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1. INTRODUCTION

In his book “Structure of Rings” [7, p. 23] Professor Jacobson raised the
following open question: “What are the conditions on a finite dimensional
Lie algebra L over a field & that insure that its universal enveloping algebra
U(L) is primitive ?”’ [Since U(L) has an anti-automorphism the notions left and
right primitive are the same for U(L).]

If % is of characteristic p = 0, then U(L) cannot be primitive unless
L = 07, p. 255]. Therefore we may assume from now on that L is a nonzero
finite dimensional Lie algebra over a field k of characteristic zero. For each
linear functional feL* we denote by L[f] the set of all xeL such that
f(Ex) = 0 for all E in the algebraic hull of ad L C End L. Clearly L[] is a Lie
subalgebra of L containing the center Z(L) of L.

The aim of this paper is to prove the following.

TuroreMm. If U(L) is primitive then L[f] = O for some feL*. Moreover,
the converse holds if L is solvable and k is algebraically closed.

If we denote by D(L) the division ring of quotients of U(L), Z(D(L)) its
center, we shall prove that the condition that L[f] = O for some feL* is
equivalent with Z(I)(L)) = k (which forces the centers of both L and U(L)
to be trivial). In particular, U(L) cannot be primitive if L is either nilpotent or
semi-simple., Finally, we shall give some examples of Lie algebras (of which
one is not solvable) that do have a primitive universal enveloping algebra.

2. Some Resurts ON PrRIMITIVE RINGS

ProposiTioN 1. Let U be a primitive ring with 1, contained as a subring in
a ring Q. Suppose C is a subring of Q such that [C, U] = O and such that for
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each nonzero element ¢ of C there exist nonzero elements x,y in U such that
cx = y. If V is a faithful, irreducible U-module then C is isomorphic to a subring
of the center of the division ring 4 = Endy, V.

Proof. Professor Martindale has shown this result in case Q is the complete
ring of right quotients of U and C is the center of Q. {8, p. 453]. However,
exactly the same proof works also in the situation above.

ProrosiTiON 2. Let Q be an associative k-algebra with | and UCQ a
primitive subaigebra, 1€ U. Suppose CCQ is a subalgebra of O such that
[C, U] = 0 and such that for each nonzero element ¢ of C there exist nonzero
elements x, y of U such that cx = y. Then C is algebraic over k if one of the
following two conditions is satisfied.

(1) dim, U < card &,

(2) U is the union of an increasing filtration Uy C U, C -+ of subspaces
such that 1€ Uy, U,U,C U, , and such that the associaied graded algebra
er(U)y =8, U, v, , is a finitely generated commutative k-algebra.

Proof. We may regard U as an irreducible ring of endomorphisms of a
vector space 17 over k. Since k can be considered as a subfield of the division
ring 4 = Endy V, it is easy to check that the isomorphism we have established
in the preceding proposition between C and a subring of the center Z(4) is
in fact a k-isomorphism. The result then follows immediately, since each one
of the conditions I, 2 implies that 4 is algebraic over &. (See [10].)

Levma 1. Let k be a commutative integral domain, Q an associative
k-algebra and U a subalgebra endowed with an increasing filtration of k-sub-
modules Uy = k- 1 CU; C U, C -+ with U as their union, U, U, C U, and
such that the associated graded algebra gr(U) is a unique factorization domain
(U.E.D.). Suppose c €Q is an element for which there exist nonzero elemenis
x, y itn U such that cx = y and [c, ] = 0. If ¢ is algebraic over k ihen it follows
that (ac — b)x = 0 for some nonzero a, b € k. (So, in case x is vegular in Q,
then we may consider ¢ as being an element of the quotient field of k.)

