Mining of Frequent Sets using Pruning, Based on

Background Knowledge

Anke Jager

promotor :
Prof. dr. Bart KUIJPERS

co-promotor :
dr. Vania BOGORNY

Eindverhandeling voorgedragen tot het bekomen van de graad
Master in de informatica databases

Univer‘siteill
»»Nasselt

Acknowledgements

I want to thank every single person for their contribution to the realization of this thesis.

First, I am thankful to my promotor, prof. dr. Bart Kuijpers, for giving me the chance

to write this thesis. I really enjoyed doing research for this thesis and learned a lot from it.

A special thanks goes to my two wonderful advisors, Bart Moelans and Vania Bogorny.
They put so much time and effort in the development of my work and kept telling me so many

times this was great work. I am really proud I could work together with the two of you!

I also want to thank my parents and friends, for the support and encouragement they
have given me during my career as a student and especially during the writing of this thesis.

Thank you for always believing in me!!

Abstract

Association rule mining is a technique to find useful patterns and associations in transactional
databases. There have been developed a lot of algorithms for this purpose, among which
are also APriori and FP-Growth. Though you can find new patterns and associations, the
technique of association rule mining usually results in too many rules through which the user
has to find those that are interesting to him/her. Among this large amount of association
rules, there are also ones that are non-interesting, simply because they are known a priori,
like for example isPregnant — isFemale.

Since these rules are not useful, their frequent itemsets also do not need to be generated.
This method was already described in [Bog06], where the idea of knowledge constraints was
applied to APriori. Because the FP-Growth algorithm is a lot faster than APriori, it seems
logical to also apply this method to FP-Growth.

The only drawback for this new algorithm (and also for APriori-KC) was that there were
removed too many rules through this elimination of dependences. Therefore, we developed a
method to recover the rules that were lost, without too much time going lost.

The main advantage of this new algorithm is that it reduces the number of frequent

itemsets significantly and thus also the total number of association rules that is generated.

ii

Samenvatting

Tegenwoordig maakt men zeer veel gebruik van databases. Omdat de hoeveelheid data in die
databases almaar blijft groeien en groeien is het voor een mens bijna onmogelijk om op het
eerste zicht patronen uit die data te gaan halen. Om deze patronen te verkrijgen, gaat men

dan het KDD of Knowledge Discovery in Databases toepassen.

In deze thesis hebben we ons vooral toegespitst op een specifiek onderdeel binnen het
KDD, namelijk het datamining proces. Binnen datamining zijn er nog eens verschillende
technieken, alnaargelang het resultaat men wil verkrijgen. Zo hebben we associatieanalyse,
clusteren, classificeren, detectie van uitschieters en evolutieanalyse. In deze thesis gaan we

ons enkel focussen op de associatieanalyse.

Bij associatieanalyse is het de bedoeling om patronen te vinden door middel van zoge-
naamde associatieregels die tonen dat bepaalde attribuutwaarden geregeld samen voorkomen
in een dataset [AIS93]. Met dit doel voor ogen, zijn er het laatste decennium een heel aantal
algoritmes ontwikkeld, zoals bijvoorbeeld APriori [AS94] en FP-Growth [HPYMO04].

Vooraleer we beginnen met het zoeken van de associatieregels, dient er eerst op zoek gegaan
te worden naar de frequente itemsets. Dit zijn items die frequent samen voorkomen. Het
APriori algoritme baseert zich vooral op het feit dat wanneer een bepaalde itemset frequent
is, dan ook alle deelverzamelingen van items binnen deze itemset frequent zijn. Dit algoritme
zoekt eerst alle frequente 1-itemsets. Daarna zoekt het alle frequente n-itemsets door de
frequente (n — 1)-itemsets samen te voegen. Dit totdat er geen nieuwe frequente itemsets

meer gevonden kunnen worden.

FP-Growth daarentegen gaat heel anders te werk. Bij dit algoritme gaat men de database
scannen, en dan zo een boom opbouwen van de data die zich in de database bevindt. De
resulterende boom wordt ook wel een FP-tree genoemd. Om de frequente itemsets te vinden
gaat men de conditionele FP-trees bekijken van ieder item/knoop. Deze conditionele FP-tree
vertelt met welke andere items het item voorkomt in de database en hoe vaak die combinatie
voorkomt. Zo verkrijgt men dan de frequente itemsets. Dit algoritme staat er trouwens om

gekend dat het een stuk sneller is dan APriori, iets wat ons nog van pas kan komen.

iii

v

Als we de frequente itemsets gevonden hebben met behulp van APriori of FP-Growth,
kunnen we hieruit de associatieregels afleiden. Voor elke frequente itemset I gaan we alle
niet-lege deelverzamelingen J nemen en dan zo kijken of de regel J — (I — J) aan een
bepaalde voorwaarde voldoet, namelijk de minimale confidence. Dit betekent concreet het

percentage van itemsets waarin J voorkomt, die ook (I — J) bevatten.

Associatieanalyse heeft echter één groot probleem: het aantal regels. De gebruiker krijgt
zodanig veel associatieregels terug na het uitvoeren van het algoritme, dat het bijna is als
zoeken naar een speld in een hooiberg om de associatieregels te zoeken die voor hem/haar
interessant zijn. Binnen deze enorme hoeveelheid associatieregels zitten er dan soms ook nog
eens tussen die totaal nutteloos zijn omdat ze al op voorhand geweten zijn. Een voorbeeld
van zulk een regel is isZwanger — isVrouw. Deze regel geldt altijd vermits een zwanger
persoon enkel en alleen maar vrouwelijk kan zijn. Om zo het totale aantal regels te reduceren,
gaan we voorkomen dat deze oninteressante regels gegenereerd kunnen worden, door deze

afhankelijkheden te verwijderen.

Voor dit doel werd er reeds een nieuw algoritme ontwikkeld, namelijk APriori-KC [Bog06].
In plaats van het gewone APriori algoritme uit te laten voeren en daarna alle regels te gaan
verwijderen die een afhankelijkheid bevatten, gaat deze methode voorkomen dat deze regels
gegenereerd worden. Hierbij worden frequente itemsets verwijderd van het moment dat ze
gegenereerd worden en een afhankelijkheid blijken te bevatten. En vermits er geen associ-
atieregels gevormd kunnen worden van frequente itemsets die er niet zijn, kunnen er ook geen

oninteressante regels voorkomen in het resultaat.

Deze methode van het verwijderen van gekende afhankelijkheden was hier nu enkel toegepast
op het APriori algoritme. Maar het is bekend dat FP-Growth qua performantie een stuk beter
scoort dan APriori. Daarom gaan we dezelfde methode als bij APriori-KC toepassen om zo
dan het FP-Growth-KC algoritme te verkrijgen. De pseudo-code van dit nieuwe algoritme

staat in Listing 1, waarbij ® de verzameling van alle afhankelijkheden voorstelt.

Bij dit algoritme gaan we dan kijken of de boom bestaat uit een enkelvoudig pad. Zo ja,
dan kan de boom niet gesnoeid worden, maar dan gaan we gewoon alle mogelijke combinaties
van knopen in dat pad af, zoals bij het originele FP-Growth algoritme. Enkel wanneer zulk

een combinatie geen afhankelijkheid bevat, wordt hij opgenomen als een frequente itemset.

Wanneer de boom uit meerdere paden bestaat, gaan we anders te werk. Hiervoor zijn de
regels 10 tot en met 12 toegevoegd aan het oorspronkelijke algoritme.
We gaan voor iedere = a; U a (waarbij a; een knoop is in de header van de boom)

een conditionele FP-tree opstellen. In het gewone FP-Growth algoritme gaan we daartoe (3

© 00 N O Ot = W NN

e T = T S
DD TR W NN = O

Listing 1: FP-Growth-KC(T'ree; «)

if (Tree bevat 1 enkel pad P)
voor iedere combinatie 8 van de knopen in P
if (8 bevat een afhankelijkheid van @)
genereer een patroon SUa met support
= minimum support van de knopen in ;
else
voor iedere a; in de header van Tree{
B =a;Ua met support = a;.support;
Treeg = conditionele FP-tree van f3;
voor iedere knoop b; in Treeg
if(bjUpB bevat afhankelijkheid van @)
verwijder b; uit Treeg;
if (Treeg bestaat)
FP—Growth-KC(Treeg ,();

zelf verwijderen uit de prefix paden van 3 en daarnaast ook de knopen die geen minimum
support meer halen. Vermits uit die conditionele FP-trees de frequente itemsets — en dus ook
later de associatieregels — gevormd worden, is het belangrijk om er in dit stadium reeds voor
te zorgen dat er geen frequente itemets met afhankelijkheden gegenereerd worden. Daarom
gaan we de conditionele FP-tree van 3 — genaamd Treeg — nog wat verder snoeien. We
gaan daarvoor voor iedere knoop b; in Treeg controleren of die in combinatie met 3 geen
afhankelijkheid gaat vormen. Indien blijkt dat b; U 8 daadwerkelijk een afhankelijkheid uit ®
bevat, gaat de bewuste knoop b; uit de conditionele FP-tree verwijderd worden. Dit resulteert
dan uiteindelijk in een conditionele FP-tree die geen enkele oninteressante frequente itemset

meer zal voortbrengen.

We zien nu duidelijk dat er geen oninteressante associatieregels gevormd worden, maar
er is nog een probleem: door het verwijderen van die athankelijkheden gaan er ook bepaalde
associatieregels die wel interessant zouden kunnen zijn, niet gegenereerd worden. Fen voor-
beeld hiervan is het verwijderen van frequente itemsets die de items isZwanger en isVrouw
bevatten omdat de regel

1sZwanger — sV rouw

vi

niet interessant is. Daardoor krijgen we ook geen regels als
isZwanger A isBlond — isVrouw

die ook nutteloos zijn, vermits het aspect van blond zijn hier geen rol speelt. Echter, we

kunnen ook geen regels meer krijgen zoals
isVrouw A isBlond — isZwanger,

een regel die wel interessant zou kunnen zijn omdat toevallig een deel van de blonde vrouwen

in het geteste gebied zwanger blijkt te zijn.

Deze regels mogen dan wel verloren zijn gegaan, we kunnen ze nog altijd terug halen. We
weten al dat de associatieregel A — B een confidence heeft van 100% vermits {A, B} een
afhankelijkheid is. Daarom is het ook niet nodig om regels als AC — BD terug te halen,

omdat ze toch geen extra waarde toevoegen.

Maar de associatieregel B — A is geen afhankelijkheid en heeft dus een confidence die
lager ligt dan of juist gelijk is aan 100%. Daarom dienen we dus alle regels terug te halen die
B in het antecedent hebben en A in het rechterdeel.

Het terughalen van deze regels mag dan wel iets meer tijd kosten dan het gewone FP-
Growth-KC algoritme, toch is het nog altijd een heel stuk sneller dan het FP-Growth algo-
ritme. Het tijdsverschil tussen de gewone FP-Growth-KC en de versie met het terughalen
van bepaalde regels speelt hier ook niet zo een grote rol, vermits het in dit geval belangri-
jker is om alle regels die interessant zijn als resultaat terug te krijgen. FP-Growth-KC met
het terughalen van regels is equivalent met het verwijderen van oninteressante regels na het

uitvoeren van FP-Growth.

Naast het ontwikkelen van dit algoritme, hebben we ook de gratis open source data min-
ing toolkit Weka [WF05] uitgebreid met een aantal extra algoritmes. Zo hebben we onze
eigen versie van het APriori algoritme geimplementeerd en daarnaast ook nog APriori-KC
en APriori-prune. Deze laatste gaat na het genereren van de associatieregels de oninteres-
sante regels verwijderen. Deze methode is enkel geimplementeerd voor het uitvoeren van

experimenten.

Naast APriori-gebaseerde algoritmes hebben we Weka ook uitgebreid met een aantal
algoritmes die op FP-Growth gebaseerd zijn, meer bepaald diegene die we hierboven ver-
meld hebben. Hiertoe behoren FP-Growth zelf, FP-Growth-KC, FP-Growth-KC met het
terughalen van regels en FP-Growth-prune, waarbij de laatste — net als APriori-prune — enkel

geimplementeerd werd omwille van experimentele doeleinden.

vii

Met deze uitgebreide versie van Weka zijn we dan aan de slag gegaan voor de experimenten,
om de efficiéntie van de nieuwe algoritmes te controleren. De grafieken van deze experimenten
zijn te vinden in Hoofdstuk 6. Bij deze experimenten zijn onze vermoedens over de perfor-
mantie van FP-Growth-KC bevestigd. Het blijkt stukken sneller te zijn dan FP-Growth en
— vooral — dan APriori-KC. Ook is gebleken bij deze experimenten dat het terughalen van
associatieregels bij FP-Growth-KC niet zo een groot tijdsverlies met zich meebrengt. Dit
zeker niet in vergelijking met het aposteriori verwijderen van oninteressante associatieregels

na het uitvoeren van FP-Growth.

Contents

1 Introduction and Motivation

1.1 Imtroduction
1.2 Motivation e e e
1.3 Outline

2 Association Analysis

2.1 Frequent Itemset Generation,
2.1.1 APriori
2.1.2 FP-Growth

2.2 Rule Generation
2.2.1 Generating Frequent Association Rules

3 Knowledge Constraints

3.1 Well-known dependences
3.2 Removing non-interesting rules Lo L L oo
3.2.1 How?
3.2.2 No loss of information?
3.3 APriori-KC
3.3.1 The Algorithm
3.3.2 Example.
3.3.3 Generalization

4 FP-Growth-KC

4.1 The Concept o e e
4.2 The Algorithm
4.3 Exampleo
4.4 Rulerecovery L
4.4.1 Problem
4.4.2 Solution

viii

S Y

ot

Contents ix

5 Implementation in Weka 47
5.1 Format of the dependences 49
5.2 Implementation of APriori-based methods 49
5.3 Implementation of FP-Growth-based methods 50

6 Experiments and Evaluation 53
6.1 Experiments with the Mushroom dataset 53

6.1.1 Evaluating APriori-KC and FP-Growth-KC for single dependence elim-
mmation 93
6.1.2 Evaluating APriori-KC and FP-Growth-KC for the elimination of 2
dependences Lo 55
6.1.3 Evaluating performance of rule recovery with FP-Growth-KC 57
6.1.4 Evaluating FP-Growth with pruning afterwards and FP-Growth-KC
with rule recovery Lo 57
6.2 Experiments with the Geographic dataset 58

6.2.1 Evaluating the frequent set generation of the FP-Growth-KC method 59
6.2.2 Evaluating the rule generation and rule recovery of the FP-Growth-KC
method 59

7 Conclusions 62

List of Figures

1.1

2.1

2.2
2.3
2.4
2.5

2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

Process of knowledge discovery . .

