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l. INTRODUCTION

A. Background of the study

Uranium toxicity

Uranium is a naturally existing heavy metal foundaw levels in rocks, soil and water.
In soil, the normal concentration of Uranium is 3@pKg™ to 11.7 mg Kg (Wikipedia

2006). In exceptional situations, Uranium concemrs in soils can reach tens to
hundreds of milligrams per kg of soil, mostly besauof mining and milling ores
activities (Plant et al. 1999). High Uranium conications in soil can be toxic and

therefore poses danger to the living organisms.

Because of the undesirable effects of chemicalsoih) the evaluation of their toxicity
becomes paramount. Toxicological tests are condudte instance by measuring the
decrease in the rate of soil respiration upon emirey the concentration of heavy metals
(Haanstra and Doelman 1985). Another way is by oma@g the growth of terrestrial
plants at increasing chemical concentrations. Tdré gf plant that is first exposed to the
chemical is the root so that in toxicological sagliroot length is measured for different

chemical exposures at certain points in time gf@nting.

EC50

The toxicity of chemicals is commonly expressederms of dosage which gives 50%
effect to the response (such as soil respiratiogrowth of a plant eg. root length)
compared to the control. The effect can be eiflremcrease or a decrease in response.
This is called EC50 or Effective Concentration 50he latter is also termed Effective
Dose 50(ED50) or RD50 for dosage causing 50% rémtuctn animal systems, it is
referred to as LD50, the dosage lethal to 50% @ftibjects (Schabenberger et al. 1999).

The EC50 is usually estimated by fitting a log-kigi curve to the data. The model is a

sigmoidal relation on a logarithmic scale rathartHinear relation. The logistic model



can be applied to dichotomous data such as surgivdkath and to continuous data for
example weight or biomass, and in terms of lengthgfowth. Several studies of dose-
response in herbicide application experiments heeel the log-logistic function to model
dose-response relationships (e.g. Streibig 1986rkeaand Streibig 1995; Seedfeldt et al.
1995; Hsiao et al. 1996; Sandral et al. 1997 &sldit Schabenberger et al. 1999)

Hormesis

Some studies with growth as response (continu@pmree) have shown that at some low
concentrations of the toxic substance, growth imgated instead of being suppressed.
This stimulus is called hormesis (from the Greakdetting into motion’). A definition of
hormesis derived from Stebbing (1982) is low-das@dation followed by higher-dose
inhibition. The most common form of hormesis follwhe widely recognized [3-curve
shown in Figure 1. The use of the 3-curve followiagipally from the widespread use of
growth as a principal end point in hormesis redearElormetic dose-response
relationships are also seen in the form U-shapedesu U-shaped dose-response curves
would most appropriately be applied when the endhtpeelates to a traditional
toxicologically based health end point such as eaimcidence (Davis and Svendsgaard
1990) or a response for instance, the proportioaffeficted fetuses (Hunt and Bowman
2004).

f-curve

Response

Oose

Figure 1. The most common dose-response curve whigrere is hormesis: the 3-curve



Reference to hormesis can be traced back to Samulg88 who first expressed what is
known today as the Arndt-Schultz law that everyidamt is a stimulant at low levels (
Schabenberger et al. 1999).Several studies hawenstiat for low dosages of herbicide,
the hormetic effect can occur that raises the @eerasponse at low dosages above the
control value(Miller et al. 1962,; Freney, 1965;a0fiman and Appleby, 1972 as cited in
Schabenberger et al. 1999).

An investigation done by Calabrese and Baldwind@8revealed that chemical hormesis
is a reproducible and a relatively common biologpfzenomenon. Evidence of chemical
hormesis was judged to have occurred in approximad®0 of the 4000 studies

evaluated. Chemical hormesis was observed in a wedge of taxonomic groups and
involved agents representing highly diverse chematasses, many of which are of
potential environmental relevance. Studies with ntical hormesis use different

biological endpoints. Growth responses were founte the most prevalent followed by

metabolic effects, longevity, reproductive respensad survival.

