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Goal Approach Results

Efficiently find optimal solutions with a minimal set of « Model (expensive, black-box) continuous output| Parameter optimization for plasma process in adhesive
computer/physical experiments, and considering functions fusing Gaussian Process Regression (GPR) | bonding application (JMLab, Flanders Make)
« Multiple objectives with heterogeneous noise (stochastic kriging) [1]. This | | « Maximize break strength and minimize production
* Uncertainty in outputs allows us to obtain an estimation of the output value (f) costs (bi-objective) by tuning 6 parameters

S Potential feasibility constraints (on inputs/outputs) ) at unobserved locations, along with an estimator for the |  « Avoid configurations that lead to adhesive failure or

uncertainty on this value (s?, also referred to as the visual damage of the sample
( ) MSE). This MSE captures both metamodel uncertainty Results MO-GP for low and moderate noise levels (y)

Motivation
* In many real-life systems (engineering design,
process design, Supp'y chain design, etc_), the * Use infill criterion (acquisition function) to select next
optimization problems studied are multi-objective input combination to sample (Bayesian optimization) .
(exhibiting trade-offs between individual objectives),

and stochastic uncertainty. 41
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Infill criterion [2]

Hypervolume indicator

and outputs observations are noisy (repeated o o - T MO-GP(y =30%) MO-GP (y = 0%)

. . . . Py ~ fmin—f fmin—f g === MO-GP (y = 0%) Uncertainty MO-GP (y = 30%)
experiments of the same inputs may vyield different CMEI = [(fmm -fHe (T) +s¢ (—S )] *P(y = 1|x,8) v MO-GP (y = 9%) Uncertainty MO-GP (y = 0%)
output observations). = P % % © P 50 5 60

Number of expensive evaluations

Outperforms common evolutionary algorithms (NSGA-II)

«+«— Expensive function

Infill

* The input/output relationships for objectives and 5 i
poin

constraints are often black box: experimentation is
required to evaluate them. These (physical or
computer) experiments can be expensive (in terms
of cost, time, etc), and the budget for
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Uncertainty
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experimentation is typically constrained. T T B i — MO.GP (y = 30%) NSGAI (y = 0%)
((4- BUILD METAMODEL ' -=- MO-GP (y = 0%) Uncertainty MO-GP
. . . . . 5 S,EARG‘,‘ . based on simulations 36 NGy = 307%) Uncertainty NSGAI
* The goal then is to detect solutions with very high using an infill criterion outputs o = P = = = = = -
quality (optimal or near-optimal) within as few \ Hlmbee cf expandive evaliSiions )
experiments as possible. + PSO, GA, PS, SGD, ... P N
Key take-aways
. Tradm_onal optlmlz_atlon heurlgtlcs (_genetlc alg_orlthm_s, P TRdA.N CLASS,;,ER . Efficient and effective search for solutions to
evolutionary algorithms) are ill-suited to achieve this e e expensive optimization problems with noise
goal. Ply = 112, ) — 1 + Proposed (Bayesian) approach is shown to be robust
Solutl Machine | ing (ML) techni fit 1 y =18 = 1w to the noise level and clearly outperforms the well-
+ Solution: Machine learnin techniques (fit for n
H H . g q . ( . 1- INITIAL SAMPLE > SIMULATIO'\.‘ 3- SCALARIZATION K known NSGA " J
use in settings with scarce data), combined with Design experiments | 7| COMPUte expensive Transform the problem
optimization (OR) insights and/or statistical responses . N

» Smartly choose
initial design
 Latin hypercube

sampling

+ Augmented Tchebycheff Further reading
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N ) *Algorithm based on the work presented in [3] N J
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