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Abstract

When estimating a benchmark dose (BMD) from chemical toxicity experiments, model averaging 

is recommended by the National Institute for Occupational Safety and Health, World Health 

Organization and European Food Safety Authority. Though numerous studies exist for Model 

Average BMD estimation using dichotomous responses, fewer studies investigate it for BMD 

estimation using continuous response. In this setting, model averaging a BMD poses additional 

problems as the assumed distribution is essential to many BMD definitions, and distributional 

uncertainty is underestimated when one error distribution is chosen a priori. As model averaging 

combines full models, there is no reason one cannot include multiple error distributions. 

Consequently, we define a continuous model averaging approach over distributional models and 

show that it is superior to single distribution model averaging. To show the superiority of the 

approach, we apply the method to simulated and experimental response data.
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1 | INTRODUCTION

Model averaging (MA) [1, 2, 3, 4, 5, 6, 7, 8] is rapidly becoming the gold standard dose-

response modeling technique. The National Institute for Occupational Safety and Health, 

the World Health Organization (WHO) and the European Food Safety Authority (EFSA) 

recommend using model averaging as a default for quantitative risk assessments [9, 10, 11]. 

The use of MA is appealing because it incorporates information across multiple models to 

account for model uncertainty. That is, when multiple models are fit to data, it allows for 

multi-model inference. In most cases, this provides for model-derived estimates of the point 

of departure, like the benchmark dose (BMD), to be more accurately estimated. Ignoring this 

uncertainty results in less than optimal BMD estimates[12], and MA methodologies improve 

these operating characteristics.

For dichotomous dose-response data, literature exists that investigates the performance of 

MA, see (Kang et al. [4], Wheeler and Bailer [5], Piegorsch et al. [6], Simmons et al. [7] 

and Wheeler et al. [8], and references therein). These studies show that MA outperforms 

single model selection approaches, but despite advancements in MA for dichotomous data, 

few studies exist that develop MA for continuous data. To our knowledge, only Shao and 

Gift [13] studied MA in this setting (Varewyck and Verbeke [14] and Shao and Shapiro 

[15] describe software for continuous response MA but do not provide information on 

performance). Shao and Gift’s study was small and only considered cases where the 

distributional assumption was known (i.e., the studies assumed normal variance in the 

simulation and the model average) and was similar to dichotomous methodologies focusing 

on MA over the mean response (i.e., every model assumed a normal distribution). If the 

normal distribution does not adequately represent the data, many distributional assumptions 

(random error in the model) other than the normal may produce better BMD estimates, and 

MA may further improve reliability.

For BMD estimation, some continuous response BMD definitions (e.g., the hybrid definition 

Crump [16]) use the tails of the distribution, and when MA ignores distributional 

assumptions, it may not fully capture the uncertainty in the data, which was the conclusion 

of Shao et al. [17]. In that work, it was shown that there was a difference in BMD estimates 

when considering the tails of the distribution (e.g., in the hybrid case), but not when using 

the relative deviation definition, i.e., which uses the mean. Additionally, Wheeler et al. [18], 

who looked at quantile estimators for the BMD, showed that distributional assumptions in 

standard models impacted BMD estimation.

Although Shao et al. [17] only looks at one error model, there is no requirement that 

all models use the same error distribution. Instead, we investigate an approach using 

MA with multiple distributions and different mean models. For example, we include 

the Exponential-5 model [19], which defines a hexible sigmoidal shaped dose-response 

function; and we use this with normal and log-normal error models. This method is 

investigated using the Laplace approach of Wheeler et al. [8], as well as Markov chain 

Monte Carlo (MCMC) methodologies. In our simulation study, the proposed method better 

captures the uncertainty in estimating the BMD (e.g., more reliable confidence intervals) 

than the single distributional form MA approach. In the following sections, we describe the 
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model averaging approach for BMD estimation, apply this to multiple real dose-response 

studies and analyze MA performance in a simulation study.

