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Abstract

Association rule mining is a technique to find useful patterns and associations in transactional

databases. There have been developed a lot of algorithms for this purpose, among which

are also APriori and FP-Growth. Though you can find new patterns and associations, the

technique of association rule mining usually results in too many rules through which the user

has to find those that are interesting to him/her. Among this large amount of association

rules, there are also ones that are non-interesting, simply because they are known a priori,

like for example isPregnant → isFemale.

Since these rules are not useful, their frequent itemsets also do not need to be generated.

This method was already described in [Bog06], where the idea of knowledge constraints was

applied to APriori. Because the FP-Growth algorithm is a lot faster than APriori, it seems

logical to also apply this method to FP-Growth.

The only drawback for this new algorithm (and also for APriori-KC) was that there were

removed too many rules through this elimination of dependences. Therefore, we developed a

method to recover the rules that were lost, without too much time going lost.

The main advantage of this new algorithm is that it reduces the number of frequent

itemsets significantly and thus also the total number of association rules that is generated.
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Samenvatting

Tegenwoordig maakt men zeer veel gebruik van databases. Omdat de hoeveelheid data in die

databases almaar blijft groeien en groeien is het voor een mens bijna onmogelijk om op het

eerste zicht patronen uit die data te gaan halen. Om deze patronen te verkrijgen, gaat men

dan het KDD of Knowledge Discovery in Databases toepassen.

In deze thesis hebben we ons vooral toegespitst op een specifiek onderdeel binnen het

KDD, namelijk het datamining proces. Binnen datamining zijn er nog eens verschillende

technieken, alnaargelang het resultaat men wil verkrijgen. Zo hebben we associatieanalyse,

clusteren, classificeren, detectie van uitschieters en evolutieanalyse. In deze thesis gaan we

ons enkel focussen op de associatieanalyse.

Bij associatieanalyse is het de bedoeling om patronen te vinden door middel van zoge-

naamde associatieregels die tonen dat bepaalde attribuutwaarden geregeld samen voorkomen

in een dataset [AIS93]. Met dit doel voor ogen, zijn er het laatste decennium een heel aantal

algoritmes ontwikkeld, zoals bijvoorbeeld APriori [AS94] en FP-Growth [HPYM04].

Vooraleer we beginnen met het zoeken van de associatieregels, dient er eerst op zoek gegaan

te worden naar de frequente itemsets. Dit zijn items die frequent samen voorkomen. Het

APriori algoritme baseert zich vooral op het feit dat wanneer een bepaalde itemset frequent

is, dan ook alle deelverzamelingen van items binnen deze itemset frequent zijn. Dit algoritme

zoekt eerst alle frequente 1-itemsets. Daarna zoekt het alle frequente n-itemsets door de

frequente (n − 1)-itemsets samen te voegen. Dit totdat er geen nieuwe frequente itemsets

meer gevonden kunnen worden.

FP-Growth daarentegen gaat heel anders te werk. Bij dit algoritme gaat men de database

scannen, en dan zo een boom opbouwen van de data die zich in de database bevindt. De

resulterende boom wordt ook wel een FP-tree genoemd. Om de frequente itemsets te vinden

gaat men de conditionele FP-trees bekijken van ieder item/knoop. Deze conditionele FP-tree

vertelt met welke andere items het item voorkomt in de database en hoe vaak die combinatie

voorkomt. Zo verkrijgt men dan de frequente itemsets. Dit algoritme staat er trouwens om

gekend dat het een stuk sneller is dan APriori, iets wat ons nog van pas kan komen.
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Als we de frequente itemsets gevonden hebben met behulp van APriori of FP-Growth,

kunnen we hieruit de associatieregels afleiden. Voor elke frequente itemset I gaan we alle

niet-lege deelverzamelingen J nemen en dan zo kijken of de regel J → (I − J) aan een

bepaalde voorwaarde voldoet, namelijk de minimale confidence. Dit betekent concreet het

percentage van itemsets waarin J voorkomt, die ook (I − J) bevatten.

Associatieanalyse heeft echter één groot probleem: het aantal regels. De gebruiker krijgt

zodanig veel associatieregels terug na het uitvoeren van het algoritme, dat het bijna is als

zoeken naar een speld in een hooiberg om de associatieregels te zoeken die voor hem/haar

interessant zijn. Binnen deze enorme hoeveelheid associatieregels zitten er dan soms ook nog

eens tussen die totaal nutteloos zijn omdat ze al op voorhand geweten zijn. Een voorbeeld

van zulk een regel is isZwanger → isV rouw. Deze regel geldt altijd vermits een zwanger

persoon enkel en alleen maar vrouwelijk kan zijn. Om zo het totale aantal regels te reduceren,

gaan we voorkomen dat deze oninteressante regels gegenereerd kunnen worden, door deze

afhankelijkheden te verwijderen.

Voor dit doel werd er reeds een nieuw algoritme ontwikkeld, namelijk APriori-KC [Bog06].

In plaats van het gewone APriori algoritme uit te laten voeren en daarna alle regels te gaan

verwijderen die een afhankelijkheid bevatten, gaat deze methode voorkomen dat deze regels

gegenereerd worden. Hierbij worden frequente itemsets verwijderd van het moment dat ze

gegenereerd worden en een afhankelijkheid blijken te bevatten. En vermits er geen associ-

atieregels gevormd kunnen worden van frequente itemsets die er niet zijn, kunnen er ook geen

oninteressante regels voorkomen in het resultaat.

Deze methode van het verwijderen van gekende afhankelijkheden was hier nu enkel toegepast

op het APriori algoritme. Maar het is bekend dat FP-Growth qua performantie een stuk beter

scoort dan APriori. Daarom gaan we dezelfde methode als bij APriori-KC toepassen om zo

dan het FP-Growth-KC algoritme te verkrijgen. De pseudo-code van dit nieuwe algoritme

staat in Listing 1, waarbij Φ de verzameling van alle afhankelijkheden voorstelt.

Bij dit algoritme gaan we dan kijken of de boom bestaat uit een enkelvoudig pad. Zo ja,

dan kan de boom niet gesnoeid worden, maar dan gaan we gewoon alle mogelijke combinaties

van knopen in dat pad af, zoals bij het originele FP-Growth algoritme. Enkel wanneer zulk

een combinatie geen afhankelijkheid bevat, wordt hij opgenomen als een frequente itemset.

Wanneer de boom uit meerdere paden bestaat, gaan we anders te werk. Hiervoor zijn de

regels 10 tot en met 12 toegevoegd aan het oorspronkelijke algoritme.

We gaan voor iedere β = ai ∪ α (waarbij ai een knoop is in de header van de boom)

een conditionele FP-tree opstellen. In het gewone FP-Growth algoritme gaan we daartoe β
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Listing 1: FP-Growth-KC(Tree; α)

1 i f (Tree bevat 1 enke l pad P )

2 voor i e d e r e combinat ie β van de knopen in P

3 i f (β bevat een a f h ank e l i j k h e i d van Φ)

4 gene r ee r een patroon β ∪ α met support

5 = minimum support van de knopen in β ;

6 else

7 voor i e d e r e ai in de header van Tree{
8 β = ai ∪ α met support = ai . support ;

9 Treeβ = cond i t i o n e l e FP−t r e e van β ;

10 voor i e d e r e knoop bi in Treeβ

11 i f (bi ∪ β bevat a f h ank e l i j k h e i d van Φ)

12 ve rw i jde r bi u i t Treeβ ;

13 i f (Treeβ bes taat )

14 FP−Growth−KC(Treeβ ,β ) ;

15 }
16 }

zelf verwijderen uit de prefix paden van β en daarnaast ook de knopen die geen minimum

support meer halen. Vermits uit die conditionele FP-trees de frequente itemsets – en dus ook

later de associatieregels – gevormd worden, is het belangrijk om er in dit stadium reeds voor

te zorgen dat er geen frequente itemets met afhankelijkheden gegenereerd worden. Daarom

gaan we de conditionele FP-tree van β – genaamd Treeβ – nog wat verder snoeien. We

gaan daarvoor voor iedere knoop bi in Treeβ controleren of die in combinatie met β geen

afhankelijkheid gaat vormen. Indien blijkt dat bi ∪ β daadwerkelijk een afhankelijkheid uit Φ

bevat, gaat de bewuste knoop bi uit de conditionele FP-tree verwijderd worden. Dit resulteert

dan uiteindelijk in een conditionele FP-tree die geen enkele oninteressante frequente itemset

meer zal voortbrengen.

We zien nu duidelijk dat er geen oninteressante associatieregels gevormd worden, maar

er is nog een probleem: door het verwijderen van die afhankelijkheden gaan er ook bepaalde

associatieregels die wel interessant zouden kunnen zijn, niet gegenereerd worden. Een voor-

beeld hiervan is het verwijderen van frequente itemsets die de items isZwanger en isV rouw

bevatten omdat de regel

isZwanger → isV rouw
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niet interessant is. Daardoor krijgen we ook geen regels als

isZwanger ∧ isBlond → isV rouw

die ook nutteloos zijn, vermits het aspect van blond zijn hier geen rol speelt. Echter, we

kunnen ook geen regels meer krijgen zoals

isV rouw ∧ isBlond → isZwanger,

een regel die wel interessant zou kunnen zijn omdat toevallig een deel van de blonde vrouwen

in het geteste gebied zwanger blijkt te zijn.

Deze regels mogen dan wel verloren zijn gegaan, we kunnen ze nog altijd terug halen. We

weten al dat de associatieregel A → B een confidence heeft van 100% vermits {A,B} een

afhankelijkheid is. Daarom is het ook niet nodig om regels als AC → BD terug te halen,

omdat ze toch geen extra waarde toevoegen.

Maar de associatieregel B → A is geen afhankelijkheid en heeft dus een confidence die

lager ligt dan of juist gelijk is aan 100%. Daarom dienen we dus alle regels terug te halen die

B in het antecedent hebben en A in het rechterdeel.

Het terughalen van deze regels mag dan wel iets meer tijd kosten dan het gewone FP-

Growth-KC algoritme, toch is het nog altijd een heel stuk sneller dan het FP-Growth algo-

ritme. Het tijdsverschil tussen de gewone FP-Growth-KC en de versie met het terughalen

van bepaalde regels speelt hier ook niet zo een grote rol, vermits het in dit geval belangri-

jker is om alle regels die interessant zijn als resultaat terug te krijgen. FP-Growth-KC met

het terughalen van regels is equivalent met het verwijderen van oninteressante regels na het

uitvoeren van FP-Growth.

Naast het ontwikkelen van dit algoritme, hebben we ook de gratis open source data min-

ing toolkit Weka [WF05] uitgebreid met een aantal extra algoritmes. Zo hebben we onze

eigen versie van het APriori algoritme gëımplementeerd en daarnaast ook nog APriori-KC

en APriori-prune. Deze laatste gaat na het genereren van de associatieregels de oninteres-

sante regels verwijderen. Deze methode is enkel gëımplementeerd voor het uitvoeren van

experimenten.

Naast APriori-gebaseerde algoritmes hebben we Weka ook uitgebreid met een aantal

algoritmes die op FP-Growth gebaseerd zijn, meer bepaald diegene die we hierboven ver-

meld hebben. Hiertoe behoren FP-Growth zelf, FP-Growth-KC, FP-Growth-KC met het

terughalen van regels en FP-Growth-prune, waarbij de laatste – net als APriori-prune – enkel

gëımplementeerd werd omwille van experimentele doeleinden.
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Met deze uitgebreide versie van Weka zijn we dan aan de slag gegaan voor de experimenten,

om de efficiëntie van de nieuwe algoritmes te controleren. De grafieken van deze experimenten

zijn te vinden in Hoofdstuk 6. Bij deze experimenten zijn onze vermoedens over de perfor-

mantie van FP-Growth-KC bevestigd. Het blijkt stukken sneller te zijn dan FP-Growth en

– vooral – dan APriori-KC. Ook is gebleken bij deze experimenten dat het terughalen van

associatieregels bij FP-Growth-KC niet zo een groot tijdsverlies met zich meebrengt. Dit

zeker niet in vergelijking met het aposteriori verwijderen van oninteressante associatieregels

na het uitvoeren van FP-Growth.
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Chapter 1

Introduction and Motivation

1.1 Introduction

Nowadays, databases are used everywhere. Because the amount of data in these databases

keeps on growing and growing, it becomes nearly impossible for the human eye, to see patterns

in the data at the first glance. This makes the need for automatic analysis solutions very big.

