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     Abstract: The spirochete bacterium Leptospira interrogans serovar Pomona is enzootic to 

California sea lions (CSL; Zalophus californianus) and causes periodic epizootics.  Leptospirosis 

in CSL is associated with a high fatality rate in rehabilitation.  Evidence-based tools for 

estimating prognosis and guiding early euthanasia of animals with a low probability of survival 25 

are critical to reducing the severity and duration of animal suffering.  Classification and 

Regression Tree (CART) analysis of clinical data was used to predict survival outcomes of CSL 

with leptospirosis in rehabilitation.  Classification Tree outputs are binary decision trees that can 

be readily interpreted and applied by a clinician.  Models were trained using data from cases 

treated from 2017-18 at The Marine Mammal Center in Sausalito, CA and tested against data 30 

from cases treated from 2010-12.  Two separate Classification Tree analyses were performed, 

one including and one excluding data from euthanized animals.  When data from natural deaths 

and euthanasias were included in model-building, the best Classification Tree predicted 

outcomes correctly for 84.7% of cases based on four variables: appetite over the first three days 

in care, and blood urea nitrogen (BUN), creatinine, and sodium at admission.  When only natural 35 

deaths were included, the best model predicted outcomes correctly for 87.6% of cases based on 

BUN and creatinine at admission.  This study illustrates that CART analysis can be successfully 

applied to wildlife in rehabilitation to establish evidence-based euthanasia criteria with the goal 

of minimizing animal suffering.  In the context of a large epizootic that challenges the limits of a 

facility’s capacity for care, the models can assist in maximizing allocation of resources to those 40 

animals with the highest predicted probability of survival.  This technique may be a useful tool 

for other diseases seen in wildlife rehabilitation.    
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INTRODUCTION 

The spirochete bacterium Leptospira interrogans serovar Pomona is endemic to 45 

California sea lions (CSL; Zalophus californianus) and causes periodic epizootics.12  Clinical 

disease, i.e. leptospirosis, was first documented in cases admitted to California rehabilitation 

centers in 1970.25  Historically, cases of leptospirosis have occurred yearly in the fall and these 

outbreaks exhibited a multi-annual cycle with larger epizootics occurring every three to five 

years.9, 12  The largest number of leptospirosis related admissions to The Marine Mammal Center 50 

(TMMC) in Sausalito, CA, occurred in 2018 with over 300 cases (TMMC, unpubl. data).  At the 

peak of the outbreak, more than 70 cases were admitted in a 30-day period.  Clinical signs 

include polydipsia, lethargy, hyporexia to anorexia, melena, and apparent abdominal pain.6, 9 

Clinical pathology includes azotemia, hyperphosphatemia, hypernatremia, and variable 

leukocytosis.  Leptospiral nephritis and associated comorbidities such as pneumonia and 55 

gastrointestinal ulceration are reported and can cause severe pain and discomfort.  Reported case 

fatality rate in rehabilitation is 71%.9  

Leptospirosis epizootics in CSLs, with their associated high morbidity, mortality and 

suffering, exemplify the acute need for evidence-based tools to effectively estimate prognosis for 

wildlife in rehabiliation.  These tools are needed to establish data-driven euthanasia criteria to 60 

reduce suffering when prognosis is poor.  Humane care and reduction of suffering are the 

clinician’s highest priorities for an individual animal.  Early identification of animals with a high 

probability of mortality is critical to reducing the duration and severity of pain and suffering.  

Financial and human resource limitations as well as hospital capacity must also be considered.  

These constraints may be particularly acute in facilities that rely heavily on volunteers and fiscal 65 

donations.  In a facility with finite human and financial resources, individual animal care is likely 
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to decline as the hospital reaches and exceeds capacity.  For example, increased infectious 

disease transmission, increased conspecific competition, decreased caregiver time available to 

each animal, and increased caregiver fatigue may occur.  Therefore, a strategy of investing 

resources in those animals most likely to survive to release can result in reduced animal suffering 70 

and improved clinical outcomes, leading to overall greater rehabilitation success.  Improved 

outcomes can be measured by, for example, improved response to treatment, reduced time in 

rehabilitation, lower prevalence of nosocomial infection, and lower incidence of secondary 

complications of captivity.  Additional benefits can include greater financial sustainability, 

reduced caregiver burnout and compassion fatigue, and increased volunteer retention.  All of 75 

these benefits feed back positively into the fundamental priorities of wildlife care and welfare.   