2 | MODEL

2.1 | Benchmark Dose modeling

Assume one has Y = ( y1, y2,. . ., yn )′, which are n observations each taken with error on 

ℝ+. Each yi, 1 ≤ i ≤ n, corresponds to a dose xi from an animal toxicology experiment. 

Here, assume all observations are independently drawn from a common error distribution 

such that the central tendency changes as a smooth function of dose. This function, f (x), is 

the dose-response. It determines changes in the response as the dose increases, and its exact 

role depends on the data distribution. For example, if the yi are normally distributed, f (xi ) is 

the mean given xi, and if one assumes each yi follows a log-normal distribution, f (xi ) is the 

median given xi.

We are interested in determining risk and thus the BMD. Though there are many definitions 

of risk for continuous responses, we focus on those dependent upon higher-order moments 

and look at the hybrid and standard deviation definitions of the BMD [16]. Other BMD 

definitions exist in the literature and can be applied using our proposed methodology, but 

they only require knowledge of f (x) (e.g., the relative risk definition [19] measures the 

absolute change in the dose-response from the mean/median.) We do not consider such 

definitions further.

2.1.1 | Hybrid BMD—In defining risk, the hybrid BMD definition is a direct analog to 

the dichotomous BMD extra-risk approach [20]. Given a benchmark response(BMR), the 

hybrid approach estimates the BMD to be the dose that solves

Pr Y > y0 ∣ x = BMD − Pr Y > y0 ∣ x = 0
1 − Pr Y > y0 ∣ x = 0 = BMR . (1)

Here, Pr(Y > y0 | x = x0) is the probability that the response is greater than y0 at dose x = 

0 and Pr(Y > y0 | x) is stochasticly ordered such that Pr(Y > y0 | x = x0) ≤ Pr(Y > y0 | x 
= x1) when x0 < x1. Further, for (1), y0 is a level of adverse response, and the BMR ϵ (0, 

1) and is defined prior to the analysis. In this case, the BMR is the increase in probability 

that a response is adverse, relative to the probability that the response at control would not 

be adverse (i.e., it is analogous to the extra risk BMR definition for dichotomous response 

data). In most cases, instead of defining the cut-point y0 directly, the value is specified as the 

cut point where the 100 × Pr(Y > y0 | x = 0)% of the population exhibit a response at least as 

extreme as y0. To define the hybrid approach, either 1 – Pr(Y > y0 | x = 0) or y0 is defined a- 
priori. In what follows, we specify Pr(Y > y0 | x = 0) = 0.025 as a default.

2.1.2 | Standard Deviation BMD—Finding valid confidence intervals for (1) is 

difficult. Consequently, the standard deviation definition as a surrogate of the hybrid 

approach [16]. In the standard deviation (SD) definition, the BMD is the value solving
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f(x = BMD) − f(x = 0) = BMR ⋅ σ0, (2)

where σ0 is the standard deviation at dose zero and BMR ≥ 0, which is the number of 

standard deviations f (x) must change to be classified as adverse. Here, unlike the hybrid 

approach, only the BMR needs to be specified.

Both (1) and (2) assume an increasing stochastic ordering with dose. When a decreasing 

ordering occurs similar definitions of the BMD can be made by looking at the lower tails in 

(1) or interchanging f (x = BMD) – f (x = 0) with f (x = 0) – f (x = BMD). In what follows, 

the appropriate definition is obvious in context.

2.2 | Bayesian Model Averaging

Solving (1) and (2) require knowledge of f (x) and higher-order moments (e.g., knowledge 

of σ0, etc.); thus when the distribution is unknown, there is additional uncertainty introduced 

when estimating the BMD. We define a Bayesian MA approach that calculates the BMD 

across multiple dose responses and underlying error distributions.

