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Abstract. In this paper we present the preliminary results of simulation-based
experiments of an integrated scheme that has been proposed to control taxi supply-
demand imbalance in the context of a smart city with multiple taxi operators and
using Connected Mobility. We particularly explore the difference between central-
ized and decentralized implementations of the scheme as well as between collabora-
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tive and competitive attitudes of connected taxis. Our results show that by sharing
knowledge about supply-demand imbalance and adopting a collaborative attitude,
connected taxi systems can improve the performance of the service across a city by
achieving a better supply-demand service balancing while improving their profits.
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1 INTRODUCTION

The spatio-temporal dynamics of taxi systems are driven by complex interactions
between service suppliers and service consumers. Governments and taxi operators
are continuously concerned by understanding these interactions in order to balance
service supply and demand. While taxi operators need to deploy their fleets at the
right spatio-temporal locations to minimize their operational costs and maximize
their profit, governments need accurate estimations on taxi services’ distributions
over time and space for effective entry regulation and congestion control [27]. Given
that taxi market is highly regulated, the prevalent literature on taxi Supply-Demand
(S-D) balancing addresses the taxi equilibrium problem at a global level, consist-
ing in balancing S-D through the regulation of taxi fleet sizes and service prices
in a way to find a trade-off between passengers’ benefits (taxi fare and average
waiting time) and operational costs (taxis’ operational costs and revenues) [19].
These approaches are often implemented using analytical models and using sta-
tistical estimations of macro indicators, commonly collected from data surveys,
such as population density, number of workers, real income, number of taxis trips,
etc.

Recent advances in pervasive computing and big data analytics made possi-
ble the collection and analysis of large volumes of historical spatio-temporal (GPS)
data about taxi trips in many cities. Interestingly, different studies of historical
spatio-temporal taxi data sets have revealed the existence of imbalance/mismatch
(shortage or excess) between the supply and demand of taxi services in many cities,
such as Singapore [20], Shanghai [24], Shenzhen [17], Seoul [32] and New York [37],
and this despite the fact that taxi operators in these cities were using dispatching
centers. Moreover, these studies have shown that S-D imbalances vary in space and
time across cities [37], from which researchers have learned that even though current
dispatching systems help to find optimal local solutions, they do not necessary lead
to balanced S-D at a large scale (such as a city). These findings have led to a new
topic in the taxi transportation state of the art, which is the study of how the imbal-
ance between supply and demand of taxi services varies in space and time, a topic
that we refer to as S-D spatio-temporal imbalance. The new topic was motivated
by the fact that previous research works focused on understanding and predicting
supply and demand separately, while efficient balancing requires considering both
of them [21].
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Several research works have been proposed over the last years to address differ-
ent aspects of S-D spatio-temporal imbalance, most of them addressed the problem
of identifying S-D imbalance from historical taxis trip datasets, few have addressed
the problem of predicting short-term S-D imbalance, while others have been inter-
ested in understanding the factors leading to S-D imbalance. The existing works
present several limits. First, there is no unified definition of S-D imbalance, and ev-
ery work has used its own interpretation and definition of the concept. Second, most
of the existing works implicitly model service imbalance through its manifested con-
sequences, i.e., 1) longer customer’s waiting time and 2) longer vacant taxi cruising
time. Third, few works have been proposed to implement dispatching and cruising
solutions for the mitigation of S-D spatio-temporal imbalance.

In a previous work [8] we proposed a spatio-temporal framework for modeling,
monitoring and controlling taxi S-D imbalance at the operational, city-level scale.
The framework allows to collect and process data about taxis’ S-D imbalance at
three levels: micro (immediate individual taxis surroundings), meso (single taxis’
operator) and macro (multiple operators in a city) levels. In this paper we report
our initial results on the implementation of the framework. More precisely, we
tackle the problem of taxi S-D operational balancing from a connected mobility
perspective, and we explore how such an approach could improve the existing state of
the art regarding the problem of taxi S-D imbalance. To the best of our knowledge,
no previous research works have tackled this problem from a connected mobility
perspective. The remainder of the paper is structured as follows. In Section 2
we present a brief overview of the state of the art with respect to the problem of
taxi S-D spatio-temporal imbalance’s identification and mitigation using pervasive
technologies. In Section 3 we present our proposed scheme for using Connected
Mobility and X2X communication approaches to tackle the problem of taxi S-D
imbalance in the context of a smart city. We model the imbalance phenomenon using
the concept of service redundancy, and we present how redundancy information is
calculated and aggregated in Section 4. In Section 5 we present the experimental
scenarios that we implemented within the proposed scheme, and we report the results
of our initial simulation-based experiments of these scenarios in Section 6.