While various statistical methods are available for modeling animal prognosis based on 

clinical data,15 many of these methods are challenging to implement in clinical practice.  Model 

outputs often require specialized statistical knowledge for interpretation, and input of new animal 

data for prognostic predictions requires specialized software and complex computation.  Easy-to-80 

use tools to link modeling analyses to clinical decisions, such as euthanasia, are lacking.  This 

study describes the use of Classification and Regression Trees (CART) for predicting outcomes 

of California sea lions with leptospirosis in rehabilitation.  Classification Tree outputs are simple 

binary decision trees that can be readily interpreted by a clinician and applied to predict case 

prognosis.  This method has been used effectively for a variety of diagnostic and prognostic 85 

applications including in human cardiology,7 oncology,3, 24 and neurology,13, 18, 21 and in 

veterinary equine and livestock medicine.16, 19, 20, 23 

 

MATERIALS AND METHODS 
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 Data from all CSL with leptospirosis admitted to TMMC in 2017-18 were evaluated (n = 90 

356).  All animals stranded along the Northern and Central California coast (approximate latitude 

range 34.373062 to 40.001243).   Physical examination at admission was performed under 

manual or chemical restraint.  Age class was determined based on straight total body length, 

dentition, and development of sagittal crest in males.8  Age was classified as: pup (0-1 year), 

yearling (1-2 years), juvenile male (2-4 years), subadult male (4-8 years), adult male (8+ years), 95 

juvenile or subadult female (2-5 years), and adult female (5+ years).8  Blood was collected from 

the caudal gluteal vein directly into vacutainer tubes (BD Vacutainer® SST™ and EDTA tubes, 

Oakville, Ontario LH6 6R5, Canada).  Complete blood cell count was performed by Vet ABC 

Plus analyzer (SCIL Vet America, Gurnee, Illinois 60031, USA).  White blood cell differentials 

were counted manually. Serum chemistry was performed by Axcel clinical chemistry analyzer 100 

(Alfa Wasserman-West, Caldwell, New Jersey 07006, USA).  For clinical interpretation, blood 

values were compared to published ranges for wild, adult CSL28 as well as in-house reference 

ranges generated using these analyzers and healthy, rehabilitated CSL at the time of release.  A 

presumptive diagnosis of leptospirosis was based on clinical presentation, abdominal 

ultrasonography, and serum chemistry abnormalities including azotemia and electrolyte 105 

derangements.9 Abdominal ultrasonography was used to screen for other common causes of 

azotemia including hydroureter and hydronephrosis secondary to urogenital carcinoma.5 Multiple 

methods were used to confirm clinical diagnosis of leptospirosis.  Serum antibodies to L. 

interrogans serovar Pomona were assayed by microscopic agglutination test (MAT; California 

Animal Health and Food Safety Laboratory, Davis, California 95616, USA) with a positive 110 

threshold of 1:3,200.4  Leptospiral DNA presence in urine and kidney tissue was assessed using 
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real-time polymerase chain reaction (RT-PCR).29  Gross necropsy and histopathology were 

utilized in animals that died.9    

Treatment consisted of parenteral fluids, antimicrobials, gastroprotectants, and electrolyte 

supplementation.  Animals were prescribed Lactated Ringer’s Solution (LRS; Vetivex, Dechra 115 

Veterinary Products, Overland Park, Kansas 66211 USA; 100 mL/kg/day SQ for up to 10 days); 

actual dose and duration of administration varied by animal temperament.  All animals received 

a single dose of ceftiofur (Excede, Zoetis, Parsippany, New Jersey 07054 USA; 6.6 mg/kg IM) 

upon admission.  Oxytetracycline (LA-200, Zoetis; 20 mg/kg IM once every three days) was 

administered to animals that were not eating.  While eating, animals received doxycycline (Epic 120 

Pharma, Laurelton NY 11413 USA; 5mg/kg PO BID) in herring.  Tetracycline antibiotic therapy 

(oxytetracycline and/or doxycycline) was administered for a cumulative total of 14 consecutive 

days.  Famotidine (Hikma, Eatontown, New Jersey 07724 USA; 1 mg/kg SQ, IM, or PO SID) 

was administered for three to seven days.  In hypokalemic animals, potassium chloride (Pfizer, 

New York, New York 10017, USA) was supplemented in LRS to a total potassium content of 24 125 

mEq/L.  Animals received freshwater ad libitum and were offered frozen, thawed herring two to 

three times daily.  When eating, animals received a multivitamin supplement in herring (Marine 

Mammal Supplement with Vitamin C, Mazuri, St. Louis, Missouri 63166 USA 1 tab PO SID).   

To identify potential prognostic indicators, clinical data were investigated for 

associations with survival to release.  Data from animals that survived were compared to those 130 

from all animals that died (natural death or euthanasia).  Data for sex, age class, and all 

hematological and serum chemistry values at admission were fitted using logistic regression and 

tested for significance using likelihood ratio tests.  Voluntary eating early in care was clinically 

observed to be associated with survival.  To further investigate this trend, relative risk ratios 



 7 

were calculated for animals that (1) ate voluntarily at least once in the first three days in care, (2) 135 

ate voluntarily at least once in the first seven days, (3) ate consistently within the first three days 

in care, and (4) ate consistently within the first seven days in care.  Consistent eating was defined 

as eating at least once daily after the first instance of voluntary eating.   

