On Lie Algebras Having a Primitive Universal Enveloping Algebra

Alfons I. Ooms

Department of Mathematics, University of Rochester, Rochester, New York 14627

Communicated by N. Jacobson

Received June 15, 1973

1. INTRODUCTION

In his book "Structure of Rings" [7, p. 23] Professor Jacobson raised the following open question: "What are the conditions on a finite dimensional Lie algebra L over a field k that insure that its universal enveloping algebra U(L) is primitive?" [Since U(L) has an anti-automorphism the notions left and right primitive are the same for U(L).]

If k is of characteristic $p \neq 0$, then U(L) cannot be primitive unless L = 0 [7, p. 255]. Therefore we may assume from now on that L is a nonzero finite dimensional Lie algebra over a field k of characteristic zero. For each linear functional $f \in L^*$ we denote by L[f] the set of all $x \in L$ such that f(Ex) = 0 for all E in the algebraic hull of ad $L \subset \text{End } L$. Clearly L[f] is a Lie subalgebra of L containing the center Z(L) of L.

The aim of this paper is to prove the following.

THEOREM. If U(L) is primitive then L[f] = 0 for some $f \in L^*$. Moreover, the converse holds if L is solvable and k is algebraically closed.

If we denote by D(L) the division ring of quotients of U(L), Z(D(L)) its center, we shall prove that the condition that L[f] = 0 for some $f \in L^*$ is equivalent with Z(D(L)) = k (which forces the centers of both L and U(L) to be trivial). In particular, U(L) cannot be primitive if L is either nilpotent or semi-simple. Finally, we shall give some examples of Lie algebras (of which one is not solvable) that do have a primitive universal enveloping algebra.

2. Some Results On Primitive Rings

PROPOSITION 1. Let U be a primitive ring with 1, contained as a subring in a ring Q. Suppose C is a subring of Q such that [C, U] = 0 and such that for

each nonzero element c of C there exist nonzero elements x, y in U such that cx = y. If V is a faithful, irreducible U-module then C is isomorphic to a subring of the center of the division ring $\Delta = \text{End}_U V$.

Proof. Professor Martindale has shown this result in case Q is the complete ring of right quotients of U and C is the center of Q. [8, p. 453]. However, exactly the same proof works also in the situation above.

PROPOSITION 2. Let Q be an associative k-algebra with 1 and $U \subset Q$ a primitive subalgebra, $1 \in U$. Suppose $C \subset Q$ is a subalgebra of Q such that [C, U] = 0 and such that for each nonzero element c of C there exist nonzero elements x, y of U such that cx = y. Then C is algebraic over k if one of the following two conditions is satisfied.

(1) $\dim_k U < \operatorname{card} k$,

(2) U is the union of an increasing filtration $U_0 \subset U_1 \subset \cdots$ of subspaces such that $1 \in U_0$, $U_p U_q \subset U_{p+q}$ and such that the associated graded algebra $gr(U) = \bigoplus_p U_{p/U_p}$, is a finitely generated commutative k-algebra.

Proof. We may regard U as an irreducible ring of endomorphisms of a vector space V over k. Since k can be considered as a subfield of the division ring $\Delta = \operatorname{End}_U V$, it is easy to check that the isomorphism we have established in the preceding proposition between C and a subring of the center $Z(\Delta)$ is in fact a k-isomorphism. The result then follows immediately, since each one of the conditions 1, 2 implies that Δ is algebraic over k. (See [10].)

LEMMA 1. Let k be a commutative integral domain, Q an associative k-algebra and U a subalgebra endowed with an increasing filtration of k-submodules $U_0 = k \cdot 1 \subset U_1 \subset U_2 \subset \cdots$ with U as their union, $U_p U_q \subset U_{p+q}$ and such that the associated graded algebra gr(U) is a unique factorization domain (U.F.D.). Suppose $c \in Q$ is an element for which there exist nonzero elements x, y in U such that cx = y and [c, x] = 0. If c is algebraic over k then it follows that (ac - b)x = 0 for some nonzero a, $b \in k$. (So, in case x is regular in Q, then we may consider c as being an element of the quotient field of k.)

