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1. INTR~DUCTI~N 

In his book “Structure of Rings” [7, p. 231 Professor Jacobson raised the 
following open question: “What are the conditions on a finite dimensional 
Lie algebra L over a field K that insure that its universal enveloping algebra 
U(L) is primitive ?” [Since U(L) h as an anti-automorphism the notions left and 
right primitive are the same for U(L).] 

If R is of characteristic p f 0, then U(L) cannot be primitive unless 
L = 0 [7, p. 2551. Th ere f ore we may assume from now on that L is a nonzero 
finite dimensional Lie algebra over a field Fz of characteristic zero. For each 
linear functional f EL* we denote by L[f] the set of all x EL such that 
f (Ex) = 0 for all E in the algebraic hull of ad L C End L. Clearly L[f] is a Lie 
subalgebra of L containing the center Z(L) of L. 

The aim of this paper is to prove the following. 

THEOREM. If U(L) is primitive then L[f] = 0 foT some f EL*. Moreover, 
the converse holds ifL is solvable and k is algebraically closed. 

If we denote by D(L) the division ring of quotients of U(L), Z(D(L)) its 
center, we shall prove that the condition that Llf] = 0 for some f EL* is 
equivalent with Z(D(L)) = k (which f orces the centers of both L and U(L) 
to be trivial). In particular, U(L) cannot be primitive if L is either nilpotent or 
semi-simple. Finally, we shall give some examples of Lie algebras (of which 
one is not solvable) that do have a primitive universal enveloping algebra. 

2. SOME RESULTS ON PRIMITIVE RINGS 

PROPOSITION 1. Let U be a primitive ring with 1, contained as a subring in 
a ying Q. Suppose C is a subriag of Q such that [C, U] = 0 and such that fey 
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each nonzero element c of C there exist nonzero elements x, y in U such that 
LX = y. If V is a faithful, irreducible U-module then C is isomor,phic to a subring 
of the center of the division ring A = Endu V. 

Proof. Professor Martindale has shown this result in case Q is the complete 
ring of right quotients of U and C is the center of Q. 18, p. 4533. However, 
exactly the same proof works also in the situation above. 

PROPOSXTION 2. Let Q be an associative k-algebra witk I and UC Q a 
primitive subalgebra, 1 E U. Suppose C C Q is a subalgebra of Q such that 

[C, U] = 0 and such that for each nonzero eleme?zt c of C there exist nolzzem 

elemelzts x, y of U such that cx = y. Then C is algebraic over k if one of the 

following two conditions is satisjed. 

(1) dim, U < card k, 

(2) U is the union of an increasing filtration U0 C U, C *.’ of subspaces 
such that 1 E U, , U,U, C U,,, and such that the bassociated graded algebra 

ET’(U) = 0, ~dup-l is a finitely generated commutative k-algebra. 

Proof. We may regard U as an irreducible ring of endomorphisms of a 
vector space V over k. Since k can be considered as a subfield of the division 
ring iI = End, V, it is easy to check that the isomorphism we have established 
in the preceding proposition between C and a subring of the center Z(A) is 
in fact a k-isomorphism. The result then follows immediately, since each one 
of the conditions 1, 2 implies that A is algebraic over k. (See [lo].) 

LEMMA 1. Let k be a commutative integral domain, Q an associative 
k-algebra and U a suba2gebra endowed with an increasing filtration of k-sub- 
modules U, = k . 1 C U, C U, C . .. with U as their union, U,U, C U,,, and 
such that the associated graded algebra gr( U) is a unique factorization domain 
(U.F.D.). Suppose c EQ is an element for which there exist nonzero elements 
x, y in U such that cx = y and [c, x] = 0. If c is algebraic over k theta it foilows 

that (ac - b)x = 0 for some nonzero a, b E k. (So, iu case x is regular ie Qp 
then we may consider c as being an element of the quotielzt jeld of k.) 

PYOO~. We notice that since gr( U) is an integral domain, so is U. [5, p. 71. 
Suppose a# + a,-rc”-r + ... + a,c f a, = 0 for some ai E k, a, # 0. 
~u~ti~lyi~g by xn and taking into account that [c, x] = 0, we obtain that 

a,(cx)” + an--l(cx)“-lx + 0-e + aI 3~“~~ + aox” = 0. 

