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Abstract: The environmental footprint of photovoltaic electricity is usually assessed using nominated
power or life cycle energy output. If performance degradation is considered, a linear reduction in
lifetime energy output is assumed. However, research has shown that the decrease in energy output
over time does not necessarily follow a linear degradation pattern but can vary at different points
in the module’s lifetime. Further, photovoltaic modules follow different degradation patterns in
different climate zones. In this study, we address the influence of different degradation aspects
on the greenhouse gas (GHG) emissions of PV electricity. Firstly, we apply different non-linear
degradation scenarios to evaluate the GHG emissions and show that the differences in GHG emissions
in comparison to a linear degradation can be up to 6.0%. Secondly, we use the ERA5 dataset generated
by the ECMWF to calculate location-dependent degradation rates and apply them to estimate the
location-specific GHG emissions. Due to the reduction in lifetime energy output, there is a direct
correlation between the calculated degradation rate and GHG emissions. Thirdly, we assess the
impact of climate change on degradation rates and on the respective GHG emissions of photovoltaic
electricity using different climate change scenarios. In a best-case scenario, the GHG emissions
are estimated to increase by around 5% until the year 2100 and by around 105% by 2100 for a
worst-case scenario.

Keywords: LCA; GHG; photovoltaic; degradation; ERA5; climate change

1. Introduction

The use of energy and raw materials during the production of photovoltaic (PV) mod-
ules has decreased significantly over the last years, while cell and module efficiencies are
steadily increasing. Accordingly, greenhouse gas (GHG) emissions of electricity produced
by photovoltaic systems have decreased from 125–164 g CO2 eq./kWh in 1992 [1] to 13–57 g
CO2 eq./kWh [2–4] today. This development is extending the lead of PV electricity as one
of the cleanest energy sources compared to conventional electricity-producing technologies.
While PV systems’ production emissions have been decreasing, lifetime energy output
has become more and more relevant for the assessment of the environmental footprint
of PV systems. The energy output is influenced by factors like the PV module’s rated
power and solar irradiation. Degradation reduces the energy output irreversibly over the
lifetime of a PV system. In general, a linear degradation of 0.7% points per year is to be
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assumed in life-cycle-based approaches to determine the environmental footprint of PV
systems [5,6], without accounting for differences between technologies or conditions of
installation. However, research has shown that the ageing pattern of PV modules typically
follows a non-linear degradation curve [7,8]. Indeed, different factors such as the oper-
ating climatic condition (influences like temperature, wind and a corrosive atmosphere)
and the type of module technology (glass–glass or glass–backsheet modules, thin-film, or
silicon based modules) can lead to different degradation patterns, thereby influencing the
economic and environmental performance of PV systems [9].

There is an emerging interest in exploring the effects of non-linearity on PV per-
formance’s degradation rate. For example, in [10] the authors evaluated the effects of
non-linear degradation rates on the Levelized Cost of Electricity (LCOE). The authors
highlighted that this impact exhibited differences up to 6.14% on the LCOE analysis. Addi-
tionally, in our recent study [7], we showed that using non-linearity in performance and
degradation rate could improve the accuracy of PV lifetime predictions.

Moreover, because PV systems are installed in different climate zones worldwide,
using a constant degradation rate in lifetime evaluations for all climate zones is a very
generic approximation. It has been shown in previous studies [9,11,12] that PV modules
degrade differently in different climate zones. This direct correlation between operating
climate and PV lifetime implies that the temporal changes in climate variables such as
temperature and solar irradiation caused by global climate change will, in turn, have a
direct impact on PV degradation rates, lifetime, and energy yield [13,14]. Temperature
cannot only influence the module’s energy conversion efficiency and, thereby the overall
GHG emissions of the PV system, but also, higher temperatures act as an accelerator
for degradation mechanisms [15,16]. The mentioned temperature increase and impacts
on degradation rates are also related to climate change and predictions under different
scenarios evidence a continuous increase on this variable if no mitigation and adaptation
actions are taken [17].

2. Goal and Scope

This study aims at providing a better understanding of the effect that climatic condi-
tions have on the GHG emissions of PV electricity by highlighting three different mecha-
nisms: (1) non-linear PV performance degradation, (2) climate-specific degradation rate and
(3) changing temperature and irradiation values caused by climate change. The schematic
Figure 1 shows the link between these three aspects of GHG emissions.