Knowledge Discovery in Databases (or KDD) is the part of computer science, that is evolving

to find these automatic analysis solutions.

Data mining process The definition of knowledge discovery as it was made in [PSF91] is:

The non-trivial extraction of implicit, unknown, and potentially useful information

from data.

Although many people often treat KDD and data mining as synonyms, they are not really the

same. In [FPSSU96], they make a clear distinction between them. According to [FPSSU96],

knowledge discovery takes the results of data mining (that extracts knowledge from large

amounts of data) and tries to transform them carefully into useful and understandable infor-

mation. So here data mining is just an essential step in the process of knowledge discovery

in databases. This KDD process is depicted in Figure 1.1 and exists of the following steps:

[HK00]

1. Data cleaning: first noise and inconsistent data are removed, as they are of no use to

discover knowledge

2. Data integration: here multiple data sources can be combined. It is also a popular trend

to perform data cleaning and data integration as a preprocessing step of knowledge

discovery and to store the resulting data in a data warehouse.

1
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Figure 1.1: Process of knowledge discovery

3. Data selection: we only want to gather knowledge from data that is relevant to the

analysis task. Thus we will first select this data, before we start to search for patterns.

4. Data transformation: here data are transformed or consolidated into forms appropriate

for mining.

5. Data mining: extract patterns from data.

6. Pattern evaluation: we only want to know the interesting patterns, so these are selected

by using interestingness measures.

7. Knowledge presentation: present the mined knowledge to the user. This is done by

using visualization and knowledge representation techniques.

In this thesis, we will only go deeper into the data mining step. There are several tech-

niques in data mining, among which are: association analysis, classification and prediction,

clustering, outlier detection and evolution analysis.

Association Analysis The first technique, association analyis, tries to discover association

rules which show that certain attribute-values occur frequently together in a given set of data

[AIS93]. For example, if we have a rule X → Y , this means that, when we find a certain

condition X in a tuple, it is likely that we will also find that a certain condition Y also holds

in the same tuple. This association analysis is often used for market basket or transaction

data analysis.
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Classification Classification is “the process of finding a set of models or functions that

describe and distinguish data classes or concepts, for the purpose of being able to use the

model to predict the class of objects whose class label is unknown” [HK00]. In other words, we

want to distribute certain data over classes – although we don’t know what their class labels

are – using a set of training data, from which we already know the class labels. Techniques

that are widely used within classification are neural networks, Bayesian learners and ID3.

Though it can be useful to predict the class labels of data objects, we sometimes want

to predict the value of missing or unavailable data values. This technique is referred to as

prediction.

Clustering Clustering analyses data objects without making use of known class labels.

Here the training data – in contrast with classification – does not provide its class labels,

simply because they are not known. Clustering can be useful to discover these class labels,

by grouping the data objects into certain groups, called clusters, where the data objects in

these clusters seem to be very similar to each other. When we look at the similarity of data

objects that belong to different clusters, they have to be as less similar as possible. When we

have clustered the objects, we can look at a cluster as a class of objects.

Other techniques There also exist some data mining methods, that use outlier detection.

These outliers are some data objects that do not comply to the general behaviour of the data.

Outlier mining is for example useful for fraud detection, to discover extremely large amounts

of money for a given account. Another technique that is used within data mining, is called

evolution analysis. This technique tries to find regularities or trends for data objects, whose

behaviour changes over time.

Only association analysis will be discussed in the next chapters of this thesis. There are

several widely used methods to discover association rules, among which are APriori [AS94]

and FP-Growth [HPYM04]. Although these methods are fast, they find a lot of rules, and

therefore can still be improved. There still are rules that are found to be non-interesting,

because they display implications that are already widely known and are evident. An example

of such a rule is isPregnant → isFemale. We can easily remove these rules after they were

being generated, but we can also prevent them from being generated. The APriori method

was extended to APriori-KC [Bog06], where the user gives these well-known dependences to

the algorithm as background knowledge. This method was again improved to APriori-KC+

[BMA], where besides the elimination of this well-known dependences, also pairs of predicates

with the same feature type are removed (for example, contains slum and touches slum). These

methods were mainly developed for use with geographical data, but it is easy to also apply

the idea onto other kinds of data.
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The FP-Growth algorithm is known to be faster than APriori. Because we also know that

the APriori-KC method speeds up the traditional APriori algorithm, it would be logical to

apply this same idea of using well-known dependences as background knowledge to improve

the FP-Growth algorithm. This will be the main goal of this thesis.

1.2 Motivation

Since there are found too many – non-interesting – rules with the ordinary methods and

the FP-Growth algorithm is faster than APriori, we will adapt the APriori-KC method to

FP-Growth to find a new algorithm: FP-Growth-KC.

There still seemed to be a little problem with APriori-KC. By removing itemsets that

represented well-known dependences, not only the non-interesting association rules were re-

moved, but also some rules that could be interesting. We also took care of this problem, by

recovering these removed – interesting – rules.

To show that the newly developed algorithm FP-Growth-KC, together with its extension

of rule recovery, still is faster than the APriori algorithms, we also did some experiments.

1.3 Outline

The remaining of this thesis is organized as follows. Chapter 2 shows how association analysis

works and how association rules can be generated. It also shows the methods APriori and

FP-Growth in more detail.

Chapter 3 presents the idea of well-known dependences and how they can be used to

improve existing data mining methods. We will also discuss the APriori-KC method in more

detail, and in chapter 4, the new algorithm FP-Growth-KC is presented.

In chapter 5, we will discuss the open source data mining tool Weka, and how we extended

this system with the new methods.

Chapter 6 presents the experiments performed with the new algorithm to show that the

FP-Growth-KC method indeed is faster than the APriori-KC method. Finally, chapter 7

concludes the thesis and suggests directions of future research.



Chapter 2

Association Analysis

[HK00] The purpose of association rule mining is, given a set of transactions T , find all rules

that have a support ≥ minSupport and have a confidence ≥ minConfidence1, where support

and confidence are defined as follows (with X and Y itemsets):

• support(X, Y ) =
supportCount(X ∪ Y )

#transactions

• confidence(X → Y ) =
supportCount(X ∪ Y )

supportCount(X)

This is also called the Association Rule Mining Problem. This problem can be decomposed

into two major subtasks:

1. Frequent Itemset Generation

2. Rule Generation

In the following sections, we will discuss algorithms, for these two subtasks.

2.1 Frequent Itemset Generation

The first thing that we need to take care of is the generation of the frequent itemsets. An

itemset can be called frequent, if it has a support ≥ minSupport.

Using a brute-force approach to generate the frequent itemsets is absolutely not done.

Let’s illustrate why: when a dataset, containing k items, is used, there are 2k − 1 possible

frequent itemsets. Within this brute-force method, this means that every single candidate

itemset from these 2k − 1 candidate itemsets, needs to be checked for its support count. This

is done by comparing each candidate against every transaction. As can be seen, this approach

can be very expensive, because it requires O(NMw) comparisons, where N is the number
1minSupport and minConfidence are the corresponding support and confidence

5
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of transactions, M = 2k − 1 is the number of candidate itemsets, and w is the maximum

transaction width. With the transaction width, we mean the total number of items that is

present in a transaction. For example, if a transaction contains the items A, B and C, then

its transaction width is 3.

The following section describes 2 methods, APriori and FP-Growth. In both methods,

we will assume that the itemsets are ordered lexicographically. This lexicographic ordering

can be done with a sorting algorithm, like for example Mergesort, Heapsort . . . The two

algorithms that are mentioned here both have a complexity of O(n log n), which is lower than

the complexity of generating frequent itemsets. Therefore it is defendable to sort first before

the generation of the frequent itemsets. It will become clear later on, why we need to sort

the itemsets lexicographic.

2.1.1 APriori

The APriori Principle

The use of support for pruning candidate itemsets is guided by the following principle.

Theorem 2.1 (APriori Principle). If an itemset is frequent, then all of its subsets must also

be frequent.

Reversely, we can also say that if an itemset is infrequent, then all of its supersets must

also be infrequent.

Property 2.1 (Anti-monotonicity property). Let X and Y be two itemsets. A measure f is

anti-monotone if

X ⊆ Y ⇒ f(Y ) ≤ f(X), (2.1)

which means that if X is a subset of Y , then f(Y ) must not exceed f(X).

The APriori principle is an example of an anti-monotone property. In this case it means

that if an itemset is not frequent because it doesn’t reach minimum support, then all of its

supersets will not reach minimum support as well.

Let us illustrate this principle with an example. Consider the itemsets in Table 2.1.

Suppose now that {A,B, D} is a frequent itemset. It is easy to see, that every transaction

containing the itemset {A,B, D}, must also contain all of its subsets: {A}, {B}, {D}, {A,B},
{A,D}, {B,D}. Thus every subset of {A,B, D} must also be frequent. Also the opposite

counts: when the itemset {C,D} is infrequent, then all of its supersets are also infrequent.

The Algorithm

The algorithm was developed by [AS94] and is shown in Algorithms 2.1, 2.2 and 2.3 [TSK05].

First of all, the transaction database is scanned once, to discover all frequent 1-itemsets, which
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k Frequent itemsets

1 {A}, {B}, {C}, {D}, {E}
2 {A,B}, {A,C}, {A,D}, {A,E}, {B,C}, {B,D},

{B,E}, {C,D}, {C,E}, {D,E}
3 {A,B, C}, {A,B, D}, {A,B, E}, {A,C, D},

{A,C, E}, {A,D, E}, {B,C,D}, {B,C,E},
{B,D,E}, {C,D,E}

4 {A,B, C, D}, {A,B, C, E}, {A,B, D, E},
{A,C, D, E}, {B,C,D,E}

5 {A,B, C, D, E}

Table 2.1: All possible itemsets

TID Transaction

T1 A, B, C

T2 A, B, C, D, E

T3 A, C, D

T4 A, B, D, E

T5 A, B, C, D

Table 2.2: Transactional database T

are the items that appear in at least minSupport of the transactions. If we have a transaction

database like Table 2.2 and suppose the minimum support is 50% (or a minimum support

count of 2.5 ≈ 3), we see that F1 (see Table 2.1) contains the frequent 1-itemsets {A}, {B},
{C} and {D}. The itemset {E} is not frequent, because it appears in only 2 transactions.

Next, we are going to generate iteratively all new candidate k-itemsets from the frequent

(k − 1)-itemsets, that were generated in the previous iteration. This candidate generation is

described in Listing 2.2. It takes all frequent (k − 1)-itemsets and compares them to each

other, to see if they have (k − 2) items in common. We don’t check some random k − 2

items, but we compare only the first k − 2 items. If all of the k − 2 items seem to be the

same (and these itemsets are not the same), the itemsets will be joined and thus will form a

new k-itemset. Then we are going to check, if this generated k-itemset does not contain an

infrequent subset. This is done, because of the APriori principle in Theorem 2.1. If it passes

this test, this itemset will be added to Ck, which is the set of candidate k-itemsets. The

itemsets are called candidates, because we do not know yet, if these itemsets are frequent.
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C2 Support count

{A,B} 4

{A,C} 4

{A,D} 4

{B,C} 3

{B,D} 3

{C,D} 3

Table 2.3: Candidate 2-itemsets

Figure 2.1: Generation of candidate itemsets and frequent itemset, with minimum support

of 50%

When we have found the candidate k-itemsets, we are going to check which of these

itemsets is frequent. This is done by counting the times that each one of these k-itemsets

appears among the transactions in the transaction table. In Table 2.3, you can see the

candidate 2-itemsets, that were generated from the frequent 1-itemsets, together with their

support count. When the support count for every candidate k-itemset is found, the ones that

seem to be frequent, will be added to Fk, the set of frequent k-itemsets. This algorithm will

be stopped, if Fk seems to be empty, which means there are no more frequent k-itemsets

generated.