Proof. We notice that since gr(U) is an integral domain, so is U. [5, p. 7].
Suppose @,c” + @, 41+ -+ ac + gy = 0 for some a; €k, a, # 0.
Multiplying by " and taking into account that {¢, x] = 0, we obtain that

a(cx)" 4 a,_y(cx) x4 -+ + ayfex) ¥" L 4 g = 0.
Hence

Up ¥ + Ay YV e @ yan Tt gt = 0. (1
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We may assume that g, 5= 0. (Indeed, since y is not 0, at least one of the a;
other than a, is = 0. Let a; be the last nonzero coefficient,

a,y" -+ an_]yn—lx o aiyixn—i =90,

and by cancelling out the common factor 3¢ we obtain a relation similar to
(1).) We recall thatif u € U,\U,,_; we define degu =nand [u] =umod U,,_, .
It is well known that deg(uv) = deg # -+ deg v and [uv] = [u][v] for u, v € U.
(1) implies that deg x = deg y. Indeed, if deg y > deg x the left-hand side of

anyn — _(an_lyn—lx _{_ + aoxn)

is clearly of degree # - deg y, while each term of the opposite side would be of a
lower degree. A similar reasoning shows that deg v <C deg x cannot occur
either. Hence deg ¥ = deg y and therefore (1) implies that

@n[y]" + apa[y]"x] 4 - + @[ y][x]" - ag[x]” = 0.

Let g be a greatest common divisor of [x] and [ y] in gr(U). We may write that
[x] = gu and [y] = gv where u and v are nonzero relatively prime elements
of gr(U). After cancelling the factor g”, we obtain that

a,v" + ap_ 0" u + -+ qou™t 4 agu® = 0.

Clearly u divides a,2" and since u, v are relatively prime, # also divides a,, .
Hence « € 2 and similarly © € k. Then the fact that «[v] = v[x] forces uy
and vx to have the same leading term. In particular, deg(uy — vx) << deg .
Finally, we have that (uc — v)x = uy — vx. Clearly uc — v is algebraic
over k and commutes with x. Hence uy — vx = Q (otherwise it would follow
as before that deg(uy — vx) = deg x) and therefore

(uc — v)x = 0, where u, v are nonzero elements of %.

Combining this Lemma with Proposition 2, we obtain.

TuroreM 1. Let U be a primitive associative algebra over the field k,
endowed with an increasing filtration Uy =k -1C U, C -+ such that the
associated graded algebra gr(U) is a finitely generated commutative k-algebra.
Then the center C of the ring of quotients of U is a field algebraic over k. Moreover,
C = kif gr(U) is in addition a unique factorization domain.

Since gr(U) is left and right Noetherian, so is U [5, p. 7]. Thus U is a
Goldie ring and therefore has a left and right ring of quotients.
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3. APPLICATION OF THE PRECEDING SECTION To U({L)

The universal enveloping algebra U(L) of a Lie algebra L has a natural
increasing filtration of which the associated graded algebra gr(U(L)) is
isomorphic to the (commutative) polynomial algebra A[ X, ..., X, ], # = dim L,
by the Poincaré-Birkhoff-Witt theorem. Therefore the following is an
immediate consequence of Theorem 1.

ProrosttioN 3. Let L be a Lie algebra over k and I a primitive ideal of
U(L). Then the center C of the ring of quotients of U(L)1 is algebraic over %.

Remark. Clearly, C = kif kis algebraically closed, a result already shown
by Rais [11] and which is a slight improvement of a theorem due to Dixmier
[3] by removing the requirement of the uncountability of k. On the other
hand, there are cases where C' 5% k. The following example was pointed out to
us by Professor Seligman. Let L be the 1-dimensional real Lie algebra
generated by ({ &), which acts irreducibly on the plane. U(L) can be iden-
tified with R[X7] and the kernel I of the representation is the ideal generated
by X2 4~ 1. Therefore U(L) I ~Cand C =C.

Turorem 2. Let L be a Lie algebra over k. If U(L) is primitive then
Z{(D(LY) = k. Moreover, the converse holds if L is solvable and k is algebraically
closed.

Proof. The first part follows easily from Theorem 1. For the converse we
observe that since U(L) is semi-simple [7, p. 22] the intersection of all
primitive ideals of U(L) is 0. For this reason, Dixmier’s argument used in the
proof of his well-known criterion for the primitive ideals of U{L), works in
this situation without requiring the uncountability of z. Indeed, if Z(D(L)) = &
then Lemma 3.4 of [3, p. 28] guarantees that the intersection of all nenzero
prime ideals of U(L) is not 0. In particular the same is true for all nonzero
primitive ideals. Hence (0) is necessarily a primitive ideal.

