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ABSTRACT
To remain competitive in the current e-commerce environment, warehouses are ex-
pected to handle customer orders as efficiently and quickly as possible. Previous
research on order picking in a static context has shown that integrating batching,
routing and scheduling decisions leads to better results than addressing these plan-
ning problems individually. In this study we propose an integrated solution approach
that is able to deal with dynamic order arrivals, a problem often encountered in prac-
tice. Furthermore, we demonstrate the need to anticipate on future order arrivals
to keep customer service levels high. We develop a new large neighbourhood search
algorithm to solve the online, integrated batching, routing and scheduling problem.
First, the algorithm is shown to outperform the current state-of-the-art static so-
lution algorithm. Next, we develop an experimental design based on real-life data,
to test the applicability of the model in different settings. The results of this ex-
perimental design are used to obtain insights on the particularity of this online,
integrated problem. The effect of several real-life characteristics is demonstrated by
using an ANOVA, leading to several managerial insights that may help companies
to operate efficiently without jeopardising customer satisfaction.

KEYWORDS
Order batching; Order picking; Picker routing; Metaheuristics; Warehouse
operations management

1. Introduction

In many supply chains, warehouse operations are a very important factor to consider.
Efficient warehouse operations are not only indispensable for timely order delivery
at the customer’s location, but may also reduce the associated costs. Optimising the
order picking operations is considered to be the best way to improve warehousing
performance (de Koster, Le-Duc, and Roodbergen 2007).

This study focuses on operational decisions in manual, picker-to-parts order picking
systems, as these systems are still used most often in practice (de Koster, Le-Duc, and

CONTACT Ruben D’Haen. Email: ruben.dhaen@uhasselt.be



This is an Accepted Manuscript of an article published by Taylor Francis in the International Journal of

Production Research on June 1 2022, available at

https://www.tandfonline.com/10.1080/00207543.2022.2078747.

Roodbergen 2007; Grosse et al. 2015; Kumar, Narkhede, and Jain 2021). In this con-
text, operational decisions can be divided into multiple subproblems. Key subproblems
include the order batching problem, which considers combining multiple customer or-
ders into a single picking tour (Bozer and Kile 2008; Henn and Wäscher 2012), the
picker routing problem, in which the visiting sequence of locations in a picking tour is
determined (Theys et al. 2010), and the batch scheduling problem, in which batches
are assigned to order pickers and the sequence of batches for every picker is deter-
mined, such that all orders are picked with minimum delay with respect to their due
dates (Henn 2015). These individual subproblems have been studied extensively in the
past. However, as these subproblems are in fact interrelated planning problems (van
Gils et al. 2018a), better solutions are obtained by taking decisions in an integrated
manner. Currently, research is moving towards solution methods that allow solving
these integrated problems. In this context, the integrated problem of order batching,
picker routing and batch assignment and sequencing is the most elaborate problem
studied so far (Chen et al. 2015; Scholz, Schubert, and Wäscher 2017; van Gils et al.
2019). Optimisation of this integrated problem means that the picker routing problem
cannot be solved by simple heuristics (e.g., S-shape). Instead, a real optimisation of
the routes is required, whereby this routing problem is integrated with the batching
decisions, as considered by the joint order batching and picker routing problem in
the literature (Won and Olafsson 2005; Li, Huang, and Dai 2017). However, the addi-
tional complexity of time restrictions is integrated into this optimisation problem as
well. Since order due dates are considered, the joint order batching and picker rout-
ing problem is extended to also include the batch scheduling problem. This integrated
problem is NP-hard and solving it to optimality seems infeasible for problem instances
of realistic size in reasonable computation times (van Gils et al. 2019). Therefore, all
these studies propose (meta)heuristic solution approaches. Furthermore, up to now,
only a static problem context has been considered, i.e., all orders are assumed to be
known at the start of the planning horizon.

The rising importance of e-commerce requires very fast order picking operations.
Same-day delivery operations are becoming more common, and companies like Ama-
zon are currently even experimenting with one- or two-hour delivery options (Ulmer
2017). Additionally, our discussions with practitioners highlighted the importance of
quickly responding to urgent orders in a spare parts warehouse setting. Here, orders
could arrive until an hour before the shipping deadline. In order to be able to satisfy
customer expectations in these contexts, and thus, in order to remain competitive,
companies should be able to pick new orders very quickly. This requires the nearly
instantaneous adaptation of picking schedules upon receiving customer orders, and
thus leads to planning problems in which orders arrive dynamically throughout the
planning horizon.

Literature on dynamic order picking problems is scarce. Most existing studies look
at static problems with wave picking, in which orders are assigned to picking waves
according to for example their due dates (Ardjmand et al. 2018; van Gils et al. 2019).
After all orders of the current wave are completed, a next wave of orders is released in
the system. Within a wave, all orders are batched and picked as efficiently as possible.
For newly arriving urgent orders, waiting for the previous wave to be completed may
lead to unacceptable delay. While a solution for this delay is picking these urgent
orders individually, this will reduce the order picking efficiency because the benefits
of order batching, a highly reduced travel time per order, are lost (de Koster, Le-Duc,
and Roodbergen 2007).

Obtaining the benefits of order batching in a setting with dynamic order arrivals
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requires an optimisation approach in which current order picking schedules are repeat-
edly updated through the day and even within a wave. Unlike in a static approach,
the customer orders are not all known at the start of the planning period. Accounting
for these dynamic order arrivals (i.e., arrivals during the planning period while opera-
tions are being executed), is possible with a dynamic or online solution approach. In a
dynamic approach, every part of the current schedule can be modified, while an online
approach fixes some parts of the current schedule (Vanheusden et al. 2022).

In this study, we propose an online solution method to cope with dynamic order ar-
rivals while solving the integrated order batching, picker routing and batch scheduling
problem (IBRSP). To the best of our knowledge, this study is the first one to solve the
IBRSP while accounting for dynamic order arrivals. The contributions of this paper
are multiple:

• The IBRSP in an online setting is formally introduced.
• A metaheuristic algorithm is developed to solve the IBRSP in the online setting.
This large neighbourhood search algorithm is benchmarked on the static IBRSP
to an existing state-of-the-art solution algorithm (van Gils et al. 2019) and shows
excellent performance.
• An extensive numerical study, including a statistical analysis, is performed on
a large set of real-life-based problem instances. This leads to insights on the
impact of e.g., the number of orders and different settings to release orders in
the picking system.
• As orders arrive dynamically during the planning horizon, we show the need to
anticipate on future order arrivals to keep the customer service level high.

The remainder of this paper is structured as follows. First, in Section 2, an overview
of related literature is given. Section 3 discusses the problem setting of the online
IBRSP. Next, the developed metaheuristic algorithm is explained in Section 4, followed
by the computational results in Section 5. Finally, managerial insights, a conclusion
and future research opportunities are given in Section 6.

2. Literature review

This section discusses the literature specifically related to the online IBRSP. For more
general discussions of literature on order picking operations and the importance of
integrated decision making, we refer to de Koster, Le-Duc, and Roodbergen (2007)
and van Gils et al. (2018b), respectively. In Section 2.1 an overview of research on the
integration between the order batching, picker routing and batch scheduling problems
in a static context is given. Next, Section 2.2 presents an overview of the literature on
dynamic and online order picking problems.

2.1. IBRSP

Because the different order picking planning problems, e.g., order batching, picker
routing and batch scheduling, are interrelated, better solutions can be obtained by
solving these problems in an integrated way. The individual picker planning problems
have been studied extensively before (an overview is given in the literature review of
van Gils et al. (2018b)), whereas the integration of these problems is a more recent
phenomenon (van Gils et al. 2019). For example, several studies focus on the inte-
gration of batching and routing decisions (e.g., Won and Olafsson (2005); Tsai, Liou,
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and Huang (2008); Li, Huang, and Dai (2017); Attari et al. (2020)). However, only a
few papers study the IBRSP in which batching, routing and scheduling decisions are
addressed jointly. These papers are shown in Table 1. For a more elaborate overview of
integrated approaches, including papers that are not integrating all three subproblems,
we refer to van Gils et al. (2019).

Chen et al. (2015) were the first to solve this integrated problem. As they study a
setting with a single picker, batches only have to be sequenced for that picker, i.e., the
batches do not have to be assigned to a picker. The sequencing is important, however,
as orders have due dates before which they have to be picked.

Other studies focus on problems with multiple order pickers. Ardjmand et al. (2018)
study this problem in the context of a wave picking warehouse. In this setting orders
do not have an individual due date, so batches need not be scheduled for a picker.
Contrary to the other papers in Table 1, minimising tardiness is not relevant. Instead,
the objective is to minimise the makespan.