You can see the APriori algorithm, applied to the transaction database in Table 2.2,

illustrated in Figure 2.1.
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Listing 2.1: Frequent itemset generation of the APriori algorithm

1 k = 1 ;

2 // Find a l l f r e quen t 1− i t emse t s

3 Fk = {i | i ∈ I ∧ σ({i}) ≥ N × minsup} ;

4 while (Fk 6= ∅) {
5 k++;

6 Ck = apr i o r i−gen (Fk−1 ) ; // Generate cand ida te i t emse t s

7 for each t r an sa c t i on t ∈ T {
8 Ct = subset (Ct ,t ) ; // I d e n t i f y a l l cand ida te s t ha t be long to t

9 for each candidate i t emset c ∈ Ct

10 σ(c) = σ(c) + 1 ;

11 }
12 // Extrac t the f r e quen t k−i t emse t s

13 Fk = {c | c ∈ Ck ∧ σ(c) ≥ N × minsup} ;

14 }
15 Result =

⋃
Fk

But why do we only need to check the (k − 2) first items during the candidate set gen-

eration? In Figure 2.1, the frequent itemsets {A,B} and {A,C} are merged to form the

candidate 3-itemset {A,B, C}. The algorithm does not need to merge {B,C} and {C,D},
because the first item in both itemsets is different. Indeed, when {B,C,D} would be a valid

candidate (which is the case in this example), it would be generated by merging the itemsets

{B,C} and {B,D}. This example shows that the candidate set generation procedure indeed

is complete, and that there are no duplicate k-itemsets generated, because of the lexicographic

ordering of the items in the itemsets.

Hash-tree

The way the algorithm is described now, it seems that during the support counting, every

itemset of a transaction has to be compared with every candidate itemset. But this would

slow down the algorithm, as it is possible that there are a lot of transactions and/or a lot

of candidate itemsets. To avoid this, the algorithm stores the candidate itemsets of Ck in a

hash-tree. In a hash-tree, the leaves represent itemsets, while the interior nodes represent a

hash-table. Each bucket of such a hash-table at depth d points to another node at depth d+1

(the root of the hash-tree is defined to be at depth 1). An example of a hash-tree is shown in

Figure 2.2, where the leaves contain the candidate 2-itemsets.

When we want to add an itemset i to the tree, we start in the root and go from one node
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Listing 2.2: apriori-gen(Fk−1: frequent (k − 1)-itemsets)

1 for each i t emset f1 ∈ Fk−1 {
2 for each i t emset f2 ∈ Fk−1 {
3 i f (f1 [1]==f2 [ 1 ]∧f1 [2]==f2 [ 2 ]∧ . . .

4 ∧f1 [ k−2]==f2 [ k−2]∧f1 [ k−1]<f2 [ k−1]) {
5 c = f1 ./ f2 ;

6 i f ( h a s i n f r e qu en t s ub s e t (c ,Fk−1 ) )

7 de l e t e c ; // prune s t ep : remove u n f r u i t f u l cand ida te

8 else

9 add c to Ck ;

10 }
11 }
12 }

Listing 2.3: has infrequent subset(c : candidate k-itemset; Fk−1: frequent (k-1)-itemsets)

1 for each (k−1)−subset s o f c do

2 i f s /∈ Fk−1

3 return true ;

4 return fa l se ;
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Figure 2.2: Example of a hash-tree

to another until we reach a leave, where the itemset will be stored. When the itemset i arrives

at an interior node at depth d, a hash-function is applied to the d-th element of the itemset.

The result of this hash-function decides which branch is taken to go to the next node at depth

d + 1. If the number of itemsets in a leave exceeds a predefined threshold, the leave itself

becomes an interior node.

During support counting, the same hash-function is applied to the itemsets contained in each

transaction, to partition these itemsets in their appropriate buckets. That way, each itemset

in the transaction will only be matched against candidate itemsets that belong to the same

bucket.

Figure 2.3: Hashing a transaction at the root node of a hash-tree
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Figure 2.3 [TSK05] shows an example of a hash-tree structure. Each internal nodes uses

the hash-function h(p) = p mod 3, to decide which branch has to be followed next. When

the hash-function returns 1, the leftmost branch has to be picked, if it returns 2, the middle

branch and if it returns 0, the rightmost branch. The hash-tree in Figure 2.3 contains 15

candidate 3-itemsets, that are distributed among 9 leaf nodes.

Now consider a transaction t = {1, 2, 3, 5, 6}. When we want to update the support count

of the candidate itemsets, we have to traverse the tree in such a way, that every leaf node

containing candidate 3-itemsets belonging to t must be visited at least once. As items are

ordered lexicographic, a 3-itemset contained in t must begin with 1, 2 or 3. Therefore, we

need to hash the items 1, 2 and 3 separately in the root node. Item 1 is hashed to the left

child of the root node, item 2 to the middle child and item 3 to the right child. At the next

level of the tree, the transaction is hashed on the second item. This proces continues until

the leaf nodes of the hash-tree are reached.

Computational complexity

To analyse the complexity of the APriori-algorithm, we need to take into account three parts

[TSK05]:

1. the generation of the frequent 1-itemsets

2. the generation of the candidates

3. the support counting: this is the process that determines the frequency of occurence for

each candidate itemset

During the generation of the frequent 1-itemsets, we need to scan the transactional

database transaction per transaction, and in meantime update the support count for ev-

ery item that we encounter. If wavg is the average transaction width and N is the number of

transactions, then we need O(Nwavg) time to finish this operation.

When we want to generate the candidate k-itemsets from the frequent (k− 1)-itemsets in

Algorithm 2.2, we need to check if a pair of frequent (k − 1)-itemsets have (k − 2) items in

common. Obviously, this takes (k− 2) equality comparisons. In the worst-case scenario, this

algorithm must merge every pair of frequent (k− 1)-itemsets that were found in the previous

iteration. When we look at the example that was given in Figure 2.1, we see that to generate

the candidate set C2, we need to merge every single pair of itemsets in F1. So we can conclude

that the cost of merging is

O(
wavg∑
k=2

(k − 2)|Fk−1|2).
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This formula states that in the worst-case scenario, we need to compare every single Fk−1

itemset with every other Fk−1 itemset (which gives us |Fk−1|2 possibilities) and that this also

needs (k − 2) equality comparisons every time. Assuming every transaction has transaction

width wavg, it is not possible to generate frequent itemsets that have more than wavg items.

Therefore k goes only from 2 to wavg.

During the generation of these candidate k-itemsets, a hash tree is constructed to store

these candidates. The maximum depth of this tree is k, the cost of populating this tree with

candidates is

O(
wavg∑
k=2

k|Ck|).

During the pruning of the candidates, we need to check that the k − 2 subsets of every

candidate k-itemset are frequent. The cost of looking up a candidate in a hash tree is O(k),

so the candidate pruning step requires

O(
wavg∑
k=2

k(k − 2)|Ck|)

time.

At last, we need to take in account the cost of counting the support for every candidate

itemset. Every transaction that has length |t| produces
(|t|

k

)
itemsets of size k. This number is

also the effective number of hash-tree traversals that needs to be performed for each transac-

tion. Assuming wmax is the maximum transaction width and αk is the cost for updating the

support count of a candidate k-itemset in the hash-tree, we can say that the cost of support

counting is O(N
∑

k

(
wmax

k

)
αk).

To retrieve the total complexity of the APriori algorithm, we need to take the sum of all

of these complexities. This gives us the following complexity:

O

(
Nwavg +

wavg∑
k=2

((k − 2)|Fk−1|2 + k|Ck|+ k(k − 2)|Ck|) + N
∑

k

(
wmax

k

)
αk

)

= O

(
Nwavg + N

∑
k

(
wmax

k

)
αk +

wavg∑
k=2

(
(k − 2)|Fk−1|2 + k2|Ck|

))
(2.2)

2.1.2 FP-Growth

A second method to generate frequent itemsets, is called FP-Growth and was developed by

[HPYM04]. This method is radically different from the APriori-algorithm we have seen before.

Whereas the APriori-algorithm generates candidate itemsets, the FP-Growth method puts

the dataset in a compact data structure, called an FP-tree and extracts frequent itemsets

directly from this structure.
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Construction of the FP-tree

An FP-tree is a compact representation of the input data, constructed by reading the data

transaction per transaction. Each transaction is mapped on a path in the FP-tree and several

transactions can have paths that (partially) overlap. An important property of an FP-tree is

the node-link property, where nodes with the same label are connected to each other. This

makes it easier to traverse the tree.

Property 2.2 (Node-link property). For any frequent item ai, all the possible patterns

containing only frequent items and ai can be obtained by following ai’s node-links, starting

from ai’s head in the FP-tree header.

The construction of an FP-tree looks as follows:

1. The data set is scanned once to determine the support count of each item. Items whose

support is less than minSupport are discarded. Next, the frequent items are sorted in

decreasing support count.

2. Create the root of the FP-tree and label it as null.

3. For each transaction t, the frequent items are ordered in decreasing support count. This

list of ordered items will be added to the tree, as follows:

• Let f be the first item of the ordered list and T the tree (initially: the root)

• If T has a child node N such that f.itemName = N.itemName, then increment

N ’s count by 1.

• If there is no such node, create a new node N that has count 1, let it be linked to

T as a child node and its node-link to the nodes that have the same itemName.

• If there still remain items in the ordered list (say L), we need to insert them in the

same way into N .

Suppose we have the transactional database T as in Table 2.4, and that minSupport =

30%, which is the same as a minimum support count of 3. First, T is scanned to retrieve all

the frequent items and these items are sorted in decreasing support count. This gives us the

sorted list L in Table 2.5. Initially, the FP-tree contains only the root node, depicted by the

null symbol. The rest of the FP-tree is constructed in the following way:

1. The first transaction with TID T1 is read. The items of T1 are ordered in decreasing

support count, as in L. We only have the root node in the tree, so we will create a

node with label B and one with label A and they both get frequency count 1. Having

created these nodes, we now must insert them into the tree and thus we create a path

null → B → A to encode the transaction. This is shown in Figure 2.4(a).
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TID Transaction

T1 A, B, E

T2 B, D

T3 A, B, D

T4 B, C

T5 A, D

T6 B, C

T7 A, C

T8 A, B, C, E

T9 A, B, C

Table 2.4: Transactional database T

2. The second transaction, {B,D}, shares the same prefix item B with the first transaction.

As a result, the path of this transaction, which is null→ B → D, overlaps with the path

of the previous transaction. Therefore, the frequency count of node B is incremented

by 1, and thus becomes 2. The frequency count for the other node, with label D is 1.

This FP-tree is shown in Figure 2.4(b).

3. After reading the third transaction, {A,B, D}, we see that we again have the same

situation as after reading the second transaction. The path for this transaction, null

→ B → A → D, overlaps with the one of the first transaction, null → B → A.

Therefore, the frequency count of both node B and node A are incremented by 1. The

node D of this transaction gets a frequency count of 1. We also see that we have an

item in common with T2, which is D. But their paths are disjoint, because they do not

share a common prefix. To go easily from one node D to another node with label D,

we create a node-link between them. After this transaction, we get the FP-tree shown

in Figure 2.4(c).

4. This process continues until all of the transactions have been read and mapped onto a

path in the FP-tree. The complete FP-tree – that is after reading the transaction with

TID T9 – is shown in Figure 2.4(d).