Bayesian inference for a single model proceeds by finding the posterior distribution of a 

vector of parameters θ given Y, a data generating mechanism with log-likelihood l (Y | θ, f 
(dose | θ)), and prior distribution p (θ). This is done using Bayes’ rule,

Pr(θ Y ) = exp l[Y ∣ θ, f(x ∣ θ)] p(θ)
p(Y ), (3)

where p(y) = exp l[Y ∣ θ, f(x ∣ θ)] p(θ)dθ. Though the posterior distribution is defined for 

θ, one can use it to derive the posterior distribution for any function of θ, i.e., g (θ). We 

investigate inference on the quantity g (θ) = BMD, defined in (1) and (2) in what follows.

When f (x | θ) and l (Y | θ, ) are unknown, Bayesian MA [1, 2] can be used to define a 

multi-model posterior distribution on the BMD using individual posteriors. Let Pr(BM D | 

ℳ1, Y ),…, Pr(BM D | ℳM, Y ) be M posterior distributions of the BMD given ℳ1, …, ℳM
and Y. Additionally, let {π1,…, πM } be M probabilities defining the posterior distribution 

of the M models (the computational formula for these probabilities is discussed in the next 

section). The posterior distribution of the BMD averaged over all M models is

Pr(BMD ∣ Y ) =
m = 1

M
πmPr BMD ∣ Y , ℳm . (4)

There is no requirement that the distribution used to construct (3) be the same 

across all models. We consider the case where the model, ℳm, is the tuple 

fm(x ∣ θ), lm Y ∣ θ, fm(x ∣ θ) , where lm (·) represents a different log-likelihood for each m. 

In what follows, “model” refers to both the dose-response function and the data error model.

Practical considerations are necessary when averaging the BMD. Equation (3) implicitly 

assumes this is a distribution over finite quantities; however, there are situations where 
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definitions (1) and (2) will result in infinite estimates of the BMD due to asymptotes in f (x). 

This plateau results in no posterior mean and an upper bound of the BMD (BMDU) being 

infinity. For these cases, we determine if the distribution is finite up to the median. If not, we 

remove these models before averaging and assign these cases a posterior probability of zero. 

For this reason, we do not consider the BMDU in this simulation.

2.3 | Posterior Model Probability Computation

The posterior distribution model probabilities, πj, are computed as

πj = p Y ∣ ℳj

m = 1
M p Y ∣ ℳm

, (5)

which requires the normalizing constant p(Y ∣ ℳ) = lℳ(Y ∣ θ)p(θ)dθ. This constant is not 

analytically available for the dose-responses considered, and calculating this quantity using 

numerical integration is di cult. Likewise, simulation-based techniques like reversible jump 

MCMC [21] or bridge sampling [22] requiring special proposal algorithms that are often 

not easily generalized because they are usually tailored for a specific analysis. Though 

approximations using the Bayesian Information Criterion [2] have been proposed to estimate 

this value, it is known to be O 1  consistent. Instead, we use the Laplace approximation. That 

is

p(Y ∣ ℳ) ≈ (2π)
r
2 Σ

1
2 exp[l(Y ∣ ℳ, θ )]p(θ ∣ ℳ),

where θ  is the maximum a posteriori estimate for model ℳ, Σ is the inverse of the negative 

Hessian of Pr(θ ∣ Y ), and r is the number of parameters in θ. This approximation has an 

O n−1  relative error [23] and it was used in [8] to compute the posterior distribution model 

probabilities. We refer the reader to the supplement for more information on the models 

considered in the model average.

Following the U.S. EPA’s Benchmark Dose Software 3.2 (BMDS) package, we consider the 

following set of dose-response models:

fℎill(x ∣ θ = a, b, c, d ) = a + bxd

cd + xd , (6)

fexp − 3(x ∣ θ = a, b, d ) = a exp − bx d , (7)

fexp − 5(x ∣ θ = a, b, c, d ) = a c − (1 − c)exp − bx d , (8)

fpower (x ∣ θ = a, b, d ) = a + bxd . (9)
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These functions represent a diverse suite of dose-response models for continuous data. 