In practice, warehouses often need to pick orders for different customers. These
orders may have different due dates. Scholz, Schubert, and Wäscher (2017) study
the IBRSP in this context while employing multiple order pickers. Both the batch
assignment and batch sequencing problem are thus included. The objective function
minimises tardiness. A similar setting is studied by van Gils et al. (2019). However,
next to minimising tardiness, the minimisation of order pick time is considered as a
secondary objective. Moreover, the possibility of high-level picking is introduced.

2.2. Online and dynamic order picking problems

If new information about customer orders arrives throughout the order picking oper-
ations, as is the case in a dynamic context such as e-commerce retail or spare parts
warehouses, a static optimisation approach is unable to quickly respond to this infor-
mation. Therefore, an online or dynamic order picking algorithm may lead to better
results (Giannikas et al. 2017).

To account for new customer orders, the previous schedule has to be adapted. Re-
search looking at dynamic order picking algorithms can be classified according to the
decision on when to update the previous schedule. A first strategy is fixed time win-
dow batching where the optimisation algorithm is used after a fixed amount of time
(Van Nieuwenhuyse and de Koster 2009). A second strategy is event driven batching,
where optimisation happens after a prespecified event occurs. This event is usually
seen as a certain number of new order arrivals (Rubrico et al. 2011; Li, Huang, and
Dai 2017; Chen, Wei, and Wang 2018), sometimes also called variable time window
batching (Xu et al. 2014; Giannikas et al. 2017). However, another type of event is the
completion of an order picker’s current task, for example an order picker returning to
the depot after picking all items assigned to his batch (Henn 2012).

When optimisation occurs during the planning horizon, new orders may be added
to the order pickers’ schedules. While some studies allow the modification of batches
that are currently being picked (i.e., a dynamic approach) (Chen, Wei, and Wang
2018), most studies only accept new orders in future batches (i.e., an online approach)
(Rubrico et al. 2011; Li, Huang, and Dai 2017; Zhang et al. 2017). Although adapting
batches that are already being picked allows for even faster customer order response
times, implementing such a system requires a warehouse with continuous communi-
cation between order pickers and the warehouse management system to know exactly
where each order picker is located in the warehouse. Moreover, in practice, 60% of



This is an Accepted Manuscript of an article published by Taylor Francis in the International Journal of

Production Research on June 1 2022, available at

https://www.tandfonline.com/10.1080/00207543.2022.2078747.

T
a
b
le

1.
:
O
v
er
v
ie
w

of
p
ap

er
s
st
u
d
y
in
g
st
at
ic

in
te
gr
at
ed

or
d
er

p
ic
k
in
g
p
ro
b
le
m
s.

B
a
tc
h
in

g
R
o
u
ti
n
g

S
c
h
e
d
u
li
n
g

D
u
e
d
a
te

s
1
p
ic
k
er

>
1
p
ic
k
er

C
h
en

et
a
l.
(2
0
1
5
)

x
x

x
x

S
ch

o
lz
,
S
ch

u
b
er
t,

a
n
d
W

ä
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the warehouses still use paper order pick lists (Giannikas et al. 2017), which makes
changing pick lists during a picking tour impossible.

Table 2 gives an overview of the different order picking planning problems consid-
ered in the literature about both dynamic and online order picking. A distinction is
made between simple heuristics, e.g., S-shape or largest gap order picker routing and
seed or first-come-first-served batching, and advanced (meta)heuristics which truly
optimise routing or batching. This distinction is important because using a simple
heuristic avoids complete integration of this order picking problem with other sub-
problems, and considerably reduces the complexity of the optimisation problem. Note
that although tractable exact solutions for the routing problem exist under specific
circumstances (Lu et al. 2016), to our knowledge they have not been applied in stud-
ies on dynamic and online order batching. Based on Table 2, there is only one paper
studying the integration between order batching and picker routing (Rubrico et al.
2011). Scheduling is never integrated with batching or routing, as all studies use sim-
ple scheduling heuristics.

While a clear trend towards more integration between order picking planning prob-
lems is identified in a static context (van Gils et al. 2018b), this is clearly not the case
for the online context. For example, recent research by Gil-Borrás et al. (2021) looks
at batching, routing and scheduling in an online context, but not in an integrated
manner. A simple S-shape heuristic is used for the picker routing, and a sequential
instead of an integrated solution algorithm is proposed, as highlighted by the authors.
This study moves beyond the existing research by integrating decisions on order batch-
ing, picker routing and batch scheduling for orders having individual due dates, while
new orders arrive during the planning period. A solution algorithm for this problem is
developed and tested on realistic instances. Furthermore, the effect of anticipating on
future order arrivals is studied. Order anticipation has been studied for other combina-
torial optimisation problems, e.g., inventory routing problems (Coelho, Cordeau, and
Laporte 2014) and dynamic vehicle routing problems (Ferrucci, Bock, and Gendreau
2013). However, to the best of our knowledge, this is new in an order picking context.

3. Online IBRSP

In this section we introduce the online IBRSP. It is based on the operations of a
global spare parts warehouse in the automotive industry and can be considered an
extension of the static IBRSP introduced by van Gils et al. (2019). The integrated
batching, routing and scheduling problem solves the optimisation problem of how
a set of customer orders is retrieved from the warehouse as efficiently as possible,
by grouping orders into batches (order batching), computing the most efficient path
through the warehouse to pass the storage location of all items in a batch (picker
routing) and deciding which picker is assigned which batch and in which sequence
(batch scheduling) (van Gils et al. 2019).

All order pickers are assumed to be identical, with the number of order pickers based
on the expected workload. The warehouse considered is a two-block warehouse, where
pickers move between the storage racks to pick the items on their pick list (picker-to-
parts). Orders consisting of one or more order lines, are grouped in batches, with each
order being assigned to a single batch (i.e., order splitting is not allowed). Batches have
a limited capacity, expressed as a number of orders, to simulate the available space
in the picking device. In this picking device, orders are stored separately, so sorting is
done during the pick rounds (sort-while-pick).



This is an Accepted Manuscript of an article published by Taylor Francis in the International Journal of

Production Research on June 1 2022, available at

https://www.tandfonline.com/10.1080/00207543.2022.2078747.

T
ab

le
2
.:
O
ve
rv
ie
w

of
p
ap

er
s
st
u
d
y
in
g
on

li
n
e
or

d
y
n
am

ic
or
d
er

p
ic
k
in
g.

B
a
tc
h
in

g
R
o
u
ti
n
g

S
c
h
e
d
u
li
n
g

D
u
e
d
a
te

s
S
im

p
le

H
eu

r.
A
d
v
.
H
eu

r.
S
im

p
le

H
eu

r.
A
d
v
.
H
eu

r.
1
p
ic
k
er

>
1
p
ic
k
er

R
u
b
ri
co

et
a
l.
(2
0
1
1
)

x
x

x
H
en

n
(2
0
1
2
)

x
x

x
P
ér
ez
-R

o
d
ŕı
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After the picking operations, customer orders are shipped to their destinations.
Based on a customer order’s destination, it is assigned to a specific truck, with the
due date of the order being equal to the departure time of its truck. A hierarchical ob-
jective function with two objectives is considered. The primary objective is retrieving
all orders with minimum tardiness. The secondary objective, only applied to compare
solutions with equal tardiness, is to minimise the order pick time, a measure of effi-
ciency. The order pick time is assumed to consist of travel time, search and pick time,
and batch setup time (van Gils et al. 2018a).

As truck departures are spread out during the day and customers can place urgent
orders up to 30 minutes before the picking deadline of their truck, not all customer
orders are known at the start of the planning period. Instead, at least some customer
orders are only known during the planning period. This dynamic context requires
schedules to be updated and reoptimised multiple times during the planning period as,
in general, appending new orders at the end of the schedule without any optimisation
will not lead to good solutions. Picker rerouting is not allowed, so only the part of
the schedule (i.e., batches) currently being picked is fixed, everything else is allowed
to change in every optimisation step. To avoid optimising continuously, the approach
of Henn (2012) is followed: every time an order picker finishes his current batch and
returns to the depot to request a new pick list, optimisation occurs and the order
picker receives a new pick list. The order picker then starts with his new picking tour
immediately without waiting for possible future order arrivals. In this paper, we use
the term ’optimisation step’ to describe this optimisation procedure every time a picker
returns to the depot.

In the context of this problem, we study two settings that influence the optimisation
algorithm. Both of these settings are decisions that the warehouse manager can make
in order to respond to environmental factors. The first setting is based on discussions
with the spare parts warehouse. Under the current operations, some urgent customer
orders may arrive very late. Since the customer service level is deemed of utmost
importance, the company wants to make sure to deliver every order in time, certainly
these urgent orders. To maintain a high service level, the company restricts the number
of trucks for which orders can be picked (only the ones with upcoming departures). By
following this policy, operating efficiency may be lost, since very efficient batches may
be constructed by combining orders of multiple trucks in a single batch. To assess the
impact of this policy, we will study the effect of batching orders of multiple trucks.