Candidate independent variables for prognostic modeling were selected based on the 

preliminary investigation of data.   As the majority of deaths occurred on or after day four in 140 

care, and one of the goals of the model was to establish humane euthanasia criteria that reduced 

unnecessary stress and suffering, only variables that could be assessed prior to day four were 

considered.  Of hematological and serum chemistry data, only variables relevant to the 

pathophysiology of leptospirosis and with significant associations to survival were considered as 

candidates.  Candidate independent variables selected were age class, “appetite”, and seven 145 

serum chemistry values at admission (blood urea nitrogen (BUN), creatinine, sodium, 

phosphorus, potassium, calcium, gamma-glutamyl transferase (GGT), and bilirubin).  For the 

purpose of the model, the variable “appetite” was defined specifically as whether the animal ate 

voluntarily at least once during the first three days in care.  To avoid confounding, only one of a 

set of physiologically correlated variables was included as a candidate; for example, sodium was 150 

included, and chloride excluded because these electrolyte concentrations are closely linked 

except in specific and relatively rare disease states.  While BUN and creatinine are also 

physiologically linked, both were included as candidate variables because of their wider range of 

biological drivers including processes in the liver, muscle, and urinary and gastrointestinal 

systems.   155 

CART analysis was used to evaluate the correlation between candidate independent 

variables and survival to release, and to create Classification Tree models.2 Classification Trees 
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were built using binary recursive partitioning.  Tree selection was done using 10-fold cross-

validation of the training data, using the default method in the R package rpart23 of selecting the 

simplest tree within one standard error of the minimum cost value.2  Animals that were in care 160 

less than 24 hours at time of death (n = 6) were excluded from analysis as these animals had not 

yet received an examination nor admission bloodwork.  If an animal was released and then 

readmitted to rehabilitation (n = 2), data from the second rehabilitation period were excluded.  

Animals with comorbidities were included (Table 1).   

CART analyses were performed using two different definitions of the dependent variable, 165 

animal outcome.  First, data from all deaths (natural and euthanasia) were included and 

compared to animals that survived to release.  Second, animals that were euthanized were 

excluded, and data from animals that died naturally were compared to those that survived to 

release.  To inform interpretation of these two different models, data from animals that did not 

survive were compared across type of death (died naturally or euthanized) for each candidate 170 

variable.  Logistic regression curves were fit to the data and tested for significance with chi 

square analysis.   

In addition to the original fit of models to 2017-18 training data by cross-validation to 

assess out-of-sample predictive ability, a further, more stringent out-of-sample analysis was 

conducted using test data from cases rehabilitated in prior years.  In this analysis, predictive 175 

performance of the Classification Trees was assessed using test data from CSL with leptospirosis 

admitted to TMMC in 2010-12 (n = 188 cases for which adequate data were available; time 

period spans the most recent epidemic prior to 2017).  This test dataset included cases that 

survived to release, died, and were euthanized.  As the data were utilized to evaluate predictive 

performance of the Classification Trees, statistical investigation of associations between 180 
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individual clinical variables with survival was not performed.  Medical care for 2010-12 cases 

was similar to that described for 2017-18 with one notable exception; a broader variety of 

antimicrobials were administered including (alone or in combination) penicillin G benzathine 

and procaine (Combi-Pen-48, Bimeda, Oakbrook Terrace, Illinois 60181, USA; 30,000 IU/kg IM 

once every 2 days), amoxicillin (Sandoz, Princeton New Jerysey, 08540, USA; 22 mg/kg PO 185 

BID), ceftiofur, doxycycline, and oxytetracycline.  Dosing of ceftiofur and tetracyclines was the 

same as for 2017-18 cases.   

To maximize confidence in variable selection and model performance, parallel analyses 

were conducted using logistic regression. Generalized linear models with logit link function and 

binomial error distribution were fitted to different combinations of variables with survival as a 190 

binary outcome variable. All combinations of candidate variables, with up to five in the same 

model, were used to fit models. Model performance was assessed by 10-fold cross-validation,10 

using deviance as the main statistic for model ranking and comparison.  

Data manipulation, analysis, and plotting were done using R17 and packages rpart,22 

ggplot2,26 lme4,1 and dplyr.27  195 

 

RESULTS 

Three hundred and fifty-six CSL with leptospirosis were admitted to TMMC for 

rehabilitation in 2017-18.  Peak admissions occurred in August 2018.  In animals that survived to 

release, clinical diagnosis was supported by MAT > 1:3,200 (n = 108) or MAT and RT-PCR 200 

positive urine (n = 40).  MAT results ranged from 1:12,800 to 1:819,200 (mode 1:102,400).  In 

animals that died (either natural death or euthanasia), clinical diagnosis was supported by gross 

necropsy (n = 48), necropsy and histopathology (n = 34), necropsy and RT-PCR positive urine or 
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kidney (n = 73), or necropsy, histopathology, and RT-PCR (n = 53).  Age class distribution, 

voluntary eating, comorbidities, and time in care are presented in Table 1.  Males made up 91.5% 205 

of cases, and juveniles were the most common age class admitted.  Fifty-four percent of all 

deaths occurred on or after day four in care.   