Noticeably absent from this list are polynomial models. We do not consider these models 

as monotone restrictions on polynomials are challenging to enforce, and non-monotone 

functions lead to problems when evaluating the benchmark dose. For more information on 

these models, we refer the reader to the supplement.

2.4 | Model Prior Specification

Prior distributions for a specific models’ parameters, i.e.θ, should place higher probability 

over dose-response curves expected to be encountered in practice. As one observes 

continuous dose-response data on various scales, e.g., one may see liver weights in the 

hundreds and blood clinical chemistry in the tens, we develop priors to be scaled to the 

response so that they may generally apply to a large variety of analyses.

For the coefficients determining the mean model, we define our priors under the assumption 

that the data are scaled so that the mean control response is 1. For a given data set, we 

rescale the prior distribution based upon the observed response. For example, if a N(α,τ−1) 

prior is placed over parameter b, where it enters the model as b × x, then α is scaled by μ0 

and the variance τ−1 has μ0
2 as a scaling factor. Some parameters like the shape parameter d 

of the Hill, Exponential, and Power models are scale-invariant and do not change based upon 

the response.

For Bayesian MA, placing priors over the dispersion parameters (e.g., σ2 in the normal 

model) is challenging because small changes in the prior specification will inhuence the 

model’s posterior weights. Initial numerical experiments suggested that the prior placed on 

the variance term may disproportionately impact final model weightings, which is true even 

when individual model estimates and inference are qualitatively identical for two different 

prior specifications. To minimize this effect, we place a data-based prior over the dispersion 

parameter and center the dispersion parameter equal to the estimated variance, i.e., the 

sampled variance or sample geometric variance. We center the background parameter, a, at 

1. This implies the prior dose-response analysis is centered at the observed mean at zero 

dose, assuming variance equal to the sampled variance.

Defining general priors for Bayesian model-averaged dose-response analyses is a complex 

issue, which likely will require more research. The prior weights impact the posterior model 

weighting distribution, and we try to specify informative priors due to issues with Lindley’s 

paradox Shafer [24]. In this manuscript, we attempted to make our priors informative over 

a response range typically seen in gross in-vivo responses (e.g., liver weight). For example, 

a priori, we would do not expect much more than a fold change relative to the background 

given exposure. Thus, we use an N (0, 1) or N (0, 2) on most parameters to quantify this 

idea.

Of all parameters, a prior distribution over the shape parameter, i.e., d in all models, is the 

most challenging, but our prior distribution comes from the fact that we do not expect large 

amounts of curvature (i.e., abrupt changes in response between dose groups). In practice, 

this typically limits d to be between 1 and about 3. However, there are cases where it is most 

probably less than 1 or greater than 3, so we place a prior that puts about 80% probability 
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of response a priori on (1, 3); however, when d < 1 exposure may be more hazardous, so we 

constructed a prior placing about 13% of the probability mass below 1, with the remaining 

7% placed for values above 3. We admit this is a prior distribution based upon convenience, 

and other prior distributions may be superior; however, these choices tend to perform well 

with real-world in-vivo data. We do not expect these choices to be optimal in all situations 

(e.g., toxicogenomic data), and a sensitivity analysis is always warranted.

The web supplement contains information on the exact prior distributions used and the 

scaling performed on each parameter/distribution for each model.

3 | SIMULATION

3.1 | Simulation Design

We investigate the approach by analyzing 240, 000 simulated data sets generated with 

various dose-response shapes, data-generating mechanisms, and experimental designs. Our 

study’s primary purpose is to investigate the performance of MA over distributional 

assumptions, so we assume three possible data-generating scenarios: normal, lognormal, and 

inverse-Gaussian, under a variety of dose-response conditions. The first two assumptions are 

within the model suite, but the inverse-Gaussian is a right-skewed distribution not in the 

standard modeling suite. Finally, the normal VPM is not included in the simulation. We felt 

its inclusion was not as important as having a variance assumption that is not in the model 

suite, and due to the size of the study and computer resources available, we did not consider 

it further.