Proof. We notice that since gr(U) is an integral domain, so is U. [5, p. 7]. Suppose $a_nc^n + a_{n-1}c^{n-1} + \cdots + a_1c + a_0 = 0$ for some $a_i \in k$, $a_n \neq 0$. Multiplying by x^n and taking into account that [c, x] = 0, we obtain that

$$a_n(cx)^n + a_{n-1}(cx)^{n-1}x + \cdots + a_1(cx)x^{n-1} + a_0x^n = 0.$$

Hence

$$a_n y^n + a_{n-1} y^{n-1} x + \dots + a_1 y x^{n-1} + a_0 x^n = 0.$$
 (1)

We may assume that $a_0 \neq 0$. (Indeed, since y is not 0, at least one of the a_i other than a_n is $\neq 0$. Let a_i be the last nonzero coefficient,

$$a_n y^n + a_{n-1} y^{n-1} x + \dots + a_i y^i x^{n-i} = 0,$$

and by cancelling out the common factor y^i we obtain a relation similar to (1).) We recall that if $u \in U_n \setminus U_{n-1}$ we define deg u = n and $[u] = u \mod U_{n-1}$. It is well known that deg $(uv) = \deg u + \deg v$ and [uv] = [u][v] for $u, v \in U$. (1) implies that deg $x = \deg y$. Indeed, if deg $y > \deg x$ the left-hand side of

$$a_n y^n = -(a_{n-1}y^{n-1}x + \dots + a_0x^n)$$

is clearly of degree $n \cdot \deg y$, while each term of the opposite side would be of a lower degree. A similar reasoning shows that deg $y < \deg x$ cannot occur either. Hence deg $x = \deg y$ and therefore (1) implies that

$$a_n[y]^n + a_{n-1}[y]^{n-1}[x] + \dots + a_1[y][x]^{n-1} + a_0[x]^n = 0.$$

Let g be a greatest common divisor of [x] and [y] in gr(U). We may write that [x] = gu and [y] = gv where u and v are nonzero relatively prime elements of gr(U). After cancelling the factor g^n , we obtain that

$$a_n v^n + a_{n-1} v^{n-1} u + \dots + a_1 v u^{n-1} + a_0 u^n = 0.$$

Clearly *u* divides $a_n v^n$ and since *u*, *v* are relatively prime, *u* also divides a_n . Hence $u \in k$ and similarly $v \in k$. Then the fact that u[y] = v[x] forces uy and vx to have the same leading term. In particular, $\deg(uy - vx) < \deg x$. Finally, we have that (uc - v)x = uy - vx. Clearly uc - v is algebraic over *k* and commutes with *x*. Hence uy - vx = 0 (otherwise it would follow as before that $\deg(uy - vx) = \deg x$) and therefore

(uc - v)x = 0, where u, v are nonzero elements of k.

Combining this Lemma with Proposition 2, we obtain.

THEOREM 1. Let U be a primitive associative algebra over the field k, endowed with an increasing filtration $U_0 = k \cdot 1 \subset U_1 \subset \cdots$ such that the associated graded algebra gr(U) is a finitely generated commutative k-algebra. Then the center C of the ring of quotients of U is a field algebraic over k. Moreover, C = k if gr(U) is in addition a unique factorization domain.

Since gr(U) is left and right Noetherian, so is U [5, p. 7]. Thus U is a Goldie ring and therefore has a left and right ring of quotients.

PRIMITIVE UNIVERSAL ENVELOPING ALGEBRA

3. Application of the Preceding Section to U(L)

The universal enveloping algebra U(L) of a Lie algebra L has a natural increasing filtration of which the associated graded algebra gr(U(L)) is isomorphic to the (commutative) polynomial algebra $k[X_1,...,X_n]$, $n = \dim L$, by the Poincaré-Birkhoff-Witt theorem. Therefore the following is an immediate consequence of Theorem 1.

PROPOSITION 3. Let L be a Lie algebra over k and I a primitive ideal of U(L). Then the center C of the ring of quotients of U(L)|I is algebraic over k.

Remark. Clearly, C = k if k is algebraically closed, a result already shown by Rais [11] and which is a slight improvement of a theorem due to Dixmier [3] by removing the requirement of the uncountability of k. On the other hand, there are cases where $C \neq k$. The following example was pointed out to us by Professor Seligman. Let L be the 1-dimensional real Lie algebra generated by $\binom{0}{1} \stackrel{-1}{0}$, which acts irreducibly on the plane. U(L) can be identified with $\mathbb{R}[X]$ and the kernel I of the representation is the ideal generated by $X^2 + 1$. Therefore $U(L)/I \simeq \mathbb{C}$ and $C = \mathbb{C}$.

THEOREM 2. Let L be a Lie algebra over k. If U(L) is primitive then Z(D(L)) = k. Moreover, the converse holds if L is solvable and k is algebraically closed.

Proof. The first part follows easily from Theorem 1. For the converse we observe that since U(L) is semi-simple [7, p. 22] the intersection of all primitive ideals of U(L) is 0. For this reason, Dixmier's argument used in the proof of his well-known criterion for the primitive ideals of U(L), works in this situation without requiring the uncountability of k. Indeed, if Z(D(L)) = k then Lemma 3.4 of [3, p. 28] guarantees that the intersection of all nonzero prime ideals of U(L) is not 0. In particular the same is true for all nonzero primitive ideals. Hence (0) is necessarily a primitive ideal.