Clinical data including age, sex, appetite, and admission blood parameters for 2017-18 

cases were investigated for associations with survival to release.  Survival to release among 

juveniles (n = 198) was significantly higher than for all other age classes (adult n = 17, subadult 210 

n = 103, yearling n = 38, P = 0.035; Table 1).  There was no significant difference in survival by 

sex (female n = 30, male n = 326, P = 0.55).  Relative risk of death (either natural death or 

euthanasia) was significantly lower for animals that ate voluntarily at least once in the first three 

days in care (n = 152, RR = 0.31, 95% CI 0.24-0.41, P < 0.0001; Table 1) and those that ate at 

least once in the first seven days in care (n = 203, RR = 0.35, 95% CI 0.29-0.43, P < 0.0001) as 215 

compared to those that did not.  Relative risk of death was also significantly lower for animals 

that ate consistently after first starting to eat voluntarily as compared to those that ate 

intermittently in the first three days (consistent eaters n = 127, RR = 0.20, 95% CI 0.23-0.41, P < 

0.0001) and in the first seven days (consistent eaters n = 144, RR = 0.17, 95% CI 0.11-0.25, P < 

0.0001).  There were significant differences across outcomes for the following serum chemistry 220 

analytes: BUN, creatinine, sodium, phosphorus, potassium, calcium, bilirubin, and GGT (P = 

0.017 for GGT, P < 0.001 for all other comparisons; Table 2).  There were no significant 

differences across outcomes for complete blood count parameters.   

The following candidate variables for prognostic modeling were selected: age class, 

appetite (voluntary eating within three days), and the seven serum chemistry values at admission 225 

(BUN, creatinine, sodium, phosphorus, potassium, calcium, GGT, and bilirubin) found to differ 
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significantly across outcomes.  Data for each candidate variable was investigated for differences 

between animals that died naturally or were euthanized.  Potassium was significantly higher in 

animals that died naturally as compared to those that were euthanized (P < 0.0001) while GGT 

was significantly lower (P = 0.039).  There were no significant differences for appetite, age 230 

class, BUN, creatinine, sodium, phosphorus, calcium, and bilirubin.   

Separate Classification Tree analyses were performed including and excluding data from 

euthanized animals.  When all deaths (natural and euthanasia) were included, the best 

Classification Tree (henceforth “CT-All”, Figure 1) had a predictive accuracy of 84.7% for the 

2017-18 training data.  CT-All included the variables BUN, creatinine, sodium, and appetite 235 

(voluntary eating within three days).  When only natural deaths were included, the best 

Classification Tree (“CT-Nat”, Figure 2) included only BUN and creatinine and had a predictive 

accuracy of 87.6%.    

Data from 188 CSL with leptospirosis admitted to TMMC in 2010-12 were used as an 

independent dataset to evaluate the predictive performance of the Classification Trees trained 240 

using the 2017-18 dataset.  In animals that survived to release, clinical diagnosis was supported 

by MAT > 1:3,200 (n = 39), RT-PCR positive urine (n = 5), or MAT and RT-PCR (n = 29).  In 

animals that died (either natural death or euthanasia), clinical diagnosis was supported by MAT 

> 1:3,200 (n = 5), gross necropsy (n = 12), necropsy and MAT (n = 20), necropsy and 

histopathology (n = 2), necropsy and RT-PCR positive urine or kidney (n = 74), or necropsy, 245 

histopathology, and RT-PCR (n = 2).  Overall mortality was 61.2% (26.6% died naturally and 

34.6% were euthanized).  Males made up 78.8% of cases.  Age class distribution, voluntary 

eating, comorbidities, and time in care are presented in Table 1.  Admission bloodwork is 
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presented in Table 3.  When applied to the 2010-12 case dataset, CT-All had a predictive 

accuracy of 75.1% and CT-Nat had a predictive accuracy of 75.7%.   250 

Parallel analyses using logistic regression were performed to compare to Classification 

Tree predictions.  The top five logistic regression models for 2017-18 training data were ranked 

by cross-validation deviance (Table 4).  Predictive accuracy for the top five models ranged from 

80.3 to 83.6% for those including all deaths, and 85.5 to 89.8% for those including natural deaths 

only.  All candidate variables included in the best Classification Trees (i.e. CT-All and CT-Nat) 255 

are present in one or more of the top-ranked logistic regression model(s). Appetite is present in 

all logistic regression models.   

 

DISCUSSION 

In this study, Classification Tree analysis was used to develop two prognostic models to 260 

assess survival probability of California sea lions in rehabilitation with leptospirosis.  Both 

models had high predictive accuracy and required data readily obtained within the first three 

days of rehabilitation.  Application of a Classification Tree using individual animal data to reach 

a predicted outcome is rapid and simple.  Combined, these facts make the models excellent tools 

for evidence-based assessment of individual cases in rehabilitation.  Use of the model-predicted 265 

outcomes to guide euthanasia decision-making will enable clinicians to relieve the suffering of 

animals unlikely to survive.  In the context of a large epizootic that challenges the limits of a 

facility’s capacity for care, the models can assist in maximizing efficient and effective allocation 

of resources to those animals with the highest predicted probability of survival to release.  It is 

important to note that a model is never intended to replace individual clinician judgement and 270 

experience; rather it is an additional tool to enhance and inform clinical decision-making.    
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The use of CART analysis in epidemiology and medicine has been criticized as a “data 

mining” exercise in which all possible candidate variables are considered but the resulting 

clusters of clinical features in the CART output are not scrutinized for biological relevance.10, 13  

To address these concerns, this study utilized a limited number of biologically relevant candidate 275 

variables, relied heavily on out-of-sample tests, and performed parallel logistic regression 

analyses.   