To provide a realistic simulation, we base our study on the data provided in Piao et al. [25], 

which looked at different organ weights for unexposed rats over their life cycle. Using this 

as the basis of our simulation, we define a total of twenty true dose-response conditions. 

We report the results based upon experiments with four non-parametric dose-responses. All 

simulation and results are fully described in the supplement.

For each simulated experiment, we use 10 observations per dose group under different 

experimental designs. For each data set, the maximum dose tested is 100. Experimental dose 

spacing conditions were geometric or even, with 4 or 5 non-control doses. For the geometric 

spacing designs, the dose points were 0, 6.25, 12.5, 25, 50, and 100, where 6.25 was absent 

for the 4 dose-group design. For the evenly spaced designs, the doses considered were 0, 

20, 40, 60, 80 and 100 for the 5 dose-group design and 0, 25, 50, 75, and 100 for the 4 

dose-group design. A total of 1000 data sets were generated for each experimental design/

dose-response/distributional assumption. For additional information on all of the simulation 

conditions, we refer the reader to the supplemental material.

Given there may be discrepancies seen between estimation methods, the simulation 

compares the Laplace approach to MCMC estimation. This study fits MA-1 and MA-2 

for both the BMD standard deviation and hybrid BMD definitions. The standard deviation 

BMD is based upon a benchmark response that is a one SD shift from the control mean. For 

the hybrid approach, we define adverse responses as those occurring in 2.5% of the control’s 
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tail distribution, and the benchmark response represents a 5% increase in the probability of 

being adverse.

3.2 | Performance Evaluation

There are a variety of metrics one may use to evaluate the performance of MA. Many 

regulatory agencies use the BMDL as the POD, and this estimate’s frequentist performance 

should be at or near the nominally specified coverage level of 95%. Our primary metric of 

evaluation is the lower bound’s observed coverage, e.g., Pr(BMDL ≤ BMD), where BMD is 

the actual benchmark dose.

3.3 | Simulation Results

The non-parametric simulations give insight into the performance of Bayesian MA when 

the true dose-response or actual distribution is not used. Table 1 shows all results when 

estimating the SD BMD, and table 2 gives the results for the hybrid model. Both tables 

provide results for the five non-zero dose simulations. Overall coverage is close to or greater 

than the nominally specified 95% confidence level with some changes to performance for 

even or geometric dose spacings. In general, the normal distribution conditions provide 

either more conservative coverage (i.e., greater than 98%) across all simulation conditions 

or results that are slightly less than nominal coverage, with some important exceptions. 

Here, the results for the I-Spline 2 simulation condition can be sub-optimal. In most cases, 

coverage between MA-1 and MA-2 is similar, when MA-2 is extremely anti-conservative 

(i.e., < 85%) MA-1 is much closer to nominal (e.g., Dose-response condition 3). In cases 

where MA-2 is closer to nominal, the difference in coverage is typically between the 1 to 

4%.

The SD BMD results are observed to be anti-conservative (i.e., < 95%) at a higher rate than 

the hybrid BMD results. The primary reason for this is that one SD may be close to the 

plateau, whereas a 5% increase in the tails represents a more modest response. Thus, for the 

hybrid methodology, the BMD is more reliably estimated.

In these tables, particularly for the SD results, the I-Spline 2 log-normal and inverse-

Gaussian conditions have the worst performance. Table 1 shows this for the SD BMD. Many 

MA-1 results perform poorly with observed coverage between 78% and 99%, but the normal 

MA-2 condition’s performed markedly worse. For these conditions, observed coverage was 

between 10 to 20 percent less than MA-1, particularly for the SD benchmark dose condition.

