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Abbreviations 

EEG  electroencephalography 

ERD  event-related desynchronization 

ERS  event-related synchronization 

ERSP  event-related spectral perturbation 

fMRI  functional magnetic resonance imaging 

GLMM  generalized linear mixed model 

LMM  linear mixed model 

SD   standard deviation 

tACS  transcranial alternating current stimulation  
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Abstract 

Interlimb coordination deteriorates as a result of aging. Due to its ubiquity in daily life, a greater 

understanding of the underlying neurophysiological changes is required. Here, we combined 

electroencephalography time-frequency spectral power and functional connectivity analyses to 

provide a comprehensive overview of the neural dynamics underlying the age-related deterioration 

of interlimb coordination involving all four limbs. Theta, alpha and beta oscillations in the frontal, 

central and parietal regions were analyzed in twenty younger (18–30 years) and nineteen older adults 

(65–78 years) during a complex interlimb reaction time task. Reaction time was significantly higher in 

older adults across all conditions, and the discrepancy between both age groups was largest in the 

most complex movement condition. Older adults demonstrated enhanced beta event-related 

desynchronization (i.e., the attenuation of beta power), which further increased along with task 

complexity and was positively linked to behavioral performance. Theta functional connectivity 

between frontal, central and parietal regions generally increased with movement complexity, 

irrespective of age group. In general, frontoparietal alpha band functional connectivity tended to be 

reduced in older versus younger adults, although these contrasts did not survive multiple comparison 

corrections. Overall, spectral results suggest that enhanced beta desynchronization in older adults 

reflects a successful compensatory mechanism to cope with increased difficulty during complex 

interlimb coordination. Functional connectivity results suggest that theta and alpha band connectivity 

are prone to respectively task- and age-related modulations. Future work could target these spectral 

and functional connectivity dynamics through noninvasive brain stimulation to potentially improve 

interlimb coordination in older adults. 

 

Keywords: electroencephalography (EEG), interlimb coordination, spectral analyses, functional 

connectivity, aging, time-frequency 
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Introduction 

Interlimb coordination refers to simultaneously executing coordinated movements with multiple 

limbs. As interlimb coordination is ubiquitous in our everyday lives (e.g., tying your shoes, taking the 

stairs, driving a car), its age-related deterioration jeopardizes the functional autonomy of older adults. 

At the same time, the underlying neural processes remain poorly understood (Maes et al., 2017). 

Moreover, the scientific field has predominantly focused on bimanual movements. Although bimanual 

research has provided telltale insights into the constraints governing interlimb coordination (Sisti et 

al., 2011), it is limited by its inclusion of two fixed end-effectors, namely the upper limbs. In various 

everyday life situations, the end-effectors required for motor behavior are variable and have to be 

selected according to task demands. Furthermore, this selection of end-effectors also determines 

motor processing complexity, next to the dynamics typically investigated by bimanual research 

(Boisgontier et al., 2014; Boisgontier et al., 2016). Boisgontier et al. (2014) revealed that processing 

complexity of various movements involving two limbs (e.g., the left hand and left leg, the right arm 

and left leg) varies widely depending on the recruited limbs, and this has been associated with 

structural neural markers in the past (Boisgontier et al., 2016; Rasooli et al., 2021). Nevertheless, the 

functional neural markers underlying these end-effector dependent differences in motor processing 

complexity remain unclear. 

Several modalities can identify the neural markers of interlimb coordination. Electroencephalography 

(EEG) is highly suited, as its high temporal resolution enables detection of rapidly changing neural 

interactions underlying interlimb movement preparation and execution (Fujiyama et al., 2016; Kline 

et al., 2016; Liuzzi et al., 2011; Verstraelen et al., 2021). A consistently reported marker of interlimb 

movements and motor behavior in general, is the attenuation of sensorimotor alpha (8–12 Hz) and 

beta (12–30 Hz) band power (Brovelli et al., 2004; Engel and Fries, 2010; Pfurtscheller and Lopes da 