ConpITioN IN TERMS OF THE ALGEBRA STRUCTURE ON L,
EquivaLent witH Z(D(L)) = %

Let L be a Lie algebra over % and let H be the algebraic hull of ad L in
End L. For each linear functional feL*, we have defined L[f] to be the
collection of elements x € L such that f(Ex) = 0 for all £ e H. We have that
L[f]is an ideal of L(f), L(f) being the radical of the alternating bilinear form
(%, v) = f([, ¥]) on L. Since L{f) is abelian for f lying in some open dense
subset 0 of L*, the same is true for L[f]. (0 is the set of all f € L* for which

481[32(3-4
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L(f) has minimum dimension [1, p. 17]. It is obvious that L[ f] = L(f) if L is
ad-algebraic (i.e., ad L = H).

We recall that each endomorphism £ € End L can uniquely be extended to
a derivation of the quotient field K(L) of the symmetric algebra S(L) of L.
We are interested in the subfield K(L)! of the invariants of K(L) with respect
to ad L (i.e., K(L) is the collection of elements of K(L) annihilated by ali
E €adL). It can be shown that ad L and its algebraic hull H have the same
mvariants in K(L) [9, p. 25]. Because of this and Dixmier’s formula for the
transcendency degree of the invariants of an algebraic Lie algebra of endomor-
phisms [2, p. 336] we obtain that:

tr degy(K(L)") = dim L — rankg)((E:%5)i5),

whenever {%; ,..., ,} is a basis for L and {E, ,..., E,} a basis for H. Since for
each fel*

dim L[ f] == dim L — rank(f(E,x,);)
we may conclude that

tr degy(K(LY) = ]rcrelgl dim L[ f].

(In fact, it can be shown that this number is also equal to the transcendency
degree of Z(D(L)) over k in case L is either solvable or ad-algebraic [9].)
The following is the main tool of this section.

ProrositioN 4. Let L be a Lie algebra over k, then the following are
equivalent:

(1) Z(D(L)) = D(Z(L)),
(2) KLY = K(z(L)),
(3) LIf] = Z(L) for some f € L*.

Before we can go over to the proof of this, we need to introduce an increasing
filtration in U(L), other than the usual one. We denote by s the canonical
linear isomorphism of S(L) onto U(L), which for every system 3, ,..., ¥,, of
L maps the product y; -y, into (1/m!) 3>, voa) *** Votm) » Where the sum is
taken over all permutations p of {1,..., m}. Let {e, ,..., €,; &y ,..., %,,} be a basis
for L such that {¢ ,..., ¢,} is a basis for the center Z(L). Put R = S(Z(L)).
Obviously, R can be identified with U(Z(L)) since Z(L) is commutative. In
particular R C Z(U(L)). Each element of S(L) can be considered as a poly-
nomial in the x,’s with coeflicients in R (i.e., S(L) ~ R[X ,..., X,,]). Clearly
S(L) is the direct sum of the subspaces S™ of polynomials homogeneous of
degree m in the x;’s. We have that S™St C S™* for all positive integers m, #.
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On the other hand s(ax) = as(x) for all ae R, xe S(L). (This is clear if
a e Z(L), hence also if a is of the form y; - ¥, , ¥; € Z(L); the general case
follows by linearity of 5.) As a result s may be considered as an isomorphism of
R-modules. U{L) is the direct sum of the subspaces U™, U™ being the image
of Smunder s. Next put U, = @pg, U™ It is easy to verify that the monomials
% vx; with 4 <0 <dp and p < g form a basis of U, over R and
UU,C U,,,. Therefore the subspaces U, form an increasing filtration
in U(L) and the associated graded algebra gr(U(L)) is isomorphic to
R[X; ..., X,] =~ S(L). The elements u e U\U,_; are said to be of degree g
and [#] = #mod U,_; is called the leading term of #. For all nonzero
u, v e U(L): [uv] = [u][v] and deg(uv) = deg(u) + deg(v). Furthermore, if
Y = Y L+ Vo, ¥m # 0 is the decomposition of y € S(L) into homo-
geneous components ( y; € S%) then it follows immediately from the definition
of s that [s(3)] = V.