Size of the FP-tree

Typically, the size of an FP-tree is smaller than the size of the uncompressed representation

of the data in the transaction table, because usually there are transactions that have one

or more items in common. In the best-case scenario, there is only one branch, because all

transactions share the same set of items. In the worst-case scenario though, every transaction
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Item Support count

B 7

A 6

C 5

D 3

Table 2.5: Frequent items of T , ordered in decreasing support count

has a different set of items and thus the size of the FP-tree is the same as that of the original

data. But, as also the counters for each item and the pointers between nodes need to be

saved, the physical storage requirement of the FP-tree in this worst-case scenario is higher.

Also the ordering of the items plays a significant role. Instead of ordering them by de-

creasing support count, you can also order them by increasing support count. This sometimes

results in a more dense FP-tree, but we absolutely cannot conclude that this will always be

like this. We can see this in Figure 2.5, where the FP-tree for Table 2.4 was constructed, by

ordering the items in increasing support count.

How to generate Frequent Itemsets

The FP-Growth algorithm generates the frequent itemsets by exploring the FP-tree in a

bottom-up way. The pseudo-code of the FP-Growth algorithm can be found in Listing 2.4.

It is initially called with FP-Growth(Tree,null).

We will explain this algorithm with the example tree shown in 2.4(d). The algorithm

will first look for frequent itemsets ending in D, then in C, A and finally in B. Since every

transaction is mapped on a path in the FP-tree, we can find the frequent itemsets, ending in

D, by examining only the paths that contain node D. These paths can be found easily, since

all nodes with label D have a link to the next node with label D. In Figure 2.6(a), we can

see the paths that contain node D.

Thus, first the algorithm will search for frequent itemsets, ending in D. This is done by

splitting the problem into smaller subproblems. We will first check if the itemset {D} itself

is frequent. If so, we will consider the subproblem of finding frequent itemsets ending in CD,

then in AD and finally in BD. These subproblems will also in turn be divided into smaller

subproblems. This is the strategy for finding frequent itemsets ending in D.

1. First we want to retrieve all paths containing node D. These paths are shown in Figure

2.6(a) and they are called prefix paths.

2. We need to check if {D} itself is a frequent itemset. Therefore, we need to retrieve its

support count. This is done by adding the support counts that are associated with node
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(a) After reading

TID = T1

(b) After reading TID = T2 (c) After reading TID = T3

(d) After reading TID = T9

Figure 2.4: Construction of an FP-tree

D. As the support count of {D} is 3 and the minimum support count is 3, we can say

that this itemset indeed is frequent.

3. Before we are going to divide this problem into the smaller subproblems of finding

frequent itemsets in CD, AD and BD, we are going to convert the prefix paths of

Figure 2.6(a) into a conditional FP-tree. This conversion goes like this:

(a) Update the support counts along the prefix paths, as these still contain counts

from other transactions.

(b) Truncate the prefix paths by removing the nodes with label D. These nodes

can be removed, because the support counts have been updated, to only reflect

transactions that contain the item D.
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Figure 2.5: An FP-tree representation for the dataset shown in Table 2.4 with a different

item ordering scheme

Listing 2.4: FP-Growth(Tree; α)

1 i f (Tree conta in s a s i n g l e path P )

2 for each combination β o f the nodes in P

3 generate pattern β ∪ α with support

4 = minimum support o f nodes in β ;

5 else

6 for each ai in the header o f Tree{
7 generate pattern β = ai ∪ α with support = ai . support ;

8 Treeβ = cond i t i o na l FP−t r e e o f β ;

9 i f (Treeβ e x i s t s )

10 c a l l FP−Growth (Treeβ ,β ) ;

11 }
12 }
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(a) Paths containing node D

(b) After updating the prefix paths of D

Figure 2.6: FP-Growth algorithm for finding frequent itemsets ending in D

(c) It is possible that, after updating the support counts, some of the items may no

longer be frequent. We can see this in Figure 2.6(b), where all of the support

counts seem to be less than the minimum support count. This means that, for

example with node A with a support count of 2, there only are 2 transactions that

contain the itemset {A,D} and thus is not frequent. Because there are no nodes

with a sufficient support count, we can say there are no frequent itemsets ending

in D.

Because there are no frequent itemsets ending in D (except the frequent 1-itemset {D}
itself), we will proceed with the search for frequent itemsets, ending in C. For this, we will

start in the same way, as we did to find those ending in D. You can see the prefix paths

ending in C in Figure 2.7(a) and the conditional FP-tree of C in Figure 2.7(b). When we add

the support counts that are associated with node A, we can find the support count for the

itemset {A,C}. Thus the support count for this itemset is 2 + 1 = 3 and thus this itemset is
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Suffix Frequent Itemsets

D {D}
C {C}, {A,C}, {B,C}
A {A}, {A,B}
B {B}

Table 2.6: List of frequent itemsets

frequent. Similarly, we can see that {B,C} is also a frequent itemset.

FP-Growth now uses this conditional FP-tree of Figure 2.7(b) to solve the subproblems,

which here exist of finding the frequent itemsets ending in AC and then in BC. To find

the frequent itemsets ending in AC, we will gather the prefix paths for AC (Figure 2.7(c))

from the conditional FP-tree of C (Figure 2.7(b)). Because the leaf nodes in this conditional

FP-tree are all nodes with label A, the prefix paths for AC are the same as the conditional

FP-tree for C, but we find only {A,C} to be frequent.

Thus the algorithm moves on to the next subproblem: finding the frequent itemsets ending

in BC. The algorithm constructs the prefix paths for BC, which is shown in Figure 2.7(d),

but concludes that {B,C} is the only frequent itemset remaining.

In the same way, we will search for frequent itemsets ending in A and in B. The complete

table of frequent itemsets can be found in Table 2.6.

Computational complexity

To build an FP-tree, we need O(N) time where N is the total number of items that were

used in the transactions.

At every recursive step in the algorithm, a conditional FP-tree is generated. As all of

the subproblems are disjoint, there will never be generated duplicate itemsets. Another

advantage is that the support counting of the itemsets happens while generating the common

suffix itemsets. When we have an initial FP-tree with k leafs and an average path length

w, we can say that the conditional FP-tree is generated O(kw) times. Remark that this is

a maximum as it could be possible that – at a certain point – a conditional FP-tree does

not contain an itemset with enough support and thus there is no need to generate another

conditional FP-tree out of this one.

The run-time performance of the FP-Growth algorithm depends strongly on how compact

the dataset is. [HPYM04] made the following conclusions, according to some experiments they

did:
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• FP-tree achieves good compactness most of the time. Especially in dense datasets, it

can compress the database many times.

• When the minimal support count is low, the resulting conditional FP-trees become very

bushy (with the worst-case scenario: a full prefix-tree) and the algorithm slows down

significantly, as a lot of subproblems have to be generated and the results, returned by

each subproblem, have to be merged.

2.2 Rule Generation

Now we have found the frequent itemsets using APriori or FP-Growth, we still need to

generate the association rules from these itemsets.

An association rule is an implication {X1, . . . , Xn} → {Y1, . . . , Ym}, where {X1, . . . , Xn} ∩
{Y1, . . . , Ym} = ∅, telling us that, if we encounter the set {X1, . . . , Xn} in a tuple, there is a

chance that also the set {Y1, . . . , Ym} will encounter in this tuple.

From a given k-itemset X, there can be produced 2k − 2 association rules, ignoring rules

that have empty antecedents (∅ → X) or empty consequents (X → ∅). An association rule

can be extracted by partitioning the itemset X into 2 non-empty subsets Y and X − Y , so

that Y → X − Y satisfies the confidence threshold.

Checking the confidence for a particular association rule, does not require an additional

read through the transactional database. For example, if we have a frequent itemset Y =

{x, y, z}, we can generate an association rule {x} → {y, z} from it. The confidence of this rule

can be calculated by σ({x, y, z})/σ({x}), where σ(X) denotes the support count of itemset

X.

σ(X) = |{ti|X ⊆ ti, ti ∈ T}|

Because {x, y, z} is a frequent itemset, {x} must be a frequent itemset too. Since the

support counts for both frequent itemsets were already calculated during the frequent itemset

generation, we don’t need to read the dataset an additional time.

Now suppose we have 2 assocation rules: X → Y and X1 → Y1, where X1 ⊆ X and

Y1 ⊆ Y . When we have the confidence of the first rule, we cannot conclude anything about

the confidence of the second rule, as the confidence of this rule can be smaller, equal to or

larger than the confidence of the other rule. But if we compare rules that were generated

from the same frequent itemset Y , we can show that the following theorem holds.

Theorem 2.2. If a rule X → Y −X does not satisfy the confidence threshold, then any other

rule X ′ → Y −X ′, where X ′ is a subset of X, cannot satisfy the confidence threshold as well.
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Proof. Consider the following two rules:

• X ′ → Y −X ′

• X → Y −X

with X ′ ⊂ X. The confidence of those rules are σ(Y )/σ(X ′) and σ(Y )/σ(X) respectively.

X ′ is a subset of X, so we can say that σ(X ′) ≥ σ(X). Therefore, the confidence of the first

rule must be less than or equal to the confidence of the second rule and thus the theorem is

proven.

2.2.1 Generating Frequent Association Rules

As we have seen before, the confidence of a rule A → B represents the percentage of transac-

tions containing A that also contain B.

confidence(A → B) = P (B|A) =
σ(A ∪B)

σ(A)
(2.3)

Based on this equation, we can generate association rules in the following way. We will

first generate all non-empty subsets of every frequent itemset I. For all of the non-empty

subsets J of a frequent itemset I, we will calculate σ(I)
σ(J) , which is the confidence of the rule

J → (I − J). If the result seems to be larger or equal to minConfidence, the association rule

is said to be strong. This means that both the arguments of minSupport and minConfidence

have been satisfied. The minimum support is satisfied because we have generated these rules

from frequent itemsets, so the minimum support still is satisfied.

Now, let us show this with an example. Suppose we use the transactional database T in

Table 2.2. One of the frequent itemsets we have found there was the 3-itemset {A,B, C}.
First, we will extract all non-empty subsets of this itemset. The found subsets are: {A},
{B}, {C}, {A,B}, {A,C} and {B,C}. The resulting association rules are shown in Table

2.7, together with their confidence. When the minimum confidence threshold is, for example,

75%, all rules are strong, except the first one.

In this chapter, we broadly discussed how to generate frequent itemsets and association

rules from these frequent itemsets. We presented the two methods APriori and FP-Growth

in detail. The problem with these methods is, that there can be generated too many rules,

that are not interesting. Therefore, we will discuss how to overcome this problem in the next

chapter.
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Rule Confidence

A → BC 3/5 = 60%

B → AC 3/4 = 75%

C → AB 3/4 = 75%

AB → C 3/4 = 75%

AC → B 3/4 = 75%

BC → A 3/3 = 100%

Table 2.7: List of found association rules
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(a) Prefix paths for C

(b) Conditional FP-tree for C (c) Prefix paths for AC

(d) Prefix paths

for BC

Figure 2.7: FP-growth algorithm to find frequent itemsets ending in C.



Chapter 3

Knowledge Constraints

3.1 Well-known dependences

Within data mining, association rule mining is used to discover patterns in the form of

association rules. However, the output of association rule mining algorithms is normally

a huge amount of association rules, in which the user has to search those rules that are

significant. Among all these rules, many are not interesting, because they express facts that

are evident. This is shown in the next example.

Example 3.1. When one would mine data, that describes characteristics of persons, one

could possibly find the following rules:

• isPregnant → isFemale

• cervicalCancer → isFemale

It is easy to see, that both of these rules are true, but that they are of no use, since they both

have a confidence of 100% and are rules that are known apriori.

Because these rules express facts that are well known, we call these non-interesting rules

well-known dependences. Though we have seen that non-interesting rules have a confidence

of 100%, we cannot conclude that the reverse also counts. For example, take the fact that

it is dark outside. When we would find a rule like darkOutside → night with a confidence

of 100% in a dataset of Belgium, this rule would be found non-interesting since in Belgium

it is always night when it is dark outside. But when we have a dataset of the Northpole

or Sourthpole, this rule would not always be true, since it can be non-stop dark outside for

almost three months. So we cannot call this a well-known dependence since the rule can

indeed be interesting sometimes and thus is application dependent.

