
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Decentral task allocation for industrial AGV-systems with resource constraints

Non Peer-reviewed author version

De Ryck, M; Pissoort, D; Holvoet, T & DEMEESTER, Eric (2021) Decentral task

allocation for industrial AGV-systems with resource constraints. In: Journal of

manufacturing systems, 59 , p. 310 -319.

DOI: 10.1016/j.jmsy.2021.03.008

Handle: http://hdl.handle.net/1942/37684

Decentral Task Allocation for Industrial AGV-Systems with Resource Constraints

M. De Rycka,∗, D. Pissoorta, T. Holvoetb, E. Demeesterc

aFaculty of Engineering Technology, KU Leuven,
Spoorwegstraat 12, 8200 Bruges, Belgium

bFaculty of Engineering Science, KU Leuven,
Celestijnenlaan 200a, 3001 Leuven, Belgium

cFaculty of Engineering Technology, KU Leuven,
Agoralaan B, 3590 Diepenbeek, Belgium

Abstract

Automated Guided Vehicles (AGVs) form a large and important part of the logistics transportation systems in today’s

industry and are widely used, especially in Europe. Today’s AGV-systems offered by global manufacturers almost all

operate under some form of centralized control where a single central controller coordinates the entire fleet of AGVs.

There is a trend towards decentralized control of these systems where AGVs make individual decisions that promote the

flexibility, robustness and scalability of transport. However, its practical implementation seems to be in its infancy. In

addition to the lack of practical implementation of decentralized control in industrial AGV-systems, we have observed

a research gap in intelligent resource management of AGV-systems, which we have tried to address in previous work by

proposing a more intelligent resource management approach. In this paper, we have addressed both the perceived lack of

practical decentralized AGV control and the lack of intelligent resource management by proposing a decentralized task

allocation algorithm based on sequential single-item auctions, taking into account resource constraints, and in which our

intelligent resource management approach from previous work is introduced. We have benchmarked our new approach to

a genetic algorithm-based task-allocation solver that uses ”threshold-100”-charging as a resource management strategy.

The result of the proposal is a decentralized task-allocation architecture under resource constraints that could be used

in current AGV-systems to add more decentralized features to the fleet.

Keywords: Automated Guided Vehicles, Decentralization, Task Allocation, Resource Constrained

1. Introduction

Automated Guided Vehicles (AGVs) are mobile

robots that perform transportation tasks in all types of

applications: from e-commerce warehouses over material

handling in assembly lines, to pharmacy, and further. In

many cases, an entire fleet of mobile robots cooperates to

efficiently transport goods. These systems are typically

∗Corresponding author

Email addresses: matthias.deryck@kuleuven.be (M. De

Ryck), davy.pissoort@kuleuven.be (D. Pissoort),

tom.holvoet@kuleuven.be (T. Holvoet),

eric.demeester@kuleuven.be (E. Demeester)

all controlled in a centralized manner where one single

computer coordinates the whole fleet, has global informa-

tion, and uses optimization-based heuristics to find global

solutions [1–3]. This central idea works well for small

and simple systems but it lacks flexible manufacturing

paradigms about (i) robustness: maintaining a high fault

tolerance against uncertain environments (road blockage,

device malfunction, etc.), (ii) flexibility: being able to

dynamically adapt to changing circumstances, and (iii)

scalability: having a performance that is invariant to the

scale of the system.

Preprint submitted to Journal of Manufacturing Systems March 15, 2021

Decentralization of control can provide solutions to these

drawbacks. Literature proves the benefit of decentralized

over centralized control and states the need for it [4–6].

Research on decentralized control architectures is very

extensive and many algorithms are elaborated and tested

very deeply, and show promising results [7, 8]. But still,

this innovative technology has not fully found its way to

industrial practice because decentralized control is gener-

ally complex to implement. Many individual entities need

to coordinate and need to make decisions based on solely

local information. In our research, we aim at facilitating

the gradual implementation of decentralized control by

investigating a migration methodology from centralized

towards decentralized control. We attempt to do this by

decomposing the total AGV-system into its components

which is a known principle for reducing complexity in

e.g. computer science and is often called ”Divide and

Conquer”. In [9], we have divided the control system of

an AGV-fleet into five distinct tasks: Task Allocation,

Localization, Path Planning, Routing, and Resource

Management. In this paper, we have targeted the task

allocation problem using auction-based principles, more

particularly the sequential single-item auctions. Besides

the task allocation, we have also considered resource

constraints by introducing our previous work that focused

on the resource management problem within an AGV-

system. In this previous work [10], we have proposed an

intelligent resource management approach in which an

AGV chooses an optimal insertion of a charging station in

its initial sequence of tasks as well as an optimal charging

time needed to finish its task sequence with zero (or a

predefined minimum of) resources (zero battery level).

The result from this previous research is included in the

task allocation process by means of a possible extra cost

of charging in the bidding mechanism. By doing this,

AGVs bid on tasks considering the possibility of the need

to charge when accepting a new task. This results in

a task allocation that uses a more realistic behaviour

of the real AGVs, namely the fact that they all have a

limited amount of resources (remaining battery power).

The fusion of our earlier presented decentral resource

management approach and our task allocation approach

presented in this paper requires very few adaptions to the

control architecture, facilitating their implementation in

industrial AGV-systems.

The paper is organized as follows: Section 2 covers

the literature on task allocation and refers to our previ-

ous work on resource management. Section 3 covers the

proposed decentral task allocation architecture under re-

source constraints. Section 4 illustrates the proposed ap-

proach with a concrete example. Section 5 validates the

proposed architecture in simulation and discusses the re-

sults. Section 6 draws concluding remarks.

2. Literature review

The research on task allocation for multi-robot systems

is very extensive [11–13]. Task allocation algorithms aim

at allocating a set of tasks T = {t1, t2, . . . , tm}, to a set

of robots R = {r1, r2, . . . , rn} in the most optimal way re-

garding one or more specific objectives. In [14], a complete

taxonomy on task allocation problems is provided which is

frequently used in task allocation literature. In literature,

two main approaches to solve the task allocation problem

can be distinguished: optimization-based approaches, and

market-based approaches [15].