2 STATE OF THE ART

Taxi service S-D imbalance corresponds to situations where supply and demand are
not balanced. The term imbalance refers to either a situation of service shortage
(service demand is higher than service supply) or service excess (service demand is
less than service supply). In simple words, service shortage (respectively, service
excess) happens when the number of taxi requests exceeds (respectively, is below)
the number of available free taxis at a given spatio-temporal moment. Even though
the term “imbalance” is widely used, the terms “mismatch” [24], “deficiency” and
“gap” [36] have also been used in different research works to refer to the same
concept.
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Most of the research works addressing spatio-temporal taxi S-D imbalance fo-
cused on the detection and analysis of imbalance situations from historical datasets.
In most of these works, imbalance has been implicitly measured using different vari-
ables as Key Performance Indicators (KPIs). Based on GPS taxi datasets, authors
in [20] used the average occupancy rate and median passenger waiting time in ev-
ery region of a city to estimate the imbalance. High waiting time and occupancy
rate mean that customers are struggling to get free taxis and taxis are occupied,
i.e., demand exceeds offer (service shortage), while low waiting time and occupancy
rate mean that supply exceeds demand (service excess). Authors in [21] defined the
probability p that a free taxi finds a demand within a single time unit in a given
region. High probability means that free taxis can easily find a customer, which
corresponds to a situation of demand exceeding supply (service shortage), while low
probability values correspond to the situation of over-supply (service excess) [21].
A similar approach was used in [12] which proposed to measure imbalance using
free taxi taken (FTT) probability and taxi booking ratio (TBR). Authors in [24]
calculated spatio-temporal mismatch values using 1. the average empty time, re-
flecting how fast a free taxi can find a passenger and 2. the Average Occupied Trip
Speed, reflecting the actual traffic situations as a context. Authors in [30] used
a negative binomial regression model to identify the mismatch between the demand
for taxi service and the availability of taxis over different regions of New York city
at different daily periods. Authors in [32] used two types of hot spots to identify
S-D mismatch in Seoul (Korea): 1. hot spots of free taxis routes representing taxi
service supply, and 2. hot spots of points where free taxis become occupied as an
indicator of the demand. Supply and demand hot-spots maps are visually compared
to evaluate and identify S-D mismatched zones. Authors in [1] used the number
of customers who could not find free taxis as an indicator, while authors in [36]
used the umber of passengers who launched orders in taxi booking app but have not
received responses. A similar approach is used by [26] which calculated the number
of invalid orders, i.e., the number of taxi orders that have not been answered by taxi
drivers during a given time interval. Authors in [36] defined imbalance as the total
number of unsatisfied orders in each region an each time interval, which is similar to
the work of authors in [14] who calculated the number of unmet orders, i.e., orders
which are not responded within a given time window.

While most of the existing works have focused on the definition and the identi-
fication of taxi S-D spatio-temporal situations, only few works have addressed the
problem of using S-D mismatch information to support taxis dispatching. Authors
in [21] used a real-time heat map of estimated S-D imbalance with different col-
ors visualizing different levels of S-D imbalance to the drivers of a taxi operator in
Singapore. Taxi drivers can access the heat map to decide the regions where they
can easily find customers [21]. Authors in [15] proposed a citywide taxi dispatching
algorithm taking into consideration demand uncertainties. The proposed algorithm
aims to achieve a balanced distribution of free taxis over the different regions of
a city. The algorithm estimated the S-D ratio for every region in the city, and used
this information to implement a dispatching algorithm with the objective of balanc-
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ing taxis in all the regions of the city. A similar approach is used in [28], where taxi
demand and supply are estimated for every area of a city and used to dispatch taxis
across a city areas.