In clinical practice, either CT-All or CT-Nat is appropriate for assessment of, and 

euthanasia decision-making for, CSL with leptospirosis in rehabilitation.  CT-All may be more 

valuable in clinical practice despite its slightly lower predictive performance due the inclusion of 280 

sodium at admission and appetite over the first three days in care.  During the 2017-18 epidemic, 

clinicians observed repeated, intractable seizures in many severely hypernatremic animals; these 

animals were euthanized on humane grounds but would likely have otherwise died naturally.  

Similarly, animals with prolonged anorexia and clinical signs of cachexia were euthanized on 

humane grounds; these animals also would likely have died naturally if not euthanized. 285 

Therefore, the application of euthanasia criteria based on CT-All may facilitate identification and 

earlier euthanasia of animals that would otherwise suffer from these conditions.  This is 

supported by the logistic regression analysis; appetite was present in all ten top-ranked models, 

and sodium was present in five (Table 4).    

CT-Nat is an excellent alternative to employ in clinical practice.  This model has slightly 290 

higher predictive performance, requires fewer variables, and was developed using a dataset 

which included only deaths that occurred naturally.  Although there were no significant 

differences across type of death (natural or euthanasia) in the four predictive variables used by 

CT-All, exclusion of data from euthanized animals in CT-Nat eliminates uncertainty regarding 
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whether those animals could ultimately have survived.  Use of CT-Nat is recommended if a 295 

clinician does not have access to data for sodium at admission or appetite over the first three 

days in care, or if a clinician wishes to eliminate any possible prognostic bias against animals 

that might have survived without the intervention of euthanasia.  If CT-Nat is used, seizure and 

prolonged anorexia should be considered as grounds for humane euthanasia apart from model 

predictions.  For clarity and ease of use, the use of one model or the other is suggested for a 300 

single rehabilitation facility or case population.    

By design, the models presented here do not consider variation in comorbidities.  

Comorbid conditions range widely in type and severity, may be difficult to detect ante-mortem, 

and have variable impacts across individuals.  Therefore, inclusion of all cases, regardless of 

comorbidities, in model development improves the utility of the resulting decision tree in clinical 305 

practice.  Theoretically it would be possible to add comorbidities as a covariate in the models, 

but this would add complications to clinical application, and developing a robust model of this 

type would require a larger sample size than is currently available.  Despite the wide range of 

comorbidities in both the training and test datasets, the overall predictive performance of the 

models presented here is strong, predicting outcome correctly in 84.7 to 87.6% of cases.  By 310 

comparison, predictive performance of CART models found in human and veterinary literature 

ranged from 77 to 94.5%.3, 13, 18, 20, 21  However, survival of animals with severe comorbidities 

may be overestimated by the model; thus clinical judgement should be employed in application 

of the decision tree to these cases.   

Although lower than for 2017-18 data, the predictive performance of the Classification 315 

Trees for 2010-12 case data is strong.  This demonstrates that the models are robust to variations 

in population attributes such as treatment protocols and comorbidity prevalence.  For example, 
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2010-12 cases had a notably higher prevalence of malnutrition (Table 1) and were treated with a 

wider range of antimicrobials.  The difference in predictive performance does highlight that the 

models are strongest when applied to cases that have experienced similar external factors 320 

including environmental conditions and medical treatments.  In addition, periodic retraining of 

the model using larger datasets may be valuable in improving predictive accuracy.  The use of a 

different clinical chemistry analyzer as compared to that used in this study may affect measured 

values and should be taken into consideration when utilizing the decision trees.    

Comparison of CART with logistic regression analysis of the same data increased 325 

confidence in variable selection and model performance.  Predictive accuracy of the top ranked 

logistic regression models for 2017-18 cases ranged from 80.3 to 89.8% (Table 4); this is similar 

to the performance of the Classification Trees.  All variables in Classification Trees were present 

in one or more top ranked logistic regression model(s).  Interestingly, potassium was present in 

all but one of the top ranked logistic regression models but not in the Classification Trees.  In 330 

contrast, BUN is absent from seven of ten top ranked logistic regression models yet included in 

the Classification Trees.  By design, these two modeling approaches respond differently to 

predictor variables (and interactions among them), and the underlying linearity assumed by the 

logistic regression model may be excluding useful information in the BUN data. Further 

investigation into the prognostic value of these variables using data from future cases may be 335 

indicated.   