Generation of candidate itemsets and frequent itemset, with minimum support

of 50%

Example of a hash-tree

Hashing a transaction at the root node of a hash-tree.

Construction of an FP-tree

An FP-tree representation for the dataset shown in Table 2.4 with a different

item ordering scheme

FP-Growth algorithm for finding frequent itemsets endingin D

FP-growth algorithm to find frequent itemsets ending in C.

Complete lattice of Table 3.1 . . .

Lattices where itemsets are removed

Lattice without itemsets containing A and B,and Cand D

Singlepath tree
FP-tree of the transactions in Table

Conditional FP-tree of pregnant . .

Weka Explorer GUI
Example of an arff file
APriori
FP-Growth
FP-tree

Generation of the frequent sets . .
Generation of the association rules
Generation of the frequent sets . .

Generation of the association rules

4.1 o

11
11
17

18
19
24

30
32
33

54
95
56
56

List of Figures

6.5
6.6
6.7
6.8

6.9

Computational time for rule recovery with FP-Growth-KC
Generation of the association rules L.
Frequent sets for the Geographic dataset
Computational time for generating the frequent sets of the geographic dataset
for the APriori-based methods and the FP-Growth-based methods
Association rule generation for the FP-Growth-based methods on the Geo-

graphic dataset

6.10 Association rules for APriori-KC and FP-Growth-KC with rule recovery . . .

xi

60

60
61

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

4.1
4.2

4.3
4.4

4.5
4.6

All possible itemsets
Transactional database T

Candidate 2-itemsets

Transactional database T° 15
Frequent items of T, ordered in decreasing support count 16
List of frequent itemsets L L 20
List of found association rules 23
Transactional database T° 29
Dataset example of a city 40
Frequent itemsets found by applying the FP-Growth algorithm to the FP-tree

in Figure 4.2 L 41
Association rules deduced from the frequent itemsets in Table 4.2 41

Frequent itemsets found by applying the FP-Growth-KC algorithm to the FP-
tree in Figure 4.2 © . ..o 43
Association rules deduced from the frequent itemsets in Table 4.4 43
Association rules deduced from the frequent itemsets in Table 4.2 after execut-
ing FP-Growth-KC 46

xii

Listings

1 FP-Growth-KC(T'ree; o)o o o
2.1 Frequent itemset generation of the APriori algorithm
2.2 apriori-gen(Fy_q1: frequent (k — 1)-itemsets)
2.3 has_infrequent_subset(c : candidate k-itemset; Fj_1: frequent (k-1)-itemsets) .
24 FP-Growth(Tree; o)
3.1 APriori-KC algorithm o
4.1 FP-Growth-KC(Tree; o) oo o i

xiii

Chapter 1

Introduction and Motivation

1.1 Introduction

Nowadays, databases are used everywhere. Because the amount of data in these databases
keeps on growing and growing, it becomes nearly impossible for the human eye, to see patterns
in the data at the first glance. This makes the need for automatic analysis solutions very big.
Knowledge Discovery in Databases (or KDD) is the part of computer science, that is evolving

to find these automatic analysis solutions.

Data mining process The definition of knowledge discovery as it was made in [PSF91] is:

The non-trivial extraction of implicit, unknown, and potentially useful information

from data.

Although many people often treat KDD and data mining as synonyms, they are not really the
same. In [FPSSU96], they make a clear distinction between them. According to [FPSSU96],
knowledge discovery takes the results of data mining (that extracts knowledge from large
amounts of data) and tries to transform them carefully into useful and understandable infor-
mation. So here data mining is just an essential step in the process of knowledge discovery
in databases. This KDD process is depicted in Figure 1.1 and exists of the following steps:
[HKO00]

1. Data cleaning: first noise and inconsistent data are removed, as they are of no use to

discover knowledge

2. Data integration: here multiple data sources can be combined. It is also a popular trend
to perform data cleaning and data integration as a preprocessing step of knowledge

discovery and to store the resulting data in a data warehouse.

Chapter 1. Introduction and Motivation 2

Evaluation and
Presentation
Knowledge
: ﬂ] g

Patterns

dmmm e)
=
5¢
5¢
EE

I S 2

Selection and

Transfoy
Data
Cleaning warehouse
and

Integration

T

Databases

al

q—mm e m e m =

s o o e i s St

-

Figure 1.1: Process of knowledge discovery

3. Data selection: we only want to gather knowledge from data that is relevant to the

analysis task. Thus we will first select this data, before we start to search for patterns.

4. Data transformation: here data are transformed or consolidated into forms appropriate

for mining.
5. Data mining: extract patterns from data.

6. Pattern evaluation: we only want to know the interesting patterns, so these are selected

by using interestingness measures.

7. Knowledge presentation: present the mined knowledge to the user. This is done by

using visualization and knowledge representation techniques.

In this thesis, we will only go deeper into the data mining step. There are several tech-
niques in data mining, among which are: association analysis, classification and prediction,

clustering, outlier detection and evolution analysis.

Association Analysis The first technique, association analyis, tries to discover association
rules which show that certain attribute-values occur frequently together in a given set of data
[AIS93]. For example, if we have a rule X — Y, this means that, when we find a certain
condition X in a tuple, it is likely that we will also find that a certain condition Y also holds
in the same tuple. This association analysis is often used for market basket or transaction

data analysis.

Chapter 1. Introduction and Motivation 3

Classification Classification is “the process of finding a set of models or functions that
describe and distinguish data classes or concepts, for the purpose of being able to use the
model to predict the class of objects whose class label is unknown” [HKO00]. In other words, we
want to distribute certain data over classes — although we don’t know what their class labels
are — using a set of training data, from which we already know the class labels. Techniques
that are widely used within classification are neural networks, Bayesian learners and ID3.
Though it can be useful to predict the class labels of data objects, we sometimes want
to predict the value of missing or unavailable data values. This technique is referred to as

prediction.

Clustering Clustering analyses data objects without making use of known class labels.
Here the training data — in contrast with classification — does not provide its class labels,
simply because they are not known. Clustering can be useful to discover these class labels,
by grouping the data objects into certain groups, called clusters, where the data objects in
these clusters seem to be very similar to each other. When we look at the similarity of data
objects that belong to different clusters, they have to be as less similar as possible. When we

have clustered the objects, we can look at a cluster as a class of objects.

Other techniques There also exist some data mining methods, that use outlier detection.
These outliers are some data objects that do not comply to the general behaviour of the data.
Outlier mining is for example useful for fraud detection, to discover extremely large amounts
of money for a given account. Another technique that is used within data mining, is called
evolution analysis. This technique tries to find regularities or trends for data objects, whose

behaviour changes over time.

Only association analysis will be discussed in the next chapters of this thesis. There are
several widely used methods to discover association rules, among which are APriori [AS94]
and FP-Growth [HPYMO04]. Although these methods are fast, they find a lot of rules, and
therefore can still be improved. There still are rules that are found to be non-interesting,
because they display implications that are already widely known and are evident. An example
of such a rule is isPregnant — isFemale. We can easily remove these rules after they were
being generated, but we can also prevent them from being generated. The APriori method
was extended to APriori-KC [Bog06], where the user gives these well-known dependences to
the algorithm as background knowledge. This method was again improved to APriori-KC+
[BMA], where besides the elimination of this well-known dependences, also pairs of predicates
with the same feature type are removed (for example, contains_slum and touches_slum). These
methods were mainly developed for use with geographical data, but it is easy to also apply
the idea onto other kinds of data.

Chapter 1. Introduction and Motivation 4

The FP-Growth algorithm is known to be faster than APriori. Because we also know that
the APriori-KC method speeds up the traditional APriori algorithm, it would be logical to
apply this same idea of using well-known dependences as background knowledge to improve
the FP-Growth algorithm. This will be the main goal of this thesis.

1.2 Motivation

Since there are found too many — non-interesting — rules with the ordinary methods and
the FP-Growth algorithm is faster than APriori, we will adapt the APriori-KC method to
FP-Growth to find a new algorithm: FP-Growth-KC.

There still seemed to be a little problem with APriori-KC. By removing itemsets that
represented well-known dependences, not only the non-interesting association rules were re-
moved, but also some rules that could be interesting. We also took care of this problem, by

recovering these removed — interesting — rules.

To show that the newly developed algorithm FP-Growth-KC, together with its extension

of rule recovery, still is faster than the APriori algorithms, we also did some experiments.

1.3 Outline

The remaining of this thesis is organized as follows. Chapter 2 shows how association analysis
works and how association rules can be generated. It also shows the methods APriori and
FP-Growth in more detail.

Chapter 3 presents the idea of well-known dependences and how they can be used to
improve existing data mining methods. We will also discuss the APriori-KC method in more

detail, and in chapter 4, the new algorithm FP-Growth-KC is presented.

In chapter 5, we will discuss the open source data mining tool Weka, and how we extended

this system with the new methods.

Chapter 6 presents the experiments performed with the new algorithm to show that the
FP-Growth-KC method indeed is faster than the APriori-KC method. Finally, chapter 7

concludes the thesis and suggests directions of future research.

Chapter 2
Association Analysis

[HK00] The purpose of association rule mining is, given a set of transactions T, find all rules
that have a support > minSupport and have a confidence > minCon fidence®, where support

and confidence are defined as follows (with X and Y itemsets):

supportCount(X UY')

e support(X,Y) = 5
pport() #transactions

supportCount(X UY')
supportCount(X)

e confidence(X —Y) =

This is also called the Association Rule Mining Problem. This problem can be decomposed

into two major subtasks:
1. Frequent Itemset Generation
2. Rule Generation

In the following sections, we will discuss algorithms, for these two subtasks.

2.1 Frequent Itemset Generation

The first thing that we need to take care of is the generation of the frequent itemsets. An
itemset can be called frequent, if it has a support > minSupport.

Using a brute-force approach to generate the frequent itemsets is absolutely not done.
Let’s illustrate why: when a dataset, containing k items, is used, there are 2 — 1 possible
frequent itemsets. Within this brute-force method, this means that every single candidate
itemset from these 2¥ — 1 candidate itemsets, needs to be checked for its support count. This
is done by comparing each candidate against every transaction. As can be seen, this approach

can be very expensive, because it requires O(NMw) comparisons, where N is the number

YminSupport and minCon fidence are the corresponding support and confidence

Chapter 2. Association Analysis 6

of transactions, M = 2 — 1 is the number of candidate itemsets, and w is the maximum
transaction width. With the transaction width, we mean the total number of items that is
present in a transaction. For example, if a transaction contains the items A, B and C, then
its transaction width is 3.

The following section describes 2 methods, APriori and FP-Growth. In both methods,
we will assume that the itemsets are ordered lexicographically. This lexicographic ordering
can be done with a sorting algorithm, like for example Mergesort, Heapsort ... The two
algorithms that are mentioned here both have a complexity of O(nlogn), which is lower than
the complexity of generating frequent itemsets. Therefore it is defendable to sort first before
the generation of the frequent itemsets. It will become clear later on, why we need to sort

the itemsets lexicographic.

2.1.1 APriori
The APriori Principle
The use of support for pruning candidate itemsets is guided by the following principle.

Theorem 2.1 (APriori Principle). If an itemset is frequent, then all of its subsets must also

be frequent.

Reversely, we can also say that if an itemset is infrequent, then all of its supersets must

also be infrequent.

Property 2.1 (Anti-monotonicity property). Let X and Y be two itemsets. A measure f is
anti-monotone if
XCY = f(Y) < f(X), (2.1)

which means that if X is a subset of Y, then f(Y) must not exceed f(X).

The APriori principle is an example of an anti-monotone property. In this case it means
that if an itemset is not frequent because it doesn’t reach minimum support, then all of its
supersets will not reach minimum support as well.

Let us illustrate this principle with an example. Consider the itemsets in Table 2.1.
Suppose now that {A, B, D} is a frequent itemset. It is easy to see, that every transaction
containing the itemset { A, B, D}, must also contain all of its subsets: {A}, {B}, {D}, {A, B},
{A,D}, {B,D}. Thus every subset of {4, B, D} must also be frequent. Also the opposite

counts: when the itemset {C, D} is infrequent, then all of its supersets are also infrequent.

The Algorithm

The algorithm was developed by [AS94] and is shown in Algorithms 2.1, 2.2 and 2.3 [TSKO05].

First of all, the transaction database is scanned once, to discover all frequent 1-itemsets, which

Chapter 2. Association Analysis 7

k | Frequent itemsets

{4}, {B}, {C}, {D}, {E}

2 | {A,B}, {A,C}, {A, D}, {AE}, {B,C}, {B,D},
{B,E}, {C,D}, {C,E}, {D,E}

31 {A,B,C}, {AB,D}, {AB,E}, {AC, D},
{A,C,E}, {A,D,E}, {B,C,D}, {B,C,E},
{B,D,E}, {C,D,E}

4 | {A,B,C, D}, {A,B,C, E}, {A,B,D,E},
{A,C,D,E}, {B,C,D,E}

51 {A,B,C,D,E}

Table 2.1: All possible itemsets

TID | Transaction

Tl1 |A,B,C
T2 | A, B,CD,E
T3 | A, C,D

T4 | A,B,D,E
T5 | A, B,C,D

Table 2.2: Transactional database T'

are the items that appear in at least minSupport of the transactions. If we have a transaction
database like Table 2.2 and suppose the minimum support is 50% (or a minimum support
count of 2.5 ~ 3), we see that F; (see Table 2.1) contains the frequent 1-itemsets {A}, {B},
{C} and {D}. The itemset {E} is not frequent, because it appears in only 2 transactions.