Finally, we recall that each derivation E of L can uniquely be extended
to a derivation of S(L) (and K(L)) on the one hand and to a derivation of
U(L) (and D(L)) on the other hand. If we denote both extensions by E again
then the diagram

S(L) —E— S(L)

P
U(L) —E— U(L)

is commutative. This implies in particular that s: S(L) — Z(U(L)) is a
linear bijection. Moreover each E € ad L maps S™ into itself and the same is
true for U™ and U, .

Proof of the Proposition

We note first that Z(D(L)) D D(Z(L)), K(L)' D K(Z(L)) and L[] D Z(L) for
all feL*,

1=2.

Take u € K(LY. We may assume that # = xy™*, y 5% 0, such that x, y are
relatively prime in S(L). Eu = 0 for all & e ad L implies that yEx = xFy.
Since x and y are relatively prime and since deg(Ex) <C deg » we obtain that
Ex = ME)x and Ey = ME)y for some A € (ad L)*. It follows that Es(x) =
s(Ex) = ME) s(x) and similarly Es(y) = AE) s(y) for all £ € ad L. Next put
2 == 5(x) s{(yy L€ D(L). For each Ecad L:

Ez = (Es(x) — s(x) () Es(5)) ()7 = 0.
Hence z e Z(D(L)) = D(Z(L)). Consequently z = b~a for some a,be R,
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b £ 0. (R = U(Z(L))). But s(x) s(¥)™ = b~ta implies that s(ay) = as(y) =
bs(x) = s(bx). Therefore ay = bx and u = xy~! = ab' € K(Z(L)). Hence
K(LY = K(Z(L)).

2=1.

We remark that K(LY = K(Z(L)) implies that S(L)! = S(Z(L)). (Indeed
let we S(L); u = ab! for some a, b€ S(Z(L)) = R, b = 0; hence a = bu
which forces the degree of # to be 0 and » € R.) By taking the image under s
we see that also Z(U(L)) = U(Z(L)) = R. Now let 2 be a nonzero element
of Z(D(L)). We define d(2) = min{deg u | 2 = wv™u, ve U(L), v 5 0}. We
shall prove by induction on d(#) that 2 € D(Z(L)). Let u, v be nonzero elements
of U(L) such that 2 = uwo™ and deg u = d(2).

If d(z) = O then clearly u e R = U(Z(L)) and therefore

v = uze Z(U(L)) = U(Z(L)).

Consequently 2 = uv™ e D(Z(L)). So, we may assume that d(2) = n > 0.
Since z commutes in particular with v, we see that & = v~1u. Take Ecad L.
Since Ez = 0, we obtain from zv = u that 2Ev = Eu. Hence uEv = vEu.
Choose x, y in S(L) such that s(x) = # and s(y) = o. Letx = x, + - -+
%, 720 and y =y, -+ 3y, ¥m F# 0 be their decomposition into
homogeneous components (x; € 5%, y; € S7). Since each E € ad L maps each S*
into itself we see that Ex = Ex, + --- 4+ Ex, and Ey = Ey,, + - + Ey,
are the decompositions into homogeneous components of Ex and Ey. There-
fore if Ex = 0 then each Ex; = 0, similarly for Ey. Next we observe that
$(x) s(By) = s(x) Es(y) = uliv = vEu = s(y) Es(x) = s(y) s(Ex). From this
we see in particular that Ex = 0 if and only if Ey = 0. Denote by Ex, and
Ey, the leading (nonzero) terms of Ex and Ey in case Ex = 0. Then
[s()I[s(Ey)] = [s(¥)][s(Ex)] implies that x, Ey, = y,.Ex,andn + p =m + ¢
(by taking degrees of both sides). We see that Ex,, = 0 if and only if Ey,, = 0.
In any case we have that x,Iy,, = y,,Ex, for all EeadL. This forces the
element x,,3,,;! € K(L) to be annihilated by all E € ad L, i.e., x,, v, € K(L) =
K(Z(L)). Hence w,y,; = ab™ for some nonzero a, b € R. Considering that
[bu] = b[s(x)] = bx,, = ay,, = a[s(y)] = [av] we conclude that deg(bu — av) <
deg(bu) = deg u = d(2). Next put 2, = (bu — av)(av)! = ba'lz— 1 € Z(D(L)).
By induction 2, € D(Z(L)) since d(z;) << d(z). Consequently

z=ab 'z +1)eDZL) and  Z(DL)) = DZ(L)).