Secondly, the possible benefits and drawbacks of anticipating on future customer
orders are studied, as anticipating on future, urgent orders might help to pick these
orders in time while still allowing the company to benefit from increased operating
efficiency by batching over multiple trucks.

A mixed integer linear programming model for this problem can be obtained by
slightly adapting the model of van Gils et al. (2019) for the static problem. Appendix
A shows the required changes to the model in order to include tardiness as the primary
objective and allow for an online context. As shown by van Gils et al. (2019), the model
is not useful for problem instances of a realistic size if only limited computational time
is available. The sole purpose of Appendix A is to clearly define the online IBRSP.

4. Algorithm description

In this section the optimisation algorithm for the online IBRSP is discussed. First,
the online solution procedure is clarified in Section 4.1. Next, the large neighbourhood
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search algorithm to solve the online IBRSP is explained in Section 4.2, followed by an
explanation of how future order arrivals are taken into account in Section 4.3.

4.1. Online solution procedure

In the online IBRSP, new orders arrive over time and reoptimisation happens repeat-
edly. An overview of the solution procedure used in this study is given in Algorithm
1. The algorithm begins with an initialisation phase, wherein the orders to be picked
are grouped into batches and assigned to the order pickers. To assess the effect of re-
stricting the number of trucks that may be picked at the same time, called the number
of active trucks, a limit is imposed on this number of active trucks. Only orders of
active trucks can be batched. All order pickers are assumed to be at the depot at the
start and can thus immediately start with their first picking tour. As long as there
are unpicked orders left, the algorithm keeps running. Since rerouting is not allowed,
batches already assigned to order pickers cannot be changed. This means that it suf-
fices to optimise the schedule every time an order picker returns to the depot. In this
optimisation step, the system checks whether new orders arrived since the last opti-
misation step. If new orders arrived, the orders are inserted in the existing schedule
by using the 2-regret insertion, explained in Section 4.2, and the large neighbourhood
search algorithm is then used to optimise the solution. The order picker who arrived
at the depot is assigned the batch scheduled at his first position. This batch is then
removed from the schedule, the associated orders are marked as completed and the
current time of the system is updated to the next arrival time of an order picker at
the depot. In case all orders currently known are picked, at most one extra truck can
be activated to avoid pickers remaining idle.

Once all orders of a truck are picked and the current time passed the last allowed
arrival time for orders in that truck, the active trucks are updated and orders of a new
truck can be picked. The pool of pickable orders at the next optimisation step is then
updated, and this process continues until all trucks have been completed.

Algorithm 1: Online solution procedure

1 Initialise algorithm;
2 while Not all trucks completed do
3 Every time a picker returns to depot do
4 Check for new orders;
5 if new orders then
6 Insert orders in previous solution;
7 Run LNS on solution;

8 Assign batch to picker;
9 Remove batch from solution;

10 Update time to first completion of a pick round or first order arrival if
no orders left;

11 while no active truck completely picked ;
12 Update active trucks;
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4.2. Online large neighbourhood search

Solving the online IBRSP to optimality seems not possible within reasonable com-
putational time, as the problem is NP-hard. Therefore, a metaheuristic is developed
to solve this problem. The metaheuristic used in this study is a large neighbourhood
search (LNS), first proposed by Shaw (1998). Although LNS was originally developed
for the vehicle routing problem, it has been applied in the area of order picking before
in the form of adaptive large neighbourhood search (Žulj, Kramer, and Schneider 2018;
Kuhn, Schubert, and Holzapfel 2020).

An LNS operates by continuous relaxation (destroy) and reoptimisation (repair)
(Shaw 1998). Part of the solution is relaxed and then reoptimised by use of different
heuristics. In order to find good solutions, the heuristics within the LNS framework
should help in diversifying as well as intensifying the search (Pisinger and Ropke 2007).
In each iteration of the algorithm, a single destroy and a single repair operator are
randomly selected and applied.

A series of destroy operators was implemented and tested. Operators that are part
of the final algorithm are discussed next, while a full list of tested operators is given in
Appendix B. The operators can be divided into two categories: those working on the
order level, and those working on the batch level. The used operators are the following:

• Random order removal (order level): randomly select orders and remove them
from the solution.
• Smallest distance savings (batch level): for every batch, calculate the difference
between the total picker travel distance to pick every order line individually and
the travel distance of the batch. Destroy the batches with the smallest difference
in travel distance.
• Largest number of additional aisles (batch level): for every batch, find the dif-
ference between the number of unique subaisles to visit when picking this batch
and the number of unique subaisles to visit for this batch’s order with the most
unique subaisles. Destroy the batches with the largest difference in subaisles.
• Largest additional covering area (batch level): for every batch, calculate the
difference between the rectangular covering area of the whole batch and the
covering area of this batch’s order with the largest covering area. Destroy the
batches with the largest difference in covering area.

The random order removal operator diversifies the search, while the other operators
intensify the search by removing a part of the solution that looks inefficient. Note
that the intensification operators are deterministic: it is thus possible to get stuck in
a local optimum. To avoid deterministic operators trying the same destroy operations
multiple times, a random component can be introduced (Pisinger and Ropke 2007).
Therefore, the deterministic operators are used for half of the wanted destruction,
followed by random order removals for the other half.

Once part of the solution is destroyed by the selected destroy operator, the removed
orders are reinserted in the partial solution. The repair operators used are greedy
insertion as well as k-regret insertion. Greedy insertion selects the removed orders one
by one ordered by increasing due dates, and inserts them in the cheapest position,
where cheap is defined as causing the lowest increase in tardiness or, in case the order
can be inserted without a tardiness increase, where the increase in order pick time is
the lowest. For the k-regret insertion, all orders are tested in every possible position
and the order with the largest difference in insertion cost between its best and k-best
position is selected to be inserted in its best position. Insertion costs of the remaining
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orders are then updated (note that only the insertion costs for the last changed picker
have to be updated, saving a lot of computational time). Then, the next order to
be inserted is selected in the same way. This continues until a new feasible solution
is constructed. Costs are once again defined as the increase in tardiness and, at the
second level, the increase in order pick time. Note that greedy insertion is not the same
as 1-regret: the former takes a single order and inserts it in the cheapest position, while
the latter would compute insertion costs for all orders and then select the cheapest
position over all orders. This implies a computational complexity of O(n) for greedy
insertion, and O(n2) for k-regret, with n the number of orders.

Calculating the insertion and removal costs for every order is very computationally
expensive, because the routing of the associated batch has to be updated. van Gils
et al. (2019) found that enumerating all possibilities is preferable when at most eight
order lines (i.e., locations) have to be picked in one batch. If more order lines need
to be sequenced, the routing is optimised using the Lin-Kernighan-Helsgaun (LKH)
heuristic (Helsgaun 2000). Even when using this heuristic, computational times quickly
become an issue. Therefore, during the LNS a simple heuristic, greedy insertion, is
used to calculate the distance of a batch. When removing an order from a batch, all
its order lines are simply removed, with the remaining locations still being visited in
their previous sequence. When inserting an order in a batch, all order lines of this
order are selected one by one in a random sequence, and are inserted at the position
with the smallest increase in travelling distance. Although this way of computing order
insertion and removal costs may not lead to the best routing sequence, it allows very
fast computational times. This simple heuristic is used in every iteration of the LNS.

The full LNS algorithm is shown in Algorithm 2. The initial solution is constructed
from the final solution of the previous optimisation step by removing the picked batches
and inserting any new orders with the 2-regret insertion operator. If no previous op-
timisation step exists at the start of the planning period, the initial solution is con-
structed with earliest due date batching. This initial solution is then optimised with
a local search, which proved very useful in optimising a problem in this setting (van
Gils et al. 2019). The local search of van Gils et al. (2019) is used and consists of four
operators: order shift, order swap, batch shift and batch swap. The resulting solution
is then used as input for the LNS. During the local search, the routing of a batch is
optimised by the LKH-heuristic.

The LNS itself consists of repeatedly destroying and repairing, which is done until
the maximum number of iterations is reached. Although the LNS alone shows very
good performance on order pick time, preliminary experiments showed that it is less
efficient in reducing tardiness. A combination of local search and LNS is therefore
used: on every new solution for the LNS, a local search is performed. Since the local
search is computationally expensive compared to the LNS, it is only used for a limited
number of iterations and if no solution without tardiness was found yet. The local
search is then used once more on the final solution from the LNS.