Figure 1. Schematic showing the general objective of the study.

From Figure 1 the specific links are summarized as:

• Non-linear performance degradation: In [7], we used PV module and system field data
to show that performance degradation does not always follow a linear path. In the
same study, it was demonstrated that even at the same failure threshold, the degrada-
tion profile taken to reach this threshold influences the lifetime yield of a given PV
module or system. Therefore, in this study, we assess the variations in GHG emissions
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that can be caused by different non-linear degradation profiles at the same defined
failure threshold in comparison with a linear degradation profile.

• Climate-specific degradation rate: The climatic conditions of a specific location will
influence the stress that is acting on the PV module. Degradation rates of PV mod-
ules have been shown to be climate dependent [12,18]. Therefore, the PV service
lifetime and the lifetime energy yield vary from location to location. In this study,
climate specific degradation rates are evaluated and applied in the calculation of
GHG emissions instead of using a constant degradation rate for the different climate
locations. Irradiation values for the lifetime yield calculation are adapted according to
the location.

• Climate change: Global climate change will cause a change in climate variables (like
temperature and solar irradiation), which is described in the form of different climate
change scenarios in several studies [19]. Based on our knowledge about the effect of
climatic conditions on the degradation mechanism and in turn, GHG emissions, it is
to be expected that climate change will have an effect on PV degradation rates, service
lifetime, lifetime yield and hence GHG emissions. Therefore, we assess how different
climate change scenarios will cause changes in GHG emissions from PV electricity.

3. Methods and Materials

The paper is structured as follows: After the introduction in Section 1 and the elabora-
tion on the goal and scope in Section 2, the materials and methods used in this study are
described in Section 3, followed by the results of the study in Section 4. Sections 3 and 4 will
be structured along the threefold approach of our analysis: (1) non-linear PV performance
degradation, (2) climate specific degradation rate, and (3) climate change. In Section 5,
an extended discussion of the results is given, followed by the conclusion of the study in
Section 6.

3.1. Lifetime Yield and PV System

The primary objective of this study is to assess the differences in GHG emissions of PV
systems between different degradation scenarios. To calculate the lifetime yield, a life cycle
assessment according to DIN EN ISO 14040-44 [20,21] is conducted. In accordance with
the International Energy Agency (IEA) LCA guidelines for PV systems [5], the functional
unit is 1 kWh of DC electricity. Values for degradation and lifetime have been adapted
from linear degradation (0.7% points per year over a period of 30 years) to location specific
degradation and lifetime. Location specific irradiation values have been used. GHG
emissions have been calculated according to IPCC 2013 GWP 100a using the software
SimaPro 9. Foreground data have been modelled according to the life-cycle-inventory
from [2,3] whereas background data are based on ecoinvent 3.6.

The system under study is a crystalline silicon glass–backsheet (p-Mono PERC c-Si)
module produced in the EU. This technology is chosen in this study because it has the
highest market share, globally. According to the ITRPV-report [22], more than 80% of the
modules in 2020 are estimated to have a glass–backsheet design. The parameters used
to calculate the lifetime yield of the studied system are shown in Table 1. The upstream
production chain of c-Si PV modules, as well as the balance of system components are
included. Further, the transport to the installation location and to the end-of-life treatment
are taken into account. However, the end-of-life treatment itself is out of scope in this study.

The total environmental impact per kWh of electricity is inversely proportional to the
lifetime electricity generation of PV systems. The lifetime electricity yield is on the one
hand affected by technological parameters (e.g., module efficiency and power), which stay
constant over our analysis. On the other hand, the influencing factors such as degradation
rate, lifetime, and solar irradiation vary from location to location, and therefore, they
are adapted within our calculations as expressed. A linear degradation (0.7% points per
year over a period of 30 years) will be used for the baseline calculation, whereas in all
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different climate locations, location specific degradation rates and lifetimes are calculated
and applied. Similarly, corresponding location specific irradiation values have been used.

Table 1. Specifications of the PV system under investigation and assumptions for the baseline
scenario, where solar irradiation and degradation rate are constant.