There are multiple reasons for this behavior. Here, even though the true underlying dose-

response plateaus, the MA places high weights on the power and exponential models, which 

are typically near-linear for these data. Figure 1 shows radar charts giving the average 

model weights over simulations for dose-response condition 2 using MA-1 (dark purple) and 

MA-2 (yellow) for the inverse-Gaussian and normal simulations for the even five dose group 

condition. Here, the Hill and Exponential-5 models receive significantly more weight on 

average for the normal simulation than the inverse-Gaussian simulation. Interestingly, for the 

MA-1 condition, the Exponential-3 model receives on average 66% of the weight when the 

data are generated using the inverse-Gaussian. In this case, the first moment is incorrectly 
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estimated due to the heavy right skew in the observations. As a consequence, this causes 

problems calculating the higher-order moments and thus the BMD.

The model’s weightings change when we add more observations or decrease the variance. 

However, it requires many observations per dose group to guarantee a plateaued dose-

response estimate or a significant reduction in the variability at the control dose. We could 

only get a plateau with certainty when we decreased the control dose variance by a quarter 

or raised the number of observations per dose-group to 150, which is unrealistic in practice. 

This result suggests that in cases where there is heavy right skew in the observed data, 

considerable caution should be made to interpret the BMD.

In the dose-response 2 inverse-Gaussian condition, this behavior only occurs because the 

dose-response is essentially “missed.” That is, when all of the change occurs in between 

experimental dose groups, and there is a large amount of right skew. For the even dose 

spacing conditions, the problems with coverage occur because the BMD is between the zero 

and the lowest dose 20; however, for the geometric condition, which has experimental doses 

of 6.25 and 12.5 coverage is conservative (i.e., 100%).

These simulations give insight into the performance of the MCMC and Laplace estimation 

approaches. No method is uniformly superior, but in general, the Laplace approach tends to 

be more conservative than its MCMC counterpart. In certain situations, this results in the 

Laplace attaining nominal coverage where the MCMC fails to achieve the specified rate; 

however, there are other situations where this results in overly conservative behavior for 

the Laplace methodology where the MCMC method is closer to or at nominal. Generally, 

coverage is noticeably worse for MCMC when the distribution is right-skewed.

The additional simulation results in the supplement are similar to the results presented here. 

From these and the results presented here, we can make several observations: first, adding 

more distributional forms to the modeling suite improved or, at worst, provided equivocal 

coverage for a given simulation condition. Sometimes, like that of the non-parametric dose-

response condition 2 with inverse-Gaussian data, the improvement was significant. Further, 

there is often little difference between the Laplace and MCMC approaches in practice. 

However, the MCMC central estimate is larger than the Laplace MAP estimate and may 

exhibit anti-conservative coverage. When MCMC performs worse, this is caused by the fact 

1 SD may be on the asymptote for the Hill and Exponential-5 models. Here, the MCMC 

estimate becomes unreliable because there are many infinite BMDs sampled in the posterior 

distribution. Finally, we note, MA tends to offer conservative coverage, which may approach 

100% in certain situations.

4 | DATA ANALYSIS

We investigate continuous model averaging using a 90 day study of Fischer 344 rats exposed 

to airborne concentrations of dimethylformamide. In this experiment, animals were exposed 

to dimethylformamide concentrations of 0, 50, 100, 200, 400, and 800 ppm for 13 weeks. 

Ten female and ten male rats were in each dose group. We investigate the cholesterol blood 

levels measured at 13 weeks and combine the male and female observations. Data were 
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obtained from the NTP CEBS database [26]. As described above, we use MA-1 and MA-2 

modeling suites for this analysis. The methods and data used for this analysis are available in 

the supplement. Additionally, adverse response levels for the hybrid and SD approaches are 

specified as in the simulation.

Table 3 gives the BMD estimates for the 10 continuous models considered and two model 

averaging approaches. It also provides the posterior weights for each MA approach. This 

table gives the standard deviation definition of the benchmark dose. This table shows large 

differences between the posterior weighting of the two model sets. When we include model 

distributions other than normal, normal models receive only 5% percent of the weight. 

Further, in the normal model space, the power dose-response model has 29.0% of the 

posterior probability. When we include the normal variance proportional to the mean and 

log-normal models, the power model recieves only 2.3% of the weight. In this case, the 

Log-normal models appear to be superior in describing the data.

