors M and Mϕ, appearing in the Darcy-

type law (Pp) and in the evolution equation for the saturation (PS), are found through

Ms =

∫
P

(w0)s dy and (Mϕ)s =

∫
P

(w0)sϕ dy, for r, s = 1, 2. (2)

As before, (w0)s are the components of w0 = ((w0)1, (w0)2)
t, where (w0,Π0) solve the following

modified Stokes-type cell problem

(PM)



Eu∇Π0 = − 1

Re
∇ · (2µ(ϕ)ε(w0)) +

C
Re Ca

(
1

λ
P ′(ϕ)− λ∆ϕ

)
∇ϕ, in P,

∇ ·w0 = 0, in P,

w0 = 0, on ∂G,

Π0,w0 are Y -periodic and

∫
P

Π0 dy = 0,

with Ca being the capillary number. Observe that (PM) is introduced to deal with the
concentration-dependent surface tension.

The micro-scale cell velocities wr and w0 are also involved in the calculation of the micro-
scale velocity v, i.e.

v = −
2∑

r=1

wr ∂xrp−w0γ(c). (3)

Notice that the macro-scale velocities v̄ and v̄ϕ in (Pp) are related with the micro scale trough
v and ϕ as follows

v̄ =

∫
P

v dy and v̄ϕ =

∫
P

vϕ dy.

The components of the effective matrix B and the effective vector H, appearing in the
macro-scale equation for the solute concentration (Pc), are

Bs,r =

∫
P

I(ϕ) (δs,r + ∂ysχr) dy, Hs =

∫
P

I(ϕ)∂ysχ0 dy, for r, s = 1, 2. (4)

Here, χr and χ0 solve the following micro-scale cell problems

(Pr
B)


∇ · [I(ϕ) (∇χr + er)] = 0, in P,

I(ϕ) (∇χr + er) · n = 0, on ∂G,

χr is Y -periodic and

∫
P

χr dy = 0.
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(PH)


∇ · [I(ϕ)∇χ0] = ∇ · (I(ϕ)v) , in P,

I(ϕ)∇χ0 · n = 0, on ∂G,

χ0 is Y -periodic and

∫
P

χ0 dy = 0.

3 THE NUMERICAL SCHEME

We propose an explicit numerical scheme for solving the two-scale model for the two-phase
flow porous-media problem presented in Section 2. With N ∈ N, we let ∆t = T/N be the time
step size and define tn = n∆t. The time-discrete solutions are denoted by ϕn := ϕ(·, ·, tn) and
νn := ν(·, tn) where ν ∈ {Kϕ,K,Mϕ,M,B,H, p, v̄, v̄ϕ, S, c}. For n ≥ 0, assume Sn, cn and ϕn

given. The time stepping reads:

• For each x ∈ Ω, compute the solution of the time-discrete micro-scale cell problems
corresponding to (Pr

K) and (PM).

• Compute the first set of time-discrete effective parameters Kn
ϕ, Kn, Mn

ϕ and Mn.

• Compute the macro-scale solution pn and v̄n by solving the time-discrete macro-scale
problems corresponding to (Pp).

• Compute the macro-scale solution v̄nϕ and Sn+1 by solving the time-discrete macro-scale
problems corresponding to (PS).

• For each x ∈ Ω, compute the micro-scale velocity vn and the solution of the time-discrete
micro-scale cell problems corresponding to (Pr

B) and (PH).

• Compute the second set of time-discrete effective parameters Bn and Hn.

• Compute the macro-scale solution cn+1 by solving the time discrete problem corresponding
to (Pc).

• For each x ∈ Ω, compute the solution of the time-discrete phase-field problem corre-
sponding to (Pϕ) to obtain ϕn+1.

The explicit scheme is sketched in Figure 2. We highlight that the two-scale problem itself is
fully coupled, and an iterative structure could be considered here. We refer to [12,13] for similar
approaches using iterations to handle the multi-scale interaction between the sub-problems.

Clearly, for the numerical simulations the explicit time stepping needs to be completed by
the spatial discretization. More precisely, let TH be a triangular partition of the macro-scale
domain Ω with elements T of diameter HT and H := max

T∈TH

HT . For computing the micro-scale

quantities, a micro-scale domain Y is assigned to each macro-scale element T . On each micro-
scale domain Y we define another triangular partition Th with elements Tµ of diameter hTµ
and h := max

Tµ∈Th

hTµ . Finally, we use the mixed finite element method to calculate the numerical

solution at both scales. For an effective computation we use adaptive mesh refinement on the
micro scale (see [12,14]).
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Figure 2: The explicit two-scale scheme.

4 NUMERICAL RESULTS

In this section, we present a micro-scale numerical experiment that highlights the relation
between the macro-scale quantities and the micro-scale solutions. We restrict our implementa-
tions to the 2D case and all parameters remain non-dimensional. Here the micro-scale domain
contains a centered square grain with side lengths 0.2 and we choose

Pec = Eu = Re = Ca = Aϕ = Aψ = 1 and λ = 0.08.

4.1 THE PHASE-FIELD AND THE MICRO-SCALE MESH

Figure 3 shows the initial phase field ϕ, corresponding to a saturation S0 = 0.639, and the
Laplacian of the initial phase field ∆ϕ, which is needed for computing the potential ψ in (Pϕ).
The Laplacian is calculated numerically, and this calculation requires the construction of a
very fine mesh around the transition zone to achieve sufficient accuracy. Close to the diffuse
interface, the resolution of the micro-scale mesh Th is taken h ≪ λ to capture the diffuse
transition zone and the variation in its derivatives. Following the ideas in [12], we refine the
micro-scale mesh only close to the diffuse transition zone, making the computation of the phase
field and the effective parameters accurate and efficient.