Silva, 1999). This phenomenon, also known as event-related desynchronization (ERD), reflects 

sensorimotor network activation, and is suggested to be mediated by enhanced thalamocortical 

excitation (Kilavik et al., 2013; Neuper and Pfurtscheller, 2001). Theta band (3.5–8 Hz) event-related 

synchronization (ERS) (i.e., a power increase) is a marker of motor behavior, as well. Mostly observed 

in the frontal regions, it is hypothesized to reflect movement preparation, execution and sensorimotor 

integration (Cruikshank et al., 2012; Karrasch et al., 2004; Pellegrino et al., 2018; Van der Lubbe et al., 

2021; Yordanova et al., 2020). Besides power modulations, functional connectivity also plays an 

important role in the context of interlimb movements. Compared to single limb movements, interlimb 

movements entail a more widespread neural network involving frontal, central and parietal regions 

(Banerjee et al., 2012; Debaere et al., 2001; Heuninckx et al., 2005; Swinnen, 2002). Although inter-

regional functional connectivity is mostly characterized by theta and alpha band coupling during 
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bimanual coordination tasks (Berger et al., 2018; von Stein and Sarnthein, 2000), Rueda-Delgado et al. 

(2017) demonstrated that interhemispheric beta coupling increased along with bimanual task 

difficulty. 

Aging affects power and functional connectivity dynamics underlying motor behavior. In general, 

alpha and beta ERD increase as a result of aging, while theta ERS decreases (Protzak and Gramann, 

2021; Rueda-Delgado et al., 2019; Schmiedt-Fehr et al., 2016; Shih et al., 2021; Yordanova et al., 2020). 

Although the precise nature of these age-related changes mostly remains ambiguous, there is growing 

consensus that increased beta ERD reflects a compensatory mechanism to cope with elevated baseline 

beta levels (Heinrichs-Graham and Wilson, 2016; Heinrichs-Graham et al., 2018). Concerning 

functional connectivity, research has mostly investigated resting-state connectivity, with conflicting 

results (Esposito et al., 2008; Moezzi et al., 2019; Seidler et al., 2015; Smit et al., 2012; Vysata et al., 

2014). In contrast, there is a dearth of task-related functional connectivity studies. Using fMRI during 

a bimanual task, Heitger et al. (2013) observed a functional connectivity increase along with higher 

age and increased task complexity. In contrast, Kiyama et al. (2014) reported that higher motor area 

connectivity is reduced during bimanual task execution in older adults. Regarding EEG, Loehrer et al. 

(2016) reported interhemispheric central connectivity increases with increasing age during a bimanual 

tapping task. Rosjat et al. (2018) performed a finger-tapping task in young and older adults. They found 

age-related increases in functional connectivity as well, likely to represent compensatory mechanisms 

to preserve performance in older participants. 

Here, we set out to investigate the effect of aging on the neural mechanisms underlying complex 

interlimb coordination involving all four limbs as potential end-effectors. By incorporating time-

frequency spectral power and functional connectivity analyses, three frequency bands and three brain 

regions, we aim to provide the most comprehensive overview of the age-related oscillatory changes 

underlying complex interlimb coordination to date. A greater understanding of these neural processes 

could form the basis of future interventions. We hypothesize that older adults will demonstrate 

enhanced alpha and beta ERD and attenuated theta ERS compared to younger adults and that beta 

ERD will be positively associated with behavioral performance. Due to a lack of previous research, 

formulating substantiated hypotheses was impossible for the research questions entailing functional 

connectivity and interlimb movement complexity.  