Condition in Terms of the Algebra Structure on L, Equivalent with Z(D(L)) = k

Let L be a Lie algebra over k and let H be the algebraic hull of ad L in End L. For each linear functional $f \in L^*$, we have defined L[f] to be the collection of elements $x \in L$ such that f(Ex) = 0 for all $E \in H$. We have that L[f] is an ideal of L(f), L(f) being the radical of the alternating bilinear form $(x, y) \rightarrow f([x, y])$ on L. Since L(f) is abelian for f lying in some open dense subset 0 of L^* , the same is true for L[f]. (0 is the set of all $f \in L^*$ for which L(f) has minimum dimension [1, p. 17]. It is obvious that L[f] = L(f) if L is ad-algebraic (i.e., ad L = H).

We recall that each endomorphism $E \in \text{End } L$ can uniquely be extended to a derivation of the quotient field K(L) of the symmetric algebra S(L) of L. We are interested in the subfield $K(L)^I$ of the invariants of K(L) with respect to ad L (i.e., $K(L)^I$ is the collection of elements of K(L) annihilated by all $E \in \text{ad } L$). It can be shown that ad L and its algebraic hull H have the same invariants in K(L) [9, p. 25]. Because of this and Dixmicr's formula for the transcendency degree of the invariants of an algebraic Lie algebra of endomorphisms [2, p. 336] we obtain that:

$$\operatorname{tr} \operatorname{deg}_k(K(L)^I) = \dim L - \operatorname{rank}_{K(L)}((E_i x_j)_{ij}),$$

whenever $\{x_1, ..., x_n\}$ is a basis for L and $\{E_1, ..., E_r\}$ a basis for H. Since for each $f \in L^*$

$$\dim L[f] = \dim L - \operatorname{rank}(f(E_i x_i)_{ij})$$

we may conclude that

$$\operatorname{tr} \operatorname{dcg}_k(K(L)^I) = \min_{f \in L^*} \dim L[f].$$

(In fact, it can be shown that this number is also equal to the transcendency degree of Z(D(L)) over k in case L is either solvable or ad-algebraic [9].)

The following is the main tool of this section.

PROPOSITION 4. Let L be a Lie algebra over k, then the following are equivalent:

- (1) Z(D(L)) = D(Z(L)),
- (2) $K(L)^{I} = K(Z(L)),$
- (3) L[f] = Z(L) for some $f \in L^*$.

Before we can go over to the proof of this, we need to introduce an increasing filtration in U(L), other than the usual one. We denote by s the canonical linear isomorphism of S(L) onto U(L), which for every system $y_1, ..., y_m$ of L maps the product $y_1 \cdots y_m$ into $(1/m!) \sum_p y_{p(1)} \cdots y_{p(m)}$, where the sum is taken over all permutations p of $\{1,...,m\}$. Let $\{e_1,...,e_o; x_1,...,x_n\}$ be a basis for L such that $\{e_1,...,e_o\}$ is a basis for the center Z(L). Put R = S(Z(L)). Obviously, R can be identified with U(Z(L)) since Z(L) is commutative. In particular $R \subset Z(U(L))$. Each element of S(L) can be considered as a polynomial in the x_i 's with coefficients in R (i.e., $S(L) \simeq R[X_1,...,X_n]$). Clearly S(L) is the direct sum of the subspaces S^m of polynomials homogeneous of degree m in the x_i 's. We have that $S^m S^t \subset S^{m+t}$ for all positive integers m, t.

On the other hand s(ax) = as(x) for all $a \in R$, $x \in S(L)$. (This is clear if $a \in Z(L)$, hence also if a is of the form $y_1 \cdots y_m$, $y_i \in Z(L)$; the general case follows by linearity of s.) As a result s may be considered as an isomorphism of R-modules. U(L) is the direct sum of the subspaces U^m , U^m being the image of S^m under s. Next put $U_q = \bigoplus_{m \leq q} U^m$. It is easy to verify that the monomials $x_{i_1} \cdots x_{i_p}$ with $i_1 \leq \cdots \leq i_p$ and $p \leq q$ form a basis of U_q over R and $U_q U_t \subset U_{q+t}$. Therefore the subspaces U_q form an increasing filtration in U(L) and the associated graded algebra gr(U(L)) is isomorphic to $R[X_1, ..., X_n] \simeq S(L)$. The elements $u \in U_q \setminus U_{q-1}$ are said to be of degree q and $[u] = u \mod U_{q-1}$ is called the leading term of u. For all nonzero $u, v \in U(L)$: [uv] = [u][v] and $\deg(uv) = \deg(u) + \deg(v)$. Furthermore, if $y = y_m + \cdots + y_0$, $y_m \neq 0$ is the decomposition of $y \in S(L)$ into homogeneous components $(y_i \in S^i)$ then it follows immediately from the definition of s that $[s(y)] = y_m$.