25
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3.2 Removing non-interesting rules

3.2.1 How?

Well-known dependences are known to be of no use, so they can be removed from the generated

set of rules. This would happen during the generation of the rules, i.e. aposteriori, when all

frequent itemsets were already generated. But instead of letting these rules being generated

and just remove them afterwards, it would be more logical to prevent these rules from being

generated, as is suggested in [Bog06].

How can we do this? We assume the user knows which itemsets can be categorised as

well-known dependences. Before the datamining algorithm starts, the user tells the algorithm

which combination of items can produce association rules that are non-interesting. These are

the knowledge constraints, that prevent “useless knowledge” from being generated. During

the frequent itemset generation, the algorithm will check that none of these itemsets will be

computed, and thus no well-known dependence will be part of the resulting association rules.

3.2.2 No loss of information?

For the removal to be useful, there needs to be proved that no – possibly – interesting

information gets lost by applying this method. We could think of 2 possible situations where

these interesting rules could get lost.

The first possibility would be when {A,B} is treated as a well-known dependence and no

frequent itemsets containing both of these items would be generated, such as {A,B, C}, for

example. Now, if the itemset {A,B, C} reaches minimum support, then all of its subsets also

reached minimum support. We only remove the itemsets that contain both A and B, so the

itemsets {A,C} and {B,C} are still generated, thus also the rules A → C and B → C are

not prevented from being generated. We can conclude here that there gets no information

lost in this situation.

Another possible situation is when a pair {A,B} is the well-known dependence (because

A → B is a non-interesting rule) and the removal of all itemsets containing both of these

items would prevent rules like B → AC from being generated.

Let’s show this with an example. We know that the itemset {isPregnant, isFemale} is a

well-known dependence because the

isPregnant → isFemale

is non-interesting and thus may not be generated. This means that all of the itemsets con-

taining both of these items, like for example {isPregnant, isFemale, isBlond}, would not be

generated.
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Of course, a rule like

isPregnant → isFemale ∧ isBlond

would be non-interesting, because when this rule reaches minimum support, then also

isPregnant → isBlond

reaches minimum support, and thus no information gets lost.

But it is also possible, that a rule like

isFemale → isPregnant ∧ isBlond

could be interesting, because in the researched region a part of the females happen to be

pregnant and blond.

It thus may happen that possibly interesting rules are not generated. Therefore, we

will recover these lost rules out of the association rules we found after the frequent itemset

generation. We will discuss this matter later on, in Section 4.4.

3.3 APriori-KC

3.3.1 The Algorithm

One such method to prevent non-interesting rules from being generated, is called APriori-KC

(where KC stands for Knowledge Constraints) and was developed by [Bog06]. The pseudo-

code of this method can be found in Listing 3.1.

To eliminate the well-known dependences, there is added one more step to the APriori

algorithm, that is only performed when k is 2, such that all pairs of elements that were defined

to be well-known dependences are removed from C2. These dependences are being removed

from all of the candidate 2-itemsets, before even the support count of these candidates is

performed.

In line 8 of the algorithm, all of the candidate 2-itemsets that contain items with a

dependence will be eliminated. The elimination of, for example, {isPregnant, isFemale},
avoids that later on, there are no association rules generated like isPregnant → isFemale.

Note that association rules like hair=long → isPregnant and hair=long → isFemale still can

be generated, because we do not remove the itemsets {isPregnant, hair=long} and {isFemale,

hair=long}.

Because of the removal of these dependences during the frequent itemset generation,

APriori-KC is actually faster than the “normal” APriori algorithm itself. Note that this
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Listing 3.1: APriori-KC algorithm

1 k = 1 ;

2 // Find a l l f r e quen t 1− i t emse t s

3 Fk = {i | i ∈ I ∧ σ({i}) ≥ N × minsup} ;

4 while (Fk 6= ∅) {
5 k++;

6 Ck = apr i o r i−gen (Fk−1 ) ; // Generate cand ida te i t emse t s

7 i f k==2

8 de l e t e a l l p a i r s with dependences from C2 ;

9 for each t r an sa c t i on t ∈ T {
10 Ct = subset (Ct ,t ) ; // I d e n t i f y a l l cand ida te s t ha t be long to t

11 for each candidate i t emset c ∈ Ct

12 σ(c) = σ(c) + 1 ;

13 }
14 // Extrac t the f r e quen t k−i t emse t s

15 Fk = {c | c ∈ Ck ∧ σ(c) ≥ N × minsup} ;

16 }
17 Result =

⋃
Fk
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algorithm is not faster in the worst-case scenario, because then there are no dependences

that need to be removed and thus APriori-KC acts like the normal APriori. To show that

APriori-KC is an improvement of APriori, we are going to discuss the complexity of APriori-

KC. With this complexity, we mean the total number of itemsets that will be removed, by

removing the well-known dependences.

We first illustrate this with an example. Next, we will deduce a general formula from this

example, to calculate the total number of itemsets that will not be generated by removing

one or more well-known dependences.

Note that, to show the difference between APriori and APriori-KC, we will treat the fact that

some itemsets are not generated, as if these itemsets are being removed.

3.3.2 Example

In this example, we have a transactional database, like the one in Table 3.1, containing the

items A, B, C, D and E.

Suppose the following two things:

1. Every combination that can be made with these items, is a frequent itemset, which

means that minSupport = 0.

2. {A,B} and {C,D} are well-known dependences.

The complete lattice of the frequent itemsets can be found in Figure 3.1.

k Frequent itemsets

1 {A}, {B}, {C}, {D}, {E}
2 {A, B}, {A, C}, {A, D}, {A, E}, {B, C}, {B, D},

{B, E}, {C, D}, {C, E}, {D, E}
3 {A, B, C}, {A, B, D}, {A, B, E}, {A, C, D}, {A,

C, E}, {A, D, E}, {B, C, D}, {B, C, E}, {B, D, E},
{C, D, E}

4 {A, B, C, D}, {A, B, C, E}, {A, B, D, E}, {A, C,

D, E}, {B, C, D, E}
5 {A, B, C, D, E}

Table 3.1: Transactional database T

Because {A,B} and {C,D} are well-known dependences, they have to be removed, as

well as every other itemset that contains the items A and B or the items C and D. The first

itemset that is going to be removed, is {A,B}. To calculate the total number of frequent
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Figure 3.1: Complete lattice of Table 3.1

itemsets that needs to be removed, we need to calculate how many k-itemsets are removed (2

≤ k ≤ 5).

• # 2-itemsets: only the itemset {A,B} is removed

⇒ 1 itemset

• # 3-itemsets: take all of the 1-itemsets, that can be formed with the remaining items.

These are: {C}, {D} and {E}. Combine the itemset {A,B}, with each of these itemsets,

to form a 3-itemset. Remove the resulting three 3-itemsets.

⇒ 3 itemsets

• # 4-itemsets: take all of the 2-itemsets, that can be formed with the remaining items.

These are: {C,D}, {C,E}, {D,E}. Combine the itemset that you want to remove

{A,B}, with each of these itemsets. This also results in 3 more itemsets, that have to

be removed.

⇒ 3 itemsets
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• # 5-itemsets: take all of the 3-itemsets, that can be formed with the remaining items.

Here, this is only one: {C,D,E}. Combine the itemset {A,B}, with this itemset. This

results in one 5-itemset, that has to be removed.

⇒ 1 itemset

• TOTAL: 1 + 3 + 3 + 1 = 8 itemsets

Next, all itemsets that contain the items C and D are removed. We will act as if the

itemset {A,B} is not yet removed. Then the calculation of the number of itemsets that is

removed is analog to the calculation for the itemsets eliminated by removing {A,B} and thus

also 8 itemsets are being removed.

We can see the lattices with {A,B} removed and {C,D} removed in Figure 3.2(a) and

3.2(b). Note that the total number of itemsets, that is removed, is not (8 + 8) = 16, because

we have counted the itemsets {A,B, C, D} and {A,B, C, D, E} twice. So the total number of

itemsets, that is removed, is actually 14. The lattice without the itemsets containing A and

B, and C and D, is shown in Figure 3.3.

This leads to the following formula:

(# removed by {A,B}) + (# removed by {C,D})

− (#{A,B} and {C,D} in common)

= 8 + 8− 2 = 14 (3.1)

3.3.3 Generalization

We still suppose that every possible combination of items, is a frequent-itemset.

The total number of frequent itemsets is then represented by I, where

I =
n∑

k=1

(
n

k

)
=

n∑
k=1

n!
k! (n− k)!

(3.2)

where n is the number of items. To reduce this formula, the binomial theorem is used, where

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k for n ≥ 0 (3.3)

So actually Formula 3.2 is the same as:

I =
n∑

k=0

(
n

k

)
−
(

n

0

)
=

n∑
k=0

(
n

k

)
1n1n−k − 1 = 2n − 1 (3.4)

The number of itemsets that remain, after the removal of an itemset, is represented by R.

Note that in this section, we will only discuss the ideal situation, where all of the itemsets
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(a) Lattice where {A, B} is removed

(b) Lattice where {C, D} is removed

Figure 3.2: Lattices where itemsets are removed
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Figure 3.3: Lattice without itemsets containing A and B, and C and D

containing a well-known dependence will be removed. This ideal situation can be regarded as

the upper limit for all other situations, since in this situation the maximal number of frequent

itemsets is removed.

Removing 1 well-known dependence I1

Suppose, that I1 is a 2-itemset and there are n items.

The total number of itemsets that is removed in this ideal situation, then is:(
n− 2

0

)
︸ ︷︷ ︸

α1

+
(

n− 2
1

)
︸ ︷︷ ︸

α2

+
(

n− 2
2

)
︸ ︷︷ ︸

α3

+ . . . +
(

n− 2
n− 2

)
︸ ︷︷ ︸

α4

(3.5)

Where:

1. α1: the number of 2-itemsets that can be made with I1 and the remaining n− 2 items.

I1 already is a 2-itemset, so this is 1.

2. α2: the number of 3-itemsets that can be made with I1 and the remaining n− 2 items.

3. α3: the number of 4-itemsets that can be made with I1 and the remaining n− 2 items.

4. α4: the number of n-itemsets that can be made with I1 and the remaining n− 2 items.

This is also 1.

Formula 3.5 can be reduced to:

n−2∑
k=0

(
n− 2

k

)
= 2n−2 (3.6)
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When I1 would be a 3-itemset, we would get the following formula for the total number

of itemsets that is removed:(
n− 3

0

)
︸ ︷︷ ︸

α1

+
(

n− 3
1

)
︸ ︷︷ ︸

α2

+
(

n− 3
2

)
︸ ︷︷ ︸

α3

+ . . . +
(

n− 3
n− 3

)
︸ ︷︷ ︸

α4

=
n−3∑
k=0

(
n− 3

k

)
= 2n−3

(3.7)

We can now conclude the following:

Theorem 3.1. When removing 1 j-itemset (2 ≤ j ≤ n) and the number of items is n, the

number of itemsets that remain is:

R = I − 2n−j = 2n − 2n−j − 1 (3.8)

Removing 2 well-known dependences I1 and I2 with I1 ∩ I2 = ∅

Suppose that:

• I1 is an i-itemset (2 ≤ i ≤ n)

• I2 is a j-itemset (2 ≤ j ≤ n)

• n is the number of different items

The total number of itemsets that is removed, is then calculated by:

2n−i︸︷︷︸
α1

+ 2n−j︸︷︷︸
α2

− β (3.9)

Where:

1. α1: the number of itemsets that is removed, by removing I1

2. α2: the number of itemsets that is removed, by removing I2

3. β: the number of itemsets that are removed by both I1 and I2. This is what we have

seen in Section 3.3.2 by removing both {A,B} and {C,D}.