If hormesis occurs, the standard log-logistic modeks not fit the data. The usual
practice was to still use the log-logistic modeldoop part of the data. A solution was
proposed in 1989 by Brain and Cousens by extentlieglog-logistic model. This
modification naturally implements hormesis in tlog-logistic model (Van Ewijk and
Hoekstra 1993).

B. The Data

The experiment for the study was conducted inaheratory of Radioecology in
the Belgian Nuclear Research Center (SCK-CEN) ir, Belgium. Hairy carrot roots
were grown in ann vitro cropping device containing a gel with differentadium(U)
concentrations. Eight replicates of carrot rootdach U concentration were grown in the
growing medium which contains the following Uraniwwoncentrations: 0, 2.5, 5, 7.5,
10, 15, 20 and 30 mg U per liter. The initial andbsequent days root length (in

centimeter) was measured.



The objective of this study is to estimate the EQGHhsidering the possibility of
occurrence of hormesis.

This thesis is organized as follows. The next sectliscusses the methodology. Results

are presented in Section 3, followed by the disoassnd conclusion in the last section.
Il. METHODOLOGY

In order to estimate the EC50, the given data weslyaed by establishing a dose—
response relationship for every time point, thaatday 0, 2, 6, 9, 13, 16, 20, 27 and 34.
The response variable is in terms root length émtimeters) and the dose is in milligrams

of Uranium per liter of the growing medium.

Mathematical non-linear models presented in déglibw were fitted to the data by non-
linear regression using the procedure PROC NLINSAS. Initially, the presence of
hormesis was investigated by fitting the Brain-Gms model. Two equations of Brain-
Cousens model were fitted to the data. When reselgal the non-significance of

hormesis, the analysis proceeded to fitting theldggstic models.
The fitted models were verified if the assumptiémormality of residuals was met.
Non-linear Regression models

The dose response curves are assumed to followndinear curve specified by the
function f, which are known (the Brain Cousens niamtethe Log-logistic model). The
function f is a function of dose and a number ofapaeters. In general, the non- linear

regression models considered in this study canrlitewas:

yi = f(xi;aj)+.si , i=%4..n j=1,..m
where x; denotes the ith dose valug, are the unknown parameters ands the error
for the responsg, (root length in centimetres in this study). The mokn set of

parameters is different depending on the modelnasdy(see below). The erroes are



assumed mutually independent and normally disteithtd(0,o*). In particular, all

observations have the same variance (homoscedastic)

The parameters are estimated using ordinary leastres (OLS) minimizing

3y~ f i)

with respect to the parameterg,(...,a,,). Estimations were done using iterative

algorithm Levenberg-Marquardt in PROC NLIN in SAS.
A. The Log-logistic model

Dose-response toxicity data usually follow a sigmabicurve which can be described by
the log-logistic model. This model expresses measedresponse as a sigmoidal,
monotonic increasing or decreasing function in @s@) that is symmetric about its point

of inflection as shown as a solid line in Figure 2.
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Figure 2. An example of Log-logistic dose-responseirve and Brain-Cousens modification

with hormesis effect. (Source: Schabenberger et &l999)



A common form or parameterization of the log-logisesponse function is

a-90
1+8exd BIn(x)|

E[VIx] = o [1]

Where E[Y|x] is the average response at dosag:do andd are the upper and lower
asymptote of the response respectively. The passtetandf are related to the rate of

change and point of inflection of the curve.

An alternative expression (Schabenberger et al)18R®e log-logistic function is

a-o

E[lY[X]= & 1+exd BIn(x/ RD50)]

[2]

where the term RD50 is the effective concentraabnwvhich 50% of the total effect is
achieved . When referring to Figure 1, this is dosage producing a response halfway
between the upper and lower asymptote or limit; thdo-5)/2. The term RD50 is the
EC50. The parametéris the relative slope around RD508I# 0, the response trend is
monotonically decreasing. The log-logistic functisrsymmetric around RD50. Equation
[2] is afour-parameter function with a, B, 6 and RD50 as the parameters to be estimated

by non linear regression.