In terms of the model average, the BMD estimates are different. Table 3 shows, depending 

on the estimation method, the BMD central is greater when using only normal models (e.g., 

62.4 ppm vs. 116.1 ppm using the Laplace MA methodology). Additionally, the table shows 

differences between the Laplace and MCMC individual models in terms of BMD results. 

The BMD posterior distributions have heavy right tails. As a result, the estimated MCMC 

BMD is higher than the Laplace estimate in all cases as shown in the table.

Though the BMD estimates are different between MA-1 and MA-2, there is very little 

difference between the predicted dose-response. This behavior is clearly evident in figure 

(2), which shows this for Laplace estimates. This figure shows the dose-response(solid blue 

line), and the horizontal line show estimates of the BMDL, BMD, and BMDU from left to 

right, with the BMD being the dose at the triangle. Using MA-1 it is seen that the BMD 

distribution is different from the BMD distribution constructed using MA-2. This figure 

supports the conclusion reached by Shao et al. [17], which suggested the SD approach was 

more dependent upon the distributional than the relative deviation, which only looks at the 

dose-response to define risk.

5 | DISCUSSION

We have provided a comprehensive comparison of continuous model averaging when the 

benchmark dose is defined using higher-order moments of the response distribution. The 

results are promising and show that adding additional distributional assumptions to the MA 

produces better coverage results.

Additional research should investigate how increasing the number of models, removing 

specific models, and adding distributional assumptions impact the method’s performance. 

Though there may be diminishing returns once the model/distributional space is saturated, 

the current model suite may be too small in some situations, and the use of model 

spaces like that described in Aerts et al. [27] may be appropriate. Placing historical prior 

information on the parameters and prior model probabilities may be a promising area of 

research. Though we attempted to develop a procedure that was both reasonable and general, 
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significant gains may be seen by studying the behavior of the priors on individual models 

and modifying this procedure. Finally, all simulations were conducted assuming the original 

data are available. There are many situations where only sufficient statistics based upon a 

normal distribution are available. In those situations, the log-normal distribution’s sufficient 

statistics can only be estimated. As this is frequently done in practice, it is crucial to 

understand the impact of this procedure on MA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Radar charts showing the average relative model weighting for the MA-1 (dark purple) and 

MA-2 (yellow) model suites across 1000 simulations for the non-parametric dose-response 

condition. Here, normal (N), normal variance proportional to the mean (VPM), and log-

normal (LN) distributions were fit to the data.
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FIGURE 2. 
Model average (MA) dose-response estimate of blood cholesterol levels for Fischer 344 

rats exposed to dimethylformamide in the air for 90 days using ten models in the MA (left 

pane) and four model MA (right pane). For both plots, the standard deviation definition of 

the BMD is used with a benchmark response of 1 standard deviation. The dark blue line 

represents the MA dose-response and smaller multicolored lines represent dose-respones 

recieving greater than 5% weight. The triangle represents the response corresponding to the 

BMD estimate and the horizontal grey line represents the 90% confidence region.
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TABLE 1

Coverage percentages using the standard deviation BMD approach across all three error models. Simulations 

were generated assuming a I-spline dose-response curves using 5 dose groups and a control. Additionally, 

conditions 1 and 2 represent liver weight changes (increase) and conditions 3 and 4 represent body weight 

changes (decrease)

