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This article makes the obvious but rather unexploited 
remark that there is a structural difference between 
author-publication systems and, for example, jour- 
nal-article systems, in the sense that articles are 
published in one journal but that papers can have 
several authors. This difference is then studied math- 
ematically, using convolutions in order to derive the 
several-author case from the case of a single author 
per paper. 

We show that Lotka’s law q(i) = C/(i +l)@, where 
i2.0 is approximately stable for all cy = 2, 3, 4,. . . , 
meaning that if Lotka’s law is valid in systems in 
which every article has one author then it is approxi- 
mately valid (in a mathematically strong sense) (with 
the same cu) in the general systems, where more 
than one author per paper is possible. We also show 
that the same is true (but in an exact way) for the 
geometric distribution. Hence, this theory provides 
intrinsic explanations of the Lotka and geometric 
functions. 

Introduction 

In Egghe (1989, 1990) the notion of “Information Pro- 
duction Process” (IPP) is introduced and studied, being 
generalized source-item relationships. Examples of IPPs 
are: a classical bibliography of journals and articles in them 
(on a certain topic), a situation in which sources are authors 
and items are articles published by these authors, a situation 
in which books are sources and their borrowings in a library 
are the items, or a situation in which sources are articles 
and items are references in (or citations to) these articles, 
to give just a few examples. 

Let us consider the first two examples in more detail. The 
first example describes a “classical” bibliography consisting 
of a collection of journals and a selection of articles in 
them, which are dealing with (or relevant to) a certain 
topic. This situation was described by Bradford (1934), 
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and the underlying rank-frequency law is nowadays called 
“Bradford’s law.” The second example describes a situation 
in which one studies the production of a group of authors. 
The historical law involved with this situation is the so- 
called law of Lotka (Lotka, 1926), stating that, if p(i) 
denotes the fraction of the authors with i publications 
(i 2 l), then 

cp(i) = g 1 

where C is a constant and (Y is usually larger than or equal 
to one. Most classically, the value LY = 2 is put in front, 
especially in theoretical models. There is a good reason 
for that: it is well-known (see, e.g., Egghe & Rousseau, 
1990) that Bradford’s law is equivalent (in the mathematical 
sense) with Lotka’s law for cy = 2. This equivalence and 
other equivalencies are highlighted in Egghe (1989, 1990) 
based on duality theory: the duality (i.e., “interchangeabil- 
ity”) of sources and items. This duality is the common link 
between all the IPPs given above as examples (and many 
others). In general, in Egghe (1989, 1990) we define an 
IPP as a “generalized” bibliography of sources (the objects 
that produce) and items (the objects that are produced by 
these sources). From this viewpoint it was not only evident 
from a mathematical perspective that equivalencies between 
certain informetric laws exist, but this evidence was also 
present from a conceptual perspective. 

This study goes deeper into the duality problem and 
adds a new dimension to the study of general IPPs. The 
first observation is very simple (we keep on comparing 
journal-article and author-publication situations): articles 
appear in one journal while publications can be written 
by several coauthors. This conceptual difference should 
open the possibility for different types of informetric laws. 
Nevertheless, as stated above, the historic findings of Brad- 
ford (for journal-article systems) and of Lotka (for au- 
thor-publication systems) are the same. This does not seem 
to be evident. 

The mind is puzzled when making this simple re- 
mark. Mathematically, it is indeed true that Bradford’s and 
Lotka’s law (a = 2) are equivalent but this should only be 
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true when looking at IPPs of the “same type”-for example 
(as in the case of journal-articles), in which every item has 
exactly one source. 

So let us consider, for the author-publication system, 
that a paper is written by exactly one author (artificial 
situation). Based on the above introduction, we can assume 
that we have a frequency function as in (l), for (Y = 2: 
indeed, we accept Bradford’s law in this case of items 
having exactly one source and since this law is equivalent 
with Lotka’s for LY = 2, we can assume the validity of this 
function. 

Is there a mechanism to deduce the frequency function 
in the general situation in which papers can have several 
authors, from the frequency function in the (artificial) 
situation in which papers have exactly one author? If so, 
then we wonder if we can show that function (1) (LY = 2, or 
more general), valid in this artificial situation, is also valid 
in the general author-publication situation. Only then the 
above-mentioned problem is solved and a new, conceptual 
explanation of Lotka’s law is given. This topic is discussed. 