Parameter Values

Solar irradiation 1331 kWh/(m2· year) (baseline)
Performance ratio 0.85
Degradation rate 0.7%/year (baseline)

Plant size 3000 Wp
Module efficiency 20.11%

Module area 1.85 m2

Maximum power 372.3 Wp
Power/Area 201.24 Wp/m2

3.2. Modelling the Degradation Aspects
3.2.1. Modelling the Impact of Non-Linear PV Performance Degradation

The description in this subsection is necessary for assessing the impact of non-linear
performance degradation on GHG emissions. Several authors have reported non-linearity
in performance (power) degradation in fielded PV modules and systems. For example,
Köntges et al. [23] show that the loss in power can take different shapes, (e.g., exponential-
shaped, linear-shaped, and step and saturating power degradation loss over time). To model
these non-linear behaviours, we developed a non-linear power degradation model with
an adaptable shape parameter µ to optimize different degradation shapes observed in the
field as [11]:

P(t)
P0

= 1 − exp
(
−

( Γ
k · t

)µ)
(1)

where P(t) and P0 are the power at evaluation time and initial power respectively, k is the
degradation rate [year−1], and Γ is parameters associated with the material.

We analysed the degradation trends of five different PV systems named System A–E
(see Figure 2A) based on our previous study [7] to illustrate the different degradation
profiles observed in the field. In the same study, it was shown that even at similar failure
thresholds, the lifetime yield was affected by the degradation profile followed by a PV
module/system. To assess the variations in GHG emissions due to the different degradation
profiles, we applied a non-linear performance model (1) to simulate four different profiles
by changing the values shape parameter µ and the model parameter Γ as shown in Table 2.
The four profiles are simulated as scenarios S01, S02, S03 and S04 as shown in Figure 2B.
Although the degradation profiles shown by fielded PV systems in Figure 2A are linked
to different PV technologies, other factors such as the bill of materials and dominating
degradation mechanisms can lead to different degradation profiles. Moreover, one can
expect that even for modules with the same cell technology, the differences in module
design and manufacturing could result in different failure profiles. For example, one
speculation is that for glass–glass modules there are fewer moisture pathways and moisture
ingress compared to glass–backsheet modules. Therefore, moisture-induced degradation
modes are expected to be slower at the earlier stages of the module lifetime for glass–
glass modules in comparison to glass–backsheet modules. However, at the same time,
the compacted design of the glass–glass modules implies that the breathable pathways
and drying are also limited, causing the moisture to accumulate inside the module over
the years, leading to a dramatic increase in the degradation rate. Hence, one could expect
degradation scenarios similar to S01 and S02 in Figure 2B.
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Table 2. Different degradation curve scenarios and corresponding parameters.

Scenario Parameter (µ) Parameter (Γ) k (%/Year) Lifetime (Years)

Linear - - 0.70 30.0
S01 1.0 0.33 0.70 30.0
S02 0.7 0.40 0.70 30.0
S03 0.3 0.93 0.70 30.0
S04 0.2 1.94 0.70 30.0

Figure 2. (A) Different degradation profiles observed in the field. (B) Simulated degradation scenarios
based on the different failure profiles.

3.2.2. Modelling the Impact of Location Specific Degradation Rate

The impact of climate-specific degradation rate on GHG emissions can be assessed
by using climate-based physical models. Therefore, a physics-based degradation model
is applied to simulate the degradation rates in different climates as proposed in our pre-
vious study [11]. According to the model, four climate stressors (module temperature,
relative humidity, UV irradiation, and temperature cycles) were assumed to be the main
precursors of PV degradation. It was also assumed that these climate stressors induce three
main degradation mechanisms: hydrolysis, photo-degradation, and thermo-mechanical
degradation and the total degradation rate was derived from these three mechanisms as:

kT = AN · (1 + kH)(1 + kP)(1 + kTm)− 1 (2)

where kT (%/year) is the total degradation rate, AN is the normalization constant of the
physical quantities: kH , kP, and kTm are the degradation rates for hydrolysis, photodegra-
dation, and thermo-mechanical degradation, respectively expressed as:

kH = Ah · RHn · exp
(
− Eah

kB · Tmod

)
(3)

kP = Ap · UVX · (1 + RHn) · exp
(
−

Eap

kB · Tmod

)
(4)

kTm = At · CN · (273 + ∆T)Θ · exp
(
− Eat

kB · Tmax

)
(5)