 

Experimental procedures 

Participants 
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In total, 20 younger and 20 older adults were recruited. One older adult was excluded due to excessive 

EEG noise. As such, data of 20 younger [aged 22.3 ± 1.0 years (mean ± standard deviation [SD]), 10 

females] and 19 older adults (aged 70.7 ± 3.0 years, 8 females) were analyzed. All participants were 

right-handed according to the Edinburgh Handedness Inventory (lateralization quotient in younger 

adults = 92.9 ± 9.2, older adults = 97.6 ± 6.0) (Oldfield, 1971), and scored ≥24 on the Montreal 

Cognitive Assessment (younger adults = 28.9 ± 1.2, older adults = 26.5 ± 1.7), indicating the absence 

of mild cognitive impairment (Nasreddine et al., 2005; Thomann et al., 2020). Participants had 

(corrected to) normal vision, and were excluded if they (1) played a musical instrument, (2) smoked, 

(3) had a pathological condition affecting the central nervous system and/or (4) used psycho-active 

medication. All participants provided written informed consent. The study (B1152020000017) was 

approved by the local Ethical Committee of the University of Hasselt (Belgium) and was in accordance 

with the Declaration of Helsinki and its amendments (World Medical Association, 1964, 2008). 

 

Motor task and experimental protocol 

The multi-limb reaction time task was used to assess interlimb coordination (Boisgontier et al., 2014). 

Participants were seated in front of a monitor with both hands and forefeet resting on tablets with 

capacitive proximity switches (Pepperl Fuchs CBN5-F46-E2, sampling frequency: 1000 Hz) (see Fig. 1A). 

The monitor displayed 4 grey squares, representing the 4 limbs (see Fig. 1B). At task onset, two grey 

squares turned white (i.e., visual cue onset). Participants were instructed to then lift the 

corresponding limbs together as fast as possible. Lift-off of both limbs was registered. The difference 

between visual cue onset and lift-off onset of the slowest limb was defined as reaction time. The 

difference between the lift-off of the slowest and fastest limb was recorded to evaluate offline that 

both limbs were moved simultaneously. The task consisted of 6 unique movements [upper (1) or lower 

limbs (2), left (3) or right limbs (4), left upper–right lower limbs (5) or right upper–left lower limbs (6)]. 

These 6 movements were pooled into 3 conditions with different complexity levels. Based on 

Boisgontier et al. (2014), the same limb (upper or lower limb movements), same side (left or right limb 

movements) and mixed limb (left upper - right lower limb, or right upper – left lower limb movements) 

conditions were defined as the easy, intermediate and difficult conditions, respectively. 

To ensure task comprehension, participants first performed a short familiarization block. Here, each 

movement was performed 10 consecutive times (i.e., a simple choice reaction time task where the 

first 10 trials consisted of the upper limb condition, the next 10 trials of the lower limb condition, and 

so on). Then, EEG was recorded during 4 experimental blocks, each consisting of 78 trials, for a total 

of 312 trials. In every block, each unique movement was repeated 13 times (i.e., 26 repetitions per 
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condition). As such, all participants repeated each movement 52 times, and each condition 104 times. 

Condition order within each block was pseudo-randomized through MATLAB (v2021a, The 

MathWorks, Massachusetts, USA) to ensure that conditions with a different complexity preceded each 

other to an equal extent. A trial started after a 1000 ms delay (= intertrial interval) after all the limbs 

were correctly placed on the tablets. Two triggers were sent to the EEG system: one at visual cue onset 

and one at lift-off onset of the slowest limb. Experimental trials from the 4 experimental blocks 

containing reaction times < 200 ms were identified as anticipatory behavior and were not analyzed 

(Whelan, 2008).  

 

 

Figure 1. Multi-limb reaction time task. (A) Experimental set-up. (B) Visual cues displayed to 

participants for each condition, left and right squares represent left and right limbs, respectively. Upper 

and lower squares represent hands and forefeet, respectively. White squares represent the cue for lift-

off. (C) Example of the course of one trial. 