2.1. Optimization-based approaches

Optimization-based approaches are mostly used in

centralized control systems where one controller has

access to global information and tries to find a global

optimal allocation of tasks. When the number of tasks

and the number of robots increases, the number of

possible allocations scales factorial making exact search

algorithms unusable. Such an NP-hard combinatorial

optimization problem is mostly solved using heuristics or

2

meta-heuristics. Some commonly used heuristic optimiza-

tion algorithms for optimization-based task allocation

are: Genetic Algorithms [16, 17], Simulated Annealing

[18], and Ant Colony Optimization [19]. In [9], we made

a broader review on the algorithms and techniques of

optimization-based approaches. Task allocation based on

this approach is optimal for small and simple systems

but lacks optimality for larger and more complex systems

as the computational complexity increases exponentially

with the number of robots and with the number of tasks.

In general, the number of iterations of an optimization-

based solver are limited by the user to bound the total

execution time of the optimization process in order to

compute more task allocations at a time, allowing a faster

response to dynamic changes in the environment. The

more the optimization time is limited, the fewer solutions

can be explored by the algorithm. This prevents the

heuristic algorithm of fully exploring the search space,

resulting in bad optimization performance. This causes

the task allocation of larger and more complex systems

to be highly sub-optimal. Alternatively, decentralized

market-based task allocation approaches could be used.

2.2. Market-based approaches

Market-based (or auction-based) approaches can over-

come the limitations of optimization-based approaches

as they have computational times that scale better

with the problem complexity. The efficiency of auction-

based methods has been demonstrated experimentally

in [20, 21]. Market-based approaches are decentralized

optimization approaches that use an auction process with

bids to obtain an assignment. In general, an auctioneer

announces a task to all robots in the system, which in

response calculates a bid on the task and sends it back

to the auctioneer. The auctioneer in turn assigns the

task to the robot with the lowest bid. This most basic

auction-based principle is called the CNET-protocol [22].

There exist many variations to this protocol which are

deeply investigated in literature and which are discussed

further in this section.

2.2.1. Auction principles

Market-based approaches can be roughly divided into

three main principles: parallel single-item auctions, combi-

natorial auctions, and sequential single-item auctions [23].

In the following, it is assumed that several tasks need to

be allocated at once.

Parallel single-item auction. In parallel single-item auc-

tions, each robot calculates a bid for each of the tasks and

the auctioneer assigns all tasks at once. The computa-

tional complexity of this protocol is O(nrobots.ntasks) but

the solutions are likely to be highly sub-optimal since it

does not take any synergies between tasks into account

[23].

Combinatorial auction. In combinatorial auctions, each

robot calculates a bid for every subset of the tasks on of-

fer. By considering every possible combination of tasks

in the bidding process, synergies between tasks are taken

into account. In combinatorial auctions, 2n − 1 bids are

required when n tasks are on offer. The computational

complexity is O(2ntasks .nrobots) [23]. Combinatorial auc-

tions generally produce close to optimal solutions but need

a high computation time in return.

Sequential single-item auction. Sequential single-item

auctions (marked as SSI-approach in the remainder of the

paper) are a compromise between parallel and combinato-

rial auctions if it comes to optimality and computational

effort. The auction proceeds over several rounds and one

task is assigned to a robot in each round. Sequential

single-item auctions are in general not guaranteed to find

the optimal solution. However, they clearly provide better

solutions compared to parallel auctions as synergies

between tasks can be exploited. The computational

complexity of this protocol is O(n2tasks.nrobots), which is a

significant improvement over combinatorial auctions [23].

3

Literature [11, 23–25] shows that sequential single-item

auctions have the best trade-off between optimality and

simplicity.

2.2.2. Auction phases

The total auction process can be divided into three

phases: an initial phase, a bidding phase, and a winner

determination phase. For each of them, we covered the

most popular principles.

Initial phase. In the initial phase, an auctioneer an-

nounces arriving tasks to the robots. This phase is

divided into two aspects: the auctioneer’s role, and the

region of announcement.

• Auctioneer’s role: The auctioneer can be either cen-

tralized or decentralized. When the auctioneer is

centralized, this means that all tasks arrive at this

same auctioneer and this one announces all tasks to

the robots in the system. The auctioneer can be

a separate piece of hardware or can be one of the

robots. In a decentralized auctioneer’s role, there

can be multiple auctioneers in parallel. These multi-

ple auctioneers can be some fixed predefined robots

or the auctioneer roles can alter between robots fol-

lowing a certain alternation principle. The alterna-

tion of the auctioneer roles between the group of

robots can, for example, be time-based or token-

based.

• Region of announcement: This is generally to be con-

sidered for large scale systems. When a task arrives

at an auctioneer, the auctioneer can announce the

task to all robots in the system. For very large sys-

tems, this asks for many unnecessary computations

as all robots, even those far away from the task, need

to compute bids. Another solution is to announce

the task to a subset of robots. A task can be an-

nounced to all robots in a certain region around the

auctioneer. Or the task can be assigned to all robots

in a certain region around the spawned task’s loca-

tion.

Literature on the effect of different auctioneer roles and

to the effect of different regions of announcement is very

sparse. Some papers [15, 26] mention the possibility of cen-

tralized and decentralized auctioneers shortly but as far as

the authors know, no one compared the influence of differ-

ent auctioneer roles or different regions of announcement

on the system’s performance experimentally.

Bidding phase. In the bidding phase, robots evaluate the

tasks and calculate the cost to execute the tasks they are

interested in. Bidding rules are used by the individual

robots to calculate the cost to execute a particular task and

compute it as a bid to send to the auctioneer for selection.