where Eah, Eap and Eat (eV) are the activation energies of power degradation due to hy-
drolysis, photo-degradation and thermo-mechanical mechanism respectively. Ah (year−1),
Ap (m2/kWh) and At (0C−1cycle−1) are the pre-exponential constants. kB is the Boltzmann
constant (8.62 × 10−5 eVK−1), n, and X are model parameters that indicate the impact of
relative humidity and UV dose (kWh/a/m2) on power degradation. Tmod (K) is the module
temperature, ∆T = (Tmax − Tmin) is the temperature difference (Kelvin), CN (cycles/year)
is the cycling rate, Tmax and Tmin are the module maximum and minimum temperatures.

In [24] a PV based climate scheme, (so called Köppen–Geiger Photovoltaic (KGPV)
scheme) was proposed, and in [12], calculated degradation rates were compared using this
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scheme as shown in Figure 3. A summary of each KGPV climate zone letter is given in the
Table 3.

Figure 3. Spatial distribution of the total degradation rates in view of the KGPV climate zones.
The average of total degradation rate per climate zone is indicated below each label in %/year [12].

Table 3. Definition of KGPV letter. Each KGPV climate zone is defined by two letters, the first one
implies the relation of temperature and precipitation (TP-zones) and the second is related to the
irradiation level (H-zones) [12].

Temperature-Precipitation (TP) Zones Irradiation (H) Zones

A: Tropical climate K: Very high irradiation
B: Desert climate H: High irradiation
C: Steppe climate M: Medium irradiation

E: Temperate climate L: Low irradiation
D: Cold climate
F: Polar climate

3.2.3. Estimating the Impact of Climate Change

To evaluate the impact of climate change on the GHG emissions of PV, we apply the
latest versions of climate change scenarios in the frame of phase 6 of the Coupled Model
Intercomparison Project (CMIP6) [19]. These scenarios are defined by two main concepts:
Shared Socio-economic Pathways (SSP) and Representative Concentration Pathways (RCP),
or Radiative Forcing levels (RF). In the CMIP6 framework, five SSPs are proposed based
on the socio-economic challenges for mitigation of climate change and the socio-economic
challenges for adaptation of climate change: SSP1—Sustainability, SSP2—Middle of the
Road, SSP3—Regional Rivalry, SSP4—Inequality, and SSP5—Fossil Fueled Development.

For simplicity, only two climate change scenarios are considered in this study. The au-
thors have considered the best and worst case scenarios to be the SSP1 and SSP5, respec-
tively. They are defined as follows:

• SSP1—sustainability: also called the “Green road”, where the world shifts gradually,
but pervasively, toward a more sustainable path and emphasizes more inclusive
development respective the environmental boundaries.

• SSP5—fossil fueled development: described as “taking the highway” to increase
faith in competitive markets, innovation, and participatory societies to produce rapid
technological progress and development of human capital as the path to sustainable de-
velopment. This scenario pushes society to increase the exploitation of abundant fossil
fuel resources and the adoption of resource and energy-intensive lifestyles worldwide.

In the same framework, seven different RF levels (1.9, 2.6, 3.4, 4.5, 6.0, 7.0, and 8.5 W/m2)
are linked to SSPs as indicated in the Figure 4. Radiative forcing indicates the change in
energy flux in the atmosphere caused by climate change factors. Again, the best and worst
scenarios have been chosen in this study: SSP119 and SSP585, respectively.

Generally, from Global Climate Models (GCM) different variables such as ambient
temperature and solar irradiation can be extracted to access the impact of the different
climate change scenarios. The evolution of ambient temperature and solar irradiation
have a direct effect on PV degradation rate, service lifetime, and also on the lifetime
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energy yield. In this case, we focus mainly on the long-term evolution of temperature and
solar irradiation and how these will influence the degradation rates, and hence the CO2
emissions. Data from two stations: Station A (55.00, 8.40) and station B (53.50, 13.10) located
in Germany are used. These locations are selected because of high long-term historical data
availability based on ground measurements. The evaluation and validation of site-specific
climate change trends based on the different scenarios is extensive and has been described
separately in [17].

Figure 4. Radiative forcing levels in W/m2 combined with the SSP scenarios to build the SSP–
RF matrix.