 

EEG data collection and preprocessing 

EEG data were recorded using a 64-channel electrode system [BioSemi ActiveTwo (Biosemi, 

Amsterdam, The Netherlands)]. The electrode cap was placed in accordance to the international 10–

20 system. Data were acquired at 2048 Hz, and were preprocessed offline using the EEGLAB plug-in 

(v2021.1) (Delorme and Makeig, 2004). Data were down-sampled to 512 Hz and 1–40 Hz band-pass 

filtered. Noisy channels were rejected via the Clean Rawdata plug-in (v2.0), followed by Common 

Average Referencing (Delorme, 2021). Removed channels were interpolated, Independent 

Components Analysis was performed and oculomotor, muscle, heart and channel noise artefacts were 

removed. High-amplitude data components were removed through Artefact Subspace Rejection, and 
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a surface Laplacian was applied to render the data appropriate for connectivity analyses (Cohen, 2014; 

Gulbinaite et al., 2014; Perrin et al., 1989; Srinivasan et al., 2007; Winter et al., 2007). Finally, EEG data 

were time-locked to the visual cue, and epochs were created from -1000 ms to 2000 ms, with 0 ms 

being cue-onset.  

 

Selection of frequency bands and electrodes of interest 

Based on previous literature (see 1. Introduction), the frontal, central and parietal regions were 

selected as regions of interest (see Fig. 2A). Data from F3 and F4 (frontal region), C3, C4 and Cz (central 

region) and P3 and P4 (parietal region) were averaged per region for spectral analyses. For functional 

connectivity analyses, F3–C4, F3–P3, F3–P4, F4–C3, F4–P3, F4–P4, C3–C4, C3–P4 and C4–P3 were 

investigated (see Fig. 2B). Only electrode pairs with a moderate inter-electrode distance (> 10 cm) 

were selected, as electrodes in close vicinity to one another can spuriously affect connectivity analyses 

due to volume conduction (Cohen, 2015; Srinivasan et al., 2007; Winter et al., 2007). 

 

Figure 2. Overview of selected electrodes. (A) Regions (frontal, central and parietal) selected for power 

analyses. (B) Electrode pairs selected for functional connectivity analyses.  

 

EEG time-frequency decomposition 

The cue- and response-locked epochs were decomposed into a time-frequency representation using 

custom MATLAB scripts, based on Cohen (2014). The preprocessed EEG time series data were 

convolved with a series of complex Morlet wavelets, defined as Gaussian-windowed complex sine 

waves: 𝑒𝑖2𝜋𝑡𝑓  ∗  𝑒
−𝑡2

2∗𝜎2, where 𝑖 is the complex operator, 𝑡 is time, 𝑓 is frequency ranging from 3 to 35 

in 30 logarithmic steps, and 𝜎 defines wavelet width. Here, 𝜎 is 
10

2πf
 (Cohen, 2014; van Driel et al., 

2012).  
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From this complex signal, frequency-specific power values were extracted at each time point using 

the squared magnitude of the result of the convolution Zt: 𝑃𝑜𝑤𝑒𝑟 =  𝑟𝑒𝑎𝑙[𝑧𝑡]2 + 𝑖𝑚𝑎𝑔[𝑧𝑡]2 (Cohen, 

2014). Power was decibel normalized: 𝑃𝑜𝑤𝑒𝑟 (𝑑𝐵) = 10 ∗ 𝑙𝑜𝑔10(
𝑝𝑜𝑤𝑒𝑟

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
), with baseline being 

defined as the cue-locked participant- and frequency-specific condition-average power values from -

500 to -200 ms.  

Additionally, inter-site phase clustering was calculated. This measure of functional connectivity 

assumes that two neural sources are coupled when their oscillations are temporally synchronized: 

𝐼𝑆𝑃𝐶𝑓 =  |𝑛−1 ∗  ∑ 𝑒𝑖(𝜙𝑥𝑡−𝜙𝑦𝑡)𝑛
𝑡=1 |, where 𝑓 is frequency, 𝑛 is number of trials, 𝑡 is timepoint, 𝑖 is the 

complex operator, and 𝜙𝑥𝑡 & 𝑦𝑡  are the phase angles from electrode 𝑥 and 𝑦 at each timepoint at 

frequency 𝑓 (Cohen, 2014). Inter-site phase clustering was percentage normalized: Inter −

site phase clustering (%) = 100 ∗  
𝐼𝑆𝑃𝐶−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 , with baseline being defined as the cue-locked 

participant- and frequency-specific condition-average values from -500 to -200 ms.  