In every iteration of the LNS, a decision regarding the acceptance of the new so-
lution is made. Recall that the objective function is hierarchical, with tardiness as
the primary, and order pick time as the secondary objective. Based on whether the
local search is still active, as discussed in the previous paragraph, two phases of the
algorithm can be identified: LNS with local search, or LNS alone (both phases are
mentioned in the comments in Algorithm 2). These phases influence the decision to
accept a new solution. In the first phase, when the local search is still being used,
a best, second best and four random solutions are used, with the parameter setting
of van Gils et al. (2019). In the second phase, where pure LNS without local search
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Algorithm 2: LNS algorithm

1 Create BestSolution S∗, SecondBestSolution S∗∗, PreviousSolution S0,

CurrentSolution S1, RandomSolutions Sr1, Sr2, Sr3, Sr4;

2 Create initial solution Si;

3 Local search on Si;

4 S∗, S∗∗, S0, S1, Sr1, Sr2, Sr3, Sr4 ← Si;
5 while NoIterations ≤ MaxIterations do
6 Select destroy operator randomly;

7 Destroy S1 with selected destroy operator;
8 Select repair operator randomly;

9 Repair S1 with selected repair operator;
10 if f t(S∗) > 0 and NoIterations ≤ MaxLocalSearchIterations then

// Phase 1 of the algorithm

11 Local search on S1;

12 if f t(S1) < f t(S∗) or (f t(S1) = f t(S∗) and fp(S1) < fp(S∗)) then
13 S∗∗ = S∗;

14 S∗ = S1;

15 S0 = S1;

16 end

17 else if f t(S1) < f t(S∗∗) or (f t(S1) = f t(S∗∗) and fp(S1) < fp(S∗∗))
then

18 S∗∗ = S1;

19 S0 = S1;

20 end
21 else
22 Save S1 as one of four random solutions;

23 Randomly select solution as S0 and S1;

24 end

25 end
26 else // Phase 2 of the algorithm

27 if (f t(S1) < f t(S∗)) or (f t(S1) = f t(S∗) and fp(S1) < fp(S∗)) then
28 S∗ = S1;

29 S0 = S1;

30 end

31 else if (f t(S1) < f t(S0)) or (f t(S1) = f t(S0) and fp(S1) < fp(S0))
then

32 S0 = S1;
33 end

34 else if (f t(S1) = f t(S0)) and (fp(S1) > fp(S0)) then

35 if RandNum < e((f
p(S0)−fp(S1))/Temperature) then

36 S0 = S1;
37 end

38 end

39 end
40 NoIterations = NoIterations + 1;
41 Update Temperature;

42 end
43 Local search on S∗;
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is operating, simulated annealing is used as acceptance criterion. The simulated an-
nealing only works on the order pick time and never accepts solutions with worse
tardiness. A new best solution is always accepted, while a worse solution can also be
accepted with a diminishing probability. A slowly decreasing temperature throughout
the LNS iterations will reduce the probability of accepting a worse solution, to move
from diversifying to intensifying the search.

4.3. Anticipating order arrivals

In the online setting, new orders arrive during the planning period. It is not known if,
when or how many new customer orders will arrive for every truck. Nevertheless, it
may be important to anticipate on future order arrivals from the start of the planning
period, to make sure sufficient order picking capacity is available for these dynamic
orders. Although exact information about future orders is not available, companies
are able to make very accurate forecasts based on previous order arrival data (Leung
et al. 2020; van Gils et al. 2017).

Under the assumption that previous ordering data is available, managers can esti-
mate an average number of orders per truck as well as the variability on this number
of orders. This information can then be included during the optimisation. In order to
reserve sufficient time for future orders, we propose to include dummy orders in the
schedule. Dummy orders are given a due date like normal orders, depending on the
truck to which they belong. Every dummy order is inserted in a separate batch and
cannot be batched with normal or other dummy orders. Dummy orders occupy space
in the schedule, with an estimated pick time equal to the average pick time for an
order in the warehouse.

The number of dummy orders for a certain truck will change throughout the plan-
ning horizon, based on two forecasts of the number of orders to expect for this truck.
A first forecast, F0, is constant and based on the average expected number of orders,
as given by the warehouse manager’s data. A second forecast, F1, is updated in every
optimisation step, based on the current order arrival speed and the expected demand
pattern.

Orders are assumed to arrive between an earliest and latest arrival time, denoted by
te and tl respectively. Suppose that nt is the number of orders that arrived up to the
current system time t, for a specific truck with due date d. Then, if the order arrival
distribution is known, the cumulative density function can be used to estimate the
fraction of orders that has arrived at time t. This fraction is denoted by c. Using these
parameters, F1 is computed by equation (1) if t > te (and thus, c > 0), otherwise F1

is equal to zero.

F1 =
nt

c
(1)

Next, F0 and F1 are used for the combined forecast F . When t = te, F is based
completely on F0. For t = tl only F1 is relevant. If te < t < tl, F is the weighted
average of F0 and F1, where the weights are based linearly on the proportion of the
arrival interval that passed, following equation (2). This equation shows that the weight
of F0 decreases, while the weight of F1 increases with t, since the accuracy of F1 is
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assumed to increase over time.

F =
tl − t

tl − te
× F0 +

t− te
tl − te

× F1 (2)

The number of dummy orders to insert in the schedule, nf , is then given by subtracting
the orders already known from the expected number of orders, as shown in equation
(3). Note that a forecast should be made for every active truck, to estimate the number
of dummy orders that should be inserted with this truck’s due date.

nf = max(0, F − nt) (3)

5. Experimental study and insights

In this section, results and insights of a large-scale numerical study are presented. The
algorithms are implemented in C++. All experiments are performed on an Intel Xeon
Processor Gold 6140 at 2.3 gigahertz. First, in Section 5.1, the performance of the LNS
algorithm is tested in a static problem setting and compared to the state-of-the-art
solution algorithm from the literature. In Section 5.2 the design of the online problem
instances is discussed, followed by parameter tuning in Section 5.3. These parameters
are then used in Section 5.4, where the algorithm is tested on the online problem
instances and insights are discussed.

5.1. Static benchmark

In order to test the performance of the new LNS heuristic, the problem instances of
van Gils et al. (2019) are used, as well as the results of their iterated local search (ILS)
algorithm. We had access to the programming code of their optimisation algorithm,
which made a thorough comparison possible. Note that the algorithm of van Gils et al.
(2019) was developed for the static IBRSP and does not take release dates into account.
Nevertheless, for the online algorithm, we need instances with order release dates larger
than zero to obtain insights into the online problem. Therefore, different instances are
used for the algorithm comparison in this section, compared to the instances in the
following sections.

To make the calculation of distances between the warehouse locations consistent
between both studies, a small adaptation of their distance calculations is necessary.
Therefore, the results reported in van Gils et al. (2019) cannot immediately be used.
All large problem instances are solved again with all settings identical to those reported
in their paper, except for the correction of this distance calculation, to allow for a fair
comparison between both algorithms. Detailed results of these solutions are available
at doi.org/10.17605/osf.io/7r4gn.

The same instances, with the same number of order pickers, are solved by the
LNS algorithm. After some preliminary testing on some test instances, the following
algorithm setup is applied. The LNS uses 10,000 iterations on every instance. If the
best solution found so far contains tardiness, the combination of local search and LNS
is used during the first 5000 iterations (phase 1 of the algorithm). After 5000 iterations
or once there is no longer tardiness in the best solution, the remaining iterations are
performed with only the LNS operators (phase 2). In every LNS iteration, 10% of the
solution is destroyed. During phase 1, the destroy operators smallest distance savings
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Table 3.: Comparison of ILS and LNS on the static IBRSP.

ILS LNS Difference

Tardiness instances (#) 20 18 -10%
Total tardiness (s) 21007 18230 -13.22%
Average order pick time (s) 41508 41295 -0.52%
Average CPU time (s) 127.85 64.08 -49.88%

(batch), largest number of additional aisles (batch) and largest additional covering
area (batch) are used. In phase 2, only random order removal is used. To repair the
solution in both phase 1 and phase 2, greedy insertion as well as 2, 3, 4 and 5-regret
are used.

The results of both algorithms are reported in Table 3. Recall that the primary
objective is minimising tardiness, followed by minimising the order pick time. Each of
the 7290 instances of van Gils et al. (2019) is solved by a single run of each algorithm.
Twenty instances have some tardiness remaining in the final solution after using the
ILS algorithm. When using the LNS, eighteen instances have tardiness remaining after
10,000 iterations (all of which contain tardiness with the ILS as well). The sum of the
tardiness over all instances is reduced by over 13%. The average order pick time is
also reduced by 0.52% when using the LNS. The largest improvement, however, is
obtained regarding the computational time. It is almost cut in half when using the
LNS compared to the ILS. Based on these results, the LNS seems very well suited to
tackle the IBRSP.

5.2. Instances

To test the developed metaheuristic algorithm, new problem instances for the online
problem are constructed. These instances are made publicly available at doi.org/

10.17605/osf.io/7r4gn. General parameters of the warehouse are given in Table 4
and are based on van Gils et al. (2019) and real-life data. For the across-aisle storage
policy, three classes are used. Class A, B and C contain 1/6, 1/3 and 1/2 of the SKUs,
while accounting for 60%, 30% and 10% of the picks, respectively. The number of
order lines per order is randomly generated following an exponential distribution with
mean 3.5. As the resulting number is rounded up, the average number of order lines
is approximately 4.