To conclude this section, most of the existing works have focused on the identi-
fication of taxi S-D imbalance situations using different KPIs. Imbalance situations
are implicitly defined as service shortage or excess, but it is not possible to measure
and quantify the imbalance itself. In addition, relatively few works have addressed
the problem of imbalance mitigation, where the information about taxi service mis-
match is used to implement taxi dispatching systems that allow for keeping S-D
balanced across a city in a dynamic way. Particularly, the proposed algorithms are
designed for individual taxi-operators, and, to the best of our knowledge, there are
no available solutions that address the problem of taxi S-D balancing in the con-
text of a smart-city with multi-operator taxis system, especially using a connected
mobility architecture.

3 CONNECTED MOBILITY SCHEME FOR THE CONTROL
OF TAXI SERVICE SUPPLY-DEMAND

In this paper we use a Connected Mobility-based framework that collects, analyses
and controls taxi S-D imbalance in a smart city context. Imbalance corresponds to
either service shortage or service excess. Service shortage (respectively, service ex-
cess) happens when the number of taxi requests exceeds (respectively, is below) the
number of available free taxis at a given spatio-temporal moment. The framework
extends a previous work [8] where we proposed an approach for taxi S-D imbalance
modelling using the concept of service redundancy [7]. Intuitively, if the number of
free taxis exceeds the number of requests in a specific spatio-temporal location, we
say that the transportation services of the smart city are redundant in that location.
Consequently, the smart city platform aims at keeping the service redundancy as
low as possible across the city areas by relocating the free taxis at the right place
at the right time. Assuming that a city is divided into a set of non-overlapping
spatial regions, we model citywide taxi service redundancy as an explicit spatio-
temporal phenomenon that varies across space (regions) and time, and proposed
a collaborative scheme for spatio-temporal taxi service redundancy calculation, col-
lection, and control at three different levels: micro, meso and macro (Figure 1). At
the micro level, taxi service redundancy (imbalance) is calculated at the immediate
surrounding of every individual connected taxi. Connected taxis make their own
assessment of the service redundancy based on the density of neighboring taxis as
well as on their own experiences. Based on this assessment, they decide on the
action(s) to be carried out in order to deal with the imbalance situation (e.g., relo-
cate, stop offering the service, etc.). At the meso level, imbalance at every spatial
region of the city is calculated for every taxi operator based on the number of its
idle taxis and the number of requests at that region during different time steps.
At every spatial area, taxis of the same operator form a cluster and select a Head-
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of-Cluster (HoC) which continuously receives and aggregates data from the taxis
that are members of its cluster. The HoC has also access to the information about
the current requests emitted by the service consumers located at the same spatial
area as the cluster. Based on all the data received, the HoC can generate a picture
about the situation of service redundancy (imbalance) within the area where its
cluster members are deployed. At the macro level, service redundancy is calculated
for every spatial area of the city considering all taxi operators. For this purpose,
a controller, an autonomous smart city resource, is assigned to every spatial area
to collect data from the HoCs, customers, as well as the Intelligent Transportation
Systems’ infrastructure of the smart city (e.g., traffic light) on a regular basis and/or
on-demand. Based on this information as well as on additional feedback from cus-
tomers, the controller issues recommendations about redundancy to taxi operators
(HoCs) as well as to neighboring controllers in order to balance the S-D across the
city.

Figure 1. Connected Mobility and X2X communication environment for taxi service re-
dundancy control

From a social perspective, the entities of the framework can have different be-
haviours depending from the application scenarios. As a matter of fact, connected
taxis of the same operator can use their own assessment of the situation to de-
cide either to collaborate with or to compete against each others, and to cooperate
or not with their corresponding HoCs. However, they intuitively tend to com-
pete with connected taxis belonging to the other taxi operators. Neighbor HoCs
(located in neighboring areas) belonging to the same taxi operator tend to collab-
orate in order to balance the redundancy of their taxis and improve their services,
while HoCs from different operators tend to compete to maximize the benefits of
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their mutual members. Like connected taxis, HoCs can decide to comply or not
to the recommendations of the controllers, who are expected to collaborate with
each others in order to keep the service S-D balanced across the city. Within such
a framework, communications are extended from Vehicle-to-Vehicle – V2V (con-
nected taxis of the same operator, HoCs) to Vehicle-to-Space – V2S (HoC Vehicle
to Controller), Vehicle-to-Infrastructure – V2I (for example to collect data about
traffic conditions and estimating when services would be available), Space-to-Space
– S2S (for collaboration and competition between the spatial areas, through con-
trollers), Infrastructure-to-Infrastructure – I2I, and Infrastructure-to-Space – I2S
(Figure 1).