To calculate β, we need to search the number of all itemsets that contain the (i + j)-

itemset, that is formed by I1 ∪ I2. If i + j > n, then there will be no itemsets that are in

common, and so β = 0.

β =

{
0 if n− i− j < 0∑n−i−j

k=0

(
n−i−j

k

)
= 2n−i−j if n− i− j ≥ 0
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Theorem 3.2. When removing 2 itemsets I1 and I2, that do not contain the same items, the

number of remaining itemsets is:

R = 2n − 2n−i − 2n−j + 2n−i−j − 1 (3.10)

Removing 2 well-known dependences I1 and I2 with I1 ∩ I2 6= ∅

Suppose that:

• I1 is a 2-itemset: {x, y}

• I2 is a 2-itemset: {y, z}

Here we have to distinguish two possibilities:

1. There is no transitivity between the rules they generate

2. There is transitivity between the rules they generate

Definition 3.1. There is transitivity between 2 associations, when the first one is of the type

x → y and the association rule of the other one is of the type y → z, where the confidence of

both rules is 100%. This transitivity then means that also x → z is an association rule with

a confidence of 100%.

First, suppose we can make use of this transitivity rule. This means that the association

rule generated by I1 is x → y and the association rule generated by I2 is y → z. Because

they both are well-known dependences, their association rules also both have a confidence of

100%. This means that every time there appears an x, there also is a y, and every time there

is a y, there also is a z. So whenever there appears an x, there also appears a z.

From this, we can conclude that also x → z is an association rule with a confidence of

100%, and thus the itemset {x, z} is another well-known dependence, which also has to be

removed.

We now have 3 itemsets that have to be removed: {x, y}, {y, z} and {x, z}. So the formula

appears to be:

R = I − 2n−2 − 2n−2 − 2n−2 (3.11)

But by removing each of these itemsets, the itemsets that contain x, y and z are removed

too, which results in counting them 3 times instead of 1 time.

Theorem 3.3. When removing two 2-itemsets I1 and I2 that overlap and where there is

transitivity, the number of remaining itemsets is:

R = 2n − 1− 3 · 2n−2 + 2 · 2n−3

= 2n − 1− 3 · 2n−2 + 2n−2

= 2n − 2 · 2n−2 − 1

= 2n − 2n−1 − 1

(3.12)
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When there is no transitivity between the rules of I1 and I2, so their association rules are

x → y and z → y or y → x and y → z, we cannot remove the itemset {x, z}. This results in

the following theorem:

Theorem 3.4. When removing two 2-itemsets I1 and I2 that overlap and where there is no

transitivity, the number of remaining itemsets is:

R = 2n − 1− 2 · 2n−2 + 2n−3

= 2n − 2n−1 + 2n−3 − 1

= 2n−1 + 2n−3 − 1

(3.13)

We discussed the APriori-KC algorithm, and see that this algorithm is really faster than

the original algorithm of APriori, because some frequent itemsets were not generated due

to the fact of containing a well-known dependence and thus would produce rules that were

useless. This speed-up would only take place, if we did not encounter the worst-case scenario,

where there would be no well-known dependences given by the user, and thus the algorithm

would act just like the original APriori.

Since FP-Growth is faster than APriori, we will apply this method of dependence elimi-

nation to FP-Growth, as we will see in the next chapter.
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FP-Growth-KC

4.1 The Concept

The APriori algorithm – apart from generating both redundant and well-known patterns –

is not as fast as other algorithms like FP-Growth. As we have seen in Section 2.1.2, the FP-

Growth algorithm needs less time, to accomplish the same thing as the APriori algorithm.

The authors of the algorithm claim that this is because the FP-Growth algorithm does not

generate candidate itemsets. According to [Goe02], this cannot be said, as in fact FP-Growth

generates a lot more candidate itemsets than the APriori algorithm. This is because FP-

Growth uses the same candidate generation technique as in APriori, but it just leaves out the

pruning step.

Since the well knwon FP-Growth algorithm seems to be faster than APriori, we will apply

the same technique of using knowledge constraints to this algorithm.

4.2 The Algorithm

When we discussed the APriori-KC algorithm in Section 3.3, we saw that itemsets that

represented a well-known dependence, were removed in the pruning step of the algorithm.

But when we want to apply the same method of dependence removal to FP-Growth, it is

impossible to do this in the same way as there is no pruning step in the FP-Growth algorithm.

Thus we need to check the presence of well-known dependence elsewhere in the algorithm.

As FP-Growth also uses a candidate generation technique (with the building of conditional

FP-trees), it would be logical to insert a test for well-known dependences during this step.

This means that the algorithm would look like Listing 4.1. In this algorithm, Φ is the set of

well-known dependences, which are the knowledge constraints.

37
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Listing 4.1: FP-Growth-KC(Tree; α)

1 i f (Tree conta in s a s i n g l e path P )

2 for each combination β o f the nodes in P

3 i f (β conta in s no dependence o f Φ)

4 generate pattern β ∪ α with support

5 = minimum support o f nodes in β ;

6 else

7 for each ai in the header o f Tree{
8 β = ai ∪ α with support = ai . support ;

9 Treeβ = cond i t i o na l FP−t r e e o f β ;

10 for each node bi in Treeβ

11 i f (bi ∪ β conta in s dependence o f Φ)

12 remove bi from Treeβ ;

13 i f (Treeβ e x i s t s )

14 c a l l FP−Growth−KC(Treeβ ,β ) ;

15 }
16 }

As you can see, this algorithm does not differ very hard from the original FP-Growth

algorithm. Line 3 and Line 10 to 12 in Listings 4.1 are the only lines that were added,

to make sure that no well-known dependences would appear amongst the found frequent

itemsets.

When the tree is not a single path, we need to build a conditional FP-tree for every

β = ai∪α, where ai is a node in the header of the tree. In the original FP-Growth algorithm,

we will prune β and the nodes that do not reach minimum support, during the building of this

conditional FP-tree for β. As the frequent itemsets will be deduced from these conditional FP-

trees, we will prune this tree further to make sure the well-known dependences are removed.

We will therefore check for every node bi in the conditional FP-tree of β if bi ∪ β produces

any of the well-known dependences of Φ. Since these nodes are then useless, because they

only lead to frequent itemsets with well-known dependences and thus also to non-interesting

association rules, we can remove them from the tree. This results in a conditional FP-tree,

that will only give us the interesting frequent itemsets.

When we have a tree, that contains only one single path, it is not possible to prune well-

known dependences from this tree, as it still has to be possible to combine the different items

of the dependence with the other items. Thus when we would prune this tree, this would
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Figure 4.1: Singlepath tree

result in a tree where too many nodes were removed and thus not all of the – still interesting

– frequent itemsets could be found.

This can be easily understood with the following example. Assume we have a tree like

the tree in Figure 4.1 and that {A,B} is the dependence and that all items in this tree reach

minimum support. When we would remove A and B from the tree, the only frequent itemsets

that would be found are {C}, {D} and {C,D}. But these itemsets are not the only ones that

are frequent: also {A}, {B}, {A,C},{B,C}, {A,D},{B,D}, {A,C,D},{B,C,D} are frequent.

Therefore we cannot prune a singlepath tree. When we combine the items (as in the original

FP-Growth algorithm), we must then check if this combination does not contain a dependence

of Φ. Only then it is found to be a frequent itemset.

4.3 Example

To illustrate how the new algorithm is working, we will show the use of it on an example.

For this, we use the transactional database shown in Table 4.1. This represents tests that

were performed on the small amount of 10 persons in a city, according to their characteristics:

the gender, haircolour and whether they are pregnant or not. To represent these character-

istics, we use the attributes Female, Blond and Pregnant. The value ‘yes’ for a particular

characteristic, means that the person in question has this feature. Contrary, the value ‘-’

means that the person in question does not have this characteristic.
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PersonID Female Blond Pregnant

1 - yes -

2 yes - -

3 yes - yes

4 yes yes yes

5 - - -

6 - yes -

7 yes yes yes

8 yes - yes

9 - yes -

10 yes - -

Table 4.1: Dataset example of a city

First we will construct the FP-tree of this dataset, according to the algorithm shown in

Section 2.1.2. Assuming a minimum support count of 1, we will get the FP-tree that is shown

in Figure 4.2.

null

blond: 3

pregnant: 2

female: 6

blond: 2

pregnant: 1

Figure 4.2: FP-tree of the transactions in Table 4.1

When we use this FP-tree as input for the original FP-Growth algorithm, we find the

frequent itemsets listed in Table 4.2.

When deducing the association rules from these frequent itemsets – supposing a minimum

confidence of 10% – we get 12 rules in total – listed in Table 4.3 – amongst which are the

rules pregnant → female and blond ∧ pregnant → female. As is very logical, both of these



Chapter 4. FP-Growth-KC 41

k Frequent itemsets

1 {female}, {blond}, {pregnant}
2 {female, pregnant}, {blond, pregnant}, {female, blond}
3 {female, blond, pregnant}

Table 4.2: Frequent itemsets found by applying the FP-Growth algorithm to the FP-tree in

Figure 4.2

.

rules will have a confidence of 100% since every pregnant person is female and it does not

matter whether this pregnant person’s hair colour is blond or not.

k Association Rules Confidence

2 pregnant → female 100%

blond → female 40%

female → blond 33%

pregnant → blond 33%

blond → pregnant 20%

female → pregnant 50%

3 blond ∧ pregnant → female 100%

female ∧ pregnant → blond 33%

blond ∧ female → pregnant 50%

pregnant → blond ∧ female 33%

female → blond ∧ pregnant 17%

blond → female ∧ pregnant 20%

Table 4.3: Association rules deduced from the frequent itemsets in Table 4.2

.

Since it is very evident that every pregnant person is female, this is a well-known depen-

dence and it can be removed to avoid non-interesting rules.

We will start over again with the same FP-tree, but this time we will use the FP-Growth-

KC algorithm instead. Like in the original FP-Growth algorithm, we will first look for frequent

itemsets ending in pregnant, than those ending in blond and finally the ones that end in female.

First taking the prefix paths of pregnant, we can see that {pregnant} itself has a support

of 3 and thus is frequent itself. Converting the prefix paths into the conditional FP-tree of

pregnant, we get the tree in Figure 4.3.
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null

female: 3

blond: 1

Figure 4.3: Conditional FP-tree of pregnant

We already know that the appearance of the node with label “female: 3”, will cause

the normal FP-Growth algorithm to produce the frequent itemsets {female, pregnant} and

{female, blond, pregnant}, which at their turn will lead to non-interesting rules. Therefore

the node with label “female: 3” will be removed from the tree. As the items blond and

pregnant do not form a well-known dependence together, the node with label “blond: 1” will

not be removed. The algorithm now goes on with the pruned conditional FP-tree of pregnant.

Since this is only one single path, the only extra frequent itemset that is found, is the itemset

{blond, pregnant} with a support count of 1.

We will now look for the frequent itemsets ending in blond. As there are no dependences

which involve being blond, the FP-Growth-KC algorithm will continue like the original FP-

Growth algorithm.

At last, we will continue to search the frequent itemsets ending in female. As this item

has a support count of 3, we can count the itemset {female} to the frequent itemsets. Since

the conditional FP-tree of this item does not exist (only the root with label null, no further

items), we can say there are no further frequent itemsets to be found and the FP-Growth-KC

algorithm has finished. The frequent itemsets are listed in Table 4.4. When we deduce the

association rules from these frequent itemsets (again with a minimum confidence of 10%), we

get those in Table 4.5.

4.4 Rule recovery

4.4.1 Problem

In the example in the previous section, we found that there are no more non-interesting rules

generated, due to applying the FP-Growth-KC algorithm. But when we compare the rules
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k Frequent itemsets

1 {female}, {blond}, {pregnant}
2 {blond, pregnant}, {female, blond}

Table 4.4: Frequent itemsets found by applying the FP-Growth-KC algorithm to the FP-

tree in Figure 4.2

.