Finally, we recall that each derivation E of L can uniquely be extended to a derivation of S(L) (and K(L)) on the one hand and to a derivation of U(L) (and D(L)) on the other hand. If we denote both extensions by E again then the diagram

$$S(L) \xrightarrow{E} S(L)$$

$$\downarrow^{s} \qquad \qquad \downarrow^{s}$$

$$U(L) \xrightarrow{E} U(L)$$

is commutative. This implies in particular that $s: S(L)^I \to Z(U(L))$ is a linear bijection. Moreover each $E \in \text{ad } L$ maps S^m into itself and the same is true for U^m and U_m .

Proof of the Proposition

We note first that $Z(D(L)) \supset D(Z(L))$, $K(L)^{I} \supset K(Z(L))$ and $L[f] \supset Z(L)$ for all $f \in L^*$.

 $1 \Rightarrow 2.$

Take $u \in K(L)^I$. We may assume that $u = xy^{-1}$, $y \neq 0$, such that x, y are relatively prime in S(L). Eu = 0 for all $E \in \operatorname{ad} L$ implies that yEx = xEy. Since x and y are relatively prime and since $\operatorname{deg}(Ex) \leq \operatorname{deg} x$ we obtain that $Ex = \lambda(E)x$ and $Ey = \lambda(E)y$ for some $\lambda \in (\operatorname{ad} L)^*$. It follows that $Es(x) = s(Ex) = \lambda(E) s(x)$ and similarly $Es(y) = \lambda(E) s(y)$ for all $E \in \operatorname{ad} L$. Next put $z = s(x) s(y)^{-1} \in D(L)$. For each $E \in \operatorname{ad} L$:

$$Ez = (Es(x) - s(x) s(y)^{-1} Es(y)) s(y)^{-1} = 0.$$

Hence $z \in Z(D(L)) = D(Z(L))$. Consequently $z = b^{-1}a$ for some $a, b \in R$,

 $b \neq 0$. (R = U(Z(L))). But $s(x) s(y)^{-1} = b^{-1}a$ implies that s(ay) = as(y) = bs(x) = s(bx). Therefore ay = bx and $u = xy^{-1} = ab^{-1} \in K(Z(L))$. Hence $K(L)^{I} = K(Z(L))$.

 $2 \Rightarrow 1.$

We remark that $K(L)^I = K(Z(L))$ implies that $S(L)^I = S(Z(L))$. (Indeed let $u \in S(L)^I$; $u = ab^{-1}$ for some $a, b \in S(Z(L)) = R, b \neq 0$; hence a = buwhich forces the degree of u to be 0 and $u \in R$.) By taking the image under swe see that also Z(U(L)) = U(Z(L)) = R. Now let z be a nonzero element of Z(D(L)). We define $d(z) = \min\{\deg u \mid z = uv^{-1}u, v \in U(L), v \neq 0\}$. We shall prove by induction on d(z) that $z \in D(Z(L))$. Let u, v be nonzero elements of U(L) such that $z = uv^{-1}$ and deg u = d(z).

If d(z) = 0 then clearly $u \in R = U(Z(L))$ and therefore

$$v = uz^{-1} \in Z(U(L)) = U(Z(L)).$$

Consequently $z = uv^{-1} \in D(Z(L))$. So, we may assume that d(z) = n > 0. Since z commutes in particular with v, we see that $z = v^{-1}u$. Take $E \in \text{ad } L$. Since Ez = 0, we obtain from zv = u that zEv = Eu. Hence uEv = vEu. Choose x, y in S(L) such that s(x) = u and s(y) = v. Let $x = x_n + \cdots + x_0$, $x_n \neq 0$ and $y = y_m + \dots + y_0$, $y_m \neq 0$ be their decomposition into homogeneous components ($x_i \in S^i, y_i \in S^j$). Since each $E \in ad L$ maps each S^i into itself we see that $Ex = Ex_n + \dots + Ex_0$ and $Ey = Ey_m + \dots + Ey_0$ are the decompositions into homogeneous components of Ex and Ey. Therefore if Ex = 0 then each $Ex_i = 0$, similarly for Ey. Next we observe that $s(x) \ s(Ey) = s(x) \ Es(y) = uEv = vEu = s(y) \ Es(x) = s(y) \ s(Ex)$. From this we see in particular that Ex = 0 if and only if Ey = 0. Denote by Ex_q and Ey_p the leading (nonzero) terms of Ex and Ey in case $Ex \neq 0$. Then [s(x)][s(Ey)] = [s(y)][s(Ex)] implies that $x_n E y_n = y_m E x_n$ and n + p = m + q(by taking degrees of both sides). We see that $Ex_n = 0$ if and only if $Ey_m = 0$. In any case we have that $x_n E y_m = y_m E x_n$ for all $E \in ad L$. This forces the element $x_n y_m^{-1} \in K(L)$ to be annihilated by all $E \in \text{ad } L$, i.e., $x_n y_m^{-1} \in K(L)^I =$ K(Z(L)). Hence $x_n y_m^{-1} = ab^{-1}$ for some nonzero $a, b \in R$. Considering that $[bu] = b[s(x)] = bx_n = ay_m = a[s(y)] = [av]$ we conclude that deg(bu - av) < break $\deg(bu) = \deg u = d(z)$. Next put $z_1 = (bu - av)(av)^{-1} = ba^{-1}z - 1 \in Z(D(L))$. By induction $z_1 \in D(Z(L))$ since $d(z_1) < d(z)$. Consequently