The bidding rules depend on the objective that holds. For

allocation, multiple objectives can be considered [27]:

• MiniSum: Minimize the sum of robot path costs over

all robots

• MiniMax: Minimize the maximum robot path cost

over all robots

• MiniAve: Minimize the average task path cost over

all tasks

The robot path cost is the total cost for the robot to exe-

cute all the tasks it is assigned to. The task path cost is

the total cost of the traversed path of a task by the robot

it is assigned to. The first one causes the fleet to assign

a task in a way that minimizes the total travel cost, and

thus also the consumed energy. However, this can cause

some robots to execute all tasks in their neighbourhood

while other robots may be idle for a time, causing the exe-

cution of all tasks to take longer than necessary. Here, the

MiniMax objective comes into play which maximizes the

total AGV usage and causes all tasks to be executed in a

minimal time span. MiniAve can be used when it is not

appropriate to have a parcel on travel for a long period.

4

To achieve the mentioned objectives, three main bidding

rules exist [27]:

• MiniSum: This bidding rule achieves the MiniSum

objective. Each robot bids the extra cost for execut-

ing a new task besides the already allocated tasks.

This is called the marginal cost. This causes tasks to

be allocated to the robots that can complete them

with the least extra cost.

• MiniMax: This bidding rule achieves the MiniMax

objective. Each robot bids the total cost of com-

pleting both the current allocated tasks and the new

task. This causes tasks to be allocated somewhat

evenly between all robots.

• MiniAve: This bidding rule achieves the MiniAve

objective. Each robot bids the average cost for each

of its assigned tasks to go from the initial robot lo-

cation, over the pick-up location, to the drop-off lo-

cation. This causes tasks to be at their destination

as fast as possible.

Winner determination phase. In the winner determina-

tion phase, the auctioneer determines the winner for each

of the tasks and notifies the winning robots. However, in

sequential single-item auctions, the auctioneer only assigns

one task at a time out of a list of tasks to be allocated.

It collects the bids of every robot on all of the announced

tasks, compares them, and selects only one task to assign

to the winning robot of that task following a certain reso-

lution rule. All other remaining tasks are auctioned again.

The rule of selecting a bid can alter [12]:

• Lowest Bid (LB): The auctioneer allocates the task

with the overall lowest bid to the bidder of that low-

est bid. Robots must submit only their lowest bid

to the auctioneer. This causes the total cost to be

minimized.

• Biggest Bid Difference (BD): For each task in the

tasks to allocate, the auctioneer looks at the mini-

mum and maximum bid it received from the robots

for that particular task. Out of the tasks to allocate,

the auctioneer allocates the task with the largest dif-

ference between these minimum and maximum bids

on that task. The robot that submits the lowest bid

to that selected task is assigned the task. This to

prioritize early allocation of tasks that some robots

are unable or ineffective at completing.

• Fewest Bid (FB): The auctioneer allocates the task

which received the fewest bids, e.g. when some

robots do not bid on the task. The robot that sub-

mits the lowest bid to that task is assigned the task.

This is used to prioritize early allocation of tasks

that few robots are capable of completing. This is

identical to Lowest Bid if robots are homogeneous

(can execute all types of tasks).

2.3. Resource management

In earlier work [10], we presented an intelligent

resource management approach for decentral industrial

AGV-systems. In this approach, an AGV has a local

list of tasks it needs to execute. Given a graph of the

warehouse layout and its current battery level, the AGV

computes the most optimal charging point in its initial

sequence of tasks as well as an optimal charging time.

Using this approach, the AGV finds that the most optimal

charging point is the one closest to its initial path and

that the optimal charging time is the time in which the

AGV gains exactly the amount of resources to end all

tasks with zero (or a specified minimum of) resources. We

assume that any charging location is available for each

robot at any time. This resource management strategy

lends itself well to the implementation in a decentral

auction-based task allocation approach as the extra time

cost for driving to the charging station and the time cost

to charge, can be included in the bid calculation of the

auction process. As a result, when a new task arrives,

AGV 1 can get the task rather than AGV 2 which needs

5

to charge if it would accept the task. And this even if the

task is much closer to AGV 2. In the next sections, our

novel task allocation architecture including this optimal

charging behaviour is described.

3. Proposed task allocation architecture under re-

source constraints

3.1. Task allocation approach

Our proposed decentral task allocation approach is

based on the sequential single-item approach as this is

proven to have the best trade-off between optimality and

simplicity and considers robots as bidders, and tasks as

goods. In this section, we elaborate on the sequential

single-item auction process and how we implemented it

using a linear combination of two bid principles: MiniSum

and MiniMax. In the subsequent section, we introduced

our contribution to this approach using an optimal

resource management scheme.

3.1.1. Setup

We have a set of tasks T = {t1, t2, . . . , tm} which needs

to be allocated and a set of robots R = {r1, r2, . . . , rn}

which can be used to execute the tasks. Tasks are con-

sidered to be purely transportation tasks in which a robot

should pick up or drop something at the specified task lo-

cation. Robots can have multiple tasks they are assigned

to. Each robot maintains a local task list LTi which is ini-

tially empty. Our proposed architecture is a decentralized

architecture, this means that most of the knowledge is dis-

tributed. To participate into the auctions, each robot only

needs local information: its own location, local task list,

information on the newly announced task, and a graph of

the layout. The layout on which the robots move consist

of depot stations D = {d1, d2, . . . , dn} at which no tasks

can be spawned, and other stations S = {s1, s2, . . . , sk} at

which tasks can be spawned. The total graph of the layout

is presented as G with vertices V = D ∪ S, and edges E

which is a set of edges joining any two vertices from V .

3.1.2. Auction process

All tasks are initially unallocated and are announced

for auction by an auctioneer once available. After receiving

the announcement of a new task Tnew from an auctioneer,

all robots compute their bid for the task following some

bidding rule which is covered in the next sections. For the

bid computation, costs are defined as times in seconds.

The cost of moving from one location to another in the

graph is calculated using the distance obtained from the

popular A* shortest path planning algorithm [3] and the

vehicle’s velocity v. After bid computation, all robots send

their bids to the auctioneer which determines the winning

robot following some winner determination rule covered in

the next sections. The winning robot adds the task to its

local task list LTi using an optimal insertion heuristic [28]

and takes the first task in its local task list to execute.