In wildlife rehabilitation, evidence-based prognostic tools and euthanasia criteria can 

enhance humane animal care and facilitate allocation of resources towards individuals most 

likely to survive.  Such tools are particularly important for diseases such as leptospirosis that 

have a high potential for pain and suffering, prolonged course of illness prior to death, and 340 
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resource-intensive treatment protocols.  The need for such tools is amplified in the case of a large 

outbreak in which the physical, personnel and fiscal capacities of a facility may be pushed to 

their limits.  Euthanasia criteria are most useful if based on data that can be acquired readily and 

early in treatment and can be applied early enough to reduce the duration of suffering of a 

terminally ill animal.   345 

In contrast to a variety of other statistical methods available for predicting prognosis, 

Classification Trees offer an intuitive, clinician-friendly output that does not require computation 

nor specialized knowledge for application.11, 15  This study has shown that CART analysis can be 

successfully applied to wildlife in rehabilitation and can predict survival with a high degree of 

accuracy.  This technique may be a useful means of predicting prognosis for other diseases seen 350 

in wildlife rehabilitation, particularly those for which there is abundant historical clinical data 

available for analysis.  Models may be most useful for diseases that are endemic, that cause large 

epidemics, or for mass mortality events.  Examples include care of wildlife affected by oil spills, 

harmful algal blooms and other biotoxins, morbillivirus epidemics, epidemic pasteurellosis, and 

botulism.   355 
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Table 1.  Age class, voluntary eating, comorbidities and time in care for California sea lions with 

leptospirosis admitted to The Marine Mammal Center in 2017-18 (n = 356) and 2010-12 (n = 

182).  Values for age class, appetite, and comorbidities are reported by outcome (released, died 

naturally, or euthanized) and as the number and proportion (e.g., n (n/total)) of animals within 485 

each outcome category (released, died naturally, or euthanized) for each sample group (2017-18 

or 2010-12).  Appetite data is presented for the first three days in care, with consistent eating 

defined as voluntary eating at least once daily after the first instance.  Comorbidity diagnosis was 

based on gross necropsy (all animals that died) and physical examination (all released animals).  

Time in care is reported as the number of days in care prior to disposition (i.e., release or death).  490 

Mean and range are shown by outcome for each sample group.   

 

  

2017-2018 Cases   2010-2012 Cases 

Released  
Died 

Naturally 
Euthanized  Released  

Died 

Naturally 
Euthanized 

n=148 n=94 n=114   n=73 n=50 n=65 

Age Class        

Adult 4 (0.03) 5 (0.05) 8 (0.07)  4 (0.05) 4 (0.08) 4 (0.06) 

Subadult 36 (0.24) 33 (0.35) 34 (0.30)  13 (0.18) 13 (0.26) 13 (0.20) 

Juvenile 96 (0.65) 50 (0.53) 52 (0.46)  48 (0.66) 25 (0.50) 34 (0.52) 

Yearling 12 (0.08) 6 (0.06) 20 (0.18)  8 (0.11) 8 (0.16) 14 (0.22) 
        

Appetite        

Ate At Least Once 113 (0.76) 15 (0.16) 24 (0.21)  61 (0.84) 22 (0.44) 24 (0.37) 

Ate Consistently 106 (0.72) 10 (0.11) 11 (0.10)  54 (0;74) 9 (0.18) 12 (0.18) 
        

Comorbid Disease        

Malnutrition 123 (0.83) 65 (0.69) 78 (0.68)  49 (0.67) 49 (0.82) 59 (0.98)c 

Gastrointestinal ulcerationa - 63 (0.07) 54 (0.47)  - 15 (0.25) 20 (0.33)c 

Pneumoniaa - 46 (0.49) 44 (0.39)  - 12 (0.20) 7 (0.12)c 

Abscessb 8 (0.05) 15 (0.16) 15 (0.13)  3 (0.04) 8 (0.13) 8 (0.13)c 

Major trauma 2 (0.01) 5 (0.05) 16 (0.14)  0 (0) 0 (0) 4 (0.07)c 

Urogenital carcinomaa - 3 (0.03) 1 (0.01)  - 0 (0) 1 (0.02)c 

Polyphasic rhabdomyositis 0 (0) 0 (0) 1 (0.01)  0 (0) 0 (0) 1 (0.02)c 

None documented 16 (0.11) 4 (0.04) 4 (0.04)  22 (0.30) 1 (0.02) 2 (0.03)c 
        

Days in Care        

Mean (Range) 25 (18-57) 4 (0-36) 7 (0-39)   31 (11-92) 4 (0-16) 5 (0-34) 
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a Data reported from 60 animals for which gross necropsy was performed; 5 animals from the 

sample population that were euthanized were not necropsied.     

b Comorbidity prevalence not reported for released animals due to low diagnostic sensitivity of 495 

physical examination alone, and inconsistent use of advanced diagnostics required for 

confirmation of antemortem diagnosis (e.g., radiography, bronchoscopy, endoscopy).   

cAbscess sites include subcutis, muscle, and lymph node.  