The main idea of solution is the following: let us denote 
by cpt the function, for i 2 0 

q](i) = the fraction of the authors with i publications 
conditional to: all the papers have only 
one author. (4 

and by q(i) the same but in the general case that papers can 
have several authors. Let us also define, for j 2 2, j E N, 

(pi(i) = the fraction of the authors with i publications 
conditional to: all the papers have exactly 
j authors. (3) 

In the general case, the set Aj of papers with j authors 
(j = 1,2,3,...) f orms a subset of the total set of papers 
and it is clear that they are disjoint for different j and that 
their union is the total set again. Hence, by the principle 
of total chance 

di> = 2 (Pj(iM,( j), (4) 
j=l 

where the above sum is finite in practice, and where 

4(j) = the fraction of the papers that have j authors 

(j = 1,2,3 ,... ). (5) 

We show that if ~1 is a geometric distribution, then 
so is (p (although none of the 4~2,403,. . . , are) and we 
also show that if ~1 is a power law as in (l), then 40 
is approximate to a power law with the same exponent, 
as long as a = 2,3,4,. .., meaning that pi(i) = C/is 
implies rp = O’(l/ia) where f = O’(g) means: 

lim f(x) = A I \ 64 
x-m g(x) . , 

where 0 < A < ~0. This is in fact stronger than what is 
usually defined as O( .)--see Rankin (1963). If the above 
limit does not exist, we then require 

0 < lim inf ‘$ < lim sup ‘s < CC, (6b) 
x 

which boils down to (6a) when the limit exists. 
This explains the fact that, although the author-pro- 

duction system is different from the systems in which 
every item has only one source, Lotka’s law with (Y > 1 is 
acceptable from a model-theoretic point of view. 

General Theory 

As above, let us consider a system in which every paper 
has exactly j authors (j = 1,2,3,. . .). Let US define, qj 
being the density function of the distribution Fj where, for 
all i 2 0 

Fj(i) = P (author has i or less publications] 

each paper has j authors) (7) 

and for 50 the same with respect to F: 

F(i) = P (author has i or less publications) (8) 

Let 8 be the function 

G(j) = P (a paper has j authors) (9) 

[P in (7) and (8) is in the author probability space; P in 
(9) is in the paper probability space]. 

The technique of calculating p from ~1 (given function), 
is to go over ~2, then over 503, and so on. Hereby we use 
convolutions, an idea introduced in Egghe (1993), but here 
we use a dual framework. We repeat the results on convolu- 
tions * that we need here (cf. Chung, 1974, pp. 144-146). 
For reasons of dealing with calculable convolution formulae 
we use i as a continuous variable. 

Theorem II. 1 

Let Xr and X2 be independent random variables with 
distribution functions F1 and F2, respectively. Then Xt + 
X2 has the distribution function F1 * F2, 
where 

cc 

(F, * F2k) = / Fl(x - Y)@~(Y) (10) 

is the convolution of the two distribution functions. 
When the distribution functions have densities, we have 

the following theorem. 

Theorem II.2 

The convolution of two distribution functions with den- 
sities gl and g2 is a distribution function with density 
g1 * g2. 

In a dual way, as in Egghe (1993), we can now state 
and prove the following results. 

Theorem II.3 

For every i 2 0 and j = 2,3,. . . , 

cPj(i) = (9~1 * . . . * PI) (9 (11) 

j times 
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Proof: Let j = 2 and fix i L 0. We adapt the following 
model: the IPP of papers, all with two authors, is considered 
as a merged system of two IPPs of papers with one author. 
The first one consists of the papers with only the first author 
as single author and the second IPP consists of the papers 
with only the second author as single author. So, author 
scores in the IPP of papers with two authors are sums of 
author scores in the two single-author IPPs. Indeed, the 
score of i papers for an author in systems where every paper 
has two authors is obtained from a score of y papers as 
first author and i - y papers as second author; here, y 2 0 
arbitrarily. Hence, we are in the case of Theorems II.1 and 
11.2, yielding (only positive values are possible): 

4D2G) = (PI * cpl)G) 

p2(i) = 
s 

m(i - Y>W(Y> dy (12) 
0 

Let j E N, j 2 3 be arbitrary and fix i 2 0. The score of 
i papers for an author is obtained from a score of y papers 
when the author is the first, second,. . . , or (j - l)ih author 
and a score of i - y papers where the author is the jrh 
author. Hence: 

Pi(i) = (Pj-1 * n)(i) 

Pj(i) = (91 * . . . * Pi) (i), 
Y 

j times 
by the associative property of convolutions. 