Initial phase. In this paper, we considered a central auc-

tioneer which initiates each bidding procedure. This is one

single entity that announces a new task to all robots in the

system, receives all their bids, and allocates the task to the

robot with the winning bid. Using a central auctioneer of-

fers less decentralized characteristics than a decentralized

auctioneer where the auctioneer’s role is assigned to one of

the robots in the fleet each time a new task arrives. The al-

ternation of robots taking up this role can be coordinated

using a token- or time-based schedule. However, the au-

thors believe that implementing a centralized auctioneer is

a first step towards practical decentralization as this offers

some more controllability and predictability to the fleet in

comparison with decentral auctioneers. It should be noted

that using a decentralized auctioneer does not necessarily

mean that the auctioneer’s functions need to run on a sep-

arate piece of hardware. Also for the total auction process,

this does not mean that all bidding algorithms need to run

at a separate piece of hardware. These can all perfectly

run on one physical entity. In any case, the choice between

a central or a decentral auctioneer is totally independent

6

of the bidding rules adopted by the individuals which are

described next.

Bidding phase. In our approach, we use a combination of

the MiniSum and the MiniMax team objective by calcu-

lating the MiniSum and MiniMax bids, bms and bmm for

each robot. The MiniSum bidding rule causes a minimum

total path cost over all robots. The MiniMax bidding rule

causes a minimum total time span in which all tasks are

executed. Both of them can have their benefits in certain

situations. For this reason, we propose to include an ex-

tra parameter ε ∈ [0, 1] which is tuneable by the user or

which can be changed/learned automatically during robot

execution. The total bid that is sent to the auctioneer is

a linear combination of both bidding rules:

btotal = ε · bms + (1− ε) · bmm (1)

When ε is 0, the user is focused on the total execution

time and wants this to be as low as possible. This can be

the case during rush periods when many tasks need to be

executed very urgently. When ε is 1, the user is focused

on the total path cost and wants the robots to consume as

little energy as possible. This can be the case when there

is a moment of fewer transports and when the available

time can be used to charge most of the robots and having

few robots executing tasks. When the user wants both

objectives to be minimized in an equal amount, ε can be

put to 0.5.

To calculate the MiniSum bid bms, the robot needs to

calculate the extra cost to insert the new task Tnew in its

local task list LTi. First, it computes the total cost c1

for executing its initial task list LTi. Second, it needs to

compute the total cost c2 for executing a new local task

list:

LT ′i = LTi
⋂
Tnew (2)

which is the old local task list LTi in which the new task

Tnew is inserted using an optimal insertion heuristic. Fi-

nally, it computes the difference of both costs:

bms = c2 − c1 (3)

to obtain the MiniSum bid. To calculate the MiniMax

bid bmm, the robot needs to only calculate the total cost

c2 as in this approach, the robot only bids the total cost

of executing the new task, so no marginal cost is calcu-

lated. When both bids are calculated, this is combined

using equation 1 to obtain the final bid which is sent to

the auctioneer for the winner determination phase.

Winner Determination phase. As a winner determination

phase, we adopt the simple Lowest Bid (LB) principle.

The auctioneer receives all bids from the robots at each

task and assigns the task which has the lowest bid to the

robot which computed that bid. We use this principle

because this gives us directly the minimization effect of

our objective. Using this principle in combination with

our bidding rule, we aim at minimizing the total cost of

executing all tasks, as well as the maximum time span in

which all tasks are executed.

3.2. Resource management approach

When resource constraints are considered and our ap-

proach for the resource management AGV task from ear-

lier work is introduced, only minor adaptions need to be

made to both the setup and the auction process.

3.2.1. Setup

In order to consider resource constraints, each robot

has a charging level β which is denoted in % going from 0

to 100%. With resources, we mean the battery level of the

robot, and thus the amount of energy it has still left. A

resource consumption characteristic is defined as in [10]:

deltaRc(t) = f(t) (4)

7

Where the consumption deltaRc (battery loss) is a func-

tion of the travel time. The function f(t) is dependent of

the speed, accelerations, loading and unloading of the ve-

hicle. After a certain consumption, the new battery level

is:

βnew = βold − deltaRc (5)

In addition, the robot also needs a list of charging stations

where it is able to charge. Mostly, these charging stations

are situated at the depot stations. So also in this approach,

we assume that at each depot station d, any AGV can

charge simultaneously. A charging characteristic can be

defined as in [10]:

deltaRch(t) = (
Rmax

tmax
) · t (6)

Where the charged amount is linearly dependent on the

charging time.

3.2.2. Auction process

In order to consider resource constraints, this only

needs little adaption to the bid calculation explained in

Section 3.1.2. The only modification is in the calculation

of c2. For calculating c2, the AGV needs to check whether

it needs to charge when the new task Tnew is optimally

included in its local list using an optimal insertion

heuristic. If the AGV can complete the new list LT ′i with

the new task without charging, no adaptations need to be

done to the bid calculation. If the AGV cannot complete

the new list due to resource constraints, it can insert an

optimal charging point dopt as an extra task in its task

list, which now becomes:

LT ′′i = LT ′i
⋂
dopt (7)

It also chooses an optimal charging time topt. The total

cost c2 now becomes the cost of executing local task list

LT ′′i plus the charging time topt.

3.3. Task-Agent architecture

As we have two entities in market-based task alloca-

tion: auctioneer and robots, we introduce two task-agents

architectures. One which adopts the bidding rule algo-

rithm (the task-agent at AGV side), and one which adopts

the winner determination principle (the task-agent at auc-

tioneer side). A task-agent is defined as an intelligent

agent inside the AGV-agent which takes care of a par-

ticular AGV task, which in this case is the task allocation

AGV task. In the next sections, we defined the task-agent

architectures on both the AGV side and the auctioneer’s

side.