Hence 

anyn + a,-ly’n-lx + .*. + alyxn--l + a,xn = 0. 
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We may assume that a, # 0. (Indeed, since y is not 0, at least one of the ai 
other than a, is f 0. Let ai be the last nonzero coefficient, 

anyn + an-,yn-lx + ... + aiyixnei = 0, 

and by cancelling out the common factor yi we obtain a relation similar to 
(l).) We recall that if u E U,\ U,-, we define deg u = n and [ZJ] = u mod U,, . 
It is well known that deg(uv) = deg u + deg v and [UV] = [u][v] for u, z, E U. 
(1) implies that deg x = deg y. Indeed, if deg y > deg x the left-hand side of 

anyn = -(anmlyn-lx + ... + aoxn) 

is clearly of degree n . deg y, while each term of the opposite side would be of a 
lower degree. A similar reasoning shows that deg y < deg x cannot occur 
either. Hence deg x = deg y and therefore (1) implies that 

a,[y]” + a,-l[yl+-l[xl + ... + 4y1[x1”-’ + 44” = 0. 

Let g be a greatest common divisor of [x] and [y] in gr( U). We may write that 
[x] = gu and [y] = gv where u and v are nonzero relatively prime elements 
of gr( U). After cancelling the factor gn, we obtain that 

a,@ + a,-Ivn-lu + ... f a,vu”-l + a+P = 0. 

Clearly u divides a,v” and since u, v are relatively prime, u also divides a, . 
Hence u Eli and similarly v E K. Then the fact that ~[y] = V[X] forces uy 
and vx to have the same leading term. In particular, deg(uy - zx) < deg x. 
Finally, we have that (UC -- v)x = uy - ZJX. Clearly UC - ZI is algebraic 
over R and commutes with x. Hence uy - z1x = 0 (otherwise it would follow 
as before that deg(uy - vx) = deg x) and therefore 

(UC - V)X = 0, where u, v are nonzero elements of K. 

Combining this Lemma with Proposition 2, we obtain. 

THEOREM 1. Let U be a primitive associative agebra over the Jield k, 
endowed with an increasing filtration U, = k . 1 C U, C ..* such that the 
associated graded algebra gr(U) is a finitely generated commutative k-algebra. 
Then. the center C of the ring of quotients of U is afield algebraic over k. Moreover, 
C = k if gr( U) is in addition a unique factorization domain. 

Since gr(U) is left and right Noetherian, so is U [5, p. 71. Thus U is a 
Goldie ring and therefore has a left and right ring of quotients. 
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3. APPLICATION OF THE PRECEDING SECTIQN TO CJ(%) 

The universal enveloping algebra U(L) of a Lie algebra L has a natural 
increasing filtration of which the associated graded algebra gr(U(L)) is 
isomorphic to the (commutative) polynomial algebra @X1,..., pr’,], n = dim& 
by the PoincarC-Birkhoff-Witt theorem. Therefore the following is an 
immediate consequence of Theorem 1. 

PROPOSITION 3. Let L be a Lie algebra over k and 1 a ~~~~~~t~~~ idead oJ 
U(L). Then the center C of the ring of quotients of U(E)/1 is algebraic over k. 

mark. Clearly, C’ = k if k is algebraically closed, a result already shown 
by Rais [l I] and which is a slight improvement of a theorem due to Dixmier 
[3j by removing the requirement of the uncountability of k. On the other 
hand, there are cases where C f k. The following example was pointed out to 
us by I’rofessor Seligman. Let L be the l-dimensional real Lie algebra 
generated by (!j -3, h’ h t w rc ac s irreducibly on the plane. U(L) can be iden- 

[X] and the kernel 4 of the repr ntation is the ideal generated 
by X2 + 1. Therefore U(L)/I ci C and C = 

THEOREM 2. Let L be a Lie algebra over k. If U(L) is ~yi~~t~ve then 
Z(D(L)) = k. &!oreover, the converse holds ifL is solvable and k is a~eb~~~~a~~ 
closed. 

Proof* The first part follows easily from Theorem 1. For the converse we 
observe that since U(L) is semi-simple [7, p. 221 the intersection of all 
primitive ideals of U(L) is 0. For this reason, Dixmier’s argument used in the 
proof of his well-known criterion for the primitive ideals of U(L), works in 
this situation without requiring the uncountability of k. Indeed, if ~(~(~)) = R 
then Lemma 3.4 of [3, p. 281 g uarantees that the intersection of all nonzero 
prime ideals of U(L) is not 0. In particular the same is true for all nonzero 
primitive ideals. Rence (0) is necessarily a primitive ideal. 