Next, we are going to generate iteratively all new candidate k-itemsets from the frequent
(k — 1)-itemsets, that were generated in the previous iteration. This candidate generation is
described in Listing 2.2. It takes all frequent (k — 1)-itemsets and compares them to each
other, to see if they have (k — 2) items in common. We don’t check some random k — 2
items, but we compare only the first k — 2 items. If all of the k — 2 items seem to be the
same (and these itemsets are not the same), the itemsets will be joined and thus will form a
new k-itemset. Then we are going to check, if this generated k-itemset does not contain an
infrequent subset. This is done, because of the APriori principle in Theorem 2.1. If it passes
this test, this itemset will be added to C}, which is the set of candidate k-itemsets. The

itemsets are called candidates, because we do not know yet, if these itemsets are frequent.

Chapter 2. Association Analysis 8

Cy Support count
{4, B}
{A,C}
{4, D}
{B,C}
{B,D}
{¢, D}

oW W

Table 2.3: Candidate 2-itemsets

Cy Fy
) Itemset |Sup. Count . Itemset |Sup. Count
scan transaction database T A B compare candidate set A 5
for the candidate 1-itemsets suppart count with
{B} 4 minimum support count| {B} 4
> {C} 4 »| 1C} 4
{0} 4 {D} 4
{E} 2
CQ F2
generate C; candidates Itf;n;;t Sup. E(}unt compare candidgte set Itf;n;;t Sup. E(}unt
from F, and scan T to get {F\‘C} 4 support count with {PAJC} 4
their support count ’ minimum support count ’
{AD} 4 {AD} 4
" {B.C} 3 = {BC} 3
{B,D} 3 {B,D} 3
{C.0} 3 {C.0} 3
C3 F3
generate C; candidates [Itemset |Sup. Count compare candidate set Itemset |Sup. Count
from F; and scan T to get | {A,B,C} 3 support count with {A,B,C} 3
their support count {A.B,D} 3 minimum support count | LA,B,0} 3
» |{ACD} 3 » | {ACD} 3
{B,C,D} 2

Figure 2.1: Generation of candidate itemsets and frequent itemset, with minimum support
of 50%

When we have found the candidate k-itemsets, we are going to check which of these
itemsets is frequent. This is done by counting the times that each one of these k-itemsets
appears among the transactions in the transaction table. In Table 2.3, you can see the
candidate 2-itemsets, that were generated from the frequent 1-itemsets, together with their
support count. When the support count for every candidate k-itemset is found, the ones that
seem to be frequent, will be added to F}, the set of frequent k-itemsets. This algorithm will
be stopped, if Fj seems to be empty, which means there are no more frequent k-itemsets
generated.

You can see the APriori algorithm, applied to the transaction database in Table 2.2,
illustrated in Figure 2.1.

© 00 N O Ot = W NN

[S S N T
T A W NN = O

Chapter 2. Association Analysis 9

Listing 2.1: Frequent itemset generation of the APriori algorithm

k= 1;
// Find all frequent I—itemsets
Fp={i|ielI AN o{i}) >N x minsup};
while (F, # 0) {
k++;
Cr = apriori—gen(Fy_1); // Generate candidate itemsets
for each transaction teT {
Cy = subset (Cy,t); // Identify all candidates that belong to t
for ecach candidate itemset c¢e C;
o(c)=o0(c)+ 1;
}
// Ezxtract the frequent k—itemsets
Fp, = {c| ceC, N o(c) > N x minsup};
}
Result = |JFj

But why do we only need to check the (k — 2) first items during the candidate set gen-
eration? In Figure 2.1, the frequent itemsets {A, B} and {A4,C} are merged to form the
candidate 3-itemset {A, B,C}. The algorithm does not need to merge {B,C} and {C, D},
because the first item in both itemsets is different. Indeed, when {B,C, D} would be a valid
candidate (which is the case in this example), it would be generated by merging the itemsets
{B,C} and {B, D}. This example shows that the candidate set generation procedure indeed
is complete, and that there are no duplicate k-itemsets generated, because of the lexicographic

ordering of the items in the itemsets.

Hash-tree

The way the algorithm is described now, it seems that during the support counting, every
itemset of a transaction has to be compared with every candidate itemset. But this would
slow down the algorithm, as it is possible that there are a lot of transactions and/or a lot
of candidate itemsets. To avoid this, the algorithm stores the candidate itemsets of Cj in a
hash-tree. In a hash-tree, the leaves represent itemsets, while the interior nodes represent a
hash-table. Each bucket of such a hash-table at depth d points to another node at depth d+1
(the root of the hash-tree is defined to be at depth 1). An example of a hash-tree is shown in
Figure 2.2, where the leaves contain the candidate 2-itemsets.

When we want to add an itemset i to the tree, we start in the root and go from one node

11

Chapter 2. Association Analysis 10

Listing 2.2: apriori-gen(Fi_1: frequent (k — 1)-itemsets)

for each itemset f; € Fp_q1 {
for each itemset fo€ Fpq {
if (filll==f[1]AA2]==f2[2]A...
Ailk=2l==f2[k=2]Afi[k=1]<fa [k —1]) {
c = f1> fa;
if (has_infrequent_subset (c,Fr_1))
delete ¢; // prune step: remove unfruitful candidate
else
add ¢ to Cj;
¥
}
}
Listing 2.3: has_infrequent_subset(c : candidate k-itemset; Fj_1: frequent (k-1)-itemsets)
for each (k—1)—subset s of ¢ do
if s¢ Frp4
return true;
return false;

Chapter 2. Association Analysis 11

Hash-tree

Figure 2.2: Example of a hash-tree

to another until we reach a leave, where the itemset will be stored. When the itemset ¢ arrives
at an interior node at depth d, a hash-function is applied to the d-th element of the itemset.
The result of this hash-function decides which branch is taken to go to the next node at depth
d + 1. If the number of itemsets in a leave exceeds a predefined threshold, the leave itself
becomes an interior node.

During support counting, the same hash-function is applied to the itemsets contained in each
transaction, to partition these itemsets in their appropriate buckets. That way, each itemset
in the transaction will only be matched against candidate itemsets that belong to the same
bucket.

MEEED)
Transaction ,f'f’ 2+ -
12356]
N
Jll
.
145 [138] [345] 356 367
357 368
BBY9
124 125 [159]
457 458

Figure 2.3: Hashing a transaction at the root node of a hash-tree

Chapter 2. Association Analysis 12

Figure 2.3 [TSKO05] shows an example of a hash-tree structure. Each internal nodes uses
the hash-function h(p) = p mod 3, to decide which branch has to be followed next. When
the hash-function returns 1, the leftmost branch has to be picked, if it returns 2, the middle
branch and if it returns 0, the rightmost branch. The hash-tree in Figure 2.3 contains 15
candidate 3-itemsets, that are distributed among 9 leaf nodes.

Now consider a transaction ¢t = {1,2,3,5,6}. When we want to update the support count
of the candidate itemsets, we have to traverse the tree in such a way, that every leaf node
containing candidate 3-itemsets belonging to ¢t must be visited at least once. As items are
ordered lexicographic, a 3-itemset contained in ¢t must begin with 1, 2 or 3. Therefore, we
need to hash the items 1, 2 and 3 separately in the root node. Item 1 is hashed to the left
child of the root node, item 2 to the middle child and item 3 to the right child. At the next
level of the tree, the transaction is hashed on the second item. This proces continues until

the leaf nodes of the hash-tree are reached.

Computational complexity

To analyse the complexity of the APriori-algorithm, we need to take into account three parts
[TSKO05]:

1. the generation of the frequent 1-itemsets
2. the generation of the candidates

3. the support counting: this is the process that determines the frequency of occurence for

each candidate itemset

During the generation of the frequent 1l-itemsets, we need to scan the transactional
database transaction per transaction, and in meantime update the support count for ev-
ery item that we encounter. If wg,4 is the average transaction width and N is the number of

transactions, then we need O(Nwgyg) time to finish this operation.

When we want to generate the candidate k-itemsets from the frequent (k — 1)-itemsets in
Algorithm 2.2, we need to check if a pair of frequent (k — 1)-itemsets have (k — 2) items in
common. Obviously, this takes (k — 2) equality comparisons. In the worst-case scenario, this
algorithm must merge every pair of frequent (k — 1)-itemsets that were found in the previous
iteration. When we look at the example that was given in Figure 2.1, we see that to generate
the candidate set Co, we need to merge every single pair of itemsets in F;. So we can conclude

that the cost of merging is
Wavg

0D (k= 2)|Fi1?).

k=2

Chapter 2. Association Analysis 13

This formula states that in the worst-case scenario, we need to compare every single Fj_q
itemset with every other Fj,_; itemset (which gives us |Fj_1|? possibilities) and that this also
needs (k — 2) equality comparisons every time. Assuming every transaction has transaction
width wgyg, it is not possible to generate frequent itemsets that have more than wg,, items.
Therefore k goes only from 2 to wgyg-

During the generation of these candidate k-itemsets, a hash tree is constructed to store
these candidates. The maximum depth of this tree is k, the cost of populating this tree with

candidates is
Wavg

0> kICyl).
k=2

During the pruning of the candidates, we need to check that the k — 2 subsets of every
candidate k-itemset are frequent. The cost of looking up a candidate in a hash tree is O(k),
so the candidate pruning step requires

Wavg

O k(k —2)|Crl)

k=2

time.

At last, we need to take in account the cost of counting the support for every candidate
itemset. Every transaction that has length |¢| produces (‘Zl) itemsets of size k. This number is
also the effective number of hash-tree traversals that needs to be performed for each transac-
tion. Assuming wyqs i the maximum transaction width and «; is the cost for updating the
support count of a candidate k-itemset in the hash-tree, we can say that the cost of support
counting is O(N >, (7o) oy).

To retrieve the total complexity of the APriori algorithm, we need to take the sum of all

of these complexities. This gives us the following complexity:

Wavg
@) (Nw(wg - % ((k —2)|Fp_1|* + k|Cy| + E(k — 2)|C|) + Nzk: (w”;‘“) ozk>

Wavg

=0 <Nwavg +NY (wngam>ak + > ((k=2)|Fe] + k2|0k|)) (2.2)
P =2

2.1.2 FP-Growth

A second method to generate frequent itemsets, is called FP-Growth and was developed by
[HPYMO04]. This method is radically different from the APriori-algorithm we have seen before.
Whereas the APriori-algorithm generates candidate itemsets, the FP-Growth method puts
the dataset in a compact data structure, called an FP-tree and extracts frequent itemsets

directly from this structure.

Chapter 2. Association Analysis 14

Construction of the FP-tree

An FP-tree is a compact representation of the input data, constructed by reading the data
transaction per transaction. Each transaction is mapped on a path in the FP-tree and several
transactions can have paths that (partially) overlap. An important property of an FP-tree is
the node-link property, where nodes with the same label are connected to each other. This

malkes it easier to traverse the tree.

Property 2.2 (Node-link property). For any frequent item a;, all the possible patterns
containing only frequent items and a; can be obtained by following a;’s node-links, starting

from a;’s head in the FP-tree header.
The construction of an FP-tree looks as follows:

1. The data set is scanned once to determine the support count of each item. Items whose
support is less than minSupport are discarded. Next, the frequent items are sorted in

decreasing support count.
2. Create the root of the FP-tree and label it as null.

3. For each transaction ¢, the frequent items are ordered in decreasing support count. This

list of ordered items will be added to the tree, as follows:

e Let f be the first item of the ordered list and T the tree (initially: the root)

e If T has a child node N such that f.itemName = N.itemName, then increment
N’s count by 1.

e If there is no such node, create a new node N that has count 1, let it be linked to

T as a child node and its node-link to the nodes that have the same itemName.

e If there still remain items in the ordered list (say L), we need to insert them in the

same way into V.

Suppose we have the transactional database T as in Table 2.4, and that minSupport =
30%, which is the same as a minimum support count of 3. First, T is scanned to retrieve all
the frequent items and these items are sorted in decreasing support count. This gives us the
sorted list L in Table 2.5. Initially, the FP-tree contains only the root node, depicted by the
null symbol. The rest of the FP-tree is constructed in the following way:

1. The first transaction with TID T1 is read. The items of T1 are ordered in decreasing
support count, as in L. We only have the root node in the tree, so we will create a
node with label B and one with label A and they both get frequency count 1. Having
created these nodes, we now must insert them into the tree and thus we create a path

null — B — A to encode the transaction. This is shown in Figure 2.4(a).

Chapter 2. Association Analysis 15

TID | Transaction
T1 A, B E

T2 B,D

T3 A, B, D

T4 | B, C

T5 A, D

T6 B, C

T7 | A,C

T8 A B CE
T9 A, B, C

Table 2.4: Transactional database T'

2. The second transaction, { B, D}, shares the same prefix item B with the first transaction.
As aresult, the path of this transaction, which isnull — B — D, overlaps with the path
of the previous transaction. Therefore, the frequency count of node B is incremented
by 1, and thus becomes 2. The frequency count for the other node, with label D is 1.
This FP-tree is shown in Figure 2.4(b).

3. After reading the third transaction, {A, B, D}, we see that we again have the same
situation as after reading the second transaction. The path for this transaction, null
— B — A — D, overlaps with the one of the first transaction, null — B — A.
Therefore, the frequency count of both node B and node A are incremented by 1. The
node D of this transaction gets a frequency count of 1. We also see that we have an
item in common with T2, which is D. But their paths are disjoint, because they do not
share a common prefix. To go easily from one node D to another node with label D,
we create a node-link between them. After this transaction, we get the FP-tree shown
in Figure 2.4(c).

4. This process continues until all of the transactions have been read and mapped onto a
path in the FP-tree. The complete FP-tree — that is after reading the transaction with
TID T9 - is shown in Figure 2.4(d).

Size of the FP-tree

Typically, the size of an FP-tree is smaller than the size of the uncompressed representation
of the data in the transaction table, because usually there are transactions that have one
or more items in common. In the best-case scenario, there is only one branch, because all

transactions share the same set of items. In the worst-case scenario though, every transaction

Chapter 2. Association Analysis 16

Item | Support count
B 7
A 6
C 5
D 3

Table 2.5: Frequent items of 7', ordered in decreasing support count

has a different set of items and thus the size of the FP-tree is the same as that of the original
data. But, as also the counters for each item and the pointers between nodes need to be
saved, the physical storage requirement of the FP-tree in this worst-case scenario is higher.
Also the ordering of the items plays a significant role. Instead of ordering them by de-
creasing support count, you can also order them by increasing support count. This sometimes
results in a more dense FP-tree, but we absolutely cannot conclude that this will always be
like this. We can see this in Figure 2.5, where the FP-tree for Table 2.4 was constructed, by

ordering the items in increasing support count.