Corollary II.4 For every i 2 0: 
m 

p(i) = x ((01 * . . . * 401) (i)$C.j) 
j=l’ Y 

j times 

0 

(13) 

Note I: Clearly, it is not so that an IPP in which all papers 
have two authors is, in practice, a merged system of two 
IPPs in which all papers have one author. The model 
developed in the above proof only uses this framework 
for the purpose of calculating author scores. For this, it 
is clearly so that scores of authors in the former IPP are 
sums of scores of authors in the latter IPPs and hence, 
convolution theory applies. 
Note 2: Formula (13) is a dual version of formula (11) in 
Egghe (1993), where it was used to model fractional author 
counting when authors have coauthored several papers. 

We repeat the main problem of this paper: rpt is the 
“natural” frequency function in the case that every item 
has only one source (as, e.g., in the journal-article sys- 
terns-i.e., classical bibliographies) and p is the “natural” 
frequency function in the general case that every item can 
have several sources (as, e.g., in the author-publication 
systems). Historically, in the first case, Bradford’s law is 
found, hence (for i = 1,2,. . .): 

al(i) = !j (14) 
being equivalent with Bradford’s law (cf. Egghe & 
Rousseau, 1990) and 

v(i) = 5 

is found in the second case (the classical law of Lotka, 
cf. Lotka, [1926]) (or, more generally with the exponent 2 
replaced by cz). 

This article tries to explain how (15) can follow from 
(14) at least in an approximate way. This is done in the next 
section and even for general exponents (Y > 1. An exact 
“closed circuit” of functions is obtained for the geometric 
distribution: pt (i) = pqi implies p(i) = ca’ exactly, for 
certain values of c and a. Such an exact closed circuit 
cannot be obtained for the power functions (1). But in 
the O/-sense we obtain an approximate closed circuit (and 
even for the same exponent Q, contrary to the case of the 
geometric distribution), if LY > 1. This gives new insight 
into Lotka’s law and the geometric distribution and in the 
validity of general informetric laws in general IPPs. 

Stability Study of Lotka’s Law 

One of the main tools in the sequel are convolutions, 
as introduced in the previous section. We could have 
used discrete variables for the functions but then, taking 
discrete convolutions is very difficult and hard to evaluate. 
Therefore, we restrict ourselves to functions of a continuous 
variable. Because with function (1) we will have difficulties 
with divergent integrals, we will study the function: 

n(i) = ~ (i +cl)a (16) 

for i E [0, x[ (we could use (1) and use i E [l, 00 [ but 
then we have trouble in defining the convolution integrals). 

We can now state and prove our main theorem: 

Theorem III. 1 

Let rpl be as in (16). Then the function rp satisfies the 
stability property 

cp=O’L ( ) i” 
= O’(d (17) 

if CY > 1. This result is true for any function + such that 
I/J(~) # 0. Hence, (17) means that: 

p(i) 0 < lim - 
i+= p,(i) < m’ 

meaning that the asymptotic behavior of yo and 91 are the 
same (up to a constant). 

Proof Because the proof is rather intricate and only 
interesting for mathematical readers, it is given in the 
Appendix. 

So we have that PI(i) = C/(1 + i)” for i 2 0 implies 
(D = O’(l/F) = O’(cpt) if (Y = 2,3,4,. . . . We conjecture 
that this will be false for (Y = 1; in this case, (pz(i) = 
2C2 ln(i + l)/(i + 2) f O’(l/i), but an exact proof is not 
known. For (Y = 0 we have an exact proof of the failure 
of Theorem 111.1. In this case, PI(i) = C (we limit i to 
bounded values here) and, for every j E N: 

(oj(i) = cj 

ii-1 

(j - l)! (18) 
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as is easily seen from (11). Hence, from (13) and supposing 
(as an example for the failure of Theorem 111.1) for j E 
N: 

we have: 

W j) = Pyj , (19) 

p(i) = $ CJjj-‘PyJ 

j=l (j - 111 

m (Ciy)j 
qo(i) = PYC~ ; 

j=O J ’ 

p(i) = /3yCeCiY 

which is an exponential function if y # 0. Hence p + 0’ 
(constant) and even worse: (D # O’(l/ia) for any a. Note 
also that no 4oj (j = 2,3,. . .) is 0’ (constant) nor 0’ 
(exponential). This negative result will be better understood 
when studying functions ~1 of the exponential type. This 
will be done in the next section. There we will be able to 
prove that the class of exponential functions is stable for 
the transform: ~1 into cp. 

Study of vi(i) = ~9’ 

The function 

rpl(i) = pd (20) 
now represents the geometrical distribution, if we use 
discrete variables i = 0, 1,2,. . . and is often encountered 
in library circulation data. In this section we could as 
well work with discrete convolutions but, to continue the 
continuous model in this article, we will work with (20) for 
i 2 0. We have the following exact stability result for the 
geometric distribution. 