Even Spacing Geometric Spacing

Laplace MCMC Laplace MCMC

Simulation Condition MA-1 MA-2 MA-1 MA-2 MA-1 MA-2 MA-1 MA-2

Normal

I-Spline 1 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0

I-Spline 2 98.5 98.1 95.4 93.2 98.3 97.7 95.3 93.8

I-Spline 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

I-Spline 4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Log Normal

I-Spline 1 98.1 98.1 98.7 98.3 99.4 99.4 99.5 99.5

I-Spline 2 82.0 73.1 75.5 51.0 86.1 80.2 79.9 63.0

I-Spline 3 94.9 95.5 87.7 91.8 93.0 94.0 84.3 88.2

I-Spline 4 88.5 91.8 83.0 89.0 90.1 92.2 79.3 86.8

Inverse Gaussian

I-Spline 1 98.3 98.3 98.5 98.2 99.7 99.6 99.8 99.8

I-Spline 2 87.0 75.2 78.1 56.2 90.7 83.7 81.1 67.6

I-Spline 3 94.8 95.7 86.5 92.7 94.8 95.1 84.1 89.8

I-Spline 4 91.5 93.8 80.8 88.8 93.3 93.3 79.4 87.4
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TABLE 2

Coverage percentages using the hybrid BMD approach across all three error models. Simulations were 

generated assuming a I-spline dose-response curves using 5 dose groups and a control. Additionally, 

conditions 1 and 2 represent liver weight changes (increase) and conditions 3 and 4 represent body weight 

changes (decrease)

Even Spacing Geometric Spacing

Laplace MCMC Laplace MCMC

Simulation Condition MA-1 MA-2 MA-1 MA-2 MA-1 MA-2 MA-1 MA-2

Normal

I-Spline 1 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0

I-Spline 2 99.5 99.4 99.1 98.6 99.7 99.4 99.4 98.8

I-Spline 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

I-Spline 4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Log Normal

I-Spline 1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

I-Spline 2 96.6 96.0 98.6 94.8 98.9 98.3 98.8 96.1

I-Spline 3 92.0 95.0 92.6 91.7 92.9 93.6 91.2 89.5

I-Spline 4 86.6 91.2 86.7 86.5 88.0 93.3 87.2 89.5

Inverse Gaussian

I-Spline 1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

I-Spline 2 90.0 88.3 95.1 81.6 94.6 92.6 95.0 85.7

I-Spline 3 96.5 97.3 96.2 95.7 98.5 98.0 96.7 95.6

I-Spline 4 91.8 94.8 91.5 92.2 91.7 94.6 91.7 90.7
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TABLE 3

Model average and individual model BMD estimates for the dimethylformamide analysis. BMD values are 

for the standard deviation definition of the benchmark dose. Model space ℳ1 represents all models and 

distributions where as model space ℳ2 represents only the normal distribution.. Estimates include the central 

estimate and the 90% credible intervals.

P (ℳ ∣ Y , MA‐1) P (ℳ ∣ Y , MA‐2) Laplace MCMC

Hill Normal 0.5 % 10.0 % 113.4 (47.3, 265.7) 178.8 (72.5, 381.4)

Exponential-3 - Normal 2.6 % 54.7 % 88.4 (25.8, 221.7) 121.2 (39.9, 278.4)

Exponential-5 - Normal 0.3 % 6.3 % 164.5 (66.7, 348.5) 191.9 (81.5, 387.1)

Power - Normal 1.6 % 29.0 % 189.6 (78.1, 377.1) 236.5 (98.3, 469.7)

Hill - Normal-VPM 1.8 % - 68.0 (29.9, 157.1) 97.0 (38.9, 246.5)

Exponential-3 - Normal-VPM 5.4 % - 49.0 (12.5, 141.4) 71.5 (21.2, 196.0)

Exponential-5 - Normal-VPM 1.1 % - 93.8 (35.9, 227.8) 49.6 (42.6, 49.7)

Power - Normal-VPM 0.7 % - 110.9 (40.4, 262.4) 144.7 (52.8, 359.4)

Exponential-3 - Log-Normal 84.1 % - 60.9 (15.8, 169.1) 90.7 (26.5, 236.7)

Exponential-5 - Log-Normal 2.8 % - 113.7 (43.2, 268.9) 123.2 (49.1, 290.5)

Model Average MA-1 62.4 (16.2, 185.2) 92.0 (27.1, 250.8)

Model Average MA-2 116.1 (37.7, 310.5) 160.1 (50.0, 365.4)
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