How to generate Frequent Itemsets

The FP-Growth algorithm generates the frequent itemsets by exploring the FP-tree in a
bottom-up way. The pseudo-code of the FP-Growth algorithm can be found in Listing 2.4.
It is initially called with FP-Growth(Tree,null).

We will explain this algorithm with the example tree shown in 2.4(d). The algorithm
will first look for frequent itemsets ending in D, then in C, A and finally in B. Since every
transaction is mapped on a path in the FP-tree, we can find the frequent itemsets, ending in
D, by examining only the paths that contain node D. These paths can be found easily, since
all nodes with label D have a link to the next node with label D. In Figure 2.6(a), we can
see the paths that contain node D.

Thus, first the algorithm will search for frequent itemsets, ending in D. This is done by
splitting the problem into smaller subproblems. We will first check if the itemset {D} itself
is frequent. If so, we will consider the subproblem of finding frequent itemsets ending in C'D,
then in AD and finally in BD. These subproblems will also in turn be divided into smaller
subproblems. This is the strategy for finding frequent itemsets ending in D.

1. First we want to retrieve all paths containing node D. These paths are shown in Figure

2.6(a) and they are called prefiz paths.

2. We need to check if {D} itself is a frequent itemset. Therefore, we need to retrieve its

support count. This is done by adding the support counts that are associated with node

Chapter 2. Association Analysis 17

'
' ' YN
' Y\ v S

A Al D DA

(a) After reading (b) After reading TID = T2 (c) After reading TID = T3
TID = T1

null

/ \
/ ¢ \ / \‘.

(d) After reading TID = T9

Figure 2.4: Construction of an FP-tree

D. As the support count of {D} is 3 and the minimum support count is 3, we can say

that this itemset indeed is frequent.

3. Before we are going to divide this problem into the smaller subproblems of finding
frequent itemsets in CD, AD and BD, we are going to convert the prefix paths of

Figure 2.6(a) into a conditional FP-tree. This conversion goes like this:

(a) Update the support counts along the prefix paths, as these still contain counts

from other transactions.

(b) Truncate the prefix paths by removing the nodes with label D. These nodes
can be removed, because the support counts have been updated, to only reflect

transactions that contain the item D.

Chapter 2. Association Analysis 18

il
A / D:3 C:5
B:1 A2 B:1 A3 B. 2
. Teal R 4
L F R Kad
Ry
B:1 B:1

Figure 2.5: An FP-tree representation for the dataset shown in Table 2.4 with a different

item ordering scheme

Listing 2.4: FP-Growth(T'ree; «)

1 if(Tree contains a single path P)

2 for each combination (3 of the nodes in P
3 generate pattern SUa with support

4 = minimum support of nodes in (;

5 else

6 for each a; in the header of Tree{

7 generate pattern f=a;Ua with support = a;.support;
8 Treeg = conditional FP—tree of f3;

9 if (Treeg exists)

10 call FP—Growth (Treeg,3);

11 }

,_.
)
—

Chapter 2. Association Analysis 19

null
B:7 ... A2
Ad D: 1 =3
v . >
D:1
(a) Paths containing node D
rull
B: 2 A1
.-
A

(b) After updating the prefix paths of D

Figure 2.6: FP-Growth algorithm for finding frequent itemsets ending in D

(c) It is possible that, after updating the support counts, some of the items may no
longer be frequent. We can see this in Figure 2.6(b), where all of the support
counts seem to be less than the minimum support count. This means that, for
example with node A with a support count of 2, there only are 2 transactions that
contain the itemset {A, D} and thus is not frequent. Because there are no nodes
with a sufficient support count, we can say there are no frequent itemsets ending
in D.

Because there are no frequent itemsets ending in D (except the frequent 1-itemset {D}
itself), we will proceed with the search for frequent itemsets, ending in C. For this, we will
start in the same way, as we did to find those ending in D. You can see the prefix paths
ending in C in Figure 2.7(a) and the conditional FP-tree of C' in Figure 2.7(b). When we add
the support counts that are associated with node A, we can find the support count for the

itemset {A, C}. Thus the support count for this itemset is 2 4+ 1 = 3 and thus this itemset is

Chapter 2. Association Analysis 20

Suffix | Frequent Itemsets
D {D}

C {C}, {A,C}, {B,C}
A {A}, {A.B}

B {B}

Table 2.6: List of frequent itemsets

frequent. Similarly, we can see that {B,C'} is also a frequent itemset.

FP-Growth now uses this conditional FP-tree of Figure 2.7(b) to solve the subproblems,
which here exist of finding the frequent itemsets ending in AC' and then in BC. To find
the frequent itemsets ending in AC, we will gather the prefix paths for AC' (Figure 2.7(c))
from the conditional FP-tree of C' (Figure 2.7(b)). Because the leaf nodes in this conditional
FP-tree are all nodes with label A, the prefix paths for AC are the same as the conditional
FP-tree for C, but we find only {A,C} to be frequent.

Thus the algorithm moves on to the next subproblem: finding the frequent itemsets ending
in BC. The algorithm constructs the prefix paths for BC, which is shown in Figure 2.7(d),

but concludes that {B,C'} is the only frequent itemset remaining.

In the same way, we will search for frequent itemsets ending in A and in B. The complete

table of frequent itemsets can be found in Table 2.6.

Computational complexity

To build an FP-tree, we need O(N) time where N is the total number of items that were
used in the transactions.

At every recursive step in the algorithm, a conditional FP-tree is generated. As all of
the subproblems are disjoint, there will never be generated duplicate itemsets. Another
advantage is that the support counting of the itemsets happens while generating the common
suffix itemsets. When we have an initial FP-tree with k leafs and an average path length
w, we can say that the conditional FP-tree is generated O(kw) times. Remark that this is
a maximum as it could be possible that — at a certain point — a conditional FP-tree does
not contain an itemset with enough support and thus there is no need to generate another

conditional FP-tree out of this one.

The run-time performance of the FP-Growth algorithm depends strongly on how compact
the dataset is. [HPYMO04] made the following conclusions, according to some experiments they
did:

Chapter 2. Association Analysis 21

e FP-tree achieves good compactness most of the time. Especially in dense datasets, it

can compress the database many times.

e When the minimal support count is low, the resulting conditional FP-trees become very
bushy (with the worst-case scenario: a full prefix-tree) and the algorithm slows down
significantly, as a lot of subproblems have to be generated and the results, returned by

each subproblem, have to be merged.

2.2 Rule Generation

Now we have found the frequent itemsets using APriori or FP-Growth, we still need to
generate the association rules from these itemsets.

An association rule is an implication { X1, ..., X} — {Y1,..., Y}, where {X1,..., X,,} N
{Y1,..., Y} =0, telling us that, if we encounter the set {Xi,...,X,,} in a tuple, there is a

chance that also the set {Y7,...,Y,,} will encounter in this tuple.

From a given k-itemset X, there can be produced 2¥ — 2 association rules, ignoring rules
that have empty antecedents () — X) or empty consequents (X — (). An association rule
can be extracted by partitioning the itemset X into 2 non-empty subsets ¥ and X — Y, so
that Y — X — Y satisfies the confidence threshold.

Checking the confidence for a particular association rule, does not require an additional
read through the transactional database. For example, if we have a frequent itemset ¥ =
{z,y, z}, we can generate an association rule {x} — {y, z} from it. The confidence of this rule
can be calculated by o({x,y, z})/o({z}), where o(X) denotes the support count of itemset
X.

o(X) = |{t:s|X Ct;,t; € T}

Because {z,y, 2} is a frequent itemset, {z} must be a frequent itemset too. Since the
support counts for both frequent itemsets were already calculated during the frequent itemset

generation, we don’t need to read the dataset an additional time.

Now suppose we have 2 assocation rules: X — Y and X; — Yj, where X; C X and
Y1 C Y. When we have the confidence of the first rule, we cannot conclude anything about
the confidence of the second rule, as the confidence of this rule can be smaller, equal to or
larger than the confidence of the other rule. But if we compare rules that were generated

from the same frequent itemset Y, we can show that the following theorem holds.

Theorem 2.2. If a rule X — Y — X does not satisfy the confidence threshold, then any other
rule X' — Y — X', where X' is a subset of X, cannot satisfy the confidence threshold as well.

Chapter 2. Association Analysis 22

Proof. Consider the following two rules:
e X' Y - X'
e X Y -X

with X’ € X. The confidence of those rules are o(Y)/o(X’) and o(Y)/o(X) respectively.
X' is a subset of X, so we can say that o(X’) > o(X). Therefore, the confidence of the first
rule must be less than or equal to the confidence of the second rule and thus the theorem is

proven. O

2.2.1 Generating Frequent Association Rules

As we have seen before, the confidence of a rule A — B represents the percentage of transac-

tions containing A that also contain B.

c(AUB)
a(4)

Based on this equation, we can generate association rules in the following way. We will

confidence(A — B) = P(B|A) = (2.3)

first generate all non-empty subsets of every frequent itemset I. For all of the non-empty
subsets J of a frequent itemset I, we will calculate %, which is the confidence of the rule
J — (I — J). If the result seems to be larger or equal to minConfidence, the association rule
is said to be strong. This means that both the arguments of minSupport and minConfidence
have been satisfied. The minimum support is satisfied because we have generated these rules

from frequent itemsets, so the minimum support still is satisfied.

Now, let us show this with an example. Suppose we use the transactional database T in
Table 2.2. One of the frequent itemsets we have found there was the 3-itemset {A, B,C}.
First, we will extract all non-empty subsets of this itemset. The found subsets are: {A},
{B}, {C}, {A,B}, {A,C} and {B,C}. The resulting association rules are shown in Table
2.7, together with their confidence. When the minimum confidence threshold is, for example,

75%, all rules are strong, except the first one.

In this chapter, we broadly discussed how to generate frequent itemsets and association
rules from these frequent itemsets. We presented the two methods APriori and FP-Growth
in detail. The problem with these methods is, that there can be generated too many rules,
that are not interesting. Therefore, we will discuss how to overcome this problem in the next

chapter.

Chapter 2. Association Analysis

Rule Confidence
A— BC | 3/5 =60%
B — AC | 3/4 = 75%
C— AB | 3/4 =75%
AB — C | 3/4 = 75%
AC — B | 3/4 =75%
BC — A | 3/3 =100%

Table 2.7: List of found association rules

23

Chapter 2. Association Analysis

null
B:7 i LLaaa - A2
Ad C:2 Cit
e
\ -
ce2

(a) Prefix paths for C

null riull
B4 [A B4 I
Az J A2 g
(b) Conditional FP-tree for C (c) Prefix paths for AC
null
'
B4

(d) Prefix paths
for BC

Figure 2.7: FP-growth algorithm to find frequent itemsets ending in C.

24

Chapter 3

Knowledge Constraints

3.1 Well-known dependences

Within data mining, association rule mining is used to discover patterns in the form of
association rules. However, the output of association rule mining algorithms is normally
a huge amount of association rules, in which the user has to search those rules that are
significant. Among all these rules, many are not interesting, because they express facts that

are evident. This is shown in the next example.

Example 3.1. When one would mine data, that describes characteristics of persons, one

could possibly find the following rules:
e isPregnant — isFemale
o cervicalCancer — isFemale

It is easy to see, that both of these rules are true, but that they are of no use, since they both

have a confidence of 100% and are rules that are known apriori.

Because these rules express facts that are well known, we call these non-interesting rules
well-known dependences. Though we have seen that non-interesting rules have a confidence
of 100%, we cannot conclude that the reverse also counts. For example, take the fact that
it is dark outside. When we would find a rule like darkOutside — night with a confidence
of 100% in a dataset of Belgium, this rule would be found non-interesting since in Belgium
it is always night when it is dark outside. But when we have a dataset of the Northpole
or Sourthpole, this rule would not always be true, since it can be non-stop dark outside for
almost three months. So we cannot call this a well-known dependence since the rule can

indeed be interesting sometimes and thus is application dependent.

25

Chapter 3. Knowledge Constraints 26

3.2 Removing non-interesting rules

3.2.1 How?

Well-known dependences are known to be of no use, so they can be removed from the generated
set of rules. This would happen during the generation of the rules, i.e. aposteriori, when all
frequent itemsets were already generated. But instead of letting these rules being generated
and just remove them afterwards, it would be more logical to prevent these rules from being

generated, as is suggested in [Bog06].

How can we do this? We assume the user knows which itemsets can be categorised as
well-known dependences. Before the datamining algorithm starts, the user tells the algorithm
which combination of items can produce association rules that are non-interesting. These are
the knowledge constraints, that prevent “useless knowledge” from being generated. During
the frequent itemset generation, the algorithm will check that none of these itemsets will be

computed, and thus no well-known dependence will be part of the resulting association rules.

3.2.2 No loss of information?

For the removal to be useful, there needs to be proved that no — possibly — interesting
information gets lost by applying this method. We could think of 2 possible situations where

these interesting rules could get lost.

The first possibility would be when {A, B} is treated as a well-known dependence and no
frequent itemsets containing both of these items would be generated, such as {A, B, C}, for
example. Now, if the itemset {A, B, C'} reaches minimum support, then all of its subsets also
reached minimum support. We only remove the itemsets that contain both A and B, so the
itemsets {A,C} and {B,C'} are still generated, thus also the rules A — C and B — C are
not prevented from being generated. We can conclude here that there gets no information

lost in this situation.

Another possible situation is when a pair {A, B} is the well-known dependence (because
A — B is a non-interesting rule) and the removal of all itemsets containing both of these
items would prevent rules like B — AC' from being generated.
Let’s show this with an example. We know that the itemset {isPregnant, isFemale} is a

well-known dependence because the
isPregnant — isFemale

is non-interesting and thus may not be generated. This means that all of the itemsets con-
taining both of these items, like for example {isPregnant,isFemale,isBlond}, would not be

generated.

Chapter 3. Knowledge Constraints 27

Of course, a rule like
isPregnant — isFemale N isBlond
would be non-interesting, because when this rule reaches minimum support, then also
i1sPregnant — i1sBlond

reaches minimum support, and thus no information gets lost.

But it is also possible, that a rule like
isFemale — i1sPregnant A isBlond

could be interesting, because in the researched region a part of the females happen to be
pregnant and blond.