CONDITION IN TERMS OF THE ALGEBRA STRUCTURE ON ~5, 
EQUIVALENT WITH Z@(L)) = k 

Let L be a Lie algebra over k and let H be the algebraic hull of adL in 
EndZ. For each linear functional f E L”, we have defined L[f ] to be the 
collection of elements x EL such that f (Ex) = 0 for all E E El. 
Elf] is an ideal ofL(f), L(f) being the radical of the alternating bilinear form 
(x, y) +f([~, JJ]) on L. Since L(f) is abelian for f lying in so,me open dense 
subset 0 ofL*, the same is true for Llf]. (0 is the set of all f EL* for which 

48x/32/3-4 
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L(f) has minimum dimension [I, p. 171. It is obvious that L[f] = L(f) if L is 
ad-algebraic (i.e., adL = H). 

We recall that each endomorphism E E End L can uniquely be extended to 
a derivation of the quotient field K(L) of the symmetric algebra S(L) of L. 
We are interested in the subfield K(L)’ of the invariants of K(L) with respect 
to adL (i.e., K(L)’ is the collection of elements of K(L) annihilated by all 
E E ad L). It can be shown that ad L and its algebraic hull H have the same 
invariants in K(L) [9, p. 251. Because of this and Dixmier’s formula for the 
transcendency degree of the invariants of an algebraic Lie algebra of endomor- 
phisms [2, p. 3361 we obtain that: 

tr deg,(K(L)‘) = dim L - rankK(L)((Eixj)ij), 

whenever {x1 ,..., x,} is a basis for L and (El ,..., ET} a basis for H. Since for 
each f EL* 

dimL[f] = dimL - rank(f(Eiixj)ij) 

we may conclude that 

tr deg,(K(L)‘) = mr& dimL[f]. 

(In fact, it can be shown that this number is also equal to the transcendency 
degree of Z(D(L)) over K in case L is either solvable or ad-algebraic [9].) 

The following is the main tool of this section. 

PROPOSITION 4. Let L be a Lie algebra ovey k, then the following are 
equivalent: 

(1) -wwN = wm)~ 

(2) K(L)' = qqL))> 

(3) Lv] = Z(L) fey some f E L*. 

Before we can go over to the proof of this, we need to introduce an increasing 
filtration in U(L), other than the usual one. We denote by s the canonical 
linear isomorphism of S(L) onto U(L), which for every system yr ,...,Y~ of 
L maps the product yr ... ym into (l/m!) C1,ys(r) ... ypcnz) , where the sum is 
taken over all permutations p of (I,..., m}. Let {er ,..., e,; x1 ,..., x,} be a basis 
for L such that (er ,..., e,} is a basis for the center Z(L). Put R = S(Z(L)). 
Obviously, R can be identified with U(Z(L)) since Z(L) is commutative. In 
particular R C Z(U(L)). Each element of S(L) can be considered as a poly- 
nomial in the xi’s with coefficients in R (i.e., S(L) !z RIXl ,..., X,J). Clearly 
S(L) is the direct sum of the subspaces 5’” of polynomials homogeneous of 
degree m in the xi’s. We have that SmSt C Smft for all positive integers m, t. 
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On the other hand S(U) = as(x) for all a E R, x E S(L). (This is clear if 
a E Z(L), hence also if a is of the form yr ... ym , yi E Z(L); the general case 
follows by linearity of s.) As a result s may be considered as an isomorphism of 

-modules. U(L) is the direct sum of the subspaces hl*l, him being the image 
of Sn” under s. Next put U, = &s4. Urn. It is easy to verify that the mo 
2. “‘x. with i1 < 
&J, czDu~+l . 

... < i, and p < q form a basis of U, over 
Therefore the subspaces U, form an increasing filtration 

. U(L) and the associated graded algebra gr( U(L)) is isomorphic to 

ix, ,...P X,] N S(L). The elements u E U,\U*-, are said to be of degree q 
and [u] = u mod U,, is called the leading term of U. For all nonzero 
U, ZI E U(L): [UV] = [u]in] and deg(uv) = deg(u) f deg(v). Furthermore; if 
y = ym. + ... + y,, , yliz # 0 is the decomposition of y E S(L) into homo- 
geneous components ( yi E 3) then it follows immediately from the definition 
of s that [s(y)] = ym . 