3.3. Climatic and PV Data Sources and Uncertainties

The climatic data used in this paper come from different sources with different tempo-
ral and spatial resolutions. While climate reanalysis and projections are based on temporal-
spatial modelling that provides global coverage, ground measurements will get a higher
accuracy but for a single location. The combination of both results in a more accurate
representation of the past, present and future weather. The datasets used in this paper are
described as follows:

• To demonstrate the non-linearity in PV performance degradation, we used the data
and methods of extracting degradation trends of the PV systems in our previous
study [7]. The underlying values contain an average relative uncertainty of 7.0%,
which is outstanding in comparison with similar studies [25].

• To assess the effects of climate-specific degradation rates, processed and validated
data [12] from ERA5 re-analysis [26] was used.

• To assess the impact of climate change, the data used is extracted from the ground mea-
surements of the German meteorological service (Deutscher Wetterdienst: DWD) [27].
The data consist of long-time series from the 1940s to the present of global horizontal
irradiation (GHI), ambient temperature, wind speed, and relative humidity. The mod-
elled climate change data for scenarios SSP119 and SSP585 have been retrieved through
the Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system [28].
Further details on the generation of climate change scenarios are given in [29,30]. Data
projecting climate change scenarios into the future naturally contain high uncertainty.
In this analysis, uncertainty is reduced by comparing two different scenarios (best-case
and worst-case). Still, our analysis only contains climate change projections from
one source [19]. Future analysis should ideally consider the combination of different
datasets generated by different research institutions in the frame of the IPCC.
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3.4. Statistical Analysis

We use the relative difference (Reldi f f ) (Equation (6)) as a metric to compare the
variations of linear and non-linear degradation scenarios and to calculate the percentage
increase in climate variables and in CO2 emission for the climate change scenarios.

Reldi f f = 100 · p − m
m

(6)

where,

• for assessing the effect of non-linear performance degradation, P is the CO2 emission
evaluated using non-linear degradation scenarios and m is the CO2 emission value
evaluated using the linear degradation.

• for assessing the effect of climate change, p is the value of climate variable or CO2
emission evaluated in 2021 and m is the value of climate variable or CO2 emission
evaluated in 2100.

4. Results
4.1. Assessing the Effect of Non-Linear Performance Degradation on the GHG Emissions of
PV Electricity

The results are shown in kg CO2-eq./kWh for a 3 kWp slanted-roof PV plant installed
in the EU (see Table 1). The four degradation scenarios (S01–S04, see Table 2) were bench-
marked to the baseline scenario (linear degradation of 0.7% annually). Figure 5A shows
the absolute GHG emissions for linear and non-linear performance degradation. Figure 5B
shows the relative difference in GHG emissions of the four non-linear degradation scenarios
in relation to linear degradation.

Figure 5. (A) Calculated GHG emissions of 1 kWh PV electricity in kg CO2-eq. for different degra-
dation scenarios. (B) Relative difference of the GHG emissions for other degradation scenarios in
relation to linear degradation scenario.

It is visible that assuming a linear performance degradation for systems undergoing
non-linear performance degradation trends leads to under- or overestimation of GHG
emissions. For example, if the system is undergoing degradation following a degradation
pattern as in scenario S01, using a linear approximation would lead to an overestimation of
GHG emissions of about −4.0%. On the contrary, if the system is following a degradation
pattern as presented in scenario S04, using a linear approximation would lead to an
underestimation of GHG emissions of about 6.0%.

4.2. Assessing the Effect of Climate Specific Degradation Rates on the GHG Emissions of
PV Electricity

To assess the impact of climate specific degradation rates on the GHG emissions of
PV electricity, the degradation rate parameters of the studied system given in Table 1
have been adjusted. That is, instead of using a constant degradation rate of 0.7%/year
in all the different locations, climate specific degradation rates were evaluated using
Equation (2). The distribution of degradation rates in different climate zones are already
shown in Figure 3. The lifetime electricity generation and hence the GHG emissions of
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the studied PV system are then evaluated based on location specific degradation rates and
solar irradiation. For comparison the carbon footprint is also calculated using the constant
0.7%/year degradation rate but with location specific solar irradiation. Figure 6 shows the
evaluated spatial distribution of GHG emissions for both cases.