 

Statistical analyses  

For all results, mean and SD are shown. All analyses were done in RStudio, through the lme4 package 

(Bates et al., 2015; R Core Team, 2021; RStudio Team, 2020). When generalized linear mixed models 

(GLMM) or linear mixed models (LMM) were constructed, all multi-way interactions between the fixed 

factors were included in the initial model. PARTICIPANT was included in each (G)LMM as a random 

intercept. All (G)LMMs were simplified through stepwise removal of non-significant factors, starting 

with the factor with the highest p-value not contained in any higher-level interactions. Normality of 

the final (G)LMMs was assessed through visual inspection of the Q–Q plots. Through the Emmeans 

package, Bonferroni-corrected pairwise contrasts were used to interpret significant factors (Lenth, 

2021). The significance level for all tests was α = 0.05. 

 

Behavioral data 

Reaction time was analyzed with a GLMM, to ensure maximally interpretable results whilst adhering 

to all statistical test requirements (Lo and Andrews, 2015). The fixed factors were GROUP (younger or 

older adults), CONDITION (same limb, same side or mixed limb) and their interaction. Next to 

PARTICIPANT, BLOCK was also included as a random intercept. For the theoretical distribution, an 

Inverse Gaussian and Gamma distribution were considered to account for the heavy right-tailed 

reaction time data distribution. Likewise, an identity and inverse link were considered as link functions. 
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The Inverse Gaussian – Inverse link combination resulted in the best fitting model according to the 

AIC/BIC criteria.  

Next to reaction time, in a supplementary analysis (Cf., Supplementary materials 2), we also 

investigated accuracy on the behavioral task via a binomial GLMM. The same fixed and random effects 

were used. 

 

EEG data 

Grand-average cue-locked time-frequency matrices were created per region (power) or electrode pair 

(functional connectivity). As these matrices averaged all the data across groups and conditions, they 

were blind to the factors of interest. A time-frequency statistical mask was obtained from the grand-

average matrices, by comparing each power/functional connectivity value within the time-interval of 

interest (0 to 1800 ms) against the distribution of power/functional connectivity values in the baseline 

period (-500 to -200 ms), using t-tests. A multiple comparison correction was applied: α was divided 

by the number of performed t-tests, with this number equaling the number of frequencies tested * 

the number of time-points in the window of interest. As such, the resulting significance threshold was 

1.90*10-6. P-values lower than this value were used to create the statistical mask in MATLAB and were 

constrained to the theta, alpha, and beta frequency bands (see Fig. 3 and supplementary materials). 

Power/functional connectivity values within the mask were extracted and averaged per frequency 

band, participant and condition. This approach was chosen as it is best suited for the multi-factorial 

design of the current work (Cohen, 2014; van Driel et al., 2012). Next, LMMs were performed per 

region/electrode pair and frequency band, with the average POWER/FUNCTIONAL CONNECTIVITY 

serving as dependent variable. GROUP, CONDITION and their interaction were included as fixed 

factors. As aforementioned, post-hoc tests were used to interpret results.  
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Figure 3. Statistical masks (black) used for spectral analyses, defined as significant changes in grand-

average time-frequency matrix with respect to baseline. The y-axis displays frequency (Hz), the x-axis 

displays cue-locked time (ms).  

 

Relationship between behavior and neural data 

In an exploratory analysis, we linked neural activity to task performance. Consistent with the previous 

analyses, LMMs per frequency band and region/electrode pair were constructed. REACTION TIME was 

used as dependent variable. GROUP, CONDITION, and POWER/FUNCTIONAL CONNECTIVITY were 

used as fixed factors. All interactions were included. If an interaction containing POWER/FUNCTIONAL 

CONNECTIVITY was present in the final model, the emtrends function (Emmeans package) was used 

for post-hoc comparisons. 