Finally, we recall that each derivation E of L can uniquely be extende 
to a derivation of S(L) (and K(L)) on the one hand and to a derivation of 

U(E) (and D(L)) on the other hand. If we denote both extensions by E again 
then the diagram 

S(L) 2 S(L) 

is commutative. This implies in particular that S: S(E)” + Z’(U(L)) is a 
linear bijection. Moreover each E E ad L maps S” into itself and the same is 
true for Urn and U, . 

Pmof of the Proposition 

We note first that Z(D(L)) 3 D(Z(L)), K(L)” 3 K(Z(L)) and L[Jp] 3 Z(L) fm 
all fEL*. 

Take u E K(k)‘. We may assume that u = xy-r, y f 0, such that x, y are 
relatively prime in S(L). Eu = 0 f or all E E ad L implies that yEx = xEy* 
Since x and y are relatively prime and since deg(I?x) < deg x we obtain that 
Ex = X(E)x and Ey = A(E)y for some X E (adk)*. Ht follows that Es(x) = 
s(Ex) = h(E) ( ) s x an d similarly Es(y) = X(E) s(y) for all E E ad L. Next put 
,z = s(x) S( y)-1 E D(L). For each E E ad L: 

Ex = (Es(x) - s(x) s(y)-lEs(y)) 9-(y)-” = 0. 

ence z E Z(D(L)) = D(Z(L)). Consequently z = b-k for some a, b E 
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b # 0. (R = U@(L))). But s(x) s(y)-l = b-l a implies that s(uy) = as(y) = 
bs(x) = s(bx). Therefore uy = bx and u = xy-l = ab-l E K(.Z(L)). Hence 
K(L)’ = K(Z(L)). 

2 3 1. 

We remark that K(L)’ = K(Z(L)) implies that S(L)’ = S@‘(L)). (Indeed 
let u E So; u = ab-l for some a, b E S(Z(L)) = l?, b f 0; hence a = bu 
which forces the degree of u to be 0 and u E R.) By taking the image under s 
we see that also Z( U(L)) = U(Z(L)) = R. Now let x be a nonzero element 
of Z(D(L)). We define d(z) = min{deg u 1 x = UV-l u, ~1 E U(L), ZI # 01. We 
shall prove by induction on d(x) that z E D(Z(L)). Let u, v be nonzero elements 
of U(L) such that ,z = uv-l and deg u = d(x). 

If d(z) = 0 then clearly u E R = U(Z(L)) and therefore 

v = uz-1 E Z( U(L)) = U(Z(L)). 

Consequently z = uv-r E D(Z(L)). S o, we may assume that d(x) = n > 0. 
Since x commutes in particular with v, we see that x = v-ru. Take E E ad L. 
Since Ex = 0, we obtain from xv = u that zEv = Eu. Hence uEv = vEu. 
Choose X, y in S(L) such that s(x) = u and s(y) = v. Let x = x, + ... + x0 , 

x,#O and y=ym+ ... + y,, , ym # 0 be their decomposition into 
homogeneous components (xi E Si, yj E Si). Since each E E ad L maps each S+ 
into itself we see that Ex = Ex, + ... + Ex, and Ey = Eym. + ... + Ey, 
are the decompositions into homogeneous components of Ex and Ey. There- 
fore if Ex = 0 then each Exi = 0, similarly for Ey. Next we observe that 
s(x) s(Ey) = s(x) Es(y) = uEv = vEu = s(y) Es(x) = s(y) s(Ex). From this 
we see in particular that Ex = 0 if and only if Ey = 0. Denote by Ex, and 
Ey, the leading (nonzero) terms of Ex and Ey in case Ex f 0. Then 
[s(x)][s(Ey)] = [s(y)][s(Ex)] implies that xnEyp = ylnExa and n + p = m + q 
(by taking degrees of both sides). We see that Ex, = 0 if and only if Ey,, = 0. 
In any case we have that xnEy, = ymExn for all E E ad L. This forces the 
element xnyil E K(L) to be annihilated by all E E ad L, i.e., ~,y;r E K(L)’ = 
K(Z(L)). Hence x,y;’ = ab-l for some nonzero a, b E R. Considering that 
[bu] = @s(x)] = bx, = uy, = a[s(y)] = [ uv we conclude that deg(bu - uv) < ] 
deg(bu) = deg u = d(z). Next put x1 = (bu - uv)(uv)-r = b&z - 1 E Z(D(L)). 
By induction z1 E D(Z(L)) since d(x,) < d(z). Consequently 

2 = ub-y2; + 1) E D(Z(L)) and -w(L)) = wF))* 

203. 