From Figure 6, it is visible that assuming a constant degradation rate in all the climate
zones over-/underestimates the GHG emissions. The 0.7%/year degradation rate matches
only one climate zone, CK. In most of the climate zones (e.g., FL, EL, EM, DL, DM, CH, BH,
and BK), the degradation rates are estimated to be lower than 0.7%/year, thus the GHG
emissions are overestimated. On the contrary, in tropical areas with very high and high
irradiation (i.e., AH and AK) where the degradation rates are estimated to be higher than
0.7%/year, the GHG emissions are underestimated. For example, due to the very high
irradiation in the AH zone, assuming linear degradation would lead to GHG emissions of
around 0.017 kg CO2 eq. per kWh. Taking into account the higher degradation rates and
shorter lifetimes associated with the tropical climate, GHG emissions would almost double
to 0.030 kg CO2 eq. per kWh.

Figure 6. Spatial distribution of GHG emissions (IPCC GWP 100a kg CO2eq) in view of the KGPV
climate zones. The average GHG emissions in kg CO2 eq. per climate zone is indicated below each
label for the two cases (Rd: degradation rate).

For visualization purposes, the GHG emissions are plotted on the maps in
Figures 7 and 8 for GHG emissions calculated using climate specific degradation rates
and GHG emissions calculated using a fixed degradation rate, respectively. The thresholds
to define geographical regions were defined arbitrarily with on steps of 0.01 kg CO2 eq.

Figure 7. Map showing the GHG emissions of 1 kWh PV electricity calculated from climate-based
degradation rates (lifetime not fixed).
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Generally, the maps show that the GHG emissions of PV systems are highly influenced
not only by the solar irradiation, but also by the different degradation rates. The GHG
emissions vary widely depending on regional irradiation and degradation profiles.

If linear degradation is considered, the carbon footprint follows the irradiation pat-
tern: the higher the irradiation, the lower the carbon footprint (Figure A2). For example,
regardless of the expected lower degradation rates in cold climates with low irradiation
(EL zone, e.g., Moscow, Russia), the evaluated GHG emissions only depend on the lower
values of solar irradiation in these areas. The linear degradation rate approximation leads
to an overestimation of the GHG emissions in this region. Similarly, in the tropical areas
the GHG emissions are underestimated because the impact of higher degradation rates in
these areas is neglected by assuming a linear degradation rate.

Figure 8. Map showing the GHG emissions of 1 kWh PV electricity calculated using a constant
degradation rate (lifetime fixed to 30 years).

However, when assuming climate-based degradation rates, high irradiation does not
automatically lead to a lower carbon footprint since high irradiation is often accompanied
by strong degradation factors like heat, a corrosive atmosphere or moisture (Figure 7). It
can be seen that higher GHG emissions are estimated in AK and AH zones (i.e, tropical
areas with very high and high irradiation respectively). Since these areas are characterized
by very high and high irradiation levels, one would expect lower GHG emissions because
of a higher lifetime energy output. However, the higher degradation rates in these zones
lead to reduced lifetimes and hence higher GHG emissions per kWh. In contrast, in the EL
zone (i.e., cold with low irradiation—e.g., Moscow, Russia), higher GHG emissions could be
expected due to the lower energy yield; however, the lower degradation rates calculated in
this region result in an extended PV system lifetime reducing the GHG emissions per kWh.

Again, it can be seen that linear degradation leads to an over- or underestimation of
GHG emissions in most regions.

4.3. Assessing the Impact of Climate Change on the GHG Emissions of PV Electricity

Here we present the results of the best-case (SSP119) and worst-case (SPP585) climate
change scenarios. The annual climate change related evolution of solar irradiation, module
temperature, and total degradation rate are shown in Figure 9. Note that the module
temperature is estimated from ambient temperature, solar irradiation, and wind speed
using the Faiman model [31].
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From Figure 9 it is visible that there is an increasing trend of all the variables, and hence
an increasing trend in GHG emissions. The percentage increase of the variables and the
corresponding percentage increase in GHG emissions are presented in Table 4.