Previous experiments [8] showed that using redundancy-aware dispatching (dis-
patching free taxis from areas with service excess to areas with service shortage)
allowed for improving the balance of taxis service across all the regions of a city,
compared to traditional dispatching where redundancy information is not used. In
this paper we test the performance of the framework proposed in [8] in the context of
Connected Mobility and X2X communication environment. We particularly report
our preliminary results regarding the difference between collaborative and compet-
itive social behaviours as well as centralized and decentralized implementation of
the framework. But before presenting these results, in the following section we
present how redundancy data are calculated and aggregated within the three-level
framework.

4 REDUNDANCY DATA AGGREGATION

In this section, we outline the redundancy data aggregation scheme with respect to
the proposed architecture. The proposed scheme infers multi-scale redundancy data
aggregated using a bottom-up approach, where micro-level redundancy is calculated
first, then aggregated into meso-level redundancy, which is in turn aggregated into
macro-level redundancy.

4.1 Micro-Level Redundancy Calculation

Redundancy data is calculated at a micro level from the perspective of individual
taxis. Let us denote by Nc the number of customers in the immediate vicinity of
the taxi and let us denote by Nt the number of vacant taxis. The S-D mismatch

referred to as the redundancy is calculated using ρi =
N i

c

N i
t
. To model overlapping

clusters of customers, we assign a positive weight ωij of a customer i belonging to
the immediate vicinity of the taxi j. This weight is calculated based on the distance
between i and j denoted by δij.

ωij =
δj − δij

δj
, (1)

where δj is the perception radius of the taxi j.
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Similarly, we define ωkj the weight corresponding to the likelihood of a taxi k
being idly cruising within the immediate vicinity of a taxi j.

ωkj =
δj − δkj

δj
. (2)

Therefore, the micro-redundancy perceived by a taxi j is computed using the
following equation:

ρj =

∑Nj
C

i=1 ωij

1 +
∑Nj

t
i=1 ω

kj
. (3)

a) b)

Figure 2. Mirco-level redundancy calculation scheme. The distances used to calculate
the S-D proximity a) and an example of three cases of redundancy levels are depicted in
b) low redundancy for the orange taxi, high redundancy for the green taxi and moderate
redundancy as perceived by the blue taxi.

Figure 2 illustrates an example of micro-level redundancy calculation, where
triangles and squares represent customers and taxis, respectively.

4.2 Meso-Level Redundancy Aggregation

At the level of each taxi operator/company, and with respect to the served region, the
micro-level information is aggregated to infer meso-level redundancy information.
Let us denote by TCr = {tC1 , . . . , tCNr

} the set of taxis operating in the region r for
the company C.

Over a specific time interval preset by the taxi company, the redundancy data
that have been collected by the taxis tCj , 1 ≤ j ≤ NCr are combined. Each
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taxi operator assigns a head of cluster (HoC) to the region of interest r denoted
by HoCCr . Each taxi reports the redundancy data perceived from its micro-level
standpoint to the head of cluster. The reporting periodicity does not necessar-
ily have to be regular for various reasons including the intermittent connectivity,
the acquiescence of the drivers regarding the data sharing schemes, malfunction-
ing sensing devices, etc. Therefore, we assume that the redundancy data is ag-
gregated over different time intervals [τi, τi+1] such that ∪t−1

i=1[τi, τi+1] = [1, t] is
the total time period during which HoCCr aggregates the meso-level redundancy
data.