 

Results 

Behavioral performance  

The average value for the movement onset difference across both limbs per age group and condition 

remained well below 100 ms (maximum: 85.3 ms), indicating that participants moved both limbs 

simultaneously. In total, 7.44% of the trials were removed due to being incorrect responses (7.4%) or 

anticipatory behavior (0.04%). 

Reaction time was related to CONDITION * GROUP (χ2
2 = 6.40, p = 0.041) (see Fig. 4). Reaction times 

were higher in older (same limb: 806.2 ± 253.5 ms, same side: 834.1 ± 251.8 ms, mixed limb: 1366.1 ± 

527.3 ms) versus younger adults (same limb: 583.1 ± 120.2 ms, same side: 604.8 ± 127.5 ms, mixed 

limb: 834.7 ± 293.2 ms) (same limb: z = 6.07, same side: z = 5.77, mixed limb: z = 6.18, all p-values < 

0.001). The CONDITION * GROUP interaction seemed to be driven by the mixed limb condition, where 

an average difference of 531.4 ms across both groups was present, compared to the 223.1 and 229.3 

ms differences in the same limb and same side conditions, respectively. In both groups, reaction time 

was higher in the mixed limb versus same limb (younger adults: z = 50.49, older adults: z = 60.61, all 

p-values < 0.001) and same side (younger adults: z = 44.35, older adults: z = 54.59, all p-values < 0.001) 

movements, and reaction time was significantly higher in the same side versus same limb condition 

(younger adults: z = 5.78, older adults: z = 5.78, all p-values < 0.001).  
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Figure 4. Multi-limb reaction time task performance. Within each violin plot, box plots are shown. Lines 

connecting the average values are used to accentuate the significant age group * condition interaction 

effects. Black (between-group) and colored (within-group) lines show significant contrasts (p < 0.001).  

 

Spectral results 

Time-frequency plots are shown in Fig. 5. Quantitative results are shown in Fig. 6.  
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Figure 5. Mean event-related spectral perturbation per region, condition (same limb, same side and 

mixed limb movements) and group. The y-axis displays frequency (Hz), the x-axis displays cue-locked 

time (-500 → 1800 ms), the color gradient displays power (dB).  

 

 

Figure 6. Mean power (dB) per frequency band and region. Within each violin plot, box plots are shown. 

Black and dashed colored lines denote significant between-group and -condition contrasts, 

respectively. Lines connecting the average values are used to accentuate significant age group * 

condition interaction effects. Grey dotted lines denote significant contrasts when no interaction 

between AGE GROUP and CONDITION was present.  

 

Frontal spectral dynamics 

Theta ERS was related to CONDITION (F2,76 = 5.72, p = 0.005) and GROUP (F1,37 = 16.75, p < 0.001). 

Theta ERS was lower during mixed (0.69  0.87 dB) versus same limb movements (0.94  0.86 dB) (t = 

3.29, p = 0.005), and was lower in older (0.39  0.61 dB) versus younger adults (1.25  0.78 dB) (t = 

4.09, p < 0.001).  
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Beta ERD was related to CONDITION * GROUP (F2,74 = 9.34, p < 0.001). In older adults, beta ERD was 

higher during mixed (-2.21 ± 1.03 dB) versus same limb (-1.63 ± 0.93 dB) (t = 6.15, p < 0.001) and same 

side (-1.79 ± 1.00 dB) (t = 4.51, p < 0.001) movements. Beta ERD was higher in older versus younger 

adults (same limb: -0.49 ± 0.56 dB, same side: -0.50 ± 0.57 dB, mixed limb: -0.52 ± 0.73 dB) (same limb: 

t = -4.36, p < 0.001, same side: t = -4.92, p < 0.001, mixed limbs: t = -6.45, p < 0.001). The CONDITION 

* GROUP effect seemed to be mainly driven by beta ERD increases along with task complexity in older 

adults which were not present in younger adults. 