Next to these general warehouse parameters, an experimental design is used to gen-
erate the problem instances. This design consists of five factors, each having multiple
factor levels, as shown in Table 5. A planning period of eight hours is considered. The
first factor, the average number of orders (λ), is either 600 or 1000. These orders belong
to several trucks, with the number of trucks being the second factor. The expected
number of orders per truck (µ) is equal to the average number of orders divided by the
number of trucks available (Ω), calculated by equation (4). Therefore, µ is constant
within an instance. However, to mimic a real-life context, randomness is involved in
the order generation. The level of randomness is the third factor in the experimental
design and is expressed as a percentage of variation. This percentage (p) is used to
decide on the number of orders in an instance: for each truck, the number of orders is
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(a) Uniform truck distribution for ten trucks.

(b) Peak truck distribution for ten trucks.

Figure 1.: Due time distribution for an instance with ten trucks.

randomly drawn from a triangular distribution with µ, (1− p)× µ and (1 + p)× µ as
mode, minimum and maximum, respectively.

µ =
λ

Ω
(4)

As a result, the total number of orders is not exactly equal to the average of 600
or 1000 orders. The number of order pickers available in an instance is based on the
expected number of orders. For every 200 orders, one order picker is scheduled. For
instances with an average of 600 and 1000 orders, this means three and five order
pickers are available, respectively.

The fourth factor is the truck distribution, to gauge the effect of different truck
departure patterns. Every truck departs at a different time in the planning horizon. In
every instance, the first truck departs after one hour, while the last truck departs after
eight hours, i.e., the end of the planning period. The other trucks are scheduled in
between, with either a uniform or a peak distribution. Under the uniform distribution,
the remaining trucks are distributed evenly between the first and last truck. In the
peak distribution, the planning period is divided into a busy and calm part. The busy
part lasts 160 minutes (i.e., one third of the planning period) and starts after 280
minutes. Half of the trucks depart during the peak period. In both the busy and the
calm part, the trucks are evenly distributed, resulting in double the time between
trucks during the calm period compared to the busy period. The difference between
both distributions is visualised in Figure 1.

Finally, the fifth factor is the order arrival pattern, looking at the effect of differ-
ent order arrival patterns. The order arrival pattern can be uniform, progressive or
degressive. Under every pattern, orders arrive at most eight hours and at least half
an hour before their due time (the departure of the truck the order belongs to). The
different patterns are shown in Figures 2a - 2c (2d is referred to in Section 5.4.1).
Under the uniform pattern, an order is equally likely to arrive at every point in time.
With the progressive pattern, order arrivals are skewed towards their due times, leav-
ing less time for picking. Under the degressive pattern a rather early arrival is more
likely. Arrival times are drawn randomly from a triangular distribution in both the
progressive and degressive case. For the progressive pattern, arrival times are drawn
from a distribution with 0.5, 2, 8 hours before the due time as minimum, mode and
maximum respectively. For the degressive pattern, these numbers are 0.5, 6.5 and 8,
respectively.
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Figure 2.: Probability density function of the order arrival patterns. The horizontal
axis shows the time before the truck departure, with 0 equal to the truck departure,
8 and 0.5 the earliest and latest possible arrival time of an order, respectively.
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Table 4.: Warehouse parameter values.

Warehouse parameters Parameter value

Number of warehouse blocks 2
Number of levels 1
Number of aisles 12
Number of sub-aisles 24
Locations per aisle 240
Storage policy Across-aisle
Storage location length 1.3 meters
Storage location width 0.9 meters
Pick aisle width 3.0 meters
Cross-aisle width 6.0 meters
Picker travel velocity 1 meter per second
Setup time 180 seconds
Search and pick time 10 seconds
Batch capacity in number of orders 10
Avg. number of order lines per order 4
Number of order pickers 1 per 200 orders
Duration planning period 8 hours

Combined, these factors lead to a factorial design with 2 × 3 × 2 × 3 × 2, or 72
factor combinations. For each factor combination ten instances are generated. Every
instance will be solved six times: for 20%, 40% and 60% of the trucks activated, to
assess the impact of batching orders over a larger number of trucks as discussed in
Section 3, and both with and without order anticipation, to test whether anticipating
on future orders is beneficial.

5.3. Parameter tuning

Because the online problem instances are quite different from the static benchmark
in Section 5.1, a few parameter modifications to the algorithm are necessary. For
example, the maximum number of orders in an optimisation step increases from at

Table 5.: Experimental design online problem.

Factor Factor levels

Average number of orders (λ) 600 1000
Number of trucks (Ω) 10 15 20
Truck distribution Uniform Peak
Order arrival distribution Uniform Progressive Degressive
Variation (p) 10% 30%
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Table 6.: Factors and factor levels in parameter tuning.

Factor Factor levels

LNS iterations 500 1000
Destroy percentage 5 10 15
Initial temperature percentage 5 10 15 20

Table 7.: Results of parameter tuning with the selected factor combination highlighted
in bold.

Destroy % LNS it. Tardiness (s) OPT (s) Longest opt. step (s)
Average P95

5 500 5184 110,024 26 90
1000 5813 109,992 31 95

10 500 4935 109,785 38 124
1000 4598 109,679 54 176

15 500 4272 109,727 61 193
1000 3959 109,545 99 306

most 300 under the static problem instances to more than 500 in some of the online
problem instances. This increase has a large effect on the computational times of the
LNS, mostly on the local search iterations. In order to keep the computational times
under control, at most 5000 LNS iterations, of which 100 local search iterations, are
used in the initialisation phase of the online algorithm. Note that the local search was
only used if the best solution contained tardiness during the static problems, while it is
always performed for 100 iterations in the online problem to allow for a fair comparison
and better interpretation of the results.

Afterwards, every time an order picker returns to the depot, a restricted version of
the LNS is used. Since a good solution is already available from a previous optimisation
step, less iterations are needed to obtain a new good solution. A shorter computational
time is also required to not postpone the departure of the order picker. In the reduced
LNS algorithm, 10 local search iterations are used in every optimisation step. In the
online optimisation, the same selection of operators is used as under the static problem.

To optimise the algorithm for the online IBRSP, three parameters are tuned on
30 online test instances, solved for every parameter combination and with 20%, 40%
and 60% of the trucks activated. The parameters to be tuned are the number of LNS
iterations every time an order picker returns to the depot, the percentage of destruction
in every LNS iteration and the percentage of the initial order pick time to use as the
initial temperature during the simulated annealing (this temperature is afterwards
reduced to 90% of the previous temperature after every 1% of the total iterations of
the LNS). The parameters and values tested in the parameter tuning are shown in
Table 6. Note that simulated annealing is only used once the local search iterations
are completed and only works on the order pick time. Solutions with a higher tardiness
are never accepted.
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Table 8.: Results of tuning the initial temperature percentage, with the selected setting
highlighted in bold.

Initial temperature percentage OPT (s)

5% 109,771
10% 109,751
15% 109,804
20% 109,842

Table 7 shows the results of the parameter tuning for the destroy percentage and
number of LNS iterations (the initial temperature is discussed later, as it only influ-
ences the order pick time). Destroying a larger part of the solution clearly results in
a lower tardiness and order pick time per order (we look at tardiness and order pick
time per order, to make a fair comparison between instances with a different number
of orders). Increasing the number of LNS iterations has a variable effect on tardiness,
but always decreases the order pick time. This is as expected as the LNS operators
are very effective in reducing order pick time, whereas the local search is more efficient
in reducing tardiness. Although a large destroy percentage combined with many LNS
iterations is more effective in reducing tardiness and order pick time, the computa-
tional times quickly become prohibitively large for an online setting. The fifth column
shows the average duration of the longest optimisation step to solve an instance, where
the first optimisation step is not considered because more time to optimise may be
used before the start of the shift. During the shift, optimisation starts from a good
solution, which allows using less computational time in every optimisation step. An
observation in the spare parts warehouse showed a batch setup time of approximately
120 seconds, in line with batch setup times of 180 seconds in the literature (van Gils
et al. 2019). Because a few outliers with very high computational times were observed,
the 95th percentile of the longest optimisation step is also reported. To obtain accept-
able results while making sure not to exceed a computational time of 180 seconds, the
parameters are set at 10% destruction with 500 LNS iterations.

The simulated annealing only works on order pick time and does not have a markable
impact on tardiness or computational time. The effect of the initial temperature on the
order pick time is shown in Table 8. Although the differences between the parameter
values are small, a value of 10% is selected.