 

 500 
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Table 2. Select hematology and serum chemistry data for California sea lions with leptospirosis admitted to The Marine Mammal 

Center in 2017-18 (n = 356).  Data are from blood samples collected within the first three days in care.  Mean and range are shown for 

animals that survived to release, died naturally, and were euthanized.   505 

 

Analytea 
Reference 

Interval27 

Released   Died Naturally   Euthanized 

n=148  n=94  n=114 

Mean Range   Mean Range   Mean Range 

WBC 103/µL 9.4 - 22.8 24.5 5.8 - 60.7  20.4 5.8 - 60.7  24.1 2.0 - 54.0 

RBC 106/µL 4.06 - 4.29 4.4 1.7 - 5.9  4.6 3.4 - 7.2  4.4 2.7 - 7.2 

Hemoglobin g/dL 15.0 - 15.9 16.1 10.0 - 23.0  17 2.7 - 12.5  16.2 11.2 - 26.4 

Hematocrit % ND 44.9 21.0 - 64.8  48 34.3 - 79.4  46 31.3 - 76.7 

BUN mg/dL 30 - 38 154.3 21.0 - 443.0  304.1 18.0 - 448.0  273.4 54.0 - 552.0 

Creatinine mg/dL 0.9 - 1.1 3.8 0.9 - 15.9  9 1.0 - 32.7  8.7 1.7 - 21.4 

Phosphorus mg/dL 6.7 - 7.2 9.9 4.9 - 17.0  15.2 4.9 - 38.5  14.7 6.1 - 28.1 

Potassium mmol/L 4.5 - 4.7 3.5 2.1 - 4.9  6.1 2.4 - 19.8  4.3 2.4 - 19.8 

Sodium mmol/L 151 - 152 160.3 141.3 - 198.4  168.6 142.2 - 203.8  168.1 140.2 - 203.6 

Chloride mmol/L 109 - 111 120.5 90.3 - 155.2  131.4 101.3 - 172.8  128.4 99.5 - 186.8 

Calcium mmol/L 9.5 - 9.7 9.4 7.7 - 10.8  8.5 6.4 - 10.9  8.7 5.3 - 11.0 

AST U/L 32 - 45 29.3 0 - 489.0  130.5 0 - 4743.0  68.3 0 - 673.0 

ALT U/L 35 - 47 34.4 1.0 - 231.0  53.3 1.0 - 1041.0  274.4 0 - 21660.0 

ALP U/L 76 - 96 93.8 13.0 - 6795.0  55.8 23.0 - 127.0  60.6 23.0 - 635.0 

GGT U/L 56 - 79 335.4 78.0 - 1023.0  338.6 0 - 1229.0  417.4 8.0 - 1231.0 

Bilirubin mg/dL 02. - 0.3 0.7 0.3 - 2.9   1.2 0.4 - 3.7   1.3 0.3 - 13.8 

 
a WBC indicates white blood cells; RBC, red blood cells; BUN, blood urea nitrogen; AST, aspartate aminotransferase; ALT, alanine 

aminotransferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; ND, no data available.  Reference interval data 

from adult, wild California sea lions.28  510 
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Table 3. Select hematology and serum chemistry data for California sea lions with leptospirosis admitted to The Marine Mammal 

Center in 2010-12 (n = 188).  Data are from blood samples collected within the first three days in care.  Mean and range are shown for 

animals that survived to release, died naturally, and were euthanized.  In contrast to 2017-18 cases, gamma-glutamyl transferase 

(GGT) was not measured 2010-12.   