It thus may happen that possibly interesting rules are not generated. Therefore, we
will recover these lost rules out of the association rules we found after the frequent itemset

generation. We will discuss this matter later on, in Section 4.4.

3.3 APriori-KC

3.3.1 The Algorithm

One such method to prevent non-interesting rules from being generated, is called APriori-KC
(where KC stands for Knowledge Constraints) and was developed by [Bog06]. The pseudo-
code of this method can be found in Listing 3.1.

To eliminate the well-known dependences, there is added one more step to the APriori
algorithm, that is only performed when k is 2, such that all pairs of elements that were defined
to be well-known dependences are removed from C5. These dependences are being removed
from all of the candidate 2-itemsets, before even the support count of these candidates is

performed.

In line 8 of the algorithm, all of the candidate 2-itemsets that contain items with a
dependence will be eliminated. The elimination of, for example, {isPregnant, isFemale},
avoids that later on, there are no association rules generated like isPregnant — isFemale.
Note that association rules like hair=Ilong — isPregnant and hair=Ilong — isFemale still can
be generated, because we do not remove the itemsets {isPregnant, hair=Ilong} and {isFemale,

hair=long}.

Because of the removal of these dependences during the frequent itemset generation,
APriori-KC is actually faster than the “normal” APriori algorithm itself. Note that this

Chapter 3. Knowledge Constraints 28

Listing 3.1: APriori-KC algorithm

1 k=1;

2 // Find all frequent I1—itemsets

3 Fpb={i]|ielIANoao{i}) >N x minsup};

4 while(F, # 0) {

5 k++;

6 Cr = apriori—gen(Fy_1); // Generate candidate itemsets
7 if k==

8 delete all pairs with dependences from Cs;

9 for each transaction teT {

10 Cy = subset (Cy,t); // Identify all candidates that belong to t
11 for each candidate itemset ce C

12 o(c) =0(c) +1;

13 }

14 // Eztract the frequent k—itemsets

15 Fp, ={c| ceCy N o(c) > N x minsup};

16}

17 Result = |JFy

Chapter 3. Knowledge Constraints 29

algorithm is not faster in the worst-case scenario, because then there are no dependences
that need to be removed and thus APriori-KC acts like the normal APriori. To show that
APriori-KC is an improvement of APriori, we are going to discuss the complexity of APriori-
KC. With this complexity, we mean the total number of itemsets that will be removed, by
removing the well-known dependences.

We first illustrate this with an example. Next, we will deduce a general formula from this
example, to calculate the total number of itemsets that will not be generated by removing
one or more well-known dependences.

Note that, to show the difference between APriori and APriori-KC, we will treat the fact that

some itemsets are not generated, as if these itemsets are being removed.

3.3.2 Example

In this example, we have a transactional database, like the one in Table 3.1, containing the
items A, B, C, D and FE.

Suppose the following two things:

1. Every combination that can be made with these items, is a frequent itemset, which

means that minSupport = 0.
2. {A, B} and {C, D} are well-known dependences.

The complete lattice of the frequent itemsets can be found in Figure 3.1.

k | Frequent itemsets

{A}, {B}, {C}, {D}, {E}

2 | {A, B}, {A, C}, {A, D}, {A, E}, {B, C}, {B, D},
{B, E}, {C, D}, {C, E}, {D, E}

3 | {A, B, C}, {A, B, D}, {A, B, E}, {A, C, D}, {A,
C,E}, {A, D, E}, {B, C, D}, {B, C, E}, {B, D, E},
{C, D, E}

4 | {A, B, C, D}, {A, B, C, E}, {A, B, D, E}, {A, C,
D, E}, {B, C, D, E}

51 {A,B,C, D, E}

Table 3.1: Transactional database T

Because {4, B} and {C, D} are well-known dependences, they have to be removed, as
well as every other itemset that contains the items A and B or the items C and D. The first

itemset that is going to be removed, is {A, B}. To calculate the total number of frequent

Chapter 3. Knowledge Constraints 30

Figure 3.1: Complete lattice of Table 3.1

itemsets that needs to be removed, we need to calculate how many k-itemsets are removed (2
<k <5).

e # 2-itemsets: only the itemset {4, B} is removed

= 1 itemset

e # 3-itemsets: take all of the 1-itemsets, that can be formed with the remaining items.
These are: {C}, {D} and {E'}. Combine the itemset { A, B}, with each of these itemsets,
to form a 3-itemset. Remove the resulting three 3-itemsets.

= 3 itemsets

e # 4-itemsets: take all of the 2-itemsets, that can be formed with the remaining items.
These are: {C,D}, {C,E}, {D,E}. Combine the itemset that you want to remove
{A, B}, with each of these itemsets. This also results in 3 more itemsets, that have to
be removed.

= 3 itemsets

Chapter 3. Knowledge Constraints 31

e # 5-itemsets: take all of the 3-itemsets, that can be formed with the remaining items.
Here, this is only one: {C, D, E'}. Combine the itemset {A, B}, with this itemset. This
results in one 5-itemset, that has to be removed.

= 1 itemset

e TOTAL:1 + 3 + 3 + 1 = 8 itemsets

Next, all itemsets that contain the items C' and D are removed. We will act as if the
itemset {A, B} is not yet removed. Then the calculation of the number of itemsets that is
removed is analog to the calculation for the itemsets eliminated by removing { A, B} and thus

also 8 itemsets are being removed.

We can see the lattices with {A, B} removed and {C, D} removed in Figure 3.2(a) and
3.2(b). Note that the total number of itemsets, that is removed, is not (8 + 8) = 16, because
we have counted the itemsets {A, B,C, D} and {A, B,C, D, E'} twice. So the total number of
itemsets, that is removed, is actually 14. The lattice without the itemsets containing A and
B, and C and D, is shown in Figure 3.3.

This leads to the following formula:

(# removed by {A, B}) + (# removed by {C, D})
— (#{A, B} and {C, D} in common)
—8+8-2=14 (3.1

3.3.3 Generalization

We still suppose that every possible combination of items, is a frequent-itemset.
The total number of frequent itemsets is then represented by I, where

n

" /n n!
F% (k) Ek:! (n—k)! (3:2)

where n is the number of items. To reduce this formula, the binomial theorem is used, where

(z+y)" = f: (Z) 2Ry =k for n >0 (3.3)

k=0
So actually Formula 3.2 is the same as:
" /n n " /n
I= — = 1Mk 1 =2" 1 3.4
2 (:)-06) -2 () 00

The number of itemsets that remain, after the removal of an itemset, is represented by R.

Note that in this section, we will only discuss the ideal situation, where all of the itemsets

32

Chapter 3. Knowledge Constraints

(a) Lattice where {A, B} is removed

(b) Lattice where {C, D} is removed

%S

emo

where itemsets are r

Figure 3.2: Lattices

Chapter 3. Knowledge Constraints 33

‘sg\“(
e
ety

Figure 3.3: Lattice without itemsets containing A and B, and C and D

containing a well-known dependence will be removed. This ideal situation can be regarded as
the upper limit for all other situations, since in this situation the maximal number of frequent

itemsets is removed.

Removing 1 well-known dependence I

Suppose, that I is a 2-itemset and there are n items.

The total number of itemsets that is removed in this ideal situation, then is:

n—2 n—2 n—2 n—2
())+< 1)+())+...+<n_2) (3.5)
—_—— ——— ~— ——

a1 a9 a3 Qg

Where:

1. aq: the number of 2-itemsets that can be made with I; and the remaining n — 2 items.

I, already is a 2-itemset, so this is 1.
2. «g: the number of 3-itemsets that can be made with /; and the remaining n — 2 items.
3. as: the number of 4-itemsets that can be made with /; and the remaining n — 2 items.

4. ay: the number of n-itemsets that can be made with I; and the remaining n — 2 items.
This is also 1.

Formula 3.5 can be reduced to:

[\

n—

<” . 2) = gn2 (3.6)

k=0

Chapter 3. Knowledge Constraints 34

When I; would be a 3-itemset, we would get the following formula for the total number

of itemsets that is removed:

(e%1 (o) a3 Qy

- Tf (n ; 3> (3.7)

We can now conclude the following;:

Theorem 3.1. When removing 1 j-itemset (2 < j < n) and the number of items is n, the

number of itemsets that remain is:

R=1-2"7=29"_-2"J 1 (3.8)

Removing 2 well-known dependences [and I, with [1 N[, =2
Suppose that:

e [is an i-itemset (2 < i < n)

e [y is a j-itemset (2 < j <mn)

e 7 is the number of different items

The total number of itemsets that is removed, is then calculated by:

vt 4 9 3 (3.9)
a1 (e %)

Where:
1. «1: the number of itemsets that is removed, by removing I
2. ag: the number of itemsets that is removed, by removing Io

3. (: the number of itemsets that are removed by both I; and I5. This is what we have
seen in Section 3.3.2 by removing both {4, B} and {C, D}.

To calculate 3, we need to search the number of all itemsets that contain the (i + j)-
itemset, that is formed by Iy U Iy. If i + j > n, then there will be no itemsets that are in

common, and so § = 0.

Z;é_j (n—li—j) — 9n—i—j ifn—i1—-75>0

Chapter 3. Knowledge Constraints 35

Theorem 3.2. When removing 2 itemsets I and I, that do not contain the same items, the

number of remaining itemsets is:

R=2" —gnt _gn=i yon=i=j _ | (3.10)

Removing 2 well-known dependences [and I» with Iy N[, # &

Suppose that:

o [is a 2-itemset: {z,y}

e [y is a 2-itemset: {y,z}
Here we have to distinguish two possibilities:

1. There is no transitivity between the rules they generate

2. There is transitivity between the rules they generate

Definition 3.1. There is transitivity between 2 associations, when the first one is of the type
x — y and the association rule of the other one is of the type y — z, where the confidence of
both rules is 100%. This transitivity then means that also — z is an association rule with
a confidence of 100%.

First, suppose we can make use of this transitivity rule. This means that the association
rule generated by I is x — y and the association rule generated by I is y — z. Because
they both are well-known dependences, their association rules also both have a confidence of
100%. This means that every time there appears an z, there also is a y, and every time there
is a y, there also is a z. So whenever there appears an z, there also appears a z.

From this, we can conclude that also z — z is an association rule with a confidence of
100%, and thus the itemset {z,z} is another well-known dependence, which also has to be
removed.

We now have 3 itemsets that have to be removed: {z,y}, {y,z} and {z, z}. So the formula
appears to be:

R=1-2"2%_9on"2 _on-2 (3.11)

But by removing each of these itemsets, the itemsets that contain x, y and z are removed

too, which results in counting them 3 times instead of 1 time.

Theorem 3.3. When removing two 2-itemsets Iy and Iy that overlap and where there is
transitivity, the number of remaining itemsets is:
R = 2n—1-3.27"242.2n73
= 2"—1-3.2"" 24202
2" —2.2n72 1
= 2n—onl

(3.12)

Chapter 3. Knowledge Constraints 36

When there is no transitivity between the rules of I; and Is, so their association rules are
x —yand z — yory — x and y — z, we cannot remove the itemset {z, z}. This results in

the following theorem:

Theorem 3.4. When removing two 2-itemsets Iy and Iy that overlap and where there is no

transitivity, the number of remaining itemsets is:

R = 2"n—1—2.2n"2 4 9n=3
on —gn—l pon=3 (3.13)
anl + 2n73 -1

We discussed the APriori-KC algorithm, and see that this algorithm is really faster than
the original algorithm of APriori, because some frequent itemsets were not generated due
to the fact of containing a well-known dependence and thus would produce rules that were
useless. This speed-up would only take place, if we did not encounter the worst-case scenario,
where there would be no well-known dependences given by the user, and thus the algorithm
would act just like the original APriori.

Since FP-Growth is faster than APriori, we will apply this method of dependence elimi-

nation to FP-Growth, as we will see in the next chapter.

Chapter 4

FP-Growth-KC

4.1 The Concept

The APriori algorithm — apart from generating both redundant and well-known patterns —
is not as fast as other algorithms like FP-Growth. As we have seen in Section 2.1.2, the FP-
Growth algorithm needs less time, to accomplish the same thing as the APriori algorithm.
The authors of the algorithm claim that this is because the FP-Growth algorithm does not
generate candidate itemsets. According to [Goe02], this cannot be said, as in fact FP-Growth
generates a lot more candidate itemsets than the APriori algorithm. This is because FP-
Growth uses the same candidate generation technique as in APriori, but it just leaves out the

pruning step.

Since the well knwon FP-Growth algorithm seems to be faster than APriori, we will apply

the same technique of using knowledge constraints to this algorithm.

4.2 The Algorithm

When we discussed the APriori-KC algorithm in Section 3.3, we saw that itemsets that
represented a well-known dependence, were removed in the pruning step of the algorithm.
But when we want to apply the same method of dependence removal to FP-Growth, it is
impossible to do this in the same way as there is no pruning step in the FP-Growth algorithm.

Thus we need to check the presence of well-known dependence elsewhere in the algorithm.

As FP-Growth also uses a candidate generation technique (with the building of conditional
FP-trees), it would be logical to insert a test for well-known dependences during this step.
This means that the algorithm would look like Listing 4.1. In this algorithm, ® is the set of

well-known dependences, which are the knowledge constraints.

37

© 00 N O Ot = W NN

e T = T S =Sy
S TR W NN = O

Chapter 4. FP-Growth-KC 38

Listing 4.1: FP-Growth-KC(T'ree; a)

if (Tree contains a single path P)
for each combination § of the nodes in P
if (f contains no dependence of @)
generate pattern fUa with support
= minimum support of nodes in §;
else
for each a; in the header of Tree{

8 =a;Ua with support = a;.support;
Treeg = conditional FP-tree of f;
for each node b; in Treeg

if(bjUpB contains dependence of @)
remove b; from Treeg;
if (Treeg exists)
call FP—Growth-KC(Trees,f);

As you can see, this algorithm does not differ very hard from the original FP-Growth
algorithm. Line 3 and Line 10 to 12 in Listings 4.1 are the only lines that were added,
to make sure that no well-known dependences would appear amongst the found frequent

itemsets.