In Figure 3 we use an initially uniform mesh with 800 elements. Then, the mesh is re-
fined around the transition zone such that the length of the smallest edge in the mesh is
min
Tµ∈Th

hTµ = 1.25E-2 < λ and the length of the largest edge (located far from the transition

zone) is max
Tµ∈Th

hTµ = 7.071E-2.
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Figure 3: Phase-field initial condition (left) and the numerical calculation of the Laplacian of
the phase field (right).

4.2 FIRST SET OF MICRO-SCALE PROBLEMS

Given the phase-field initial condition in Figure 3, we solve the micro-scale problems (Pr
K)

and (PM) over the refined mesh. Figure 4 shows the scalar solutions Π1, Π2 and Π0 of the
problems (Pr

K) and (PM) in the simple case when the two fluids have the same viscosity, i.e.
µ1 = 1 and µ2 = 1.

Figure 4: The solution of the first set of micro-scale problems (Pr
K) (left and middle) and

(PM) (right).

Notice that for Π0, the location of the changes in the solution coincides with the phase-field
transition zone. This supports the requirement of a mesh refinement strategy to improve the
accuracy and efficiency of further computations.

4.3 THE EFFECTIVE PARAMETERS

We show below the behavior of the effective parameters Kϕ, K, Mϕ and M, depending on
the saturation. Figure 5 displays the results for the effective tensors Kϕ and K. We consider
two cases: a simple case where the two fluids have same viscosity, i.e. µ1 = µ2 = 1, and a more
complex case where the viscosities are µ1 = 0.1 and µ2 = 1.

The symmetry of the phase field at the micro scale implies that the effective tensors are
isotropic. The non-diagonal components of Kϕ and K can be neglected, and in Figure 5 we
only show the first component of the effective tensors.

Notice that when µ1 = µ2 = 1, the changes on the saturation do not affect the permeability
K. This is expected since the two fluids flow like one. In contrast, Figure 5 reflects that the
changes in the saturation have an important effect if the two fluids have different viscosities.
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Figure 5: Dependence of the effective parameters Kϕ and K on the macro-scale saturation.

Commonly used two-phase porous-media flow models are relying on saturation-dependent
quantities like relative permeability and capillary pressure. The situation here is similar, but
capillary pressure is absent due to the assumed scaling of the capillary number [11]. Moreover,
here K is not separated into absolute and relative permeability, and it reflects how the velocity
of the mixture of the two fluids relate to the pressure gradient.

Figure 6: Dependence of the effective parameters Mϕ and M on the macro-scale saturation.

In Figure 6 we denote by (Mϕ)1 and M1 the first component of the effective vectors Mϕ and
M. Notice that for these macro-scale vectors, both components are equal due to the symmetry
of the phase field. Moreover, Figure 6 shows that the variations in the effective parameters Mϕ

and M are more relevant in the case of a large viscosity ratio.

5 SUMMARY AND OUTLOOK

We have considered a two-scale model for two-phase flow in a porous medium. The model
describes the behavior of the mixture of two fluids and a surfactant dissolved into one of
them. Here, the surface tension depends on the concentration of the solute. This model is the
homogenized counterpart of a pore-scale phase-field model. For these phase-field formulations,
a diffuse region approximates the moving interfaces separating the two fluids.

Based on the Euler explicit time stepping and the lowest order mixed finite element spatial
discretization, we have proposed a two-scale numerical scheme. The scheme requires solving
several micro-scale cell problems for each macro-scale point, depending on the macro-scale
concentration and saturation. The solution of these micro-scale cell problems is used to deter-
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mine the macro-scale parameters needed to compute the macro-scale model unknowns (velocity,
pressure, saturation and concentration). For each micro-scale cell problem, the spatial mesh is
refined or coarsened adaptively, improving the efficiency of the scheme.

We have presented numerical simulation results in two different situations, when the fluids
have the same viscosities or when the viscosity ratio is large. Based on these results, we show
the dependence of the macro-scale parameters depending on the saturation.

In the following research steps, we will analyze the possibility to compute the macro-scale
parameters adaptively based on an active-passive node strategy. Furthermore, implicit or semi-
implicit schemes will be considered, coupled with appropriate linearization approaches. Also,
different regimes will be analyzed, possibly leading to models involving a capillary pressure.
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[10] Ľ. Baňas and H. S. Mahato, “Homogenization of evolutionary Stokes-Cahn-Hilliard equa-
tions for two-phase porous media flow,” Asymptotic Analysis, vol. 105, no. 1-2, pp. 77–95,
2017.

[11] S. Sharmin, M. Bastidas, C. Bringedal, and I. S. Pop, “Upscaling of a Navier-Stokes-Cahn-
Hilliard model for two-phase porous-media flow with solute-dependent surface-tension ef-
fects,” in preparation.

[12] M. Bastidas, C. Bringedal, and I. S. Pop, “A two-scale iterative scheme for a phase-
field model for precipitation and dissolution in porous media,” Applied Mathematics and
Computation, vol. 396, p. 125933, 2021.

[13] M. K. Brun, T. Wick, I. Berre, J. M. Nordbotten, and F. A. Radu, “An iterative staggered
scheme for phase field brittle fracture propagation with stabilizing parameters,” Computer
Methods in Applied Mechanics and Engineering, vol. 361, p. 112752, 2020.

[14] M. Bastidas, C. Bringedal, I. S. Pop, and F. A. Radu, “Numerical homogenization of non-
linear parabolic problems on adaptive meshes,” Journal of Computational Physics, vol.
425, p. 109903, 2020.

             373


	12571