3.3.1. Task allocation-agent at AGV side

The AGV uses its local information to compute a bid:

own location pi, local task list LTi, information on the

newly announced task Tnew, a graph G of the layout, the

battery level β, and the objective parameter ε. Algorithm

1 shows the pseudo code of this approach. The task-agent

outputs a decision which is the total bid b it sends to the

auctioneer.

Algorithm 1 AGV’s algorithm

1: procedure BidCalculation(p, LT , Tnew, G, β ε)
2: c1 ← previousCalculatedCost()
3: LT ′ ← optimalInsert(LT, Tnew, G)
4: dopt, topt ← optimalCharging(LT ′, β,G)
5: LT ′′ = LT ′

⋂
dopt

6: c2 ← calculateCost(p, LT ′′, topt, β,G)
7: bms ← c2 − c1
8: bmm ← c2
9: b← ε · bms + (1− ε) · bmm

10: return b

In this paper, we consider the ’calculateCost()’ func-

tion to simply calculate the travel cost using an A* path

planning algorithm. The ’optimalCharging()’ function

checks whether it is needed to charge and calculates

an optimal charging point and optimal charging time

when it does need to charge. In the future, the bid

calculation can contain more complex information like

routing information which considers extra costs to avoid

8

collisions and deadlocks, and uncertainty information

which considers the stochastic nature of the path costs in

time. If no resource management needs to be considered

in the task allocation process, the line of calculating an

optimal insertion point and charging time could easily be

omitted. This can be the case when for example another,

simpler, resource management scheme is followed that

runs independently of the task allocation process.

3.3.2. Task allocation-agent at auctioneer side

The task allocation-agent architecture at auctioneer

side implements the winner determination algorithm de-

fined in Section 3.1.2. Algorithm 2 shows the pseudo code

of this procedure.

Algorithm 2 Auctioneer’s algorithm

1: procedure Auction(Tnew, R)
2: announce(Tnew, R)
3: bids← receiveBids()
4: bi ← min(bids)
5: assign(Tnew, ri)

4. Illustrative example problem

We illustrated the proposed approach with an example

in which we show how it acts when some new task arrives in

a situation of two robots each having their local task list

of tasks they need to execute as well as a certain initial

battery level. Assume we have a layout as shown in Fig.

1 with all distances in meters. Also assume that we have

two (n = 2) robots with initial locations and battery levels

for robots 1 (green squares) and 2 (yellow squares), respec-

tively: p1 = pos 3, β1 = 100% and p2 = pos 1, β2 = 45%.

We assume one charging station (blue triangle) at location

pos 2 and we arbitrarily assume that the battery consump-

tion is linearly dependent on the travel time β = −0.5 · t

as is the charging characteristic β = 5 · t. The robots have

local task lists:

LT1 = [pos 7; pos 8; pos 13]

LT2 = [pos 5; pos 4; pos 9]

In the following, we see how the approach acts when a new

task Tnew (red star) arrives at location pos 14. Costs (in

seconds) are calculated as follows: d/v, with d a distance

between two points in the layout, and v = 1 m/s. We want

to minimize the total travel time cost of the assignment as

well as the maximum time span of the assignment. Thus

we set the objective parameter ε at 0.5. An auctioneer

(either centralized or decentralized) announces the task to

the two robots. Every robot calculates its bid following

the proposed bidding rule.

Fig. 1: Layout

• Robot 1:

Local task list:

LT1 = [pos 7; pos 8; pos 13]

Cost starting from initial position pos 3:

c1 = 20 + 20 + 30 = 70s

Optimal insertion of task Tnew:

LT ′1 = [pos 7; pos 8; pos 13;pos 14]

9

New cost starting from initial position:

c2 = 20 + 20 + 30 + 30 + 40 + 40 = 180s

Battery check:

β1 = 100%− (0.5 · 180)% = 10%

This robot can execute the extra task without the

need of charging. Thus it’s cost c2 remains.

MiniSum bid: bms = c2 − c1 = 180− 70 = 110

MiniMax bid: bmm = c2 = 180

Total Bid: b1 = 0.5 · 110 + (1− 0.5) · 180 = 145

• Robot 2:

Local task list:

LT2 = [pos 5; pos 4; pos 9]

Cost starting from initial position pos 1:

c1 = 20 + 20 + 30 = 70s

Optimal insertion of task Tnew:

LT ′2 = [pos 5; pos 4; pos 9;pos 14]

New cost starting from initial position:

c2 = 20 + 20 + 30 + 30 = 100s

Battery check:

β2 = 45%− (0.5 · 100)% = −5%

This means that this robot cannot execute the extra

task without charging. It needs to include an optimal

charging station and an optimal charging time. The

robot needs to charge at pos 2 and optimally includes

this at a point the closest to its initial route, which

is after visiting location pos 5. Its new local task list

becomes:

LT ′′2 = [pos 5;pos 2; pos 4; pos 9; pos 14]

Going to the charging station takes 20 + 20 + 20 =

60s which results in a battery level of 45% − (0.5 ·

60)% = 15%. Going from the charging station to

all of the other tasks takes another 20 + 20 + 20 +

30 + 30 = 120s and thus takes (0.5 · 120)% = 60% of

battery which means that an extra of 60%− 15% =

45% needs to be charged to fully complete all tasks,

including the new one, without having charged more

than needed. Looking at the charge model this would

take an optimal charging time of topt = 45%/5 = 9s.

The total cost c2 then becomes the sum of the total

travelled time for executing LT ′′2 , which is 180s, and

the total charging time which is 9s. Thus c2 = 189s.