Each HoCCr assigns a weight for each taxi tCj , 1 ≤ j ≤ NCr denoted by νC
j

corresponding to its proximity to the boundaries of the region r. The meso-level
redundancy ρCr is calculated as a weighted sum of the micro-level redundancy data
ρj using the following equation:

ρCr =
1

t

t−1∑
i=1

(τi+1 − τi)

N i
Cr

N i
Cr∑

j=1

νCr,i
j ρij (4)

where ρij, ν
Cr,i
j and N i

Cr
refer to the micro-level redundancy perceived by a taxi j,

the weight representing the proximity of a taxi j belonging to a company C to the
boundaries of the region r and the the total number of taxis operating with C in
the region r for a specific period of time [τi, τi+1] respectively.

a) b)

Figure 3. An example of meso-level redundancy aggregation with four taxis operating in
a region delimited by a dashed line. Two levels of redundancy are calculated during two
different time intervals a) then b). Taxis are represented by squares with two different
colors depicting two taxi companies operating in the same region and redundancy levels
are depicted using three colours: green (moderate), orange (high/low) and red (critically
high/low).

Figure 3 illustrates an example of meso-redundancy aggregation. In Figure 3 a)
the meso-redundancy of the gray company is moderate (green) because taxis 1 and 2
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are closer to the boundaries of the region than taxi 3, and consequently taxi 3 has
the highest weight in the meso-redundancy calculation over them. The situation
has changed in Figure 3 b) because taxis 1 and 2 moved away from the boundaries,
leading to their weights increased over taxi 3, and the meso-redundancy level of the
gray HoC switched to high/low (orange).

4.3 Macro-Level Redundancy Aggregation

At the macroscopic scale (city-wide, multi-operator), each region controller polls
the head of clusters operating within the monitored zone to update the overall re-
dundancy pertaining to the S-D mismatch. Unlike the meso-level, the macro-level
redundancy is updated on a regular basis. Each zone controller requests the associ-
ated meso-level HoCs to send their redundancy data ρCr . The controller compares
the updated redundancy data at each zone with the previous values. We denote
by ∆n(ρCr) the redundancy variation during the time interval [tn, tn+a]. To avoid
fortuitous fluctuations of redundancy that may have been caused by temporary
conditions (e.g. weather condition), the controller sets a threshold for updating the
redundancy value denoted by εr. Hence, the redundancy value is changed at a macro
level if and only if ∆n(ρCr) > εr.

5 IMPLEMENTATION SCENARIOS

Using the Connected Mobility scheme presented in Section 3, a new taxi dispatching
algorithm has been designed based on the concept of service redundancy presented
in Section 4. The main idea of the algorithm consists at relocating free taxis from
areas with high redundancy to areas with low service redundancy, which allows for
achieving a better balance of S-D across the city. The details of the proposed relo-
cation algorithm is out of the scope of this paper. In order to test the performance
of the proposed Connected Mobility and X2X communication framework, two as-
pects have been explored. The first concerns the architectural implementation of the
three-level redundancy calculation and aggregation. With this respect, we aimed to
compare between centralized and decentralized implementations. The second aspect
concerns the social behaviour of the involved entities (connected taxis, HoCs and
Controllers), and we explored the differences between collaborative and competitive
behaviours.

5.1 Centralized vs. Decentralized Implementation

From an architectural perspective, we implemented two different communication
scenarios: 1. centralized and 2. decentralized.

In the centralized implementation scenario, the calculation of the micro-level re-
dundancy and the aggregation of the meso-redundancy and macro-redundancy are
performed by controllers of every spatial area (zone). We assume that all connected
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taxis and customers are equipped with GPS and their positions are accessible to the
controllers. In the decentralised (distributed) scenario, the calculation of the micro-
redundancy, meso-redundancy and macro-redundancy are performed according to
a distributed deployment. As presented in Section 4, micro-redundancy calcula-
tion is performed by individual taxis, meso-redundancy calculation is performed by
Head-of-Clusters and macro-redundancy is calculated by controllers of every spatial
zone. Redundancy-data exchange is possible either through direct communication
between individual taxis and their HoCs (respectively, HoCs and their controllers)
or through the communication channels of the sensing infrastructure of the X2X
environment.

It is worth mentioning that the service redundancy classification (moderate,
high/low, critically high/low) is performed at the level of every taxi operator as well
as at the city-level (considering all taxi operators) according to the machine learning
classification algorithm proposed in [8].

5.2 Collaborative vs. Competitive Taxis

With respect to the behavior of connected taxis, two scenarios of redundancy-based
dispatching implementation have been identified: 1. collaborative and 2. competitive
taxis.