A variation of equation [2] is théhree-parameter log-logistic model It is arrived at

when the lower limitd in equation [2] is set to 0, and has the form:

a

Y= exdAin(x/ RD50)

[3]

The lower limitp can be set to zero for response such as growtichvadannot go lower
than zero.



The five-parameter log-logistic model(Finney 1979 as cited in Ritz and Streibig 2005)

is given by the formula

_ a-o
Elvld = o =+ {1+exdBIn(x/ RD5Q)}' X

Setting the parameter f to 1 in equation [4] yiglus four-parameter log-logistic model in

equation [2].
B. The Brain-Cousens model

In order to allow for hormesis, Brain and Cousersliitred the log-logistic model [1] into

the following equation:

a—-0+ X
1+ Gexd BIn(x)]

E[lY|x]= & [5]

wherey measures the initial rate of increase at low desags the hormesis term.

Equation [5] is expressed in another way, stilbwlhg for hormesis but generalized in
order to incorporate any effective dosage as anpetex of the equation. The details of the
reparameterization are presented in Schabenbergéri99. The following equation, is

one of the reparameterizations which includes R@&tich is EC50) as a parameter:

a—-90+ KX

E[Y[|x] = o + 1+ a)exdﬂln(x/ RDSO)]

[6]

2)RD50
a-90

whereo =1 +




Equation [6] reduces to the log-logistic functicor f = 0. This Brain-Cousens model
permits a simple test for hormesis, by fitting tim®del to the data and obtaining an
estimate of the parameterIf the 95% confidence interval for the estimatey @oes not

cover the value 0, the data exhibit a statisticaifynificant effect of hormesis at the 0.05

probability level (Schabenberger et al. 1999).
A variation of equation [6] when the lower limdtjs O takes the form:

a + X

EYIX = L wexdfin(x/ RD50)]

[7]

2)RD50
a

whereo =1 +

Another parameterization of the Brain-Cousens wapgsed earlier by Van Ewijk and

Hoekstra (1992). The equation explicitly includes EC50 as a parameter.

KL+ fx)

S = e ) ()

[8]

The parameter k stands for the response at x sstanids for hormesis (corresponding to
they in equation [6]); if f >0, the dose-response custews an increase for low doses.
The parametergis the EC50. The parameter b has no simple interjioe.

.  RESULTS

A. Exploratory Data Analysis

Eight dosages were used in the study, and for dashge, there are eight observations (8
replicates). The dosages are: 0, 2.5, 5, 7.5, 50,20 and 30 milligrams per liter.

Measurement of the root length was done at nin&r(® points: day 0, 2, 6, 9, 13, 16, 20,

27 and 34. The data was noted to have no missisgradtions.



Plots of dose-response scatter graph for each pong (Figure 3 Appendix) showed a
general trend of decreasing root length at incneadbsage except on the earlier days of
observation, that is, at day 0 and day 2. This mdagien in the trend is confirmed by
negative correlation of dose and root length intfal days, with day 0 having almost no

correlation.

Table 1. Correlation of root length and dose ded#int time points

Time (days) Correlation
0 - 0.08008
2 - 0.28627
6 -0.67176
9 -0.72171
13 - 0.73937
16 -0.77511
20 - 0.80570
27 - 0.83285
34 - 0.85687

The scatter plots are also indicative of non-lingawnward trend of relationship of root

length and dose. In some days however, it can ba fem the graphs that there are
observations in low doses where the correspondinglength exceed that of the control

(at dose 0). These are at days 6, 9, 13, 16, andT2@s leads us to suspect that there
might be enhancement of growth at these low dosésred to as the occurrence of
hormesis.