Theorem IV. 1 

Let 

m(i) = p4 
for i 5 0. Then: 

p(i) = cu’ 

for i 2 0, if 4 is also of the form: 

WI = Pr’ 
Proof: The proof is easy. By (12): 

VT(i) = p2qii 

(20) 

(21) 

(22) 

More generally, for every j = 2,3,. . . 

pj(i) = pjq’ij-’ 
(j - l)! 

By (13) and (22) 
m piqiij-lpyi 

44) = 1 
j=l (j - I)! 

= ppyqi g (PfY)j 

j=O J! 

= PpYqiePiY 

= ,,i 

where c = ppy and a = qePY. II 
Note from III.1 that the constant function also belongs 

to this class (and not to any other class). This explains the 
note at the end of the previous section. 

Problem: Determine other function classes such that ~1 
and 40 are within the same class, possibly in an approximate 
way (0, 0’ or stronger). 

Problem: Prove Theorem 111.1 for all values a 2 1, that 
is, also noninteger (Y. We conjecture this to be true. 

Conclusions 

In this article we studied the fact that papers can be 
written by several authors, a source-item relation different 
than what is usually found (e.g., papers [= items] are 
published in one journal [= source] only). Supposing cer- 
tain frequency functions for the latter source-item relation, 
we wonder if they are stable in the former source-item 
relationship. We prove that this is the case for Lotka-type 
functions of order O’(l/i@) (which is stronger than the 
classical O-relation and is, up to a positive constant, the 
--relation) if (Y = 2,3,. . . and disprove this if CY = 0. We 
show that the geometric distribution is perfectly stable in 
this sense. 

The author-publication relationship, as studied here, is 
rather unique among the source-item relations. As pointed 
out, papers can have several authors but articles have only 
one journal in which they are published. In the source-item 
relationship of books and their borrowings it is also clear 
that a borrowing of a book is strictly related to this book 
only! 

Also in linguistics, the use (= item) of a word in a text is 
strictly linked with this word (= source) only, in an obvious 
way. Also in demography and econometry, the source-item 
relation is one-to-one: an inhabitant lives in one city or 
village (few exceptions exist however) and a dollar that is 
earned by an employee belongs to this employee only! 

A source-item structure as in the case of au- 
thor-publication is, however, also encountered in the case 
that sources are articles and items are references. Indeed, 
here an item can have different sources too! The same is 
true for the relation articles-citations (to these articles). 
The above theory is, therefore, also applicable to these 
situations. 

One could go even further and see if other, less-known 
cases of multiple sources per item exist. One could argue 
that patents can have several countries of application (= 
sources). One could also consider a borrowing in a library 
as the “package” of several books that one requests to 
check out (in one time). Here a borrowing (= item) refers 
to several books (= sources). Informetric studies of such 
source-item relations envisage the use (or value) of books, 
when related to other books on similar topics. 

It is interesting to formulate other new multiple 
sources-item relationships and study their value for 
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informetrics and beyond. In all these cases, this article 
applies, showing certain stability of informetric laws. 
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Appendix 

Before proving Theorem 111.1, we need a lemma: 

Lemma: For all i and y and (Y E N: 

1 
y”(i - y + 2)” 

=g 
*=I 

*( 
c m,a D 

(i + 2)2a-mym + (i + 2)2a-m I ;:” y + 2)m 
1 

(Al) 

Proof: The proof is easy but technical. We use complete 
induction on LY. Let a = 1. Then: 

1 1 =- 
y(i - y + 2) (i + 2)y 

1 
+ (i + 2)(i - y + 2) 642) 

proving (Al) for a = 1. Let us now suppose (Al) valid for 
a and we take Q + 1; now: 

1 
ya+l(j - y + 2y+l = 

(Y 
I( 

C *,a D 

*=’ (i + 2)2”-mym + (i + 2)+i@- y + 2)” 1 

*( 1 
(i + 2)y + 

1 

) (i + 2)(i - y + 2) ’ 

by (Al) and (A2) 

= z, (i + 2;2nm+l 

[ 

C -3% + c, D 

Y mfl y”(i -m; + 2) + (i - y”;f2)my 

(‘43 

We now use that: 
1 

y”(i - y + 2) = 

5 l k=, yk(i + 2)m-k+1 + (i + 2)“(l! - y + 2) CA41 

and 
1 

(i - y + 2)my = 

Ii 1 1 
k=’ (i - y + 2)k(i + 2)m-k+1 + (i + 2)my (M) 

(A4) and (A5) in (A3) yields: 