2 <3,
‘We know that

tr deg(K(L)) = }*2%13 dim L[ f] and K(Z(L)) ~ k(X5 ,..., X,)



PRIMITIVE UNIVERSAL ENVELOPING ALGEBRA 485

with ¢ == dim Z(L). Hence 2 = 3 is clear. Conversely, if L{/] = Z(L) for
some feL*, then ¢ is the degree of transcendence over % of both the fields
K(L)Y and K(Z(L)). Hence K(LY is algebraic over K(Z(L)). Therefore each
element % of K(L}Y satisfies a nontrivial equation of the form

an X"+ o ay =0,

a; € K(Z(L)). By multiplying this with a common denominator of the g, , we
see that we may assume that all 2, € S(Z(L)) = R. Consequently  is algebraic
over R. By Lemma 1 it follows that # is in the quotient field of R, which is
K(Z(L)). Hence K(LY = K(Z(L)).

CoroLLarY 1. Let L be a Lie algebra over k, for which there exists a linear
Sunctional feL* such that L{f] = Z(L). Then Z(U(LY) = U(Z{L)) and is
therefore isomorphic to R[X, ,..., X;] with ¢ = dim Z(L); its quotient field is
Z(D(L)), which is in fact equal to K(LY.

COROLLARY 2. Let L be a Lie algebra over k. Then the following are
equivalent:

(1) Z(DL) = &,
@) K@y =F,
(3) LIf1 =0 for some feL*.

This corollary combined with Theorem 2 yields the main result, announced
in the Introduction.

TarorReM 3. LetL be aLie algebra over k. If U(L) is primiiive then L f] = 0
Jor some f € L*. Movreover, the converse holds if L is solvable and k is algebraicaily
elosed.

ExAMPLES

i. Let L be the Lie algebra over an algebraically closed field %2 with
basis {#,,..., #,; ¥,.4; and with the following nonvanishing brackets:
(%, 2,%] = amx;,a,€k i:1,...,n. Then U(L) is primitive if and only if
dy ,..., @, are linearly independent over Q.

Proof. Let N be the commutative ideal of L with basis {», ,..., ,}. Clearly
ad N C End L is an algebraic Lie algebra, consisting of nilpotent endomor-
phisms. Put E; = ad x;, 7: 1,...,# } 1 and denote by H; the collection of
replicas in EndL of E,,; = ad x,,,, . Since E,,; is diagonal with respect
to the given basis, so is each element of H,. The dimension of H, is
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dimg Y7, a,Q. (See for exarple [12]). Let {Ey.; ,..., Enyp) be a basis for
H,. Since [Hy,ad NJCad N, H = H, ®ad N is the algebraic hull of
adL in EndL and {E,,..., E,,,} is a basis for H. On the other hand,
mingzx dim L{f] = dim L — rankgqy((Es;);). Since E,,, x; = a;;x; for some
a;; € k (a; = a;) we have that

0 see 0 — %
0 e 0 —ap%y,
(Exs)s; = . 0
a11%y G1n¥n
‘lmx1 ot azmxn 0

its rank is p - 1 since the last p rows are K(L)-linearly independent
(E,iq »eees Enyp are k-linearly independent). Hence,

min dimL[f] = (0 + ) — (p+ 1) =n—p = n — dimg Y, 4.Q

i=1

and this is 0 if and only if 4, ,..., a, are linearly independent over Q. L being
solvable, the result follows at once from Theorem 3.

DEerINTTION. By similarity with the associative case, we shall call a Lie
algebra L over k a Frobenius Lie algebra if there exists a linear functional
feL* such that the alternating bilinear form on L, (%, y) — f([#, y]) is
nondegenerate (i.e., L(f) = 0). Such a Lie algebra L is clearly even dimen-
sional and Z(D(L)) = k (since L(f) = O implies L[ f] = 0). We also notice
that ad-algebraic Lie algebras having a primitive universal enveloping algebra
are necessarily Frobenius. (Theorem 3.)

Remark. Let L be a Lie algebra over &, with basis {x, ..., %,}. Then the
following conditions are equivalent:

(1) L is Frobenius,
(2) det(f([x;, x;])) 5 O for a suitable fe L*,

(3) det([x;, x;]) 7= O (the entries [x;, x;] are considered as elements of
the symmetric algebra S(L)).