We know that 

tr deg,(K(L)Z) = fma& dim L[f] and q-(L)) N Wl ,-v-G) 
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with c = dim Z(L). Hence 2 * 3 is clear. Conversely, if L[S] = Z(E) for 
some Jdi*, then c is the degree of transcendence over k of both the fields 
K(L)I and K(Z(L)). Hence K(J~)~ is algebraic over @Z(E)). Therefore eat 
element u of K(L)’ satisfies a nontrivial equation of the form 

a,Xm + ... + a, = 8, 

ai E K(Z(L)). By multiplying this with a common denominator of the ai , we 
see that we may assume that ail ai E S(Z(L)) = R. Consequently u is algebraic 
over W. By Lemma 1 it follows that u is in the quotient field of W, which is 
K(Z(L)). Hence K(L)’ = K(Z(L)). 

COROLLARY 1. Let L be a Lie algebra over k, fey which there exists a l&ear 
fumtional J E L* such that L[fJ = Z(L). Then Z( U(L)) = U(Z(L)) and is 
therefore isomorphic to k[X, ,. .., X,.] with c = dim Z(L); its quotient ,iield is 
Z(L)(L)), which is in fact equal to K(L)‘. 

COROLLARY 2. Let L be a Lie algebra over k. Thelz the following are 
equivalent. : 

(1) Z(W)) = k 

(2) K(L)’ = k, 

(3) LLf] = 0 for some f EL*. 

This corollary combined with Theorem 2 yields the main result, announced 
in the Introduction. 

THEOREM 3. Let L be a Lie algebra over k. If U(L) ~p~i~it~ve then L[f ] = 0 
foboy some f E L*. Moreover, the converse holds if L is solvable and k is a~geb~~ica~~ 
closed. 

EXAMPLES 

1. Let L be the Lie algebra over an algebraically closed field k with 
basis (x1 ,..., x,; x,+~} and with the following nonvanishing brackets: 
jx,+r , xi] = aixi , ai E k i: 1, . . . . n. Then U(L) is primitive if and only if 
a, >..., a, are linearly independent over Q. 

Proof. Let N be the commutative ideal ofL with basis (x1 ,..., xJ. Clearly 
ad NC End L is an algebraic Lie algebra, consisting of nilpotent endomor- 
phisms. Put Ei = ad xi , i: I ,..., n + 1 and denote by HI the collection of 
replicas in End L of E,,, = ad x,+~ . Since E,,, is diagonal with respect 
to the given basis, so is each element of HI. The dimension of HI is 
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dime Cy=, aiQ. (See for example [12]). Let {I?,,, ,..., J!?,+~} be a basis for 
Hr . Since [HI , ad N] C ad N, H = HI @ ad N is the algebraic hull of 
ad L in EndL and {El ,..., E,,,} is a basis for H. On the other hand, 

minf,, dim L[f] = dim L - rankK(,)((&&). Since En+ixj = u,xj for some 
aij E K (alj = aj) we have that 

its rank is p + 1 since the last p rows are K(L)-linearly independent 

(En+1 ,...> J-L,, are K-linearly independent). Hence, 

n&dimL[f]=(n+l)-(p+l)=n-p=n-dimafaiQ 
i=l 

and this is 0 if and only if a, ,..., a, are linearly independent over Q. L being 
solvable, the result follows at once from Theorem 3. 

DEFINITION. By similarity with the associative case, we shall call a Lie 
algebra L over K a Frobenius Lie algebra if there exists a linear functional 
f EL* such that the alternating bilinear form on L, (x, y) +f([x, y]) is 
nondegenerate (i.e., L(f) = 0). Such a L ie algebra L is clearly even dimen- 
sional and Z(D(L)) = K (since L(f) = 0 implies Llf] = 0). We also notice 
that ad-algebraic Lie algebras having a primitive universal enveloping algebra 
are necessarily Frobenius. (Theorem 3.) 