1 = 
ya+‘(i - y + 2)“+’ 

j (i + 2;2.-m+* [ + + (i _ qD:,Z)m+l 

+ cm,, ( 2 
l 1 

k=’ yqi + 2)m-k+1 + (i + 2)m(i - y + 2) 

+Dm,, 
1 1 

- y + 2)Q + 2)m++l + (i + 2)my )I 

W) 

When working out (A6), term by term and when 
regrouping according to the factors l/ym and l/(i - 
y + 2)“, m = 1,. . . , (Y + 1. we find: 

1 
ya+'(i - y + 2)n+’ 

1 m.ltCm.a 

Y (i + 2)2a+l 
+ L m=l 

y2 (i + 2)2a 

+ 
. . . + 1 Ca-1.a + cl,, 1 c,,, 

Ya (i + 2)a+2 + yn+’ (i + ga+l 

1 if (Cm,, + Dm,,) 
+ m=l 

i-y+2 (i + 2)2”+’ 

1 f Dma 
*=I 

+ (i - y + 2)2 (i + 2)2a 

1 
+... + 

Da-,,a + Da,= 
(i - y + 2Y (i + 2)a+2 

1 D 
+ 

(i - y + 2)n+1 (i +;++I 

which is of the form: 

a+1 

x( 

c m,afl 

*=’ (i + 2)2(“+‘)-mym 

D 
+ m,a+l 

(i + 2)2(“+1)-m(i - y + 2)” 

where Cm,a+~ and Dm,@+l are constants not dependent 
on i and y. This proves the lemma. cl 
Proof of Theorem III.11 We use induction on j in pj. By 
(11): 

i 

Q(i) = c2 
I 0, + l)“(Z y + 1)” 
0 

i+l 

Q(i) = c2 
/ 

dy 
’ y”(i - y + 2)” G47) 
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for i E [0, m[. We invoke the above lemma: for all (Y E N, where 0 < Nj+t < m. Hence, (All) is proved for all j = 
we have: 2,3,... and all i 2 0. (All) implies: 

1 
y”(i - y + 2)” 

=p 
m=l 

( 

c *,a 
(i + 2)2rr-*y* + 

D, 
(i + 2) 20-mEa- y + 2)” ’ (A8) 

1 

where the Cm,, and D,,, are positive constants, indepen- 
dent of i and y. Hence, (A7) and (A8) imply, after some 
calculation, 

c2 
402(i) =(i + 2)” 

Al ln(i + 1) 
(j + 2)n-l 

+ A2 .- 
(i + 2)“-2 i L 1 

+ . . . + 
(cl! -“;,;i’ + 2) l - (i + :)“-2 ( 1 

A 

( 

1 
+ L2 l- 

a-1 (1 + i)a-l )I 649) 

where A, = C,,, + D,,, (we deleted the CI in A,, for 
simplicity), for m = 1,. , . , (Y. Hence, 

92 = 0’ 
( ) 

$ = O(401) 

for all (Y > 1 and cr E N; therefore, 

Aa@ 
;“m PC&(i) = 3 E]O,W[. 

Now (A9) implies: 

c a 
0 -=z (Q(i) < c- * cl + i)a mzlAm =: N2401(i). (*lo) 

where 0 < N2 < m, for all i 2 0. Inductively, suppose that 
for k = 2,3,. . . , j and all i 2 0: 

0 5 (Dk(d < NksOl(i) (All) 

for a certain constant Nk E IO, a[. Then: 

i 

Pj+l(i) = 
/ 

rpj(~hdi - Y) 4 

0 

Hence, by (All) and then (AlO): 

0 5 pj+l(i) < Nj 
s 

VI(Y)~(~ - Y) 4 
0 

= NjqO2(i) < NjN2Pl(i) 

=: Nj+l PI(i) 

for all j = 2,3,. . . and note that for j = 1: 

Oih~~=C<m 
- 
ia 

6412) 

W3) 

Let M be the highest possible j. Then, by (13): for all 
i?O 

4pCi) = f rPj(i)$(j). 
j=l 

Hence: 

P(i) M Pj(i) 
lim 1 = x lim 1 $(j) = A 
j-m i-m - j=l - 

ia ia 
where: 

A = CrcI(l) + $BjQ(j) ElO,m[, 
j=2 

by (A12) and (A13) and since (cl(j) E [O,m[ for all j = 
1,2,... and e(l) # 0. So: 

p=O$ 
( > 

= o’h) 0 

Note: Remark that (A12) does not imply that qj = 
0/(1/i”), for j = 2,3,. . . ! But, qj = O(l/ja)). 
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