B. Non Linear Regression Results
1. Brain-Cousens models
a. Brain-Cousens model: Schabenberger et al.(1999)

The Brain-Cousens model with the parameterizatipS¢habenberger (1999) in equation
[6]
E[Y[x] = o + a=o+ K

1+ wexdﬁln(x/ RD50)] o

2)RD50
a-90

whereo =1 +

was fitted to the data by non-linear regressiomgusoot length as the response and dose
as the independent variable. Unlike linear regoessestimation of parameters in non-
linear regression requires the specification diahparameter values .Thus, initial values

of parameters, 3, 6 and RD50 have to be supplied.

The choice of the initial values of the parameteey influence the estimation algorithm,
in the worst case yielding no convergence and & liest case convergence in few

iterations is achieved.

Results of the non-linear regression (for all tipgnts) indicated that the hormesis term,
y and the lower bound, were not significant as indicated by the paramietésing zero in

their 95 percent confidence interval.

It was however noted that eight observations wereused in the model fitting. This
arose from dose = 0 being fitted in the equatibnO(is imaginary). In order for the data
at dose 0 to be used in the model fitting, a vemalsnumber (0.0001) was substituted in
place of O dose. The non linear regression gavelasimesults, that isy and é are

insignificant. The insignificance o leads us to try to fit the data to the following

equation:

10



_ a+ X
EYix = 07 wexf BIn(x/ RD50)| 7]

2)RD50
a

wheren = 1 +

which is a variation of the previous equation [Bherein the lower limit termg is set to
zero, andd is not a parameter anymore of the model. Fittimg data with dose = 0
substituted with a very small number (0.0001) reslin all the four parametets, B,
RD50 and the hormesis termbeing significant in days 13, 16 and 20, while thue rest
of the days, the three parameter$ and RD50 were significant and the hormesis tgrm,
not significant. When dose = 0 was not substituigca very small number, the model
fitting yielded non meaningful results, that is,was not significant, implying that the
upper bound can be zero which is meaningless twtlr data.

Other small values of dose such as 1kafid 1x10° were substituted to dose = 0 to find
out if there is an effect on the estimates. Theesa@sults as substituting 0.0001 were

arrived at.

Non-linear models for day 13, day 16 and day 20 emation [7], with values of the
parameters presented in the following tables:

11



Table 2 .Day 13: Parameter Estimates and Confideednterval for the Brain-

Cousens Model parameterized by Schabenberger et §1.999)

Parameter | Estimate | Approx | Approximate 95% Confidence
Std Error | Limits

Alpha 34.6561 @ 3.5898 27.4753 41.8368
Beta 2.2294 0.2383 1.7527 2.7061

Gamma 9.0330 3.6581 1.7158 16.3503
RD50 16.2268 @ 2.0911 12.0439 20.4097

Table 3.Day 16: Parameter Estimates and Confidendeterval for the Brain-

Cousens Model parameterized by Schabenberger et §1.999)

Parameter | Estimate | Approx | Approximate 95% Confidence
Std Error | Limits

Alpha 51.1482  4.7680 41.6108 60.6856
Beta 2.4816 0.2846 1.9122 3.0509

Gamma 9.5347 4.0297 1.4740 17.5954
RD50 13.4195  1.3208 10.7775 16.0615

12



Table 4. Day 20: Parameter Estimates and Confidendaterval for the Brain-

Cousens Model parameterized by Schabenberger et §1.999)

Parameter | Estimate | Approx | Approximate 95% Confidence
Std Error | Limits

Alpha 80.5505  6.4831 67.5824 93.5186
Beta 2.8228 0.3551 2.1126 3.5330

Gamma 9.4613 4.4831 0.4938 18.4288
RD50 11.6488 @ 0.8681 9.9123 13.3852

b. Brain-Cousens model: Van Ewijk and Hoekstra (192)

Fitting the Brain-Cousens model with the parame&tion done by Van Ewijk and

Hoekstra (1992) with the following equation

k(L+ X)

- (8]
1+ (21X, +1) * (X/ X,)

E[Y|X] =

where % is the EC50, resulted with the hormesis terno, be¢ not significant. However,
when dose = 0 was substituted with a small numiear zero (0.0001), hormesis was

significant in days 13 and 16 which parameter esti#® are presented in Tables 5 and 6:

13



Table 5. Day 13: Parameter Estimates and Confidendaterval for the Brain-

Cousens Model parameterized by Van Ewijk and Hoeksa (1992)

Parameter | Estimate | Approx | Approximate 95% Confidence

Std Error Limits
Kk 34.6561 @ 3.5898 27.4753 41.8368
b 2.2294 0.2383 1.7527 2.7061
EC50 16.2268 = 2.0911 12.0439 20.4097
f 0.2606 0.1216 0.0174 0.5039

Table 6. Day 16: Parameter Estimates and Confidendeterval for the Brain-

Cousens Model parameterized by Van Ewijk and Hoeksa (1992)

Parameter | Estimate | Approx | Approximate 95% Confidence

Std Error Limits
k 51.1481 | 4.7680 41.6107 60.6856
b 2.4816 0.2846 1.9122 3.0509
EC50 13.4195 | 1.3208 10.7775 16.0614
f 0.1864 0.0897 0.00696 0.3659

2. Log-logistic models

The data in those days where hormesis was nofisignii (after fitting the Brain-Cousens
model) were fitted with the log-logistic models.eRe included data from day O, 2, 6, 9,
27 and 30.

a. 5-parameter log-logistic model
None of the data fitted the five-parameter log4tigi model. Results of the non-linear

regression with this model showed either the f téonbe not significant or cannot be

estimated.

14



b. 4-parameter log-logistic model

Only one data set, that is, Day 9 fitted the foargmeter log-logistic model. Taking the
form of equation [2], the model for Day 9 is:
a-o

1+exd8In(x/ RD50)] 2]

E[Y|x]= O

where the parameter estimates are in Table 7:

Table 7. Day 9: Parameter Estimates and Confidendetervals using four-parameter
log-logistic model

Parameter | Estimate | Approx | Approximate 95% Confidence
Std Error | Limits

alpha 27.5435 | 1.5173 24.5086 30.5785

delta 8.0027 2.9376 2.1265 13.8788

beta 3.9448 1.8102 0.3239 7.5658

RD50 11.9733 | 1.7801 8.4126 15.5340
C. 3-parameter log-logistic model

Four data sets: Day 6, Day 9, Day 27 and Day 3ddfiinto the three-parameter log-
logistic model, with the following equation:

[3]

a
1+ex BIn(x/ RD50)|

where the parameter estimates are in Tables,80%nd 11 :

E[Y|X] =

15



Table 8. Day 34: Parameter Estimates and Confidendaterval using the three-

Parameter

alpha
beta

RD50

parameter log-logistic model

Estimate  Approx | Approximate 95% Confidence
Std Error | Limits

239.0 8.7193 221.5 256.4
4.1299 0.6776 2.7751 5.4848
9.5749 0.4337 8.7076 10.4422

Table 9. Day 6 Parameter Estimates and Confidence Interval usinghe three-

Parameter

alpha
beta

RD50

parameter log-logistic model

Estimate  Approx | Approximate 95% Confidence
Std Error | Limits

17.9316 = 1.1011 15.7298 20.1335
1.9375 0.5411 0.8555 3.0195
20.4727 @ 2.5696 15.3345 25.6109

16



Table 10: Day 27:Parameter Estimates and Confidence Interval usinghe three-

parameter log-logistic model

Parameter | Estimate | Approx | Approximate 95% Confidence
Std Error | Limits

alpha 162.2 6.9322 148.4 176.1
beta 3.9345 0.7275 2.4799 5.3891
RD50 9.8947 0.5454 8.8040 10.9854

Table 11: Day 9:Parameter Estimates and Confidence Interval usinghie three-

parameter log-logistic model

Parameter | Estimate | Approx | Approximate 95% Confidence

Std Error Limits
alpha 27.8477 | 1.6698 24.5087 31.1867
beta 2.2842 0.5682 1.1481 3.4204
RD50 16.8273 = 1.8477 13.1325 20.5220

Fitting the data of days 0 and day 2 yielded a idemice interval off (which is the slope
at point RD50) that included zero in it, implyingat the curve for these sets of data is
flat.