Remark. Let L be a Lie algebra over k, with basis {x1 ,..., xn}. Then the 
following conditions are equivalent: 

(1) L is Frobenius, 

(2) det(f([xi , x5])) # 0 for a suitablef E L*, 

(3) det([xi , xj]) # 0 (the entries [Xi , xj] are considered as elements of 
the symmetric algebra S(L)). 

This result follows easily from 

and 

dim L(f) = dim L - rank(f([xxi , xj])) 

rankm)([x, , x& = gz rank(f([xi ,4)). 
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2. Assume now that k is algebraically closed. Then each solv 
Frobenius Lie algebra over k has a primitive universal enveloping algebra. 
(Theorem 3.) 

(a) The Lie algebra N with basis (x, y> and [x, y] = y is obviously 
Frobenius. 

(b) In the four-dimensional case we have three different types of 
Frobenius Lie algebras: 

(I) N @ N (Direct product), 

(ii) The Lie algebras of the forml(a), auk, with basis {x1, x2, xa i x& 
and relations [x1 , x2] = axe , [x1 , xa] = (1 - a)xa , [x1 , x4] = xg , 
[x2 , x3] = x4 . We have that L(a) -E(b) if and only if a = b or 
a+!,=1. 

3. Finally, we shall give an example of a nonsoivable Frobenius Lie 
algebra over the complex numbers having a primitive universal enveloping 
algebra. 

Let Y be an n-dimensional vector space over k and 1etL be the Lie algebra 
rphisms of V mapping V into a given (n - I)-dimensional 
y choosing a suitable basis in V we see that 6, is the Lie algebra of 

n x n matrices with last row equal to zero. Clearly L is not solvable if a > 3 
(its Levi factor is sZ(n - I)). M oreover, L is an algebraic Lie algebra and 
satisfies the Gelfand-Kirillov conjecture [5, p. 141, in fact D(L) is isomorphic 
to Q&-1)/*,0 . The second index being 0 indicates that Z(D(L)) = k, which 
implies that h, is Frobenius. (Corollary 2.) 

We shall now prove that U(L) is primitive in case 72 = 3 and k is the field 
of complex numbers. Under these circumstances it is easy to verify thatk is 
six-dimensional with basis (h, x, y; e, , e, , B e } and nonvanishing brackets: 
[h, 4 = 2x, P, yl = --2y, [x, yl = h, k, , 4 = el , Leo , 4 = fh , P, 4 = ek , 
[A, e,] = -e2 ) [x9 e,] = e, , [y, e,] = e2 . Obviously, (e, , e, , ezi is a basis for 
the radical of L, while (h, x, y> is a basis for a Levi factor S ofL. Next we take 
fin 15* such that f(x) =f(eJ = 1 and f(h) = f(y) = f(eo) = f(el> = 0 
(it turns out that L(f) = 0, h s owing again that L is Frobenius). 

Denote by &Y(S) the set of the solvable polarizations ofj, i.e., the collection 
of the solvable Lie subalgebras H of L such that S([H, N]) = 0 and with 

dim H = $(dim L + dim L(f)) = 3. Let H be the Lie subalgebra with basis 
(h + e, , e, j e,>. Clearly [h + eO, e,] = 2e, , [h + e, , e2] = 0, [e, , e2] = 
Hence H E S&f). 
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Following Dixmier, we define for each x E H 

0(x) = i(tr(ad, X) - tr(ad, x)). 

U(L) becomes a right H-module (and hence a right U(H)-module) by defining 
for each u E U(L) and x E H: 

U.L,HX = ux + O(x)u. 

However, in this case Lo(x) = 0 for all x E H. Indeed, tr(ad, ei) = 0 = 
tr(ad, ei) i: 1, 2 and tr(ad,(h + e,)) = 2 = tr(ad,(h + es)). 

Because f([H, H]) = 0, f defines a one-dimensional representation of H 
and hence of U(H). Denote by JC U(H) its kernel. This representation 
induces a representation of U(L), usually denoted by Ind(f / H, L). Its kernel 
1(f) is a primitive ideal of U(L) [4, Theo&me I] and is the largest ideal of 
U(L) contained in U(L).,,J[3, Lemma 4.15, p. 361. We shall prove that in 
this case I(f) = 0 (and hence U(L) is primitive). 