The objective of investigating these scenarios is twofold: First, we assess the
impact of taxi drivers compliance with the recommendations of the HoC on the mit-
igation of redundancy and second, we evaluate the implications of the collaboration
extent on the profits.

In the collaborative scenario, we assume that individual taxis operating with
an operator (micro level) share their knowledge about micro service redundancy
with their HoC. The HoC of every spatial area uses this knowledge to update and
build its view of service redundancy in that zone, and then makes dispatching rec-
ommendations to the individual taxis in order to balance the S-D redundancy of its
company at that specific spatial area. We assume that free taxis follow the recom-
mendations of their HoCs and plan their next destination accordingly. For the sake
of simplification, we assume that the drivers discard their prior experience and to-
tally comply with the HoC when they receive instructions and/or recommendations
to relocate or to adjust their operational strategies.

In the competitive scenario, we assume that individual taxis of every taxi op-
erator (micro level) share their knowledge about micro service redundancy with
their HoC but do not follow its relocation recommendations. Instead, every va-
cant individual taxi plans its next destination according to its own knowledge about
micro-level redundancy. From an application perspective, the drivers are aware of
the local redundancy level and yet they are reluctant to follow the recommendations
issued by the HoC and prefer to use their own operational strategies based on their
personal experience.
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6 EXPERIMENTAL STUDY

In this section we present an experimental study that we implemented to explore
the performance of the proposed scheme and test the proposed implementation sce-
narios. The geographic area that we considered corresponds to the city of Salalah,
Oman. Data about taxi supply and demand have been collected from different
sources and using different techniques. Data from all fix taxi stands in the city
(airport, shopping malls, hospitals, etc.) have been collected through real observa-
tions. In every stand, observations about hourly numbers of waiting taxis (supply)
and requests (demand) were recorded over a period of one week, from 8 am to 8 pm.
The distribution of taxi demand across the different areas of Salalah city for typical
days of the week has been defined based on the population densities in these ar-
eas. A geographic environment of the city has been especially generated containing
an updated road network (roads, directions and speed limits), the main semantic
zones (commercial, residential, etc.) and the main Points of Interest (PoI) (hospi-
tals, shopping malls, hotels, coffee shops, etc.) (Figure 4). All these data have been
used to improve the simulation model used in [8]. Taxis demand has been generated
using a Poisson process with variable rates. The arrival rates are randomly assigned
to destinations (road intersections, zones or PoIs) on an hourly basis. Each demand
corresponds to a route from an origin to a random destination. The simulation time
step is one minute, but we calculate and generate macro-level redundancy maps ev-
ery 60 minutes (by default, but it can be changed accordingly as an input simulation
parameter). The geographic space of Salalah city has been divided into 10 adminis-
trative areas, and every area is divided into a grid of cells (zones) whose dimensions
can be set by the user (by default it is 500m × 500m cells). Within this spatial
decomposition, macro-redundancy is calculated for every one of the zones (cells) and
taking into consideration all taxi operators, meso-redundancy is calculated for each
of the three taxi operators at every cell, and micro-redundancy is calculated for very
individual taxi at every cell (Figure 5).

We performed the simulation experiments using an agent-based model that we
implemented with the GAMA platform [6]. In order to simulate the network com-
munication between the X2X environment objects, all the objects (taxis, HoCs and
controllers) have been implemented as agents that can communicate together using
the exchange of messages and network communication functionalities of the plat-
form.

The preliminary results of the current simulation experiments are as follows.

6.1 Collaborative vs. Competitive Redundancy-Based Dispatching

Table 1 illustrates the preliminary results that compare the performance of the
two redundancy-based dispatching algorithms. We can see that the collaborative
scenario leads to a better average waiting time and consequently a better cus-
tomer satisfaction. These results demonstrate the potential benefit of having a big
picture view (at both meso and macro levels) of the supply-demand redundancy
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Figure 4. The geographic stretch of the simulation environment of Salalah city containing
the road network (lines), semantic zones (polygons) and PoIs (circles)

Figure 5. The spatial decomposition of the city of Salalah into macro (all areas), meso
(individual areas) and micro (any position inside a given area)
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and how it can be used to improve the performance of taxi service in a smart
city.