When the tree is not a single path, we need to build a conditional FP-tree for every
8 = a; U, where a; is a node in the header of the tree. In the original FP-Growth algorithm,
we will prune 8 and the nodes that do not reach minimum support, during the building of this
conditional FP-tree for 3. As the frequent itemsets will be deduced from these conditional FP-
trees, we will prune this tree further to make sure the well-known dependences are removed.
We will therefore check for every node b; in the conditional FP-tree of 3 if b; U 8 produces
any of the well-known dependences of ®. Since these nodes are then useless, because they
only lead to frequent itemsets with well-known dependences and thus also to non-interesting
association rules, we can remove them from the tree. This results in a conditional FP-tree,

that will only give us the interesting frequent itemsets.

When we have a tree, that contains only one single path, it is not possible to prune well-
known dependences from this tree, as it still has to be possible to combine the different items

of the dependence with the other items. Thus when we would prune this tree, this would

Chapter 4. FP-Growth-KC 39

null

:e

C: 8

Ad

Figure 4.1: Singlepath tree

result in a tree where too many nodes were removed and thus not all of the — still interesting
— frequent itemsets could be found.

This can be easily understood with the following example. Assume we have a tree like
the tree in Figure 4.1 and that {A,B} is the dependence and that all items in this tree reach
minimum support. When we would remove A and B from the tree, the only frequent itemsets
that would be found are {C'}, {D} and {C,D}. But these itemsets are not the only ones that
are frequent: also {A}, {B}, {A,C}{B,C}, {A,D} {B,D}, {A,C,D}{B,C,D} are frequent.
Therefore we cannot prune a singlepath tree. When we combine the items (as in the original
FP-Growth algorithm), we must then check if this combination does not contain a dependence

of ®. Only then it is found to be a frequent itemset.

4.3 Example

To illustrate how the new algorithm is working, we will show the use of it on an example.
For this, we use the transactional database shown in Table 4.1. This represents tests that
were performed on the small amount of 10 persons in a city, according to their characteristics:
the gender, haircolour and whether they are pregnant or not. To represent these character-
istics, we use the attributes Female, Blond and Pregnant. The value ‘yes’ for a particular
e

characteristic, means that the person in question has this feature. Contrary, the value ‘-

means that the person in question does not have this characteristic.

Chapter 4. FP-Growth-KC 40

PersonID | Female Blond Pregnant
1 - yes -
2 yes - -
3 yes - yes
4 yes yes yes
5 . - i,
6 - yes -
7 yes yes yes
8 yes - yes
9 - yes -
10 yes - -

Table 4.1: Dataset example of a city

First we will construct the FP-tree of this dataset, according to the algorithm shown in
Section 2.1.2. Assuming a minimum support count of 1, we will get the FP-tree that is shown

in Figure 4.2.

null
blond: 3 female: 6
\ \
\
\
\ /
\
\
\ pregnant: 2 e blond: 2
\\\ ’:Z« - - l
A

pregnant: 1

Figure 4.2: FP-tree of the transactions in Table 4.1

When we use this FP-tree as input for the original FP-Growth algorithm, we find the
frequent itemsets listed in Table 4.2.

When deducing the association rules from these frequent itemsets — supposing a minimum
confidence of 10% — we get 12 rules in total — listed in Table 4.3 — amongst which are the

rules pregnant — female and blond A pregnant — female. As is very logical, both of these

Chapter 4. FP-Growth-KC 41

k | Frequent itemsets

1 | {female}, {blond}, {pregnant}

2 | {female, pregnant}, {blond, pregnant}, {female, blond}
3

{female, blond, pregnant}

Table 4.2: Frequent itemsets found by applying the FP-Growth algorithm to the FP-tree in
Figure 4.2

rules will have a confidence of 100% since every pregnant person is female and it does not

matter whether this pregnant person’s hair colour is blond or not.

k | Association Rules Confidence
pregnant — female 100%
blond — female 40%
female — blond 33%
pregnant — blond 33%
blond — pregnant 20%
female — pregnant 50%

3 | blond A pregnant — female 100%
female A pregnant — blond 33%
blond A female — pregnant 50%
pregnant — blond A\ female 33%
female — blond A pregnant 17%
blond — female N pregnant 20%

Table 4.3: Association rules deduced from the frequent itemsets in Table 4.2

Since it is very evident that every pregnant person is female, this is a well-known depen-
dence and it can be removed to avoid non-interesting rules.

We will start over again with the same FP-tree, but this time we will use the FP-Growth-
KC algorithm instead. Like in the original FP-Growth algorithm, we will first look for frequent
itemsets ending in pregnant, than those ending in blond and finally the ones that end in female.

First taking the prefix paths of pregnant, we can see that {pregnant} itself has a support
of 3 and thus is frequent itself. Converting the prefix paths into the conditional FP-tree of

pregnant, we get the tree in Figure 4.3.

Chapter 4. FP-Growth-KC 42

null

female: 3

blond: 1

Figure 4.3: Conditional FP-tree of pregnant

We already know that the appearance of the node with label “female: 87, will cause
the normal FP-Growth algorithm to produce the frequent itemsets { female, pregnant} and
{female, blond, pregnant}, which at their turn will lead to non-interesting rules. Therefore
the node with label “female: 3” will be removed from the tree. As the items blond and
pregnant do not form a well-known dependence together, the node with label “blond: 1”7 will
not be removed. The algorithm now goes on with the pruned conditional FP-tree of pregnant.
Since this is only one single path, the only extra frequent itemset that is found, is the itemset

{blond, pregnant} with a support count of 1.

We will now look for the frequent itemsets ending in blond. As there are no dependences
which involve being blond, the FP-Growth-KC algorithm will continue like the original FP-
Growth algorithm.

At last, we will continue to search the frequent itemsets ending in female. As this item
has a support count of 3, we can count the itemset { female} to the frequent itemsets. Since
the conditional FP-tree of this item does not exist (only the root with label null, no further
items), we can say there are no further frequent itemsets to be found and the FP-Growth-KC
algorithm has finished. The frequent itemsets are listed in Table 4.4. When we deduce the
association rules from these frequent itemsets (again with a minimum confidence of 10%), we
get those in Table 4.5.

4.4 Rule recovery

4.4.1 Problem

In the example in the previous section, we found that there are no more non-interesting rules

generated, due to applying the FP-Growth-KC algorithm. But when we compare the rules

Chapter 4. FP-Growth-KC 43

k | Frequent itemsets
{female}, {blond}, {pregnant}
2 | {blond, pregnant}, {female, blond}

Table 4.4: Frequent itemsets found by applying the FP-Growth-KC algorithm to the FP-

tree in Figure 4.2

Association Rules | Confidence
blond — female 40%
female — blond 33%
pregnant — blond 33%
blond — pregnant 20%

Table 4.5: Association rules deduced from the frequent itemsets in Table 4.4

generated after FP-Growth (Table 4.3) and those generated after FP-Growth-KC (Table 4.5),
we see that not only the non-interesting rules are gone: also some interesting rules are not

generated anymore, because of the removal of the well-known dependence.

The cause of this can be found in the fact that by removing a well-known dependence
{A, B}, because A — B with 100% confidence is logical, every single itemset that contains
both of these items is removed. Though, it is still possible that the rule B — A has less
than 100% confidence and thus cannot be called well-known. We can see this in the example
where the rule pregnant — female is very obvious and has a confidence of 100%. The rule
female — pregnant only has a confidence of 50%, since it would be rather a coincidence if
all females in a city would be pregnant. But the latter is not generated, because all frequent
itemsets that contain both the items pregnant and female are removed. Other interesting

rules that are not generated after applying FP-Growth-KC are:
e blond A female — pregnant

e female — blond A pregnant

4.4.2 Solution

To overcome this problem, we will try to recover the interesting rules that were lost.
We already know that the rule A — B has a confidence of 100%, because {A, B} is a
well-known dependence. Therefore recovering rules like AC — B or A — BC' is unnecessary,

as these still express obvious facts.

Chapter 4. FP-Growth-KC 44
Theorem 4.1. When a rule A — B has a confidence of 100%, the rule AC — B also has a
confidence of 100%.

Proof. The association rule A — B has a confidence of 100%, which means that the support
of the itemset {A, B} is the same as the support of {A}. When we want to calculate the
confidence of the rule AC' — B, we get:

=1

_ gy Swp({A B, C}) _ supp({A, C})
conf(A0 = B) = = oo ((A,0)) — supp({A.C})

Thus the confidence of the rule AC' — B is 100% and the theorem is proven. O

Theorem 4.2. When a rule A — B has a confidence of 100%, then the rule A — BC has a
confidence that is equal to the confidence of the rule A — C.

Proof. The association rule A — B has a confidence of 100%, which means that the support
of the itemset {A, B} is the same as the support of {A}. We will denote the confidence of
the rule A — C with ¢, with 0% < ¢ < 100%.

The confidence of the rule A — BC then is calculated as follows:

CO?’Lf(A _ BC) _ supp({A,B,C}) _ Supp({A, C}) —

supp({A}) supp({A})

O

So we can conclude that recovering rules that have A in the antecedent and B in the

consequent will not give us new information and thus is not necessary.

But since the rule B — A is not a well-known dependence and thus has a confidence less
than or equal to 100%, it is necessary to recover those rules that have B in the antecedent
and A in the consequent. This rule recovery takes place during the normal generation of the

association rules. Why this is not afterwards will be explained later on.

First, before the rule generation, we will recover the rules that are the reverse of the
well-known dependences. Therefore, we will scan the well-known dependences and generate
the rule B — A (which is the reverse of A — B with a confidence of 100%). Then we will
check if this rule reaches minimum confidence and if so, we will keep it. Otherwise, it will be

removed.

The next step is the generation of the association rules from the found frequent itemsets.
Since only rules with B in the antecedent and A in the consequent could possibly be inter-
esting, we will try to recover those rules. During the generation of the rules, we will check
for every rule (no matter what its confidence is) if it has B in the antecedent or A in the

consequent. If it has B in the antecedent, we will add A to the consequent; if it has A in

Chapter 4. FP-Growth-KC 45

the consequent, B will be added to the antecedent. When we have done so, the confidence of
the new rule BC — AD needs to be calculated. Hereby we need to distinguish two different

situations:

1. The rule was recovered from the rule C — AD:

When we calculate the confidence of the rule C — AD, we get that

supp({4, C, D})
supp({C})

The confidence of the new rule can then be calculated as follows:

supp({4, B, C, D}) _ supp({4, C, D})
supp({C}) supp({B,C})

conf(C — AD) =

conf(BC — AD) =

To get the support of the itemset {B, C'}, we need to scan the frequent itemsets to find
this itemset. But for the support for the itemset supp({A, C, D}, we do not need to do
this since it equals conf(C — AD) x supp({C'}), which were both calculated already.

2. The rule was recovered from the rule BC — D:

supp({B,C, D})
supp({B,C})
supp({A, B,C, D}) _ supp({A,C, D})
supp({B,C}) supp({B,C})

Since we already have the support of the itemset {B,C}, we only need to scan the

conf(BC — D) =

conf(BC — AD) =

frequent itemsets once to find the support of {A, C, D}.

This rule recovery takes places during the process of the rule generation and not with the
rules that were generated after the rule generation finished. This is done because otherwise
it is not possible to recover all of the rules. Suppose we have the dataset of Table 4.1 and
we use a minimum confidence of 30%. If we executed FP-Growth-KC and first generated the
rules (without the recovery), we would get the rules summarized in Table 4.6(a). When we
would then try to recover all of the rules that have female in the antecedent and pregnant
in the consequent, we would get the association rules shown in Table 4.6(b). But as we have

seen before in Table 4.3 also the rule
blond N female — pregnant

can be called an interesting rule and it has a confidence of 50% but it is not recovered.

Normally this rule can only be recovered from the association rule

blond — pregnant

Chapter 4. FP-Growth-KC 46

but since this rule only has a confidence of 20% — and thus is not generated — the association
rule

blond N female — pregnant

cannot be recovered. Therefore the rule recovery should take place during the rule generation.

Table 4.6: Association rules deduced from the frequent itemsets in Table 4.2 after executing
FP-Growth-KC

(a) Before rule recovery

Association Rules | Confidence
blond — female 40%
female — blond 33%
pregnant — blond 33%

(b) After rule recovery

Association Rules Confidence
blond — female 40%
female — blond 33%
pregnant — blond 33%
female — pregnant 50%

The new algorithm FP-Growth-KC with rule recovery can be called equivalent to FP-
Growth where the rules are pruned afterwards. We will not give a formal proof of this, but
explain why this is so. To make it a little easier to follow, we will call FP-Growth where the
rules are pruned afterwards Method 1 and FP-Growth-KC with rule recovery Method 2.

When A — B is the uninteresting rule that may not be generated, then Method 1 will
prune all of the rules that have A in the antecedent and B in the consequent. The rules that
have B in the antecedent and A in the consequent will not be touched.

Method 2 does not generate any rule that has A in the antecedent and B in the consequent.
The rules with B in the antecedent and A in the consequent are in the normal FP-Growth-KC
method (without rule recovery) not generated no such frequent itemset exists where A and
B appear together. Therefore we will test during the rule generation for rules that have B
in the antecedent or A in the consequent, which makes it possible to recover all of the rules

with B in the antecedent and A in the consequent that would otherwise be lost.

Chapter 5
Implementation in Weka

In this chapter, we present Weka-KC, which extends the data mining toolkit Weka 3.5.5
[WF05] with the option to use knowledge constraints while mining the data. Weka is a free
and open source data mining toolkit that allows the user to perform the whole KDD process
by providing friendly and clear graphical user interfaces. The application implements several
widely used data mining algorithms for classification, clustering and association rule mining.
The main objective of Weka-KC is to provide a tool for using knowledge constraints in order

to reduce time and effort while mining the data.

The prototype that is presented in this chapter provides changes to the standard APriori
algorithm, whereas it will be possible to use knowledge constraints. Also the FP-Growth
algorithm was implemented, as well as FP-Growth-KC and the method to recover the rules
that was explained in Section 4.4. For testing purposes, also the APriori and FP-Growth

algorithm where the pruning happens afterwards, were implemented in Weka-KC.

Weka is fully implemented in Java and has a preprocessing module named weka.Explorer
to read the data that have to be mined. The GUI of this module is shown in Figure 5.1. At
this interface, the user can choose the data to be mined, by opening an arff file (the standard
input file format for Weka), a website or a database. An arff file consists of two sections (in

the order that they are mentioned):

1. Header section: this section contains the name of the relation and the names of the

attributes, together with their types.
2. Data section: this section contains the data instances

An example of an arff file is shown in Figure 5.2.