 515 

Analytea 
Reference 

Interval27 

Released   Died Naturally   Euthanized 

n=73  n=50  n=65 

Mean Range   Mean Range   Mean Range 

WBC 103/µL 9.4 - 22.8 25.5 7.4 - 51.6  25.2 8.7 - 55.0  24.3 3.6 - 67.8 

RBC 106/µL 4.06 - 4.29 4.5 3.34 - 5.55  4.57 3.07 - 5.75  4.8 2.22 - 5.93 

Hemoglobin g/dL 15.0 - 15.9 16.7 11 - 19  15.9 10.5 - 20.4  16.6 6.8 - 21.4 

Hematocrit % ND 46.6 32.9 - 59  47.7 31.7 - 62.3  50.6 21.7 - 65.3 

BUN mg/dL 30 - 38 140.9 41 - 447  262.6 67 - 522  258.6 23 - 804 

Creatinine mg/dL 0.9 - 1.1 2.9 0.9 - 13.7  6.2 0.4 - 16.8  5.1 0.36 - 12.7 

Phosphorus mg/dL 6.7 - 7.2 8.6 4.3 - 19.8  15.1 4.9 - 36.5  12.8 4.2 - 27.7 

Potassium mmol/L 4.5 - 4.7 3.7 2.6 - 4.9  4.8 2.7 - 15.8  4.3 2.8 - 7.7 

Sodium mmol/L 151 - 152 160.1 141 - 201  174.0 146 - 214  176.5 135 - 216 

Chloride mmol/L 109 - 111 122.7 105 - 148  134.2 108 - 171  136.3 95 - 182 

Calcium mmol/L 9.5 - 9.7 8.8 6.7 - 10.4  8.2 5.5 - 10.2  8.3 5.7 - 10.1 

AST U/L 32 - 45 37.7 9 - 134  90.4 8 - 987  64.5 10 - 316 

ALT U/L 35 - 47 56.5 20 - 203  66.1 24 - 206  65.6 19 - 265 

ALP U/L 76 - 96 60.9 16 - 366  51.5 23 - 102  99.3 23 - 1991 

Bilirubin mg/dL 02. - 0.3 0.7 0.2 - 2.6   1.6 0.3 - 8.2   1.4 0.3 - 8.1 

 
a WBC indicates white blood cells; RBC, red blood cells; BUN, blood urea nitrogen; AST, aspartate aminotransferase; ALT, alanine 

aminotransferase; ALP, alkaline phosphatase; ND, no data available.  Reference intervals from adult, wild California sea lions.28 
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Table 4.  Logistic regression models predicting outcome of California sea lions with leptospirosis in rehabilitation at The Marine 520 

Mammal Center in 2017-18.  The top five best-fit models are shown for data including all deaths (natural and euthanasia) and natural 

deaths only.  Models were limited to five variables maximum and are ranked by ten-fold cross-validation deviance.  The candidate 

variables included in each model are indicated by a check mark. 

 

 525 

Model 

Predictive 

Accuracy 

(%) 

Cross-

Validation 

Deviance 

Candidate Variablesa 

Appetite Potassium Creatinine Sodium Phosphorus 
Age 

Class 
Calcium Bilirubin BUN GGT 

Inclusive    

of all   

deaths 

(natural & 

euthanasia) 

A 81.4 220.1 √ √ √   √   √  

B 82.5 221.2 √ √ √ √ √      

C 80.3 221.7 √ √ √   √  √   

D 83.6 223.5 √ √ √ √    √   

E 81.8 224.0 √ √ √     √         

Inclusive    

of natural 

deaths    

only 

F 87.1 124.7 √ √ √ √     √  

G 85.5 126.1 √  √ √    √  √ 

H 88.2 126.9 √ √ √  √  √    

I 87.6 126.9 √ √  √ √  √    

J 89.8 127.0 √ √     √   √   √   

 
a BUN indicates blood urea nitrogen; GGT, gamma-glutamyl transferase; ND, no data available.  
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Figure 1.  Classification Tree (“CT-All”) for prognosis of California sea lions admitted to The 

Marine Mammal Center and diagnosed with leptospirosis.  The tree was fitted to a training 

dataset consisting of cases from 2017-18 (inclusive of animals that died naturally and were 530 

euthanized) and tested against a dataset of cases from 2010-12 (also inclusive of all causes of 

death).  Serum chemistry values are from a blood sample collected within three days of 

admission to rehabilitation.  Appetite is assessed by whether an animal eats voluntarily at least 

once within three days of admission to rehabilitation.  Decision criteria are shown in unshaded 

oval nodes.  Model predictions of death or survival are shown in unshaded rectangles.  Observed 535 

outcomes of individuals in the training dataset (2017-18) are shown in shaded rectangles.  To 

apply this Classification Tree to an individual case, begin at the first oval node “BUN ≥ 280 

mg/dL”.  If this statement is true, follow the branch to the left to find that the model predicts 

death.  If false, follow the branch to the right and continue to apply the decision criteria in each 

oval node until arriving at the model prediction of survival or death.   For example, consider an 540 

animal with the following clinical data: BUN 171 mg/dL, creatinine 4.4 mg/dL, sodium 165.8 

mmol/L, and ate once on day two in care.  The model predicts that this animal will survive.   

 

Figure 2.  Classification Tree (“CT-Nat”) for prognosis of California sea lions admitted to The 

Marine Mammal Center and diagnosed with leptospirosis.  The tree was fitted to a training 545 

dataset consisting of cases from 2017-18 that survived to release or died naturally (exclusive of 

animals that were euthanized) and tested against a dataset of cases from 2010-12 (inclusive of all 

causes of death).  Serum chemistry values are from a blood sample collected within three days of 

admission to rehabilitation.  Decision criteria are shown in unshaded oval nodes.  Model 

predictions of death or survival are shown in unshaded rectangles.  Observed outcomes of 550 
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individuals in the training dataset (2017-18) are shown in shaded rectangles.  To apply this 

Classification Tree to an individual case, begin at the first oval node “Creatinine ≥ 7.9 mg/dL”.  

If this statement is true, follow the branch to the left to find that the model predicts death.  If 

false, follow the branch to the right and continue to apply the decision criteria in the oval node to 

arrive at the model prediction of survival or death.   For example, consider an animal with the 555 

following clinical data: BUN 120 mg/dL and creatinine 1.2 mg/dL.  The model predicts that this 

animal will survive.   

 