Association Rules Confidence

blond → female 40%

female → blond 33%

pregnant → blond 33%

blond → pregnant 20%

Table 4.5: Association rules deduced from the frequent itemsets in Table 4.4

.

generated after FP-Growth (Table 4.3) and those generated after FP-Growth-KC (Table 4.5),

we see that not only the non-interesting rules are gone: also some interesting rules are not

generated anymore, because of the removal of the well-known dependence.

The cause of this can be found in the fact that by removing a well-known dependence

{A,B}, because A → B with 100% confidence is logical, every single itemset that contains

both of these items is removed. Though, it is still possible that the rule B → A has less

than 100% confidence and thus cannot be called well-known. We can see this in the example

where the rule pregnant → female is very obvious and has a confidence of 100%. The rule

female → pregnant only has a confidence of 50%, since it would be rather a coincidence if

all females in a city would be pregnant. But the latter is not generated, because all frequent

itemsets that contain both the items pregnant and female are removed. Other interesting

rules that are not generated after applying FP-Growth-KC are:

• blond ∧ female → pregnant

• female → blond ∧ pregnant

4.4.2 Solution

To overcome this problem, we will try to recover the interesting rules that were lost.

We already know that the rule A → B has a confidence of 100%, because {A,B} is a

well-known dependence. Therefore recovering rules like AC → B or A → BC is unnecessary,

as these still express obvious facts.
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Theorem 4.1. When a rule A → B has a confidence of 100%, the rule AC → B also has a

confidence of 100%.

Proof. The association rule A → B has a confidence of 100%, which means that the support

of the itemset {A,B} is the same as the support of {A}. When we want to calculate the

confidence of the rule AC → B, we get:

conf(AC → B) =
supp({A,B, C})
supp({A,C})

=
supp({A,C})
supp({A,C})

= 1

Thus the confidence of the rule AC → B is 100% and the theorem is proven.

Theorem 4.2. When a rule A → B has a confidence of 100%, then the rule A → BC has a

confidence that is equal to the confidence of the rule A → C.

Proof. The association rule A → B has a confidence of 100%, which means that the support

of the itemset {A,B} is the same as the support of {A}. We will denote the confidence of

the rule A → C with c, with 0% ≤ c ≤ 100%.

The confidence of the rule A → BC then is calculated as follows:

conf(A → BC) =
supp({A,B, C})

supp({A})
=

supp({A,C})
supp({A})

= c

So we can conclude that recovering rules that have A in the antecedent and B in the

consequent will not give us new information and thus is not necessary.

But since the rule B → A is not a well-known dependence and thus has a confidence less

than or equal to 100%, it is necessary to recover those rules that have B in the antecedent

and A in the consequent. This rule recovery takes place during the normal generation of the

association rules. Why this is not afterwards will be explained later on.

First, before the rule generation, we will recover the rules that are the reverse of the

well-known dependences. Therefore, we will scan the well-known dependences and generate

the rule B → A (which is the reverse of A → B with a confidence of 100%). Then we will

check if this rule reaches minimum confidence and if so, we will keep it. Otherwise, it will be

removed.

The next step is the generation of the association rules from the found frequent itemsets.

Since only rules with B in the antecedent and A in the consequent could possibly be inter-

esting, we will try to recover those rules. During the generation of the rules, we will check

for every rule (no matter what its confidence is) if it has B in the antecedent or A in the

consequent. If it has B in the antecedent, we will add A to the consequent; if it has A in
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the consequent, B will be added to the antecedent. When we have done so, the confidence of

the new rule BC → AD needs to be calculated. Hereby we need to distinguish two different

situations:

1. The rule was recovered from the rule C → AD:

When we calculate the confidence of the rule C → AD, we get that

conf(C → AD) =
supp({A,C, D})

supp({C})
.

The confidence of the new rule can then be calculated as follows:

conf(BC → AD) =
supp({A,B, C, D})

supp({C})
=

supp({A,C, D})
supp({B,C})

.

To get the support of the itemset {B,C}, we need to scan the frequent itemsets to find

this itemset. But for the support for the itemset supp({A,C, D}, we do not need to do

this since it equals conf(C → AD)× supp({C}), which were both calculated already.

2. The rule was recovered from the rule BC → D:

conf(BC → D) =
supp({B,C,D})
supp({B,C})

conf(BC → AD) =
supp({A,B, C, D})

supp({B,C})
=

supp({A,C, D})
supp({B,C})

Since we already have the support of the itemset {B,C}, we only need to scan the

frequent itemsets once to find the support of {A,C, D}.

This rule recovery takes places during the process of the rule generation and not with the

rules that were generated after the rule generation finished. This is done because otherwise

it is not possible to recover all of the rules. Suppose we have the dataset of Table 4.1 and

we use a minimum confidence of 30%. If we executed FP-Growth-KC and first generated the

rules (without the recovery), we would get the rules summarized in Table 4.6(a). When we

would then try to recover all of the rules that have female in the antecedent and pregnant

in the consequent, we would get the association rules shown in Table 4.6(b). But as we have

seen before in Table 4.3 also the rule

blond ∧ female → pregnant

can be called an interesting rule and it has a confidence of 50% but it is not recovered.

Normally this rule can only be recovered from the association rule

blond → pregnant
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but since this rule only has a confidence of 20% – and thus is not generated – the association

rule

blond ∧ female → pregnant

cannot be recovered. Therefore the rule recovery should take place during the rule generation.

Table 4.6: Association rules deduced from the frequent itemsets in Table 4.2 after executing

FP-Growth-KC

. (a) Before rule recovery

Association Rules Confidence

blond → female 40%

female → blond 33%

pregnant → blond 33%

(b) After rule recovery

Association Rules Confidence

blond → female 40%

female → blond 33%

pregnant → blond 33%

female → pregnant 50%

The new algorithm FP-Growth-KC with rule recovery can be called equivalent to FP-

Growth where the rules are pruned afterwards. We will not give a formal proof of this, but

explain why this is so. To make it a little easier to follow, we will call FP-Growth where the

rules are pruned afterwards Method 1 and FP-Growth-KC with rule recovery Method 2.

When A → B is the uninteresting rule that may not be generated, then Method 1 will

prune all of the rules that have A in the antecedent and B in the consequent. The rules that

have B in the antecedent and A in the consequent will not be touched.

Method 2 does not generate any rule that has A in the antecedent and B in the consequent.

The rules with B in the antecedent and A in the consequent are in the normal FP-Growth-KC

method (without rule recovery) not generated no such frequent itemset exists where A and

B appear together. Therefore we will test during the rule generation for rules that have B

in the antecedent or A in the consequent, which makes it possible to recover all of the rules

with B in the antecedent and A in the consequent that would otherwise be lost.
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Implementation in Weka

In this chapter, we present Weka-KC, which extends the data mining toolkit Weka 3.5.5

[WF05] with the option to use knowledge constraints while mining the data. Weka is a free

and open source data mining toolkit that allows the user to perform the whole KDD process

by providing friendly and clear graphical user interfaces. The application implements several

widely used data mining algorithms for classification, clustering and association rule mining.

The main objective of Weka-KC is to provide a tool for using knowledge constraints in order

to reduce time and effort while mining the data.

The prototype that is presented in this chapter provides changes to the standard APriori

algorithm, whereas it will be possible to use knowledge constraints. Also the FP-Growth

algorithm was implemented, as well as FP-Growth-KC and the method to recover the rules

that was explained in Section 4.4. For testing purposes, also the APriori and FP-Growth

algorithm where the pruning happens afterwards, were implemented in Weka-KC.

Weka is fully implemented in Java and has a preprocessing module named weka.Explorer

to read the data that have to be mined. The GUI of this module is shown in Figure 5.1. At

this interface, the user can choose the data to be mined, by opening an arff file (the standard

input file format for Weka), a website or a database. An arff file consists of two sections (in

the order that they are mentioned):

1. Header section: this section contains the name of the relation and the names of the

attributes, together with their types.

2. Data section: this section contains the data instances

An example of an arff file is shown in Figure 5.2.
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Figure 5.1: Weka Explorer GUI

@relation weather.symbolic

@attribute outlook sunny, overcast, rainy

@attribute temperature hot, mild, cool

@attribute humidity high, normal

@attribute windy TRUE, FALSE

@attribute play yes, no

@data

sunny,hot,high,FALSE,no

sunny,hot,high,TRUE,no

overcast,hot,high,FALSE,yes

rainy,mild,high,FALSE,yes

rainy,cool,normal,FALSE,yes

rainy,cool,normal,TRUE,no

Figure 5.2: Example of an arff file
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5.1 Format of the dependences

As said before, we only work with dependences that contain 2 items, in other words with

itemsets of the form {A,B}.

For the algorithms to use these dependences, we put them in a text file in the following

format:

{attribute1 = attrV alue1, attribute2 = attrV alue2}

where attribute1 is the item in the antecedent of the dependence and attrValue1 its value and

attribute2 the item in the consequent of the dependence with value attrValue2.

Note that the order of the items between the bracelets really does make a difference since

attribute1 = attrV alue1 → attribute2 = attrV alue2 is the rule that has a confidence of 100%

and not attribute2 = attrV alue2 → attribute1 = attrV alue1 !

5.2 Implementation of APriori-based methods

Because there was already an implementation of APriori present in the current version of

Weka, we had to give our implementation of APriori another name: APrioriModified. This

version has several options that are shown in Figure 5.3:

algoType The type of APriori-based algorithm you want to run:

• APriori: the original APriori algorithm

• APriori-KC: the APriori algorithm with the elimination of dependences a priori,

during the frequent itemset generation

• APriori-prune: the APriori algorithm where all of the rules are generated and those

that contain a dependence are removed afterwards

buildRules If the association rules have to be generated or not

dependences The file that contains the dependences, formatted like in Section 5.1

minConfidence The minimum confidence

minSupport The minimum support
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5.3 Implementation of FP-Growth-based methods

Beside the APriori-based algorithm, we also implemented FP-Growth and its derivatives, that

are summarized in the description of the options. The options of the FP-Growth algorithm

in Weka-KC can be found in Figure 5.4:

algoType The type of FP-Growth-based algorithm you want to run:

• FP-Growth: the original FP-Growth algorithm

• FP-Growth-KC: the FP-Growth algorithm with the elimination of dependences,

during the frequent itemset generation

• FP-Growth-KC with recovery: the same algorithm as FP-Growth-KC, except that

the lost association rules are recovered

• FP-Growth-prune: the FP-Growth algorithm where all of the rules are generated

and those that contain a dependence are removed after the rule generation

buildRules If the association rules have to be generated or not

dependences The file that contains the dependences, formatted like in Section 5.1

minConfidence The minimum confidence

minSupport The minimum support

showFPTree If the FP-tree needs to be printed with the results. When you chose to print

the FP-tree, you can find a tree like in Figure 5.5.

With this extended version of Weka, we can now do experiments with our newly developed

algorithms. The results of these experiments are summarized in the next chapter.
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Figure 5.3: APriori

Figure 5.4: FP-Growth
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Figure 5.5: FP-tree
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Experiments and Evaluation

In this chapter we present many experiments that were done with Weka-KC, described in

Chapter 5, in order to evaluate and validate the newly developed data mining methods. For

this tests, we used two different datasets:

1. Mushroom dataset1: this dataset contains 22 different attributes and 8124 instances.

Every tuple describes the characteristics of one single mushroom. The dependences

were chosen randomly. We ran the original FP-Growth method on this dataset and

took 2-frequent rules that had a confidence of 100%.

2. Geographic dataset: this dataset contains 15 attributes and 514 instances. This dataset

was also used in 3.3.

In every experiment, we use a number of different minimum supports, as well as a number

of different well-known dependences.