MiniSum bid: bms = c2 − c1 = 189− 70 = 119s

MiniMax bid: bmm = c2 = 189s

Total Bid: b1 = 0.5 · 119 + (1− 0.5) · 189 = 154s

Both robots send their bids b1 and b2 to the auctioneer

which follows the lowest bid principle:

b = min(b1, b2) = min(145, 154) = 145 = b1

Despite that the new task clearly lies closer to the initial

path of robot 2, robot 1 has the lowest bid and thus gets

assigned task Tnew due to the fact that robot 2 needs to

charge when accepting the task. When no resource con-

straints would be implemented, robot 2 would have ob-

tained the task, which would have resulted in a longer to-

tal execution time than needed. Both robots end up with

their new local task lists:

LT1 = [pos 7; pos 8; pos 13; pos 14]

LT2 = [pos 5; pos 4; pos 9]

This process repeats for every task that needs to be as-

10

signed. The parameter ε can be tuned depending on the

situation. In the following section, our approach is vali-

dated in simulation and is benchmarked to the industrial

state-of-the-art solution.

5. Validation and benchmarking

In this section, we validate our approach and bench-

mark its performance to the optimization-based solution

which represents the industrial state-of-the-art solution:

• For the task allocation, we assume that industry uses

optimization-based heuristics to solve their task al-

location problem. Some discussion with industrial

AGV manufacturers confirmed their use of heuris-

tics. In reality, each AGV manufacturer may have

a different way of optimizing, but in this paper we

arbitrarily took a genetic optimization solver as a

benchmark because this is a widely used heuristic

solver in combinatorial optimization problems.

• For the resource management, we assume that in-

dustry handles what the authors call ’threshold-100

charging’ in which an AGV heads to the closest

charging station when a threshold is reached and

charges fully. Again, discussions with industrial

AGV manufacturers confirmed this way of handling

resource management.

We use the same layout as in fig. 1. We spawn all tasks

at a random location and perform a task allocation for each

approach considering all tasks together without any time

dependencies. The robots always start at their depot sta-

tion. We did two different experiments, one without con-

sidering resource constraints to show the performance of

the task allocation approach independently, and one with

considering resource constraints to show the results of an

optimal charging behaviour. In both experiments and in

both optimization approaches, the optimization objective

is the minimization of the linear combination of the total

travel cost and the total execution time. In the simula-

tions, the tuneable objective parameter ε is set to zero,

thus minimizing the total execution time of executing all

tasks.

5.1. Without resource constraints

For this experiment, we do not consider resource con-

straints and assume that all robots have enough resources

to finish their task sequences allocated by the task allo-

cation approach. Our approach is implemented as stated

in Section 3 but without the optimal charging inclusion

in the bid calculation. For the industrial benchmark we

use a genetic algorithm with a population size that equals

ten times the number of robots, a mutation probability of

0.5, an elite size that equals the number of robots, and

a number of iterations that equals ten times the number

of possible solution combinations but which was limited

at 1000 iterations. All these setup parameters are chosen

arbitrarily to obtain clear results. We also calculate the

optimal task allocation solution as an extra benchmark.

We simulate for one up to four robots and this for one

up to ten tasks. For each combination we simulate five

times to analyse eventual stochastic variations. Fig. 2

shows an example assignment of the SSI-approach for

ten randomly spawned tasks (coloured stars) and three

robots (green, blue, and yellow squares). Fig. 3 shows the

optimal assignment for the exactly same problem. The

thick coloured lines (green, blue, and yellow) denote the

path the robot follows. We can see that both approaches

output a different solution with a different performance

that is analysed further. Fig. 4 depicts the objective

values for both the optimal, the heuristic (industrial

benchmark), and SSI-approach for a series of assignments

in function of the number of tasks and for one up to four

robots. Remark that these objective values equal the

total execution time of all tasks because the tune-able

objective parameter ε was set to zero.

11

Fig. 2: SSI-auction assignment for ten tasks and three robots

Fig. 3: Optimal assignment for ten tasks and three robots

Also remark that we did not include the optimal

solutions for the situation of 4 robots. This because the

computation time for a brute force allocation of eight,

nine, or ten tasks is enormous. So we only showed the

optimal results for one up to three robots which can easily

be generalized to more robots. It can be seen that the

SSI-approach outputs a performance in between that of

the optimal solution and the heuristic solution for one to

four robots, but this with not much difference. In the

case of one robot, all performances are obviously equal

because only one solution is possible, which is the single

robot executing all tasks. For more than four robots, the

performance stays roughly the same because there are

enough robots for the job and more robots will not cause

an increase in performance anymore. Fig. 4: Validation of the SSI-approach without resource constraints
for one till four robots and one up to ten tasks.

12

Fig. 5 shows the computational time in function of

the number of tasks for two robots. Fig. a shows this for

the optimal, the heuristic (industrial benchmark), and the

SSI-approach. Fig. b shows the same results but without

the optimal approach to better compare the heuristic and

SSI-approach.

(a) Computation time compared for the optimal, heuristic, and SSI-
approach.

(b) Computation time compared for the heuristic and the SSI-approach.

Fig. 5: Computation time in function of the number of tasks for two
robots and for one up to ten tasks.

We can see that the computation time of the optimal

approach increases exponentially with the amount of

tasks. We see that the total computation time for the

SSI-approach is far less than for the optimal brute force

algorithm and scales more linearly with the amount of

tasks than the heuristic solution. We can conclude that

the SSI-approach outperforms the industrial solution in

computation time for equal performance when no resource

constraints are considered. The computation time of

the heuristic solution could be decreased by limiting

the amount of iterations or limiting the population size.

However, this would lead to a decrease in performance as

the exploration of the search space would be limited. The

heuristic approach thus asks for a trade-off between opti-

mality and time complexity whereas the SSI-approach has

both good performance and relatively little computation

time.

5.2. With resource constraints

For this experiment, we do consider resource con-

straints and assume that all robots have a limited amount

of resources and could need to charge in order to finish

their task sequences allocated by the task allocation

solution. In this experiment we compare our optimized

resource management strategy from previous work and

the industrial threshold-100 charging by including their

outcomes in the task allocation approaches of the one

proposed in this paper and of the industrial one, which is

represented by a genetic algorithm, respectively.