47

Chapter 5. Implementation in Weka

Weka Explorer

—}—Pr:pmss—{ Classify ' Cluster ' Associate ' Select attributes ' Visualize i

{ Open file... b R ¢ Open URL... 3 € Open DB...)€ Undo L E o Save... b
~Filter
[Choose ‘.|Nnne [Apply)
~Current relation ~Selected attribute
Relation: iris Name: sepallength Type: Numeric
Instances: 150 Attributes: 5 Missing: 0 (0%) Distinct: 35 Unique: 9 (6%)
— —— ———————————
..... Noo T Name || Minimum 43
1sepallength Maximum 7.9
2 sepalwidth Mean 5.843
3 petallength StdDev 0.828
4 petalwidth
5class
(= ™ I ST TSR |
Colour: class (Nom) F+) (Visualize Al

Status
’7 OK

Figure 5.1: Weka Explorer GUI

@attribute
O@attribute
@attribute
O@attribute
@attribute

Q@data

Q@relation weather.symbolic

sunny,hot ,high,FALSE,no
sunny,hot ,high,TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,
rainy,cool,

rainy,cool,

outlook sunny, overcast, rainy
temperature hot, mild, cool
humidity high, normal

windy TRUE, FALSE

play yes, no

high,FALSE, yes
normal ,FALSE, yes

normal,TRUE,no

Figure 5.2: Example of an arff file

48

Chapter 5. Implementation in Weka 49

5.1 Format of the dependences

As said before, we only work with dependences that contain 2 items, in other words with
itemsets of the form {A, B}.

For the algorithms to use these dependences, we put them in a text file in the following
format:
{attributel = attrValuel, attribute2 = attrValue2}

where attributel is the item in the antecedent of the dependence and attrValuel its value and

attribute2 the item in the consequent of the dependence with value attrValue2.

Note that the order of the items between the bracelets really does make a difference since
attributel = attrValuel — attribute2 = attrValue2 is the rule that has a confidence of 100%

and not attribute2 = attrValue2 — attributel = attrValuel !

5.2 Implementation of APriori-based methods

Because there was already an implementation of APriori present in the current version of
Weka, we had to give our implementation of APriori another name: APrioriModified. This

version has several options that are shown in Figure 5.3:
algoType The type of APriori-based algorithm you want to run:

e APriori: the original APriori algorithm

e APriori-KC: the APriori algorithm with the elimination of dependences a priori,

during the frequent itemset generation

e APriori-prune: the APriori algorithm where all of the rules are generated and those

that contain a dependence are removed afterwards
buildRules If the association rules have to be generated or not
dependences The file that contains the dependences, formatted like in Section 5.1
minConfidence The minimum confidence

minSupport The minimum support

Chapter 5. Implementation in Weka 50

5.3 Implementation of FP-Growth-based methods

Beside the APriori-based algorithm, we also implemented FP-Growth and its derivatives, that
are summarized in the description of the options. The options of the FP-Growth algorithm
in Weka-KC can be found in Figure 5.4:

algoType The type of FP-Growth-based algorithm you want to run:

e FP-Growth: the original FP-Growth algorithm
o FP-Growth-KC: the FP-Growth algorithm with the elimination of dependences,

during the frequent itemset generation

e FP-Growth-KC with recovery: the same algorithm as FP-Growth-KC, except that

the lost association rules are recovered

e FP-Growth-prune: the FP-Growth algorithm where all of the rules are generated

and those that contain a dependence are removed after the rule generation
buildRules If the association rules have to be generated or not
dependences The file that contains the dependences, formatted like in Section 5.1
minConfidence The minimum confidence
minSupport The minimum support

showFPTree If the FP-tree needs to be printed with the results. When you chose to print
the FP-tree, you can find a tree like in Figure 5.5.

With this extended version of Weka, we can now do experiments with our newly developed

algorithms. The results of these experiments are summarized in the next chapter.

Chapter 5. Implementation in Weka

806 weka.gui.GenericObjectEditor
settext-classname weka.associations.APrioriModified
About

Class implementing an APriori-type algorithm.
Capabilities

algoType " Apriori

%1
'%!

buildRules | True

dependences |weka |

minConfidence 0.5

minSupport 0.5

(Open...) (Save...) (oK) (Cancel \/

2

Figure 5.3: APriori

006 weka.gui.GenericObjectEditor
settext-classname weka.associations.FPGrowth
About

Class implementing the FP-Growth algorithm.
Capabilities

algoType FP-Growth

buildRules | True

%!
B

dependences Iﬁka |

minConfidence 0.5

minSupport 0.5

showFPTree | False 4

(Open...)C Save...)(oK)C Cancel |

#

Figure 5.4: FP-Growth

Chapter 5. Implementation in Weka

Weka Explorer

(

rPreprocess Classify ~ Cluster Associate Select attributes

. —
Visualize

rAssociator

("Choose) FPGrowth 5 0.65 -C 0.5 -T 0 -E

rResult list (right-click fo

17:05:25 - FPGrowth
17:05:54 - FPGrowth
17:06:17 - FPGrowth
17:06:56 - FPGrowth
17:07:36 - FPGrowth

~Associator output

habitat
=== Asgociator model (full training set) ===

Minimum support: 0.65 (5281 transactions)
Minimum confidence: 0.5

Item: ROOT Support: 0
|__ Item: veil-type=p Support: 8124
|__ Item: veil-color=w Support: 7924
|__ Item: gill-attachment=f Support: 7906
_ Ttem: ring-number=c Support: 7288

|__ Item: gill-spacing=c Support: 6272
|__ Item: gill-size=b Support: 4016

|__ Item: gill-size=b Support: 768
|_ Item: gill-spacing=c Support: 330
|__ Item: gill-size=b Support: 330
|__ Item: gill-size=b Support: 288
|__ Item: gill-spacing=c Support: 18
| |_ Item: gill-size=b Support: 18
__ Item: ring-number=oc Support: 192
|__ Item: gill-spacing=c Support: 192
|__ Item: gill-size=b Support: 192
|__ Item: gill-attachment=f Support: 8
|__ Item: ring-number=c Support: 8

{?1 gj.:!.}-attachmep!:ff gill_-sj_zeﬂ? 5115)2

»

C

Status
OK

Figure 5.5: FP-tree

Log

52

Chapter 6
Experiments and Evaluation

In this chapter we present many experiments that were done with Weka-KC, described in
Chapter 5, in order to evaluate and validate the newly developed data mining methods. For

this tests, we used two different datasets:

1. Mushroom dataset!: this dataset contains 22 different attributes and 8124 instances.
Every tuple describes the characteristics of one single mushroom. The dependences
were chosen randomly. We ran the original FP-Growth method on this dataset and
took 2-frequent rules that had a confidence of 100%.

2. Geographic dataset: this dataset contains 15 attributes and 514 instances. This dataset

was also used in 3.3.

In every experiment, we use a number of different minimum supports, as well as a number

of different well-known dependences.

6.1 Experiments with the Mushroom dataset

In this section we evaluate APriori-KC and FP-Growth-KC for the Mushroom dataset. We
used a minimum confidence of 50% in each experiment. The experiments that are described
in this section, were all performed with a PowerPC G4, 1.42 GHz, with 512 MB of RAM
memory and Mac OSX 10.4 as operating system.

6.1.1 Evaluating APriori-KC and FP-Growth-KC for single dependence

elimination

The first experiment that we performed was to run both algorithms on the Mushroom dataset

where only one pair of dependences had to be removed.

"http://www.cs.umb.edu/ rickb/files/UCT/mushroom.arff

53

Chapter 6. Experiments and Evaluation 54

Frequent Pattemns with Dependences Computational Time for Generating Frequent Sets
M ALton 500 n —m— APriori
FP-Growth
500, 479478 M PR Crow 450 4 \ APriori-KC (1 pair of dependences)
450 [APricri-KC (1 pair of dependences) 400
AN FP-Grow th

400 [CIFP-Grow th-KC (1 pair of dependences) 350 4 h
@ 4 — 300 4 —#*— FP-Grow th-KC (1 pair of dependences)
2 580 27879 % \
S 3004 © 250 - R
£ E
%. 2501 F 200
S 200 150 1

1504 100 4 n

100 50 4 -

n
ol 0 ‘ . .
0+ o, 7 o, o,
0% 45% 50% 30% 40..&:. 45% 50%
Minimum Support Minimum Support
(a) Frequent sets (b) Computational time for generating the frequent
sets

Figure 6.1: Generation of the frequent sets

Figures 6.1 and 6.2 show the result of this experiment. In Figure 6.1(a), you can see
the number of frequent itemsets. It is clear that APriori and FP-Growth generate the same
frequent itemsets. Here we can also see that — by the elimination of one dependence — APriori-
KC and FP-Growth-KC both remove the same frequent sets and thus we see that they both
generate the same frequent itemsets. The graphic also shows that the number of original

frequent itemsets is reduced in almost 20%, only by removing one single dependence.

Figure 6.1(b) shows the time that is necessary to generate the frequent itemsets for the
different methods. The times for both APriori and APriori-KC and for FP-Growth and FP-
Growth-KC almost overlap here. This is because the higher the support becomes, the lower
the number of itemsets that has to be removed and thus the closer their computational times

will lay to each other.

In Figure 6.2, we see the results for generating the association rules. Here we compared
4 different methods: the original APriori method, APriori-KC with removing 1 dependence,
the original FP-Growth method and FP-Growth-KC with rule recovery for removing 1 depen-
dence. We did this to show that the FP-Growth-KC algorithm, with or without rule recovery,
indeed is faster than APriori and APriori-KC. In Figure 6.2(a) we give an overview of the
number of association rules that are generated. We did not put the number of association
rules generated by the FP-Growth method in the graph, as these association rules are exactly

the same as those generated by APriori.

What we can see in this graph is that almost 34% of the association rules that are generated
by APriori (with a minimum confidence of 50%), are not generated by APriori-KC when

removing one dependence and this for all different values of minimum support. But when we

Chapter 6. Experiments and Evaluation 55

Association Rules Computational Time for Generating Association Rules
B APriori 00 —e— APriori
.000 @ FP-Grow th-KC w ith recovery (1 pair of —— APriori-KC (1 pair of dependences)
. 5018 dependences) 500 4
5,000 I APrior-KC (1 pair of dependences) FRCowin
" 400 1 FP-Grow th-KC w ith recovery (1 pair of
2 i dependences)
2 C
< g 300
5 R
o
3 200 —
<
100 A
3
0 T T
0% 45% 50% 40% 45% 50%
Minimum Support Minimum Support
(a) Association rules (b) Computational time for generating the associa-
tion rules

Figure 6.2: Generation of the association rules

look at the FP-Growth-KC method with the recovery, we can see that a lot of association
rules were lost with just applying the APriori-KC method, as a lot of rules are recovered in
the FP-Growth-KC method. When we look at the computational time for generating these
association rules in Figure 6.2(b), it becomes clear that the APriori-KC method is faster than
the original APriori, something we already knew. But another thing that becomes visible
when looking at the graph is that not only FP-Growth-KC is faster than APriori-KC, but
also the FP-Growth-KC method with the rule recovery.

6.1.2 Evaluating APriori-KC and FP-Growth-KC for the elimination of 2

dependences

The second experiment that was performed, was comparing the methods as we removed 2

pairs of dependences.

In Figure 6.3(a) we can see the number of frequent itemsets that were generated by
the different methods. As you can see, APriori-KC and FP-Growth-KC still remove the same
frequent itemsets, so they will give the same result for the generation of the frequent itemsets.

The frequent itemsets are reduced by approximately 36% for every different value of minSupp.

The computational time for generating these frequent itemsets is shown in Figure 6.3(b).
Here we can see that there is a bigger difference in time between APriori and APriori-KC
than in Figure 6.1(b), but that this is not true for FP-Growth and FP-Growth-KC. The
difference between APriori and APriori-KC is so big, because none of the frequent itemsets
that contains a dependence is generated in the latter method. However, with FP-Growth-KC
still all of the frequent itemsets are collected by building the FP-tree in the beginning. The

Chapter 6. FExperiments and Evaluation 56

Frequent Patterns with Dependences Computational Time for Generating Frequent Sets
o 100 —e— APriori
FP-Grow th
soo, 42 A . o 90 4 —m— APriori-KC (2 pairs of dependences)
450 [APricri-KC (2 pairs of dependences) &80 4
FP-Grow th

400+ [CIFP-Grow th-KC (2 pairs of dependences) 70 4
w 3504 - 60 .‘\\ FP-Grow th-KC (2 pairs of dependences)
3 T e

300] , .
& E 50 .
% 2504 40
g 2004 30 8

150 20 SR

100 RE . |

ol 0 : :
N a, o, a,
40% GEE " 40% ” 45% 50%
Minimum Support Minimum Support
(a) Frequent sets (b) Computational time for generating the frequent

sets

Figure 6.3: Generation of the frequent sets

Association Rules Computational Time for Generating Association Rules
W APriori o i
6,000 [E FP-Grow th-KC with recovery (2 pairs of —— APrior-KC (2 pairs of dependences)
: 5.018 dependences) 500
5.000 W APrior-KC (2 pairs of dependences) i Gowh
" 400 + FP-Grow th-KC w ith recovery (2 pairs of
a3 P dependences)
2 =
< g 300
5 E
H 200
@
=, [.
100 |
———
0
40% 45% 50% 40% 45% 50%
Minimum Support Minimum Support
(a) Association rules (b) Computational time for generating the associa-
tion rules

Figure 6.4: Generation of the association rules

pruning only starts when we make the different conditional FP-trees. But the beginning of
FP-Growth and FP-Growth-KC is the same, as they both generate the same FP-tree, so there

is not much difference in time between the two methods.

Figure 6.4 shows us the results for the generation of the association rules. Because more
dependences are removed, the number of association rules will also be lower than the ones in
Figure 6.2(a). We can also see here that — as with removing a single dependence — a lot of
rules are lost with APriori-KC. Those rules are then recovered by the FP-Growth-KC method.
Also the computational time is the best for the FP-Growth-KC method that puts back the
rules, just like in Figure 6.2(b).