$$z = ab^{-1}(z_1 + 1) \in D(Z(L))$$
 and $Z(D(L)) = D(Z(L)).$

2⇔3.

We know that

tr deg_k(K(L)^I) =
$$\min_{f \in L^*} \dim L[f]$$
 and $K(Z(L)) \simeq k(X_1, ..., X_c)$

494

with $c = \dim Z(L)$. Hence $2 \Rightarrow 3$ is clear. Conversely, if L[f] = Z(L) for some $f \in L^*$, then c is the degree of transcendence over k of both the fields $K(L)^I$ and K(Z(L)). Hence $K(L)^I$ is algebraic over K(Z(L)). Therefore each element u of $K(L)^I$ satisfies a nontrivial equation of the form

$$a_m X^m + \dots + a_0 = 0,$$

 $a_i \in K(Z(L))$. By multiplying this with a common denominator of the a_i , we see that we may assume that all $a_i \in S(Z(L)) = R$. Consequently u is algebraic over R. By Lemma 1 it follows that u is in the quotient field of R, which is K(Z(L)). Hence $K(L)^I = K(Z(L))$.

COROLLARY 1. Let L be a Lie algebra over k, for which there exists a linear functional $f \in L^*$ such that L[f] = Z(L). Then Z(U(L)) = U(Z(L)) and is therefore isomorphic to $k[X_1, ..., X_c]$ with $c = \dim Z(L)$; its quotient field is Z(D(L)), which is in fact equal to $K(L)^I$.

COROLLARY 2. Let L be a Lie algebra over k. Then the following are equivalent:

- (1) Z(D(L)) = k,
- (2) $K(L)^{I} = k$,
- (3) L[f] = 0 for some $f \in L^*$.

This corollary combined with Theorem 2 yields the main result, announced in the Introduction.

THEOREM 3. Let L be a Lie algebra over k. If U(L) is primitive then L[f] = 0 for some $f \in L^*$. Moreover, the converse holds if L is solvable and k is algebraically closed.

EXAMPLES

1. Let L be the Lie algebra over an algebraically closed field k with basis $\{x_1, ..., x_n; x_{n+1}\}$ and with the following nonvanishing brackets: $[x_{n+1}, x_i] = a_i x_i$, $a_i \in k$ i: 1,..., n. Then U(L) is primitive if and only if $a_1, ..., a_n$ are linearly independent over Q.

Proof. Let N be the commutative ideal of L with basis $\{x_1, ..., x_n\}$. Clearly ad $N \subset \operatorname{End} L$ is an algebraic Lie algebra, consisting of nilpotent endomorphisms. Put $E_i = \operatorname{ad} x_i$, i: 1, ..., n + 1 and denote by H_1 the collection of replicas in $\operatorname{End} L$ of $E_{n+1} = \operatorname{ad} x_{n+1}$. Since E_{n+1} is diagonal with respect to the given basis, so is each element of H_1 . The dimension of H_1 is

 $\dim_{\mathbf{Q}} \sum_{i=1}^{n} a_i \mathbf{Q}$. (See for example [12]). Let $\{E_{n+1}, ..., E_{n+p}\}$ be a basis for H_1 . Since $[H_1, \text{ ad } N] \subset \text{ad } N$, $H = H_1 \oplus \text{ad } N$ is the algebraic hull of ad L in End L and $\{E_1, ..., E_{n+p}\}$ is a basis for H. On the other hand, $\min_{f \in L^*} \dim L[f] = \dim L - \operatorname{rank}_{K(L)}((E_i x_j)_{ij})$. Since $E_{n+i} x_j = a_{ij} x_j$ for some $a_{ij} \in k$ $(a_{1j} = a_j)$ we have that

$$(E_{i}x_{j})_{ij} = \begin{bmatrix} 0 & \cdots & 0 & -a_{1}x_{1} \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & -a_{n}x_{n} \\ a_{11}x_{1} & \cdots & a_{1n}x_{n} & 0 \\ \vdots & & \vdots & \vdots \\ a_{p1}x_{1} & \cdots & a_{pn}x_{n} & 0 \end{bmatrix}$$

its rank is p + 1 since the last p rows are K(L)-linearly independent $(E_{n+1}, ..., E_{n+p})$ are k-linearly independent). Hence,

$$\min_{f \in L^*} \dim L[f] = (n+1) - (p+1) = n - p = n - \dim_{\mathbf{Q}} \sum_{i=1}^n a_i \mathbf{Q}$$

m

and this is 0 if and only if $a_1, ..., a_n$ are linearly independent over **Q**. L being solvable, the result follows at once from Theorem 3.