Average Average Idle Percentage Customer
Scenario Waiting Time Driving Time of Missed Satisfaction

(in Minutes) (in Minutes) Customers Level

Competitive 5.3 17.8 13% 80%
Collaborative 4.5 19.6 10% 87%

Table 1. Current performance of competitive and cooperative scenarios

Figure 6 illustrates snapshot maps showing the distribution of macro-level re-
dundancy in one administrative area and at two different days for both collaborative
and competitive scenarios. The time interval between 14:00 and 15:30 corresponds
to the afternoon traffic peak in Salalah city, and we can see that with the collabo-
rative scenario, supply-demand is moderately balanced across the different zones of
the area, while the competitive scenario leads to a medium and critical imbalance
situation in most of the area’s zone.

a) Day, 3 14:00 – Collaborative scenario b) Day, 3 15:30 – Collaborative scenario

c) Day, 6 14:00 – Competitive scenario d) Day, 6 15:30 – Competitive scenario

Figure 6. Macro-level redundancy map in the same zone at two different days and hours.
a) and b) depict the redundancy outcome using a collaborative scenario while c) and
d) illustrate the outcome of a competitive scenario. Red cells correspond to critically
high/low redundancy, amber to medium redundancy and green to moderate redundancy.
Circles represent meso-level redundancy values calculated by the different clusters in every
spatial zone.
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Figure 7 shows the hourly evolution of the macro-redundancy situation at a spe-
cific zone (zone Z13) for the collaborative and competitive scenarios. We can see
that the collaborative scenario leads to a gradual transition of the situation be-
tween moderate and critically imbalanced, while the competitive scenario leads to
a random variation of the situation between the two extremes. Obviously, the col-
laborative scenario yields to a better control of the S-D balance over the competitive
one.

a) Day 1, 11:00–23:00 – Collaborative scenario

b) Day 8, 11:00–23:00 – Competitive scenario

Figure 7. Evolution of the macro-level redundancy in zone Z13 for a 13-hour period using
collaborative a) and competitive b) scenarios

To illustrate the importance of stakeholders compliance with the redundancy
mitigation scheme, Figure 8 depicts the variation of average profit gained by a taxi
company operating in zone Z13 during the same time interval spanning from 11:00
up to 23:00. The reported average profit suggests that redundancy intrinsically
impacts the average profit.

Figure 8. Average taxis profit in zone Z13 using collaborative (solid green) against com-
petitive scenario (solid red). Overall average profit is illustrated by the black dashed line.
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6.2 Centralized vs. Decentralized Redundancy Calculation Schemes

Table 2 illustrates the preliminary results of the simulation-based experiments that
we implemented to test the performance of the proposed redundancy control frame-
work according to a centralized and distributed deployment. These results corre-
spond to averages of multiple simulation runs. Even though the calculation times
are high because of the problem complexity and further optimization work is re-
quired in the future, we can see that a decentralized implementation yields better
calculation times for all micro, meso and macro levels, as expected. However, net-
work communication delay has not been considered in these results, which needs to
be evaluated with a real testbed in order to assess the effect of the real environment
constraints on the performance of the proposed scheme.

Architecture Number Micro-Redundancy Meso-Redundancy Macro-Redundancy
of Taxis Calculation Time Calculation Time Calculation Time

Centralized
100 15 27 34
200 35 43 50
300 46 65 81

Distributed
100 5 16 19
200 11 34 32
300 19 45 63

Table 2. Current performance of Centralized and Distributed redundancy control
schemes. Calculation times are reported in seconds.

7 CONCLUSION

In this paper we proposed a connected-mobility scheme for taxi S-D balancing in
the context of a smart city where S-D imbalance information is calculated at three
hierarchical levels, micro, meso and macro. The the preliminary results of our
simulation-based experiments show that by sharing knowledge about supply-demand
imbalance in a collaborative attitude, connected taxi systems can improve not only
their own profits, but also the S-D balance across a city.

While our preliminary results are promising, more experiments are required
in the future in order to generalise the competitive and collaborative scenarios at
the level of taxi operators and/or controllers. Also, the experiment results show
high calculation times of micro, meso and macro which represents a scalability
concern for the implementation of the proposed framework in a real environment.
To solve this issue, we are currently implementing our experiments with different
connected mobility simulators and we are working on a testbed to evaluate the
performance of the proposed scheme under real-environment communication con-
straints.
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