6.1 Experiments with the Mushroom dataset

In this section we evaluate APriori-KC and FP-Growth-KC for the Mushroom dataset. We

used a minimum confidence of 50% in each experiment. The experiments that are described

in this section, were all performed with a PowerPC G4, 1.42 GHz, with 512 MB of RAM

memory and Mac OSX 10.4 as operating system.

6.1.1 Evaluating APriori-KC and FP-Growth-KC for single dependence

elimination

The first experiment that we performed was to run both algorithms on the Mushroom dataset

where only one pair of dependences had to be removed.
1http://www.cs.umb.edu/ rickb/files/UCI/mushroom.arff
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(a) Frequent sets (b) Computational time for generating the frequent

sets

Figure 6.1: Generation of the frequent sets

Figures 6.1 and 6.2 show the result of this experiment. In Figure 6.1(a), you can see

the number of frequent itemsets. It is clear that APriori and FP-Growth generate the same

frequent itemsets. Here we can also see that – by the elimination of one dependence – APriori-

KC and FP-Growth-KC both remove the same frequent sets and thus we see that they both

generate the same frequent itemsets. The graphic also shows that the number of original

frequent itemsets is reduced in almost 20%, only by removing one single dependence.

Figure 6.1(b) shows the time that is necessary to generate the frequent itemsets for the

different methods. The times for both APriori and APriori-KC and for FP-Growth and FP-

Growth-KC almost overlap here. This is because the higher the support becomes, the lower

the number of itemsets that has to be removed and thus the closer their computational times

will lay to each other.

In Figure 6.2, we see the results for generating the association rules. Here we compared

4 different methods: the original APriori method, APriori-KC with removing 1 dependence,

the original FP-Growth method and FP-Growth-KC with rule recovery for removing 1 depen-

dence. We did this to show that the FP-Growth-KC algorithm, with or without rule recovery,

indeed is faster than APriori and APriori-KC. In Figure 6.2(a) we give an overview of the

number of association rules that are generated. We did not put the number of association

rules generated by the FP-Growth method in the graph, as these association rules are exactly

the same as those generated by APriori.

What we can see in this graph is that almost 34% of the association rules that are generated

by APriori (with a minimum confidence of 50%), are not generated by APriori-KC when

removing one dependence and this for all different values of minimum support. But when we
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(a) Association rules (b) Computational time for generating the associa-

tion rules

Figure 6.2: Generation of the association rules

look at the FP-Growth-KC method with the recovery, we can see that a lot of association

rules were lost with just applying the APriori-KC method, as a lot of rules are recovered in

the FP-Growth-KC method. When we look at the computational time for generating these

association rules in Figure 6.2(b), it becomes clear that the APriori-KC method is faster than

the original APriori, something we already knew. But another thing that becomes visible

when looking at the graph is that not only FP-Growth-KC is faster than APriori-KC, but

also the FP-Growth-KC method with the rule recovery.

6.1.2 Evaluating APriori-KC and FP-Growth-KC for the elimination of 2

dependences

The second experiment that was performed, was comparing the methods as we removed 2

pairs of dependences.

In Figure 6.3(a) we can see the number of frequent itemsets that were generated by

the different methods. As you can see, APriori-KC and FP-Growth-KC still remove the same

frequent itemsets, so they will give the same result for the generation of the frequent itemsets.

The frequent itemsets are reduced by approximately 36% for every different value of minSupp.

The computational time for generating these frequent itemsets is shown in Figure 6.3(b).

Here we can see that there is a bigger difference in time between APriori and APriori-KC

than in Figure 6.1(b), but that this is not true for FP-Growth and FP-Growth-KC. The

difference between APriori and APriori-KC is so big, because none of the frequent itemsets

that contains a dependence is generated in the latter method. However, with FP-Growth-KC

still all of the frequent itemsets are collected by building the FP-tree in the beginning. The
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(a) Frequent sets (b) Computational time for generating the frequent

sets

Figure 6.3: Generation of the frequent sets

(a) Association rules (b) Computational time for generating the associa-

tion rules

Figure 6.4: Generation of the association rules

pruning only starts when we make the different conditional FP-trees. But the beginning of

FP-Growth and FP-Growth-KC is the same, as they both generate the same FP-tree, so there

is not much difference in time between the two methods.

Figure 6.4 shows us the results for the generation of the association rules. Because more

dependences are removed, the number of association rules will also be lower than the ones in

Figure 6.2(a). We can also see here that – as with removing a single dependence – a lot of

rules are lost with APriori-KC. Those rules are then recovered by the FP-Growth-KC method.

Also the computational time is the best for the FP-Growth-KC method that puts back the

rules, just like in Figure 6.2(b).
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Figure 6.5: Computational time for rule recovery with FP-Growth-KC

6.1.3 Evaluating performance of rule recovery with FP-Growth-KC

The following experiment was to evaluate the rule recovery with FP-Growth-KC. For this,

we ran the original FP-Growth method and pruned the rules aposteriori. This means that

we first generated all of the rules and after that just removed those that contained a depen-

dence. Beside that, we also ran the FP-Growth-KC method for the elimination of 1 pair of

dependences, 3 pairs and 5 pairs.

The result of this experiment is shown in Figure 6.5. The FP-Growth method is shown

only once here, because the time for removing dependences stays the same whether there

are 3 or 5. This can be explained by the fact that we always have to scan the whole set of

association and just remove those that contain a dependence. In this graph we can see that

the rule recovery may take some more time than just executing the normal FP-Growth-KC

method, but it is still faster than the standard method of pruning the rules aposteriori.

6.1.4 Evaluating FP-Growth with pruning afterwards and FP-Growth-KC

with rule recovery

The last experiment was to compare the results (the association rules that were generated)

from the FP-Growth algorithm that prunes the rules aposteriori to the results of the FP-

Growth-KC algorithm with rule recovery. In contrast to the other experiments, we took a

minimum confidence of 90% instead of 50%.

The results of this experiment can be observed in the graphs in Figure 6.6. The graph in

Figure 6.6(a) illustrates the number of association rules that were generated by pruning the

rules afterwards. As can be seen, the graph in Figure 6.6(b) shows exactly the same number

of association rules, which means that they both produce the same association rules. The
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(a) FP-Growth with pruning afterwards

(b) FP-Growth-KC with rule recovery

Figure 6.6: Generation of the association rules

only difference is that the rule recovery is much faster than pruning the rules afterwards, as

we have already shown in Figure 6.5.

6.2 Experiments with the Geographic dataset

In this section we compare APriori-KC and FP-Growth-KC for the Geographic dataset. We

used a minimum confidence of 90% in each experiment. The experiments that are described

in this section, were all performed with a Genuine Intel CPU T2400, 1.83 GHz, with 1 GB

of RAM memory and Windows XP as operating system, because the Geographic dataset was

available on this machine.
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Figure 6.7: Frequent sets for the Geographic dataset

6.2.1 Evaluating the frequent set generation of the FP-Growth-KC method

In the first experiment with the Geographic dataset, we will check the efficiency of the frequent

set generation for the FP-Growth-KC algorithm. Herefore, we executed the original FP-

Growth algorithm and the FP-Growth-KC algorithm. The latter was executed for eliminating

a single pair of dependences and for 2 pairs of dependences. As a minimum support, we took

10%, 15% and 20% instead of the 40%, 45% and 50% with the Mushroom dataset.

The total number of frequent itemsets that was generated by the algorithm can be found

in the graph in Figure 6.7. This shows us that the removal of one dependence does not reduce

the total number of frequent itemsets that much, in comparison with the original FP-Growth

algorithm. On the other hand, removing 2 pairs of dependences makes a big difference in

this case, because it reduces the total number of frequent itemsets by almost 20% for every

different value of minimum support.

When we look at the time that was needed to accomplish the task of generating frequent

itemsets in Figure 6.8(a), we see that the more dependences that are removed, the less time

is needed to find the frequent itemsets. When we would try to do the same experiment but

with the APriori-based methods, we would get the performance graph in Figure 6.8(b). The

APriori-based methods to remove dependences thus need much more time to find the frequent

itemsets.

6.2.2 Evaluating the rule generation and rule recovery of the FP-Growth-

KC method

The next experiment is to compare the generation of association rules for the original FP-

Growth method and the FP-Growth-KC method with rule recovery, one time with a single

dependence elimination, another time with 2 pairs.
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(a) FP-Growth vs. FP-Growth-KC (b) APriori vs. APriori-KC

Figure 6.8: Computational time for generating the frequent sets of the geographic dataset

for the APriori-based methods and the FP-Growth-based methods

(a) Association rules (b) Computational time

Figure 6.9: Association rule generation for the FP-Growth-based methods on the Geo-

graphic dataset

In the graph of Figure 6.9(a) we can see the number of association rules that were generated

after the frequent itemsets were found. Figure 6.9(b) shows us the time that the algorithms

needed to generate the association rules. The FP-Growth-KC with rule recovery comes out

best most of the times, though when the support becomes higher, recovering from a single

dependence elimination becomes slower than the FP-Growth algorithm.

Comparing the rule generation of APriori-KC and FP-Growth-KC with rule recovery for

the elimination of 2 pairs of dependences, gives us the results in Figure 6.10. The elimination

of two dependences shows that APriori-KC is more efficient that FP-Growth-KC (see Figure

6.10(b)). However, we may not forget that Apriori-KC does not recover the association rules.

As we can observe in Figure 6.10(a), FP-Growth-KC recovers about 20% of the rules that

were not generated by Apriori-KC, for any value of minimum support.
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(a) Association rules (b) Computational time

Figure 6.10: Association rules for APriori-KC and FP-Growth-KC with rule recovery



Chapter 7

Conclusions

In this thesis we mainly considered the problem of mining only interesting rules, because there

are rules that are known a priori to be uninteresting and that thus will only hinder the data

mining process.

We saw that there already existed a method, named APriori-KC [Bog06], to overcome

this problem. It removed the itemsets that contained a dependence, what made that none of

the frequent itemsets contained a dependence and thus no non-interesting association rules

were generated. Since the FP-Growth algorithm was known to have a better performance

than APriori, we applied the same idea of knowledge constraints to this algorithm.

Nevertheless, the new algorithm FP-Growth-KC, just like APriori-KC, still contained a

problem. Though they avoided that non-interesting rules were generated, also some interest-

ing rules were not generated through the elimination of the dependences. For this problem,

we showed that it was possible to recover all of these rules.

This newly developed method has some general advantages: less frequent itemsets and

association rules are generated than with the original algorithm, but still more association

rules than with the APriori-KC algorithm because of the recovery of the lost rules, which is

an improvement. Another advantage is that the removal of the dependences decreases the

computational time that is needed to generate the frequent itemsets and the association rules.

Experiments with the implementations in Weka-KC showed that the FP-Growth-KC al-

gorithm was indeed faster than APriori-KC. Only with the rule recovery, it could happen that

FP-Growth-KC was a little slower than APriori-KC. But getting all of the rules instead of

only a part is still more important than the time aspect here. Through experiments, we also

found that running FP-Growth and pruning the rules afterwards and running FP-Growth-KC

with rule recovery both gave the same results and thus can be called equivalent. Only the

method with rule recovery is much faster than pruning the rules aposteriori.

62
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Future works

This thesis only considered the elimination of dependences that contained only 2 items. For

there can also exist dependences that exist out of more than 2 items, like for example the rule

age > 60 ∧ isProfessor → isSeniorProfessor,

it would be useful to do some research on removing such dependences.

The rule recovery was only developed for the FP-Growth-KC algorithm, since we thought

this would be the faster than APriori-KC. But we were very surprised to see that FP-Growth-

KC with rule recovery for 2 pairs of dependences was slower than APriori-KC. Therefore we

will also try to apply this rule recovery to the APriori-KC algorithm.

The new algorithm that was developed, is only based on the FP-Growth algorithm. But

APriori and FP-Growth are not the only algorithms and there exist some algorithms that are

even faster than the FP-Growth algorithm, like for example the CLOSET algorithm [PHM00].

Therefore we should also research if it is possible to apply the same method of the knowledge

constraints to these algorithms.
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