Depending on the location and the climate change scenario, the GHG emissions are
estimated to increase from 5.32% to 105.12%. In the best case scenario SSP119, an increase
between 5.32% and 7.38% is to be expected, whereas in the worst case scenario SSP585 the
increase in GHG emissions can be as high as 93.84% to 105.12%. This estimated increase
in GHG emissions can be mainly attributed to the increase in module temperature as the
module temperature shows a significant increase compared to solar irradiation. Moreover,
the module temperature has the highest influence on the degradation rates compared to
other degradation stress factors [32,33].

Figure 9. Evolution of solar irradiation, module temperature, degradation rate, and CO2 footprint
under the best (bold lines) and worst (dotted lines) climate change scenarios for two stations: A
(orange), B (blue). The legend applies to all figures.

Table 4. Percentage of increase in annual solar irradiation, module temperature, degradation rate and
CO2 emission from 2021 to 2100 using best (SSP119) and worst (SSP585) climate change scenarios.

Increase in Increase in Increase in Increase in
Station Scenario Solar Module Degradation CO2

Irradiation Temperature Rate Emission

Station A ss119 0.63% 0.11% 7.96% 5.32%
ss585 0.21% 33.65% 93.71% 93.84%

Station B ss119 2.35% 3.24% 8.95% 7.38%
ss585 1.02% 58.86% 109.28% 105.12%

5. Discussion

The lifetime energy output of a photovoltaic system strongly influences the greenhouse
gas emissions of PV electricity. Degradation is reducing the energy output irreversibly over
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the lifetime of a PV system. The inclusion of degradation effects in life-cycle assessments
(LCA) is an area that still needs optimization since linear performance degradation can
lead to an over- or under estimation of GHG emissions for certain locations.

We found that assuming a linear degradation rate can lead to over- or underestimation
of GHG emissions of around 4% to 6%, which in our analysis is a variation of around 0.8 to
1 g of CO2 eq.

More important are the differences between GHG emissions calculated from climate-
specific degradation rates compared to linear degradation. In regions where climatic
stressors like temperature, humidity and corrosion are relatively high, the GHG emissions
per kWh almost double in our calculations when we use climate-specific degradation rates.
From our visualization in (Figures 7 and A2), it can be seen that if a linear degradation is
applied, the GHG emissions follow the global irradiation pattern: the higher the irradiation,
the lower the carbon footprint. When we consider the regional climatic conditions, this
pattern changes to higher or lower degradation rates as well as longer or shorter module
lifetimes. The analysis shows that not only regional irradiation has a large influence on GHG
emissions, but also regional degradation rates influence the results to a remarkable amount.

Lastly, we analyze how climate change related changes in climatic conditions could
affect the GHG emissions of PV electricity in the long run, by evaluating how increasing
module temperatures and changing irradiation patterns lead to higher degradation rates
and shorter PV lifetimes and hence higher GHG emissions of PV electricity produced for
the example of Germany. In the worst-case scenario, an increase of up to 105.12% is to be
expected. This analysis highlights one of the many self-accelerating effects that climate
change will have not only on our atmosphere and ecosphere, but also on our technosphere.
It is likely that more of these, up to now unaccounted for, climate change effects will
influence not only our future energy production from solar but also from wind energy.

6. Conclusions

Overall, this study has shown that the accuracy of PV LCA can be significantly
improved through PV performance modelling. Including climate specific degradation rates
and patterns can make a difference of up to 6% in the carbon footprint per kWh. When
the long-term effects of climate change are included in the analysis, the carbon footprint is
expected to increase up to 105% compared to the standardized linear degradation pattern.

Based on these results, we argue that it is crucial to take into account location-specific,
non-linear degradation models when using a life-cycle based approach as a decision support
tool. While the recommended linear annual degradation is easy to implement, it leads
to inaccurate results, especially in locations with extreme climates. In order to improve
accuracy, the authors proposed a method to calculate location specific degradation rates.

Still, further research is necessary in this field. For instance, to minimize complexity,
it may be useful to classify reference climate zones and corresponding degradation rates
and patterns. This can facilitate the implementation of non-linear and location-specific
degradation rates, while still improving the accuracy of the overall LCA results.
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Appendix A. Maps of Total Degradation Rate and Solar Irradiation

Figure A1. Map showing the total degradation rate evaluated using climate-based physical model (2)
and climate data from ERA5.

Figure A2. Map showing annual global solar irradiation using climate data from ERA5.
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