This result follows easily from
dim L(f) = dim L — rank(f([x; , x;]))

and
ranke)([x; , %3]) = max rank(f([x; , #,])).
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2. Assume now that %k is algebraically closed. Then each solvable
Frobenius Lie algebra over % has a primitive universal enveloping algebra.

(Theorem 3.}
Examples.
(a) The Lie algebra N with basis {x, ¥} and [x, y] = » is obviously
Frobenius.

(b) In the four-dimensional case we have three different types of
Frobenius Lie algebras:

(i) N @ N (Direct product),

(i) 'The Lie algebras of the form L{a), ack, with basis {x;, %,, %3, %}
and relations [xy , 5] = axy, [#, %5] = (1 — @)xg, [y, %] = %4,
[, 2] = x,. We have that L{a) ~L(b) if and only if @ = b or

a-+b=1.
(i) The Lie algebra L with basis {x, , %y, %3, 5, and relations
[0, w] = F0p + 0, [, &05] = Fovg, [y, @] = 2y, [0, 5] = w4

3. Finally, we shall give an example of a nonsolvable Frobenius Lie
algebra over the complex numbers having a primitive universal enveloping
algebra.

Let ¥ be an n-dimensional vector space over & and let L be the Lie algebra
of endomorphisms of ¥ mapping V into a given (n — 1}-dimensional
subspace. By choosing a suitable basis in 7 we see that L is the Lie algebra of
1 X n matrices with last row equal to zero. Clearly L is not solvable if # > 3
(its Levi factor is si(n — 1)). Moreover, L is an algebraic Lie algebra and
satisfies the Gelfand—Kirillov conjecture [5, p. 14], in fact D(L) is isomorphic
0 Dyy(n_y)sa.0 - The second index being 0 indicates that Z(D(L)) = %, which
implies that L is Frobenius. (Corollary 2.)

We shall now prove that U(L) is primitive in case # = 3 and % is the field
of complex numbers. Under these circumstances it is easy to verify that L is
six-dimensional with basis {#, x, y; &, e, , ¢} and nonvanishing brackets:
(A, &] =2, [h, y] = —29, [%, y] = h, [y, €] =1, [ey, €] =3, [h, &1] = &1,
(%, 5] = —ey, [%, 5] = €1, [y, ] = e, . Obviously, {e;, ¢, , e,} is 2 basis for
the radical of L, while {4, x, y} is a basis for a Levi factor .S of L. Next we take
Fin L* such that f(x) = f(e) = 1 and f(h) = F(3) = fleo) = f(er) = O
(it turns out that L(f) == 0, showing again that L is Frobenius).

Denote by SP(f) the set of the solvable polarizations of f, i.e., the collection
of the solvable Lie subalgebras H of L such that f([H, H]) = 0 and with
dim H = }dim L + dim L(f)) = 3. Let H be the Lie subaigebra with basis
{h+ey,e,e} Clearly [h+ ey, e] = 2e;, [k + ¢y, €] =0, [&;, 6] =0.
Hence H e SP(f).
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Following Dixmier, we define for each x € H
O(x) = (tr(ady x) — tr(ad, x)).

U(L) becomes a right H-module (and hence a right U(H)-module) by defining
for each u e U(L) and x € H:

u. g, gx = ux + O(x)u.

However, in this case O(x) = 0 for all xe H. Indeed, tr(adge;) =0 =
tr{ady ;) 2: 1, 2 and tr(ady(h + ¢5)) = 2 = tr(ad (% -+ ¢)).

Because f([H, H]) = 0, f defines a one-dimensional representation of H
and hence of U(H). Denote by JC U(H) its kernel. This representation
induces a representation of U(L), usually denoted by Ind(f | H, L). Its kernel
I(f) is a primitive ideal of U(L) [4, Théoréme 1] and is the largest ideal of
U(L) contained in U(L).; 5] [3, Lemma 4.15, p. 36]. We shall prove that in
this case I{(f) = 0 (and hence U(L) is primitive).