By the Poincare-Birkhoff-Witt Theorem each element of U(H) can uniquely 
be written in the form C asnr(h + e,,)p era esT, a,,, E C and by induction on the 
degree in es also in the form C b,,(h + e,)p erg(e, - l>‘, b,, EC. Clearly, 
the latter element is in J if and only if b,,, = 0. Consequently, the monomials 

(h + eojp elq(e2 - l)‘, p + 4 + y Z 0 f orm a basis for J over C and U(H) = 
J @ C * 1. Moreover, the same monomials form a basis of 

K = U(L).L,HJ = U(L)./ 

over U(S), i.e., Kconsists of all elements of the formCa,,,(h + e,)“e,g(e, - 1)’ 
with aOOO = 0 and aaqr E U(S). Clearly K is the left ideal of U(L) generated by 

h + eo, e, , ea - 1 and U(L) = U(S) OK. Furthermore, put Kl = 
U(L) e, + U(L)(e, - 1) and K, = U(L)(e, - 1); then obviously KT) Kl 3 K, 
and Kp C Kl , K,y C Kz (indeed, 

(ue, + v(e, - 1))~ = (ux) e, + (vx)(e, - 1) - ve, E Kl . 

Hence K,x C K,; K,y C K, since [y, ea - l] = 0). 

LEMMA. Suppose u E U(L). 

(a) If usK and uxEK then ufKl, 

(b) Ifuyn~Klforalln~Nthenu~K,, 

(c) If uhn E K, for all n E N then u = 0. 

Proof. (a) Since u E K we may write u = a(h + eo)t + v with a E U(S), 
D E Kl and t >, 1. We observe that a(h + e,)% = ux - vx E K (since 
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ux E K, vx E Kl) but a(h + e#x = a(h + e$-lx(h $ e,) -/- 2a(h + eJt-rx 
(since [h + e, , x] = 2x). This implies that a(h + eJ-lx E .K 

same argument a number of times, we arrive at ax E K. But th 
a = 0 (since ax E K n U(S) = 0) and therefore u = v E K1. (b) Since 
u E .K1 (take n = 0) we have that u = velm + z(ez - 1) v, w E U(L), PZ > 1 
and we may assume that v, w are chosen such that m is maximal (use 

Qi~car~-%irkhoff-Witt Theorem). Clearly 

velmyn = uy” - wyyez - 1) E Hir, 

(since [u, es - l] = 0) for all n EN. Since 

[y, elm] = T e1[2+[y, e,] ef-l = 3zeym1e2 = meyel + meypl(e, - l), 
q=l 

it fallows that 

velmy = (vy) el’” - v[y, elm] = (vy) elm - mve~-l - rn~e~-~(e~ - 1). 

y repetition of the same argument, we obtain velfl”y” = (- l)“ml v + x for 
some x E K1 . This implies that v E K1 ~ Hence v = ae, + b(e, - 1) for some 
a, i5 E U(L). Consequently, u = ae;T”+l + (be,” + w)(eg - 1). But this contra- 

dicts the maximality of m, unless a = 0. Hence u E ..K, . (c) Suppose that 
uJP E K, for all n E N. In particular u E Ks . Therefore we may write that 
u = v(e, - l)“> m 3 1, v E U(L). Again we may assume that v E U(L) is 

such that m is maximal, which means that ‘L’ $ .Kz unless v = 0. 

[hs (e, - l)“] = 5 (e, - I)m-c [hh, e2 - l](e, - l),-lo 
4=1 

Hence, since [h, e2 - l] = -e2:[h,(e2 - I>"] = -m(e2 - i)m-le, = 

-m(es - 1)” - m(es - 1),-l. Therefore, 

uh = v(e, - l)Vz = vh(e, - 1)” - a@, (e, - l)“] 

= vh(e, - 1)” + mv(e2 - 1)” + mv(e, - l)+l 

= v(h + m)(e, - 1)” + mv(e, - l)m-l. 

%y repetition of the same argument we arrive at: 

uhm = v(e, - l)mP = ml v + w for some w E K2 s 

It follows that ~1 E K, . Hence v = 0 and u = 0. 
We can now prove that I(j) = 0. Take u E 1(j). Hence uU(L) C r(f) C K 

(since 1(f) is an ideal of U(L) contained in K). In particular, uh~~ynx~ E K for 
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all m, n,p EN. Using (a) of the Lemma we see that uhn”y~ E ICI for all 
m, n E N. However, using (b) we obtain that u/z” E K2 for all m E N. Finally, 
this implies that u = 0 (by (c)). 
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