DEFINITION. By similarity with the associative case, we shall call a Lie algebra L over k a Frobenius Lie algebra if there exists a linear functional $f \in L^*$ such that the alternating bilinear form on L, $(x, y) \rightarrow f([x, y])$ is nondegenerate (i.e., L(f) = 0). Such a Lie algebra L is clearly even dimensional and Z(D(L)) = k (since L(f) = 0 implies L[f] = 0). We also notice that ad-algebraic Lie algebras having a primitive universal enveloping algebra are necessarily Frobenius. (Theorem 3.)

Remark. Let L be a Lie algebra over k, with basis $\{x_1, ..., x_n\}$. Then the following conditions are equivalent:

(1) L is Frobenius,

(2) $\det(f([x_i, x_j])) \neq 0$ for a suitable $f \in L^*$,

(3) det($[x_i, x_j]$) $\neq 0$ (the entries $[x_i, x_j]$ are considered as elements of the symmetric algebra S(L)).

This result follows easily from

$$\dim L(f) = \dim L - \operatorname{rank}(f([x_i, x_j]))$$

and

$$\operatorname{rank}_{K(L)}([x_i, x_j]) = \max_{f \in L^*} \operatorname{rank}(f([x_i, x_j])).$$

2. Assume now that k is algebraically closed. Then each solvable Frobenius Lie algebra over k has a primitive universal enveloping algebra. (Theorem 3.)

Examples.

(a) The Lie algebra N with basis $\{x, y\}$ and [x, y] = y is obviously Frobenius.

(b) In the four-dimensional case we have three different types of Frobenius Lie algebras:

(i) $N \oplus N$ (Direct product),

(ii) The Lie algebras of the form L(a), $a \in k$, with basis $\{x_1, x_2, x_3, x_4\}$ and relations $[x_1, x_2] = ax_2$, $[x_1, x_3] = (1 - a)x_3$, $[x_1, x_4] = x_4$, $[x_2, x_3] = x_4$. We have that $L(a) \simeq L(b)$ if and only if a = b or a + b = 1.

(iii) The Lie algebra L with basis $\{x_1, x_2, x_3, x_4\}$ and relations $[x_1, x_2] = \frac{1}{2}x_2 + x_3, [x_1, x_3] = \frac{1}{2}x_3, [x_1, x_4] = x_4, [x_2, x_3] = x_4$.

3. Finally, we shall give an example of a nonsolvable Frobenius Lie algebra over the complex numbers having a primitive universal enveloping algebra.

Let V be an n-dimensional vector space over k and let L be the Lie algebra of endomorphisms of V mapping V into a given (n-1)-dimensional subspace. By choosing a suitable basis in V we see that L is the Lie algebra of $n \times n$ matrices with last row equal to zero. Clearly L is not solvable if $n \ge 3$ (its Levi factor is sl(n-1)). Moreover, L is an algebraic Lie algebra and satisfies the Gelfand-Kirillov conjecture [5, p. 14], in fact D(L) is isomorphic to $D_{n(n-1)/2,0}$. The second index being 0 indicates that Z(D(L)) = k, which implies that L is Frobenius. (Corollary 2.)

We shall now prove that U(L) is primitive in case n = 3 and k is the field of complex numbers. Under these circumstances it is easy to verify that L is six-dimensional with basis $\{h, x, y; e_0, e_1, e_2\}$ and nonvanishing brackets: $[h, x] = 2x, [h, y] = -2y, [x, y] = h, [e_0, e_1] = e_1, [e_0, e_2] = e_2, [h, e_1] = e_1,$ $[h, e_2] = -e_2, [x, e_2] = e_1, [y, e_1] = e_2$. Obviously, $\{e_0, e_1, e_2\}$ is a basis for the radical of L, while $\{h, x, y\}$ is a basis for a Levi factor S of L. Next we take f in L^* such that $f(x) = f(e_2) = 1$ and $f(h) = f(y) = f(e_0) = f(e_1) = 0$ (it turns out that L(f) = 0, showing again that L is Frobenius).