By the Poincaré-Birkhofi-Witt Theorem each element of U(H) can uniquely
be written in the form ¥ a,,,(h + ¢€,)? .9 &7, apqr € C and by induction on the
degree in e, also in the form Y b, (h + €)? e,%e; — 1), b,,, € C. Clearly,
the latter element is in [ if and only if by, = 0. Consequently, the monomials
(% + e)? ey%ey — 1), p -+ g + 7 5= 0 form a basis for J over C and U(H) =

J@®C - 1. Moreover, the same monomials form a basis of
K = U)...a] = UD)]

over U(S), i.e., K consists of all elements of the form’ a,,.(% -+ e,)?e;%e; — 1)"
with agy, = 0 and a,,, € U(S). Clearly K is the left ideal of U(L) generated by
hte, e,e—1 and U(L) = U(S) @ K. Furthermore, put K; =
U(L) e, + U(L)ey — 1) and K, == U(L)(e, — 1); then obviously K O K, D K,
and Kyx C K, , K,y C K, (indeed,

(uey + v(ey — 1))x = (ux) e + (vx)(e; — 1) —ve € K .
Hence K;x C K;; K,y C K, since [y, e, — 1] = 0).

Lemma.  Suppose u e U(L).
(a) IfuekK and uxc K then uc K, ,
(b) Ifuwyre K, forallneNthenue K, ,
(¢) IfubreK,forallnecN thenu = 0.

Proof. (a) Since u € K we may write « = a(h - )" + v with a € U(S),
vekK; and t > 1. We observe that a(h + ¢)'x = ux — ox e K (since
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uxe K, vx e Ky) but a(h + e¥x = a(h -+ )~ x(h + e) + 2a(h + ¢y)x
(since [& -+ e,, ] = 2x). This implies that a(# + ¢,)"x € K. Repeating the
same argument a number of times, we arrive at ax € K. But this implies that
a =0 (since axe KN U(S) = 0) and therefore ¥ = ve X, . (b) Since
u e K, (take n = 0) we have that u = ve/™ + w(e, — 1) v, we UL), m >1
and we may assume that v, @ are chosen such that m is maximal (use
Poincaré-Birkhoff-Witt Theorem). Clearly

ve"y" = uy™ — wy™(e; — 1) € Ky

(since [, e, — 1] = 0) for all # e N. Since

m
[v,6"] = Z &y, el "3(11—1 = mey ey = me;na + mey e, — 1),
g=1

it follows that
ve"y = (vy) 6" — o[y, "] = (vy) e — mw;n_l - mfoef‘"l(ez - 1).

By repetition of the same argument, we obtain ve,"y™ = (—1)"ml v --- % for
some 2 € Ky . This implies that v € K, . Hence v = ag, + #(e, — 1) for some
a, b € U(L). Consequently, u = ae]"™ 4 (be;” + w)(e, — 1). But this contra-
dicts the maximality of m, unless @ = 0. Hence u € X, . (¢) Suppose that
uh” € K, for all neN. In particular u € K, . Therefore we may write that
u = v{e, — 1y*, m = 1, ve U(L). Again we may assume that ve U(L} is
chosen such that m is maximal, which means that v ¢ K, unless v = 0.
Consider

[y (s — 1)l = 3 (ep — 1) [, 0 — 1](eg — 1)
=1
Hence, since [, e; — 1] = —ey: [h, (e — 1] = —mley — 1)" ey, =
—mife, — 1)™ — m(e, — 1)™ 1. Therefore,
uh = v(eg — 1)*h == vh(e, — 1)* — o[k, (e; — 1)™]

= ovhie, — 1) + mov(e; — 1) + mo(ey, — 1)

= o(h + m)(ey — 1) + mo(e; — 1)
By repetition of the same argument we arrive at:

wh™ = v(e, — 1y"h™ =mlv + w  forsome wek,.

It follows that v € K, . Hence v = Qand u = 0.
We can now prove that I(f) = 0. Take u € I(f). Hence uU{L) CIH{f/} CK
(since I(f) is an ideal of U(L) contained in K). In particular, uh™y"x? € K for
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all m, n, peN. Using (a) of the Lemma we see that uh™y" € K for all
m, n € N. However, using (b) we obtain that u™ e K, for all m € N. Finally,

th:

10.

11.

12.

is implies that # = 0 (by (c)).
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