Finally, the stability of the selected algorithm was tested (i.e., does it provide similar
results over multiple runs?). Eight online problem instances were randomly selected.
On these instances, every optimisation step (i.e., each time a picker returns to the
depot) is solved 30 times by the algorithm. Each time, the solution of the first algorithm
run is implemented to generate the input for the next optimisation steps, thereby
ensuring that all 30 runs have the same input at every optimisation step. This process
is repeated until the end of the instance. The results of this test run are shown in Table
9. In the table, it can be seen that including all optimisation steps in all instances
results in a very low absolute standard deviation regarding tardiness (9.31 seconds),
but compared to the average tardiness this value is still high (10.33%). However, the
results are skewed because of some optimisation steps with very low tardiness. In
these steps, most algorithm runs resulted in a solution without tardiness, but a few
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Table 9.: Results of stability tests on the selected algorithm.

Optimisation steps Tardiness Order pick time
Avg STD (s) Avg STD (%) Avg STD (s) Avg STD (%)

All steps 9.31 10.33 96.23 0.72
0 < tardiness < 90s 5.93 471.42
Tardiness > 90s 145.41 1.91

steps had a small amount of tardiness (always less than 90 seconds). This results
in a very low average tardiness (sometimes close to zero), which makes the average
standard deviation in percentages very large. When looking at optimisation steps with
considerable tardiness in all algorithm runs (always more than 90 seconds of tardiness
in every run), the average standard deviation is 145.41 seconds, which is equal to
1.91% of the average tardiness in that optimisation step. When looking at the order
pick time over all optimisation steps and all instances, a distinction in separate cases
is not required since there is always a sufficiently large order pick time. The results
indicate an average standard deviation of only 96.23 seconds, which is 0.72% of the
average. Based on these results, we believe that the algorithm is sufficiently robust to
make meaningful conclusions.

5.4. Experimental design

To assess the performance of the proposed algorithm, ten instances per factor com-
bination of the factorial design are solved. For each of these instances, the LNS
algorithm is run once for 20%, 40% and 60% of the trucks active, both with
and without order anticipation. Detailed results on an instance level are available
at doi.org/10.17605/osf.io/7r4gn. Appendix C reports the results of a mixed
ANOVA regarding tardiness and order pick time. The main insights are discussed
in the next sections, where the 5% significance level is used to test statistical signifi-
cance. To obtain reliable conclusions from the ANOVA, three assumptions should be
satisfied: normality, homogeneity of variance and sphericity of the covariance matrix.
Normality is ensured by using a balanced experimental design, which makes the F-
statistic quite robust to normality violations. Although Levene’s test for homogeneity
of variance is violated, this is not a problem due to the large sample size in every
group, and the equal sample sizes between all groups. Mauchly’s test for sphericity is
also violated, so the conservative Greenhouse-Geisser corrections are used to correct
the inflated F-test type I error rate (Field 2013).

A mixed ANOVA is used to analyse the results since the data contain both be-
tween groups variables (the factors of the experimental design) and repeated measures
variables (percentage of active trucks and with or without order anticipation) (Field
2013). The between groups variables do not directly influence the optimisation algo-
rithm itself, but influence the construction of the instances. These different instance
characteristics allow to make some interesting conclusions, discussed in Section 5.4.1.
Note that in practice these instance characteristics are mostly fixed by the environ-
ment in which the company operates. The repeated measures variables, on the other
hand, are set by decisions made by the warehouse manager and directly influence the
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optimisation algorithm. These variables lead to interesting insights into the effect of
two operating practices. In Section 5.4.2 the effect of the percentage of active trucks
is discussed, followed by a discussion of order anticipation in Section 5.4.3.

5.4.1. Discussion instance characteristics

When looking at the results of the different factors of the factorial design, shown in
Figure 3, the following conclusions can be made regarding tardiness and order pick
time per order. Increasing the average number of orders from 600 to 1000 results in
a statistically significant decrease in both tardiness and order pick time. This can be
explained by the increased possibility of having similar orders to be batched in an
optimisation step, which allows making more efficient batches.

Spreading the orders over more trucks shows a mixed effect, albeit not statistically
significant. For the different truck distributions, an interesting divergence between
tardiness and order pick time can be observed, with both effects being statistically
significant. Under a uniform truck distribution, tardiness is higher while order pick
time is lower, compared with the peak truck distribution. The higher tardiness for
a uniform distribution may seem counter-intuitive. However, since the peak period
is situated towards the end of the planning period, under the uniform distribution a
larger part of the orders has to be picked at every point during the planning period.
This makes the planning problem harder to solve, as there is less time at the beginning
of the planning period to pick some orders very efficiently in advance. The increased
order pick time for the peak distribution may be caused by less flexibility in batching
orders, because of the increased workload during the peak period.

The order arrival pattern impacts tardiness and order pick time in a statistically
significant way. Under the degressive case, orders arrive rather early during the plan-
ning period and batching the orders efficiently is thus easier because more orders are
available from the start. In the progressive case, orders arrive rather late, which re-
sults in higher tardiness and order pick time. The uniform pattern leads to the highest
tardiness and order pick time, which may sound counter-intuitive because it seems
to fit between the progressive and degressive case. However, this is not completely
correct. Under the uniform pattern, more orders are arriving very late and close to
the due date of their truck. As the progressive pattern is modelled with a triangular
distribution, more orders arrive close to their due date under the uniform pattern than
under the progressive pattern. To mitigate this issue, a new release time pattern is
created, called uniform+, shown in Figure 2d. Under this pattern, order arrivals are
uniformly distributed over the first part of the planning period, up to the intersection
of the uniform and the progressive pattern. After this intersection point, order arrival
times follow the progressive pattern. This way, there is no large group of orders ar-
riving at the end of the planning period. Figure 3 shows that the tardiness reduces
considerably by implementing this feature, although it is still approximately equal to
the progressive pattern. Note that only the difference in tardiness between the uniform
and degressive pattern is statistically significant. Because of high standard deviations
regarding the tardiness, proving statistical significance is difficult. Nevertheless, these
results may indicate that the late arrival of some orders is indeed very complex, and
some more margin between the order arrivals and order due dates may be required.
However, a trade-off can be identified between offering a higher customer service level
by allowing late order arrivals, and offering a higher customer service level by fulfilling
every order in time.

Finally, regarding the factor variation, it is clear that a higher variation in the
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Table 10.: Computational times for the longest optimisation step and the average
optimisation step (excluding initialisation), as well as the initialisation, for both the
standard setting and order anticipation.

Percentile Longest opt. step (s) Average opt. step (s) Initialisation (s)
Standard Anticipate Standard Anticipate Standard Anticipate

Average 35.68 39.85 15.18 16.59 329.22 326.54
90% 82.21 92.80 35.38 82.21 739.50 738.48
95% 105.43 127.47 47.27 105.43 955.09 981.20
99% 161.38 226.16 66.59 161.38 1258.65 1275.06

number of orders per truck leads to a statistically significant increase in tardiness and
order pick time. This can be explained as follows. With a higher variation a truck may
contain much more or much less orders than the average, which increases or decreases
the workload for that individual truck, and sometimes for the instance as well if other
trucks do not balance this workload. Firstly, although having less orders is never an
issue, the instances with an increase in the number of orders are characterised by
an increased size of the planning problem and thus the solution space, which makes
the optimisation problem harder to solve. Secondly, a very high workload for even a
single truck may lead to issues in picking everything for that truck in time. Thirdly,
as the number of order pickers is based on the average number of orders per instance,
a much larger number of orders increases the workload of order pickers significantly.
Therefore, companies that experience high variation in order levels and do not want
to compromise their high service level, are required to employ enough order pickers to
make sure fluctuations can be handled adequately.

Next to tardiness and order pick time, the solution time is also important for an
online optimisation problem. We aimed for a solution time less than the setup time
of three minutes in every optimisation step (except for the initialisation). Looking
at Table 10, it is clear that the computational times are acceptable, with even the
99% percentile being below three minutes, except for the case with order anticipation.
There are only few outlier optimisation steps with a higher computational time, so
in practice a time limit can be applied to the algorithm to avoid excessive run times.
These computational times indicate that the LNS algorithm is reasonably fast and
usable in a real-life setting.

5.4.2. Discussion percentage active trucks

The spare parts warehouse under study currently restricts the number of trucks that
can be picked at the same time. To test the effect of relaxing this restriction, every
instance is solved with 20%, 40% and 60% of the trucks activated. The percentage
of active trucks has a statistically significant effect on both tardiness and order pick
time (shown by the ANOVA in Appendix C). Figure 4 shows that increasing the
percentage of active trucks from 20% to 40% reduces the tardiness and order pick
time per order considerably (indicated by the black bars and line, respectively). When
going from 40% to 60%, however, tardiness increases slightly while the order pick
time can still be reduced. This result is not as expected, as batching orders of a
larger number of trucks leads to more orders in every optimisation step, offering more
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Figure 3.: Tardiness and order pick time for the online LNS algorithm, averaged over
all factor combinations, with 20%, 40% and 60% of the trucks active, and with and
without order anticipation.

batching opportunities and thus allowing for more efficient batches. Indeed, this seems
to happen since the order pick time still decreases when going from 40% to 60%.
Nevertheless, the tardiness does increase a bit. For practitioners, these results are very
interesting. Batching over too few trucks clearly leads to a bad customer service level
and inefficient operations. Yet, taking more trucks into account has quickly diminishing
returns, as the complexity of the problem increases, leading to longer computational
times, with only small benefits regarding operational efficiency, and even a decrease
in customer service level.