The setup for this experiment is the same as for the ex-

periment without resources except for the implementation

of a charging level for each AGV which starts at 100% at

the start of the simulation, and the implementation of a

resource consumption and a charging characteristic:

• For the resource consumption, we arbitrarily choose

the function deltaRc(t) = −0.3 · t to obtain clear

results and to make sure that each AGV can reach

a charging station from any location in the graph.

In reality, this consumption function is more com-

plex and depends on the loading, unloading, speed,

and accelerations of the vehicle. However, this sim-

pler function leads to the same conclusions about the

performance of the approach.

• For the charging characteristic, we arbitrarily choose

the function deltaRch(t) = t to obtain clear results.

Also in reality, the charging characteristics are more

complex and non-linear.

13

The solution approaches for this experiment are the

same as for the experiment without resources except for

the implementation of a charging scheme in both the in-

dustrial and our approach:

• For the industrial (central) approach, the task allo-

cation is done as in the previous experiment, with

a genetic algorithm solver. Once the solution is ob-

tained, the robot checks if it needs to charge and

applies the threshold-100 charging scheme if it does.

In the simulation, we took a threshold of 20% as this

is a general minimum charging level of the broadly

used lead-acid batteries in AGV vehicles.

• For our approach, the optimal insertion approach

as described in [10] is used to calculate an optimal

charging station and charging time and the cost of

charging is included in the bidding mechanism as de-

scribed in Section 3.2.2.

For both approaches, the total charging cost is calcu-

lated for each solution and is compared. This charging

cost consists of the cost for moving from the initial tour

to the chosen charging station, the cost to charge, and the

cost to move from the chosen charging station to the next

station in the task sequence. To clearly show the results

of both resource management approaches independent

of the task allocation results, only a situation with one

robot is simulated for a set of tasks from one up to ten

tasks and this again five times to verify the impact of

stochastic variation. Fig. 6 shows the validation of the

SSI-approach with charging constraints for one robot and

one up to ten tasks. Fig. a shows the objective value of

the SSI-assignments including resource constraints. Fig.

b shows the charging costs of one robot in function of the

amount of tasks for the industrial approach (Heuristic)

and for the SSI-approach. We can see that our approach

clearly needs less charging cost than the benchmark

solution. The saved charging cost is due to the fact that

the robot chooses the charging station the closest to its

initial tour and decides to charge just as much as needed

to finish its tour with the minimum amount of resources

allowed. For situations with less than six tasks, the robot

can finish its task sequence without charging, thus both

approaches output zero charging costs.

(a) Objective in function of the number of spawned tasks for one robot.

(b) Charging cost in function of the number of spawned tasks for one
robot.

(c) Computation time in function of the number of spawned tasks for one
robot.

Fig. 6: Validation of the SSI-approach with resource constraints for
one robot and one up to ten tasks.

14

Fig. c shows the computation time needed for each re-

source management approach in function of the amount of

tasks. We see that our optimal approach needs more com-

putation time due to the optimization processes, whereas

in the benchmark solution, no optimization is used and

just the closest charging station is obtained. To overcome

this issue and to prevent the computation time of growing

too much, the amount of tasks in each robot’s task list

could be limited as the time needed to obtain the optimal

charging station into the sequence of tasks is proportional

to the amount of tasks in the sequence. In this way, the

total computation time for an optimal charging behaviour

could be bounded and controlled. By implementing this

optimal charging behaviour inside the bidding mechanism

of a sequential single-item allocation process, it is pos-

sible to maintain a decentralized task allocation process

under resource constraints. Both the task allocation and

resource management tasks are handled separately and can

be combined with only small adaptations facilitating their

integration in existing industrial systems.

6. Conclusions

In this paper, we presented a decentral task allocation

architecture for a fleet of AGVs based on the sequential

single-item auction principle considering resource con-

straints. When comparing the task allocation approach

without resource constraints to the industrial solution

which is represented by a genetic algorithm solver,

we clearly see that our solution outputs near-optimal

performance with a computation time that scales linearly

with the amount of tasks and amount of robots. This

while the industrial reference solution scales much worse

while outputting similar performance on the same task.

When including resource constraints and comparing the

charging costs of both our approach and the industrial

benchmark, we see that our approach always wastes less

charging time than the industrial benchmark but that

it takes extra computation time to execute the extra

resource optimizations. This could be limited by limiting

the amount of tasks that can be assigned to one robot.

In conclusion, the proposed decentralized task alloca-

tion approach scales well with the complexity of the system

and outperforms the industrial benchmark in computation

time, for the task allocation, and performance, for the

resource management. The task allocation and resource

management task of the AGV can easily be combined by

just adding the extra cost in the bidding procedure of the

auction process. This easy implementation helps in a grad-

ual adoption of decentralized control in multi-robot sys-

tems. In future research, we will also introduce routing in-

formation and uncertainty in the bidding process. In this

paper we assumed path costs to be deterministic. How-

ever, in reality, path costs can be uncertain due to crowd-

edness on the paths or due to obstacles on the path. The

cost to traverse a certain path could be modelled by using

an imprecise uncertainty model [29, 30] which considers

the known uncertainty on path cost in function of another

factor like daytime (morning, rush period, evening).

Acknowledgments

This work is supported by the M-group, part of the KU

Leuven Campus in Bruges.

References

[1] K. F. E. Tsang, Y. Ni, C. F. R. Wong, L. Shi, A Novel Ware-

house Multi-Robot Automation System with Semi-Complete

and Computationally Efficient Path Planning and Adaptive Ge-

netic Task Allocation Algorithms, in: 15th International Con-

ference on Control, Automation, Robotics and Vision, ICARCV

2018, 2018.

[2] K. Jose, D. K. Pratihar, Task allocation and collision-free path

planning of centralized multi-robots system for industrial plant

inspection using heuristic methods, Robotics and Autonomous

Systems 80 (2016) 34–42.

[3] C. Liu, A. Kroll, A centralized multi-robot task allocation for

industrial plant inspection by using A* and genetic algorithms

(2012).