Denote by SP(f) the set of the solvable polarizations of f, i.e., the collection of the solvable Lie subalgebras H of L such that f([H, H]) = 0 and with $\dim H = \frac{1}{2}(\dim L + \dim L(f)) = 3$. Let H be the Lie subalgebra with basis $\{h + e_0, e_1, e_2\}$. Clearly $[h + e_0, e_1] = 2e_1$, $[h + e_0, e_2] = 0$, $[e_1, e_2] = 0$. Hence $H \in SP(f)$. Following Dixmier, we define for each $x \in H$

$$\mathcal{O}(x) = \frac{1}{2}(\operatorname{tr}(\operatorname{ad}_{H} x) - \operatorname{tr}(\operatorname{ad}_{L} x)).$$

U(L) becomes a right H-module (and hence a right U(H)-module) by defining for each $u \in U(L)$ and $x \in H$:

$$u_{\cdot L,H}x = ux + \mathcal{O}(x)u.$$

However, in this case $\mathcal{O}(x) = 0$ for all $x \in H$. Indeed, $\operatorname{tr}(\operatorname{ad}_{H} e_{i}) = 0 = \operatorname{tr}(\operatorname{ad}_{L} e_{i})$ *i*: 1, 2 and $\operatorname{tr}(\operatorname{ad}_{H}(h + e_{0})) = 2 = \operatorname{tr}(\operatorname{ad}_{L}(h + e_{0}))$.

Because f([H, H]) = 0, f defines a one-dimensional representation of Hand hence of U(H). Denote by $J \subset U(H)$ its kernel. This representation induces a representation of U(L), usually denoted by $\operatorname{Ind}(f \mid H, L)$. Its kernel I(f) is a primitive ideal of U(L) [4, Théorème 1] and is the largest ideal of U(L) contained in $U(L)_{L,H}J$ [3, Lemma 4.15, p. 36]. We shall prove that in this case I(f) = 0 (and hence U(L) is primitive).

By the Poincaré-Birkhoff-Witt Theorem each element of U(H) can uniquely be written in the form $\sum a_{pqr}(h+e_0)^p e_1^q e_2^r$, $a_{pqr} \in \mathbb{C}$ and by induction on the degree in e_2 also in the form $\sum b_{pqr}(h+e_0)^p e_1^q(e_2-1)^r$, $b_{pqr} \in \mathbb{C}$. Clearly, the latter element is in J if and only if $b_{000} = 0$. Consequently, the monomials $(h+e_0)^p e_1^q(e_2-1)^r$, $p+q+r \neq 0$ form a basis for J over \mathbb{C} and U(H) = $J \oplus \mathbb{C} \cdot 1$. Moreover, the same monomials form a basis of

$$K = U(L)_{L,H}J = U(L)J$$

over U(S), i.e., K consists of all elements of the form $\sum a_{pqr}(h+e_0)^p e_1^{q}(e_2-1)^r$ with $a_{000} = 0$ and $a_{pqr} \in U(S)$. Clearly K is the left ideal of U(L) generated by $h + e_0$, e_1 , $e_2 - 1$ and $U(L) = U(S) \oplus K$. Furthermore, put $K_1 = U(L) e_1 + U(L)(e_2 - 1)$ and $K_2 = U(L)(e_2 - 1)$; then obviously $K \supset K_1 \supset K_2$ and $K_1 x \subset K_1$, $K_2 y \subset K_2$ (indeed,

$$(ue_1 + v(e_2 - 1))x = (ux)e_1 + (vx)(e_2 - 1) - ve_1 \in K_1$$

Hence $K_1 x \subset K_1$; $K_2 y \subset K_2$ since $[y, e_2 - 1] = 0$).

LEMMA. Suppose $u \in U(L)$.

- (a) If $u \in K$ and $ux \in K$ then $u \in K_1$,
- (b) If $uy^n \in K_1$ for all $n \in \mathbb{N}$ then $u \in K_2$,
- (c) If $uh^n \in K_2$ for all $n \in \mathbb{N}$ then u = 0.

Proof. (a) Since $u \in K$ we may write $u = a(h + e_0)^t + v$ with $a \in U(S)$, $v \in K_1$ and $t \ge 1$. We observe that $a(h + e_0)^t x = ux - vx \in K$ (since