Still, this counter-intuitive result is remarkable. Batching orders with due dates
further into the future should never lead to worse solutions, as a solution for 60% of
the trucks can be identical to the case with 40% with the additional orders appended
behind all previous batches. The increasing tardiness may be caused by the following
reason. At the start of the planning period, very efficient batches with orders from
multiple due dates are made. Some orders with early due dates can still be postponed
without any tardiness in the solution. While these batches with orders with a later
due date are being picked, new orders of the early due dates may arrive. Suddenly, the
combination of postponed and new orders may prohibit picking everything in time.
Therefore, anticipating on these future order arrivals may be required to avoid the
increase in tardiness.

5.4.3. Discussion order anticipation

The same instances were solved while the algorithm anticipates on future order arrivals
by implementing dummy batches for every expected order, as introduced in Section
4.3. The results are visible in Figure 4, shown by the grey bars and line. Anticipating
on future order arrivals reduces tardiness in a statistically significant way, with the
effect becoming larger for a higher percentage of active trucks (shown by the ANOVA
in Appendix C). The unexpected effect of an increasing tardiness when going from
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Figure 4.: Effect of order anticipation on tardiness and order pick time.
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40% to 60% active trucks is also removed. Note that order anticipation was expected
to be relevant mostly for a higher percentage of active trucks. Nevertheless, contrary
to the effect of order anticipation alone, the interaction between the percentage of
active trucks and order anticipation is not statistically significant, possibly caused by
the high variance regarding tardiness. Although the service level clearly improves, the
order pick time is statistically significantly higher when anticipating on future order
arrivals. This indicates that companies should make a trade-off between customer
service level and operational efficiency.

Next to the increasing order pick time, using dummy orders has another disad-
vantage. Since the problem size gets larger by including dummy orders, there is a
non-negligible increase in computational times, as shown in Table 10.

6. Managerial insights and conclusions

Warehouses should handle a large number of customer orders as efficiently as possible.
The interaction between order batching, picker routing and batch scheduling asks for
an integrated solution approach. In practice, customers request ever shorter delivery
times, so faster order picking operations and a quick response to new customer orders
is indispensable. To offer a high customer service level, new orders should be accounted
for in a dynamic fashion. Therefore, in this paper, a new metaheuristic optimisation
algorithm for the integrated batching, routing and scheduling problem is proposed,
that is able to handle dynamic order arrivals. It is first shown that this algorithm
outperforms a state-of-the-art algorithm in the static problem setting in which all
orders are known at the start of the planning period. Next, a large-scale numerical
study for an online problem setting is performed.

This leads to several interesting managerial insights. In the online setting, it was
shown that batching orders of multiple trucks is beneficial when looking at the cus-
tomer service level and order picking efficiency. However, if orders of trucks far into the
future may be batched as well, we show the need to anticipate on future order arrivals
to keep customer service levels high. To the best of our knowledge, this is the first
time order anticipation is implemented in this field of study. Order anticipation was
found to improve the results. However, a trade-off was identified between service level
and operating efficiency when anticipating on future order arrivals. For the spare parts
warehouse under study, these results are very valuable. Large efficiency improvements
are possible if they start batching over multiple trucks, compared to the current situa-
tion of only picking the most urgent orders. Although they were hesitant to implement
large scale batching, dreading a decrease in their customer service levels, our study
shows that this concern is resolved by anticipating on future order arrivals.

Nevertheless, in practice, other constraints may be involved that are not yet taken
into account. Warehouses may use large sorting and packing installations, imposing
restrictions on the number of different trucks that can be handled at the same time.
Exploring the impact of these and other real-life constraints is worth investigating in
the future, to make the model resemble reality more closely. Furthermore, upgrading
the system to a fully dynamic order picking system, where picker rerouting is allowed,
should allow even faster customer response times, but may lead to more stressful
situations for the order pickers. Yet, this trade-off could lead to interesting research
opportunities, bringing human factors into account as well. Finally, although order
anticipation clearly leads to an improved solution quality, it is worth looking into how
to best implement this setting. Right now, the algorithm anticipates on the average
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expected number of orders and updates this number during the planning period based
on the current order arrival pattern. Studying the impact of other order arrival patterns
and other strategies to update the expected number of orders, may lead to even better
results and seems thus worthwhile.
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Henn, Sebastian, and Gerhard Wäscher. 2012. “Tabu search heuristics for the order batching
problem in manual order picking systems.” European Journal of Operational Research 222
(3): 484–494.

Kuhn, Heinrich, Daniel Schubert, and Andreas Holzapfel. 2020. “Integrated Order Batching
and Vehicle Routing Operations in Grocery Retail – A General Adaptive Large Neighbor-
hood Search Algorithm.” European Journal of Operational Research .

Kumar, Shashank, Balkrishna E. Narkhede, and Karuna Jain. 2021. “Revisiting the warehouse
research through an evolutionary lens: a review from 1990 to 2019.” International Journal
of Production Research 59 (11): 3470–3492. Publisher: Taylor & Francis.

Leung, K.H., Daniel Y. Mo, G.T.S. Ho, C.H. Wu, and G.Q. Huang. 2020. “Modelling near-real-
time order arrival demand in e-commerce context: a machine learning predictive method-
ology.” Industrial Management & Data Systems 120 (6): 1149–1174. Publisher: Emerald
Publishing Limited.

Li, Jianbin, Rihuan Huang, and James B. Dai. 2017. “Joint optimisation of order batching
and picker routing in the online retailer’s warehouse in China.” International Journal of
Production Research 55 (2): 447–461.

Lu, Wenrong, Duncan McFarlane, Vaggelis Giannikas, and Quan Zhang. 2016. “An algorithm
for dynamic order-picking in warehouse operations.” European Journal of Operational Re-
search 248 (1): 107–122.

Pisinger, David, and Stefan Ropke. 2007. “A general heuristic for vehicle routing problems.”
Computers & Operations Research 34 (8): 2403–2435.
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Appendix

Appendix A. MIP model

In this appendix the mixed integer programming model for the online IBRSP is
shown. Note that this formulation describes the reoptimisation problem in every
optimisation step. This reoptimisation problem is solved at the start of the planning
period and every time a picker returns to the depot. Since most of the constraints are
similar to the formulation of van Gils et al. (2019), only the required changes to their
model are discussed here. These adaptations are related to the objective function as
well as the online context.

An additional decision variable is introduced:
τk tardiness of order k.

The objective function is hierarchical and tries to minimise tardiness and order
pick time as the primary and secondary objective, respectively.

Primary objective: min
∑
k∈κ

τk (A1)

Secondary objective: min
∑
q∈σ

TqP (A2)

Subject to all constraints mentioned in van Gils et al. (2019), except for their con-
straints (15) and (16). Constraint (15) is changed since pickers may still be performing
a previous pick round, and should thus not get a new batch assigned before their cur-
rent batch is completed. Moreover, the completion time of a batch should be equal
to the current time of the system plus the pick time of that, and possible previous,
batch(es). If we define Tq0 as the completion time of the current batch of order picker
q, constraint (15) of van Gils et al. (2019) is changed to:

Tq(p−1) + tsetupZqp0 + tsearch
∑
k∈κ

okRqpk+∑
a∈α

taXqpa = Tqp ∀q ∈ σ ∀p ∈ π (A3)

In case a picker is waiting at the depot (which is always the case in the initialisation
but may also happen in later optimisation steps), his Tq0 is equal to the current time
of the system. If he is performing a picking tour that was assigned to him in a previous
optimisation step, Tq0 is equal to that batch’s completion time.

Constraint (16) of van Gils et al. (2019) is slightly modified to include tardiness as
follows:

Tqp ≤ tk + τk +M(1−Rqpk) ∀q ∈ σ ∀p ∈ π ∀k ∈ κ (A4)

Additionally, the following non-negativity constraint regarding tardiness is added:

τk ≥ 0 ∀k ∈ κ (A5)
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Note that the set of customer orders, κ, contains only those orders that are not yet
picked, are part of the currently active trucks and have a release time less than or
equal to the current time.
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Appendix B. LNS Operators

This appendix presents an overview of the destroy operators that were tested during
the algorithm development. Most of them did not provide significant improvements
and were therefore not selected to be part of the final algorithm. After the discussion
of the destroy operators, the process of finding the final algorithm is discussed in this
appendix as well. The destroy operators can be divided into two large groups: those
working on the order level and those working on the batch level.