15

[4] I. Draganjac, D. Miklic, Z. Kovacic, G. Vasiljevic, S. Bogdan,

Decentralized Control of Multi-AGV Systems in Autonomous

Warehousing Applications, IEEE Transactions on Automation

Science and Engineering 13 (4) (2016) 1433–1447.

[5] M. P. Fanti, A. M. Mangini, G. Pedroncelli, W. Ukovich, A

decentralized control strategy for the coordination of AGV sys-

tems, Control Engineering Practice 70 (September 2016) (2018)

86–97.

[6] D. Weyns, T. Holvoet, K. Schelfthout, J. Wielemans, Decen-

tralized control of automatic guided vehicles : Applying multi-

agent systems in practice, 23rd ACM SIGPLAN Conference on

Object Oriented Programming Systems Languages and Appli-

cations,OOPSLA 2008, October 19, 2008 - October 23, 2008

(2008) 663–674.

[7] I. Baffo, G. Confessore, G. Stecca, A decentralized model for

flow shop production with flexible transportation system, Jour-

nal of Manufacturing Systems 32 (2013) 68–77.

[8] G. Demesure, M. Defoort, A. Bekrar, D. Trentesaux, M. Djemai,

Decentralized Motion Planning and Scheduling of AGVs in an

FMS, IEEE Transactions on Industrial Informatics 14 (4) (2018)

1744–1752.

[9] M. De Ryck, M. Versteyhe, F. Debrouwere, Automated guided

vehicle systems, state-of-the-art control algorithms and tech-

niques, Journal of Manufacturing Systems 54 (2020) 152–173.

[10] M. De Ryck, M. Versteyhe, K. Shariatmadar, Resource man-

agement in decentralized industrial Automated Guided Vehicle

systems, Journal of Manufacturing Systems 54 (October 2019)

(2020) 204–214.

[11] M. L. Gini, Multi-Robot Allocation of Tasks with Temporal and

Ordering Constraints, in: Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence (AAAI-17), 2017.

[12] N. Sullivan, S. Grainger, B. Cazzolato, Sequential single-item

auction improvements for heterogeneous multi-robot routing,

Robotics and Autonomous Systems 115 (2019) 130–142.

[13] E. Nunes, M. Manner, H. Mitiche, M. Gini, A taxonomy for task

allocation problems with temporal and ordering constraints,

Robotics and Autonomous Systems 90 (2017) 55–70.

[14] B. P. Gerkey, M. J. Mataric, A formal analysis and taxonomy

of task allocation in multi-robot systems, International Journal

of Robotics Research 23 (9) (2004) 939–954.

[15] A. Khamis, A. Hussein, A. Elmogy, Multi-Robot Task Alloca-

tion: A Review of the State-of-the-Art, Cooperative Robots and

Sensor Networks 2 (2015) 31–51.

[16] H. Eimaraghy, I. Manufacturing, S. Ims, Scheduling of Manufac-

turing Systems Under Dual-Resource Constraints Using Genetic

Algorithms, Journal of Manufacturing Systems 19 (3) (2000)

186–201.

[17] Y. Fang, H. Xu, Q. Liu, D. Truong, Evolutionary optimiza-

tion using epsilon method for resource-constrained multi-robotic

disassembly line balancing, Journal of Manufacturing Systems

56 (June) (2020) 392–413.

[18] A. R. Mosteo, L. Montano, Simulated annealing for multi-robot

hierarchical task allocation with flexible constraints and ob-

jective functions, IROS’06 workshop on Network Robot Sys-

tems: Toward intelligent robotic systems integrated with envi-

ronments (2006) 1–8.

[19] X. Li, Z. Liu, F. Tan, Multi-Robot Task Allocation Based on

Cloud Ant Colony Algorithm, Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) 10637 LNCS (2017) 3–10.

[20] B. P. Gerkey, M. J. Matarić, Sold!: Auction methods for mul-

tirobot coordination, IEEE Transactions on Robotics and Au-

tomation 18 (5) (2002) 758–768.

[21] M. B. Dias, A. Stentz, A Free Market Architecture for Dis-

tributed Control of a Multirobot System, 6th International Con-

ference on Intelligent Autonomous Systems IAS6 6 (2000) 115–

122.

[22] R. G. Smith, The Contract Net Protocol: High-Level Commu-

nication and Control in a Distributed Problem Solver, IEEE

Transactions on Computers C-29 (12) (1980) 1104–1113.

[23] A. Schoenig, M. Pagnucco, Evaluating sequential single-item

auctions for dynamic task allocation, Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 6464 LNAI

(2010) 506–515.

[24] S. Koenig, C. Tovey, M. Lagoudakis, The power of sequential

single-item auctions for agent coordination, Proceedings of the

AAAI Conference on Artificial Intelligence (2006) 1625–1629.

[25] A. Farinelli, N. Boscolo, E. Zanotto, E. Pagello, Advanced

approaches for multi-robot coordination in logistic scenarios,

Robotics and Autonomous Systems 90 (2017) 34–44.

[26] X. Jia, M. Q. Meng, A survey and analysis of task alloca-

tion algorithms in multi-robot systems, 2013 IEEE International

Conference on Robotics and Biomimetics, ROBIO 2013 (2013)

2280–2285.

[27] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak,

A. Kleywegt, S. Koenig, C. Tovey, A. Meyerson, S. Jain,

Auction-based multi-robot routing, in: Robotics: Science and

Systems, Vol. 1, 2005, pp. 343–350.

[28] R. Matai, S. Singh, M. Mittal, Traveling Salesman Problem:

an Overview of Applications, Formulations, and Solution Ap-

proaches, in: Traveling Salesman Problem, Theory and Appli-

cations, no. January 2014, 2010.

[29] K. Shariatmadar, K. Driesen, M. De Ryck, F. Debrouwere,

M. Versteyhe, Linear programming under ε-contamination un-

certainty, in: International Conference Computational and

16

Mathematical Methods in Science and Engineering, 2019.

[30] K. Shariatmadar, M. Versteyhe, Linear programming under p-

box uncertainty model, Machines (2019).

17