498

 $ux \in K$, $vx \in K_1$ but $a(h + e_0)^{t}x = a(h + e_0)^{t-1}x(h + e_0) + 2a(h + e_0)^{t-1}x$ (since $[h + e_0, x] = 2x$). This implies that $a(h + e_0)^{t-1}x \in K$. Repeating the same argument a number of times, we arrive at $ax \in K$. But this implies that a = 0 (since $ax \in K \cap U(S) = 0$) and therefore $u = v \in K_1$. (b) Since $u \in K_1$ (take n = 0) we have that $u = ve_1^m + w(e_2 - 1)$ $v, w \in U(L), m \ge 1$ and we may assume that v, w are chosen such that m is maximal (use Poincaré-Birkhoff-Witt Theorem). Clearly

$$ve_1^m y^n = uy^n - wy^n(e_2 - 1) \in K_1$$

(since $[y, e_2 - 1] = 0$) for all $n \in \mathbb{N}$. Since

$$[y, e_1^m] = \sum_{q=1}^m e_1^{m-q} [y, e_1] e_1^{q-1} = m e_1^{m-1} e_2 = m e_1^{m-1} + m e_1^{m-1} (e_2 - 1),$$

it follows that

$$ve_1^m y = (vy)e_1^m - v[y, e_1^m] = (vy)e_1^m - mve_1^{m-1} - mve_1^{m-1}(e_2 - 1).$$

By repetition of the same argument, we obtain $ve_1^m y^m = (-1)^m m! v + z$ for some $z \in K_1$. This implies that $v \in K_1$. Hence $v = ae_1 + b(e_2 - 1)$ for some $a, b \in U(L)$. Consequently, $u = ae_1^{m+1} + (be_1^m + w)(e_2 - 1)$. But this contradicts the maximality of m, unless a = 0. Hence $u \in K_2$. (c) Suppose that $uh^n \in K_2$ for all $n \in \mathbb{N}$. In particular $u \in K_2$. Therefore we may write that $u = v(e_2 - 1)^m, m \ge 1, v \in U(L)$. Again we may assume that $v \in U(L)$ is chosen such that m is maximal, which means that $v \notin K_2$ unless v = 0. Consider

$$[h, (e_2 - 1)^m] = \sum_{q=1}^m (e_2 - 1)^{m-q} [h, e_2 - 1](e_2 - 1)^{q-1}.$$

Hence, since $[h, e_2 - 1] = -e_2$: $[h, (e_2 - 1)^m] = -m(e_2 - 1)^{m-1}e_2 = -m(e_2 - 1)^m - m(e_2 - 1)^{m-1}$. Therefore,

$$uh = v(e_2 - 1)^m h = vh(e_2 - 1)^m - v[h, (e_2 - 1)^m]$$

= $vh(e_2 - 1)^m + mv(e_2 - 1)^m + mv(e_2 - 1)^{m-1}$
= $v(h + m)(e_2 - 1)^m + mv(e_2 - 1)^{m-1}$.

By repetition of the same argument we arrive at:

 $uh^m = v(e_2 - 1)^m h^m = m! v + \omega$ for some $\omega \in K_2$.

It follows that $v \in K_2$. Hence v = 0 and u = 0.

We can now prove that I(f) = 0. Take $u \in I(f)$. Hence $uU(L) \subset I(f) \subset K$ (since I(f) is an ideal of U(L) contained in K). In particular, $uh^m y^n x^p \in K$ for all $m, n, p \in \mathbb{N}$. Using (a) of the Lemma we see that $uh^m y^n \in K_1$ for all $m, n \in \mathbb{N}$. However, using (b) we obtain that $uh^m \in K_2$ for all $m \in \mathbb{N}$. Finally, this implies that u = 0 (by (c)).

References

- 1. P. BERNAT, ET AL. "Représentations des groupes de Lie résolubles," Paris, Dunod, 1972 (Monographies de la Société mathématique de France, 4).
- J. DIXMIER, Sur les représentations unitaires des groupes de Lie nilpotents II, Bull. Soc. Math. France 85 (1957), 325-388.
- J. DIXMIER, Représentations irréductibles des algèbres de Lie résolubles, J. Math. Pures Appl. 45 (1966), 1–66.
- M. DUFLO, Représentations induites d'algèbres de Lie, C. R. Acad. Sci. Paris 272 (1971), 1157-1158.
- I. M. GELFAND AND A. A. KIRILLOV, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, *Paris I.H.E.S. Publ. Math.* 31 (1966), 5–19.
- 6. N. JACOBSON, "Lie Algebras," Interscience Tracts No. 10, J. Wiley and Son, New York, 1966.
- 7. N. JACOBSON, "Structure of Rings," 2nd ed., American Mathematical Society, Providence, RI, 1968.
- W. S. MARTINDALE III, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc. 142 (1969), 437–455.
- 9. A. OOMS, On the field of quotients of the universal enveloping algebra of a Lie algebra, Dissertation, Yale University, 1972.
- 10. D. QUILLEN, On the endomorphism ring of a simple module over an enveloping algebra, *Proc. Amer. Math. Soc.* 21 (1969) 171-172.
- M. RAIS, Sur les idéaux primitifs des algèbres enveloppantes. C. R. Acad. Sci. Paris 272 (1971), 989-991.
- 12. G. B. SELIGMAN, "Algebraic Groups," Mimeographed Lecture Notes, Yale University (1964).