Destroy operators working on the order level:

(1) Random order removal: randomly select orders and remove them from the solu-
tion.

(2) Remove order high distance: for every order, find the reduction in picking travel
distance if it is removed from the solution. Remove the orders with the highest
distance reduction per order line.

(3) Remove order largest due date difference: for every order look at the difference
between its due time and the average due time of orders in its batch. Remove
the orders with the largest difference.

(4) Remove order largest minimal pairwise distance: for every order, find the largest
minimal pairwise distance and remove orders with the largest values. The min-
imal pairwise distance is the smallest distance of an order line to an order line
of another order in the same batch. First calculate this distance for every order
line in a batch. Next, for every order, find the largest minimal pairwise distance
between its order lines and save this value. Orders with the largest values are
removed.

(5) Remove order largest average pairwise distance: calculate the minimal pairwise
distance for all order lines. Save the average value of all order lines of an order
and remove the order with the largest average distance.

(6) Largest number of additional aisles order: for every order, look at the difference
between the number of unique subaisles to visit when picking the batch with this
order and the number of unique subaisles to visit for that batch when the order
is removed. Remove the orders with the largest difference in unique subaisles to
visit.

(7) Largest additional covering area order: for every order, calculate the rectangular
covering area of all order lines in the batch with this order and the rectangular
covering area of all order lines in that batch if the order is removed. Remove the
orders with the largest difference in covering area.

Destroy operators working on the batch level:

(8) Random batch destroy: a random batch is selected and removed from the solu-
tion.

(9) Destroy batch high distance: destroy batches with the largest picking travel
distance per order line.

(10) Largest difference due time batch: for every batch, find the difference between
the average due time of orders in the batch and the earliest due time of an
order in this batch. Destroy batches with the largest difference between these
two values.

(11) Smallest distance savings batch: for every batch, calculate the difference between
the total picker travel distance to pick every order line individually and the travel
distance of the batch. Destroy the batches with the smallest difference in travel
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distance.
(12) Largest total minimal pairwise distance: for every batch, calculate the sum of

the minimal pairwise distance of all its order lines. Destroy the batches with the
largest sum of these distances.

(13) Largest number of aisles batch: for every batch, calculate the number of unique
subaisles to be visited. Remove the batches with the largest number of unique
subaisles.

(14) Largest number of additional aisles batch: for every batch, find the difference
between the number of unique subaisles to visit when picking this batch and the
number of unique subaisles to visit for this batch’s order with the most unique
subaisles. Destroy the batches with the largest difference in subaisles.

(15) Largest covering area batch: for every batch, compute the rectangular covering
area for all its order lines and destroy the batches with the largest areas.

(16) Largest additional covering area batch: for every batch, calculate the difference
between the rectangular covering area of the whole batch and the covering area
of this batch’s order with the largest covering area. Destroy the batches with the
largest difference in covering area.

With the above destroy operators, several algorithm configurations could be con-
structed. Testing every possible configuration is not feasible in reasonable time (there
are 216 possible combinations with these destroy operators), so we used the following
approach. First, some small-scale experiments were run to identify potentially good
operator combinations, starting with every operator being applied in the algorithm.
In every iteration of the algorithm, a single destroy operator is randomly selected. By
counting how often a certain operator led to a new best solution, insight in which
operators were most likely leading to improvements was obtained. This number of im-
provements formed the basis to select which combinations of operators looked promis-
ing. If two algorithms had very similar performance, the one with the least operators
was preferred, to keep things simple.

Second, the most promising algorithms were tested on 30 test instances, with 3 runs
on every instance. As discussed in Section 4.2, the algorithm is split in two phases,
i.e., phase 1 when the best found solution contains tardiness and the total number of
iterations is smaller than the maximum number of local search iterations, and phase
2 when there is no longer tardiness in the best found solution or the current iteration
number is larger than the maximum number of local search iterations. The tested
algorithms with their results are shown in Table B1.

In general, the results suggest that the operators working on the batch level are the
most important ones to reduce tardiness, while the operators working on the order
level are better suited to reduce the order pick time. The performance of the destroy
operator random order removal is remarkable, and suggests that reducing order pick
time is possible by using this operator only. Looking at more problem specific operators
seems unnecessary to reduce order pick time. Of the tested algorithms, algorithm 6,
consisting of three batch operators (11, 14, 16) in phase 1, combined with random
order removal (1) in phase 2, was considered best due to having the lowest tardiness
and still good order pick time.
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Table B1.: Tests of the six most promising algorithm configurations. The destroy
operators used in phase 1 and phase 2 of the algorithm are given with the resulting
tardiness and order pick time of the test runs. The selected algorithm is highlighted
in bold.

Algorithm Destroy operators Tardiness (s) Order pick time (s)
Phase 1 Phase 2

Algorithm 1 1 - 16 1 - 16 1439.83 48,937.39
Algorithm 2 1 - 16 1 1429.34 48,642.56
Algorithm 3 8 - 16 8 - 16 1410.96 49,458.24
Algorithm 4 11, 14, 16 1 - 16 1485.72 48,869.68
Algorithm 5 11, 14, 16 1, 3, 6 1482.78 48,659.88
Algorithm 6 11, 14, 16 1 1402.06 48,677.21

Appendix C. ANOVA
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Appendix D. Figures factor levels

This appendix shows detailed results of the full factorial design. The results are split
between 20%, 40% and 60% of the trucks active, as well as with and without order an-
ticipation. The values on the axes are identical in every case to allow easy comparisons
between the graphs.

A first observation is the improved algorithm performance when using order antic-
ipation. When the algorithm anticipates on future orders, the tardiness is a bit lower,
with the effect getting larger for a larger percentage of active trucks. The ratio between
the factors and the factor levels remains approximately equal between the with and
without order anticipation cases.

Regarding the percentage of active trucks, there is one remarkable difference between
20% active trucks and 40% or 60%, situated at the factor truck distribution. Under
the uniform distribution, a larger part of the orders should have already been picked
at every point of the planning period. However, in the truck distribution with a peak,
it is hard to schedule everything during the peak period. This effect is visible in
the tardiness: while there is barely tardiness in the 40% and 60% cases for the peak
distribution, the tardiness for the 20% case is almost as high as under the uniform
distribution. In the 20% case, the algorithm cannot look far into the future. This makes
anticipating on the peak impossible, and results in a higher tardiness. In the 40% or
60% case, the algorithm can anticipate on the busy peak period, resulting in better
solutions.

The difference in order pick time between the settings is even more remarkable.
While the order pick time is higher for the peak truck distribution than for the uniform
truck distribution in the 20% case, it is the other way around for the 40% or 60% case.
A possible interpretation is the following. When only 20% of the trucks can be picked
at the same time, anticipating on the peak period is impossible. Because it is so busy
in this period, the algorithm has to focus on finding solutions with limited tardiness
and is unable to find very efficient batches to reduce the order pick time. In the 40%
or 60% case, it is easier to schedule the busy peak period as the algorithm can start
planning this period earlier, which, combined with the larger pool of pickable orders,
allows the creation of more efficient batches. This results in a lower order pick time.
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(a) No order anticipation, 20% trucks

(b) No order anticipation, 40% trucks

(c) No order anticipation, 60% trucks

Figure D1.: Probability density function of the order arrival patterns. The horizontal
axis shows the time before the truck departure, with 0 equal to the truck departure,
8 and 0.5 the earliest and latest possible arrival time of an order, respectively.
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(d) Order anticipation, 20% trucks

(e) Order anticipation, 40% trucks

(f) Order anticipation, 60% trucks

Figure D1.: Probability density function of the order arrival patterns. The horizontal
axis shows the time before the truck departure, with 0 equal to the truck departure,
8 and 0.5 the earliest and latest possible arrival time of an order, respectively.
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Appendix E. Results algorithm

This appendix gives a short summary of the algorithm results in Table E1. The min-
imum, average and maximum number of batches per picker, as well as the standard
deviation in the number of batches per picker, is shown in the first part of the table.
These values are split between the cases with and without order anticipation, and for
the instances with three and five order pickers.

Next, for all pickers combined, averaged over all instances with three and five pickers,
respectively, the average number of batches and the average number of optimisation
steps for a complete instance are given. The number of optimisation steps is a little
less than the number of batches, because a batch is assigned to every picker after the
initialisation. Afterwards, an optimisation step is performed every time an order picker
returns to the depot, followed by assigning a single batch to this picker.

Table E1.: Composition of the solutions of the algorithm.

Without order anticipation With order anticipation
Batches per picker 3 pickers 5 pickers 3 pickers 5 pickers

Minimum 15 14 15 14
Average 21.85 21.44 21.89 21.42
Maximum 34 35 33 33
Standard deviation 2.42 2.77 2.41 2.65

All pickers combined

Average number of batches 65.54 107.21 65.33 106.51
Average number of opt. steps 63.68 104.04 63.44 103.24