Day 9 data was fitted in both four-parameter amedtparameter log-logistic models.

Graphs of the models with their confidence intesvate presented in Figure 4 in the

Appendix.
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Results of Diagnostics

The normal probability plots of residuals for ealgty-model are shown in Figures 7 to 14

in the Appendix. No serious departures from noritp&ian be seen from the graphs.

Comparing the normal probability plots for the tmodels for day 9, the three-parameter
model appears to be better than the four-parameteel. The three-parameter model for

day 9 is therefore adapted as the final model.

IV.  DISCUSSION AND CONCLUSION

The study investigates whether there was an ocweref growth stimulation at low
dosage (called hormesis) of Uranium and estimateB650. To answer these research
guestions, the data was analized for each timet(daiy) by establishing a dose-response

relationship for each time point with the use ofitioear regression.

Fitting the Brain-Cousens model into the data wasnued appropriate because this
allows for simultaneous investigation of the staté significance of hormesis, and the
estimation of EC50 (and its confidence intervalgcduse these two are included as
parameters of the equation. Disregarding hormesig lmad to erroneous calculation of
the EC50.

There were two parameterizations of the Brain-Cosigaodels tried in this study in order
to validate if the same conclusions regarding tbeuoence of hormesis and the EC50
estimates are arrived at. It attempts to verify tivae different parameterizations would
result to the same conclusions. In this study, seomelusions are arrived at for most of
the time points (days), but different conclusioma¢ time point, that is at day 20.The use
of the Brain-Cousens model parameterized by Scldvgar, et al. for Day 20 data led to
a conclusion of significant hormesis but using Bnain-Cousens model parameterized by

Van Ewijk and Hoekstra resulted to the oppositectimsion (ie. not significant hormesis).

18



This raises the question whether different paranzetiion may lead to differing

conclusions. The estimates of EC50 however arel eyea at day 20.

In the course of doing the non linear regressiothis study, it was experienced that the
starting values supplied for the parameters caectaffonvergence, at one time may not
converge and on other times may converge aftergjdstv iterations. Therefore, caution

in supplying the starting values of the parameitestiggested.

It was also noticed that when some values at tiver@oses, particularly at dose 0 were
not included in the modelling, lead to the cona@uasof no hormesis. When dose 0 was
substituted with a very small number (thereforeludmg the observations in the
analysis), lead to the conclusion of significantrhesis at some time points, particularly
at days 13, 16 and 20. It can be seen from thisthieaobservations at the control (dose 0)
are very important in the analysis. As a recomeadait would be helpful to include

some smaller doses in the design of the experitodoe able to detect hormesis.

From the results, it can be seen that there wdmmnuesis in the earlier days (day 0, day 6
and day 9) and in the later days (day 27 and 3djmidsis is observed in days 13, 16 and
20. It implies that it takes a few days to padefgehormesis is observed, then hormesis

ceases after sometime.

A summary of the EC50 and its 95% confidence irgteat each time point is in Table 12.
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Table 12. EC50 and its 95 Percent Confidence InteaV at

different time points in days

Day EC50 EC50 95% Confidence
interval
lower limits upper limits

0 - - -

2 - - -

6 20.47 15.33 25.61

9 16.83 13.13 20.52
13 16.23 12.04 20.41
16 13.42 10.78 16.06
20 11.65 9.91 13.39
27 9.89 8.80 10.99

34 9.57 8.71 10.44
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Figure 3. Scatter Graph of Root Length vs Dose
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Figure 4. Graphs of the Brain-Cousens model (Schahberger, et. al
parameterization) with significant hormesis, for dgys 13,16 and 20
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Figure 5. Graphs of the 3- parameter logistic modslfor days 6, 27 and 34
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Figure 7. Day 34 Normal Probability Plot of Residu&
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Figure 9. Day 20 Normal Probability Plot of Residu&
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