Chapter 6. Experiments and Evaluation o7

Computational Time
300 - FP-Grow th {pruning afterw ards)

—&— FP-Grow th-KC+recovery (1 pair of
250 dependences)
—4— FP-Grow th-KC+recovery (3 pairs of
dependences)
FP-Grow th-KC+recovery (5 pairs of
A dependences)

200 4

Time(s)
=
o
(=]

100
50 \‘\\;

40% 45% 50%
Minimum Support

Figure 6.5: Computational time for rule recovery with FP-Growth-KC

6.1.3 Evaluating performance of rule recovery with FP-Growth-KC

The following experiment was to evaluate the rule recovery with FP-Growth-KC. For this,
we ran the original FP-Growth method and pruned the rules aposteriori. This means that
we first generated all of the rules and after that just removed those that contained a depen-
dence. Beside that, we also ran the FP-Growth-KC method for the elimination of 1 pair of

dependences, 3 pairs and 5 pairs.

The result of this experiment is shown in Figure 6.5. The FP-Growth method is shown
only once here, because the time for removing dependences stays the same whether there
are 3 or 5. This can be explained by the fact that we always have to scan the whole set of
association and just remove those that contain a dependence. In this graph we can see that
the rule recovery may take some more time than just executing the normal FP-Growth-KC

method, but it is still faster than the standard method of pruning the rules aposteriori.

6.1.4 Evaluating FP-Growth with pruning afterwards and FP-Growth-KC

with rule recovery

The last experiment was to compare the results (the association rules that were generated)
from the FP-Growth algorithm that prunes the rules aposteriori to the results of the FP-
Growth-KC algorithm with rule recovery. In contrast to the other experiments, we took a

minimum confidence of 90% instead of 50%.

The results of this experiment can be observed in the graphs in Figure 6.6. The graph in
Figure 6.6(a) illustrates the number of association rules that were generated by pruning the
rules afterwards. As can be seen, the graph in Figure 6.6(b) shows exactly the same number

of association rules, which means that they both produce the same association rules. The

Chapter 6. FExperiments and Evaluation 58

Association Rules Generated with FP-Growth with Pruning Afterwards

OFP-Growth-prune (1 pair):
5-frequent rules

OFP-Growth-prune {1 pair):
4-frequent rules

EFP-Growth-prune (1 pair):
3-frequent rules

Aszsociation Rules

W FP-Growth-prune (1 pair):
2-frequent rules

60% 70% 80%
Minimum Support

(a) FP-Growth with pruning afterwards

Assaciation Rules Generated with FP-Growth-KC + Rule Recovery

OFP-Growth-KC +rec {1
pair): 5-frequent rules

OFP-Growth-KC +rec (1
pair): 4-frequent rules

EFP-Growth-KC +rec (1
pair): 3-frequent rules

Azsociation Rules

W FP-Growth-KC +rec (1
pair): 2-frequent rules

60% 70% B80%
Minimum Support

(b) FP-Growth-KC with rule recovery

Figure 6.6: Generation of the association rules

only difference is that the rule recovery is much faster than pruning the rules afterwards, as

we have already shown in Figure 6.5.

6.2 Experiments with the Geographic dataset

In this section we compare APriori-KC and FP-Growth-KC for the Geographic dataset. We
used a minimum confidence of 90% in each experiment. The experiments that are described
in this section, were all performed with a Genuine Intel CPU T2400, 1.83 GHz, with 1 GB
of RAM memory and Windows XP as operating system, because the Geographic dataset was

available on this machine.

Chapter 6. FExperiments and Evaluation 59

Frequent Sets

EFP-Growth
815 W FP-Growth-KC (1 pair)
EFP-Growth-KC (2 pairs)

BO0
7004
£ 600
@
= 500
% 400
& 3004
2004
1004
10% 15% 20%
Minimum Support

Figure 6.7: Frequent sets for the Geographic dataset

6.2.1 Evaluating the frequent set generation of the FP-Growth-KC method

In the first experiment with the Geographic dataset, we will check the efficiency of the frequent
set generation for the FP-Growth-KC algorithm. Herefore, we executed the original FP-
Growth algorithm and the FP-Growth-KC algorithm. The latter was executed for eliminating
a single pair of dependences and for 2 pairs of dependences. As a minimum support, we took
10%, 15% and 20% instead of the 40%, 45% and 50% with the Mushroom dataset.

The total number of frequent itemsets that was generated by the algorithm can be found
in the graph in Figure 6.7. This shows us that the removal of one dependence does not reduce
the total number of frequent itemsets that much, in comparison with the original FP-Growth
algorithm. On the other hand, removing 2 pairs of dependences makes a big difference in
this case, because it reduces the total number of frequent itemsets by almost 20% for every

different value of minimum support.

When we look at the time that was needed to accomplish the task of generating frequent
itemsets in Figure 6.8(a), we see that the more dependences that are removed, the less time
is needed to find the frequent itemsets. When we would try to do the same experiment but
with the APriori-based methods, we would get the performance graph in Figure 6.8(b). The
APriori-based methods to remove dependences thus need much more time to find the frequent

itemsets.

6.2.2 Evaluating the rule generation and rule recovery of the FP-Growth-
KC method

The next experiment is to compare the generation of association rules for the original FP-
Growth method and the FP-Growth-KC method with rule recovery, one time with a single

dependence elimination, another time with 2 pairs.

Chapter 6. Experiments and Evaluation 60

Computational Time Computational Time
2. 300 4 —m— Apriori
—m— FP-Growth 250 —e— Apriori-KC (1 pair}
iori-KC (2 pai
—e— FP-Growth-KC (1 pair) el S5 APIOEG @ pairs)
o —+— FP-Growth-KC (2 pairs) w
o
g 2 1501
= =
100
50 4
0 T T] 0 T T
10% 15% 20% 10% 15% 20%
Minimum Support Minimum Support
(a) FP-Growth vs. FP-Growth-KC (b) APriori vs. APriori-KC

Figure 6.8: Computational time for generating the frequent sets of the geographic dataset
for the APriori-based methods and the FP-Growth-based methods

Association Rules with Rule Recovery Computational Time
M FP-Growth 250 4 —m— FP-Growth

EFP-Growth-KC (1 pair with

—e— FP-Growth-KC (1 pair with

rule recovery)
EFP-Growth-KC (2 pairs with rule recovery)
rule recovery) 150 —e— FP-Growth-KC (2 pairs with

rule recovery)

Freguent sets

10% 15% 20% 10%
Minimum Support

15% 20%
Minimum Support

(a) Association rules (b) Computational time

Figure 6.9: Association rule generation for the FP-Growth-based methods on the Geo-

graphic dataset

In the graph of Figure 6.9(a) we can see the number of association rules that were generated
after the frequent itemsets were found. Figure 6.9(b) shows us the time that the algorithms
needed to generate the association rules. The FP-Growth-KC with rule recovery comes out
best most of the times, though when the support becomes higher, recovering from a single
dependence elimination becomes slower than the FP-Growth algorithm.

Comparing the rule generation of APriori-KC and FP-Growth-KC with rule recovery for
the elimination of 2 pairs of dependences, gives us the results in Figure 6.10. The elimination
of two dependences shows that APriori-KC is more efficient that FP-Growth-KC (see Figure
6.10(b)). However, we may not forget that Apriori-KC does not recover the association rules.
As we can observe in Figure 6.10(a), FP-Growth-KC recovers about 20% of the rules that

were not, generated by Apriori-KC, for any value of minimum support.

Chapter 6. FExperiments and Evaluation

Association Rules with Rule Recovery
W FP-Growth-KC (2 pairs with

rule recovery)
2500 vl OAPriori-KC (2 pairs)
1.770
: 2,000 —
1.252
2 1500 1.018
3
2 1000 8
£
10% 15% 20%
Minimum Support

(a) Association rules

Time(s)

Computational Time
—m—FP-Growth

—+— FP-Growth-KC (2 pairs with rule
recovery)
Apriori-KC (2 pairs)

—e—FP-Growth (pruning 2 pairs
afterwards)

10% 15% 20%
Minimum Support

(b) Computational time

Figure 6.10: Association rules for APriori-KC and FP-Growth-KC with rule recovery

Chapter 7

Conclusions

In this thesis we mainly considered the problem of mining only interesting rules, because there
are rules that are known a priori to be uninteresting and that thus will only hinder the data

mining process.

We saw that there already existed a method, named APriori-KC [Bog06], to overcome
this problem. It removed the itemsets that contained a dependence, what made that none of
the frequent itemsets contained a dependence and thus no non-interesting association rules
were generated. Since the FP-Growth algorithm was known to have a better performance

than APriori, we applied the same idea of knowledge constraints to this algorithm.

Nevertheless, the new algorithm FP-Growth-KC, just like APriori-KC, still contained a
problem. Though they avoided that non-interesting rules were generated, also some interest-
ing rules were not generated through the elimination of the dependences. For this problem,

we showed that it was possible to recover all of these rules.

This newly developed method has some general advantages: less frequent itemsets and
association rules are generated than with the original algorithm, but still more association
rules than with the APriori-KC algorithm because of the recovery of the lost rules, which is
an improvement. Another advantage is that the removal of the dependences decreases the

computational time that is needed to generate the frequent itemsets and the association rules.

Experiments with the implementations in Weka-KC showed that the FP-Growth-KC al-
gorithm was indeed faster than APriori-KC. Only with the rule recovery, it could happen that
FP-Growth-KC was a little slower than APriori-KC. But getting all of the rules instead of
only a part is still more important than the time aspect here. Through experiments, we also
found that running FP-Growth and pruning the rules afterwards and running FP-Growth-KC
with rule recovery both gave the same results and thus can be called equivalent. Only the

method with rule recovery is much faster than pruning the rules aposteriori.

62

Chapter 7. Conclusions 63

Future works

This thesis only considered the elimination of dependences that contained only 2 items. For

there can also exist dependences that exist out of more than 2 items, like for example the rule
age > 60 A isProfessor — isSeniorProfessor,
it would be useful to do some research on removing such dependences.

The rule recovery was only developed for the FP-Growth-KC algorithm, since we thought
this would be the faster than APriori-KC. But we were very surprised to see that FP-Growth-
KC with rule recovery for 2 pairs of dependences was slower than APriori-KC. Therefore we

will also try to apply this rule recovery to the APriori-KC algorithm.

The new algorithm that was developed, is only based on the FP-Growth algorithm. But
APriori and FP-Growth are not the only algorithms and there exist some algorithms that are
even faster than the FP-Growth algorithm, like for example the CLOSET algorithm [PHMO0].
Therefore we should also research if it is possible to apply the same method of the knowledge

constraints to these algorithms.

Bibliography

[AIS93]

[AS94]

[BMA]

[Bog06]

[FPSSU96)

[Goe02]

[HKOO]

[HPYMO4]

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association
rules between sets of items in large databases. In Peter Buneman and Sushil

Jajodia, editors, SIGMOD Conference, pages 207-216. ACM Press, 1993.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-
ciation rules in large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo
Zaniolo, editors, VLDB’9/, Proceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 199/, Santiago de Chile, Chile, pages 487—
499. Morgan Kaufmann, 1994.

Vania Bogorny, Bart Moelans, and Luis Otavio Alvares. Filtering frequent geo-
graphic patterns with qualitative spatial reasoning. In Proc. of the IEEE ICDE
International Workshop on Spatio-Temporal Data Mining (STDM’07). Istambul
(2007).

Vania Bogorny. FEnhancing Spatial Association Rule Mining in Geographic
Databases. PhD thesis, Universidade Federal Do Rio Grande Do Sul, 2006.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining.
AAAI/MIT Press, 1996.

B. Goethals. Efficient Frequent Pattern Mining. PhD thesis, transnationale Uni-
versiteit Limburg, 2002.

Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns
without candidate generation: A frequent-pattern tree approach. Data Min.
Knowl. Discov., 8(1):53-87, 2004.

64

Bibliography 65

[PHMOO] Jian Pei, Jiawei Han, and Runying Mao. Closet: An efficient algorithm for mining
frequent closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pages 21-30, 2000.

[PSFI1] Gregory Piatetsky-Shapiro and William J. Frawley, editors. Knowledge Discovery
in Databases. AAAT/MIT Press, 1991.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Addison-Wesley, 2005.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, 2005.

Auteursrechterlijke overeenkomst

Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw
akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd te nemen om deze overeenkomst door te
nemen, de gevraagde informatie in te vullen (en de overeenkomst te ondertekenen en af te geven).

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Mining of Frequent Sets using Pruning, Based on Background Knowledge
Richting: Master in de informatica Jaar: 2007

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik
als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te
reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van
de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de
eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door
het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit
Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling
werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Ik ga akkoord,

Anke Jager

Datum: 21.08.2007

Lsarev_autr

	1 Introduction and Motivation
	1.1 Introduction
	1.2 Motivation
	1.3 Outline

	2 Association Analysis
	2.1 Frequent Itemset Generation
	2.1.1 APriori
	2.1.2 FP-Growth

	2.2 Rule Generation
	2.2.1 Generating Frequent Association Rules

	3 Knowledge Constraints
	3.1 Well-known dependences
	3.2 Removing non-interesting rules
	3.2.1 How?
	3.2.2 No loss of information?

	3.3 APriori-KC
	3.3.1 The Algorithm
	3.3.2 Example
	3.3.3 Generalization

	4 FP-Growth-KC
	4.1 The Concept
	4.2 The Algorithm
	4.3 Example
	4.4 Rule recovery
	4.4.1 Problem
	4.4.2 Solution

	5 Implementation in Weka
	5.1 Format of the dependences
	5.2 Implementation of APriori-based methods
	5.3 Implementation of FP-Growth-based methods

	6 Experiments and Evaluation
	6.1 Experiments with the Mushroom dataset
	6.1.1 Evaluating APriori-KC and FP-Growth-KC for single dependence elimination
	6.1.2 Evaluating APriori-KC and FP-Growth-KC for the elimination of 2 dependences
	6.1.3 Evaluating performance of rule recovery with FP-Growth-KC
	6.1.4 Evaluating FP-Growth with pruning afterwards and FP-Growth-KC with rule recovery

	6.2 Experiments with the Geographic dataset
	6.2.1 Evaluating the frequent set generation of the FP-Growth-KC method
	6.2.2 Evaluating the rule generation and rule recovery of the FP-Growth-KC method

	7 Conclusions