 

Central spectral dynamics 

Theta ERS was related to CONDITION * GROUP (F2,74 = 6.63, p = 0.002). Theta ERS was lower in older 

adults during mixed limb (0.62 ± 0.54 dB) versus same side (0.97 ± 0.73 dB) (t = 3.86, p = 0.002) 

movements. Theta ERS was higher in younger (1.49 ± 0.76 dB) versus older adults during mixed limbs 

movements (t = -3.82, p = 0.004). The CONDITION * GROUP effect seemed to be driven by the mixed 

limb condition, where the difference between both age groups was most apparent. 

Alpha ERD was related to CONDITION * GROUP (F2,74 = 4.95, p = 0.001). Alpha ERD was higher in older 

adults during mixed (-2.53 ± 1.79 dB) versus same limb (-1.87 ± 1.49 dB) (t = 5.54, p < 0.001) and same 

side (-2.05 ± 1.59 dB) (t = 4.01, p = 0.001) movements. The CONDITION * GROUP was driven by the 

complexity-modulated ERD changes in older adults, that were absent in younger adults.  

Beta ERD was related to CONDITION * GROUP (F2,74 = 17.96, p > 0.001). In older adults, beta ERD was 

higher during mixed (-3.9 ± 1.4 dB) versus same limb (-2.56 ± 1.28 dB) (t = 12.87, p < 0.001) and same 

side (-3.05 ± 1.42 dB) (t = 8.22, p < 0.001) movements, and during same side versus same limb (t = 

4.65, p < 0.001) movements. In younger adults, beta ERD was higher during mixed (-1.64 ± 1.27 dB) 

versus same limb (-1.17 ± 0.91 dB) (t = 4.62, p < 0.001) and same side (-1.24 ± 0.98 dB) (t = 3.95, p < 

0.001) movements. Across all conditions, beta ERD was higher in older versus younger adults (same 

limbs: t = -3.57, p = 0.009, same side: t = -4.63, p < 0.001, mixed limbs: t = -5.79, p < 0.001). The 

CONDITION * GROUP effect seemed to be driven by beta ERD increases along with task complexity 

(namely in the mixed limb condition) which were more apparent in older adults. 

 

Parietal spectral dynamics 

Theta ERS was related to CONDITION * GROUP (F2,74 = 4.3, p = 0.017). Theta ERS decreased in older 

versus younger adults during the same limb (older adults: 0.75 ± 0.81 dB, younger adults: 1.52 ± 0.85 
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dB) (t = -1.91, p = 0.032) and mixed limb (older adults: 0.63 ± 0.82 dB, younger adults: 1.6 ± 0.8 dB, t = 

-3.87, p = 0.003) movements. The CONDITION * GROUP interaction effect was driven by the absence 

of significant differences across both age groups in the same side movement versus the same and 

mixed limb movements. 

Alpha ERD was related to CONDITION (F2,76 = 20.05, p < 0.001). Alpha ERD was higher during mixed (-

1.52 ± 1.51 dB) versus same limb (-1.12 ± 1.42 dB) (t = 5.71, p < 0.001) and same side (-1.16 ± 1.44 dB) 

(t = 5.23, p < 0.001) movements. 

Beta ERD was related to CONDITION (F2,76 = 22.98, p < 0.001) and GROUP (F1,37 = 22.66, p < 0.001). 

Beta ERD was higher during mixed (-1.92 ± 1.14 dB) versus same limb (-1.47 ± 1.07 dB) (t = 6.58, p < 

0.001) and same side (-1.6 ± 1.09 dB) (t = 4.7, p < 0.001) movements. It was higher in older (-2.33 ± 

0.93 dB) versus younger adults (-1.03 ± 0.86 dB) (t = -4.76, p < 0.001).  

 

Relationship between behavioral performance and spectral activity.  

Reaction time was related to FRONTAL THETA POWER (F1,89 = 6.34, p = 0.014). A 1 dB increase was 

linked to a 61.51 ms reaction time decrease, irrespective of group and condition.  

Reaction time was related to PARIETAL BETA POWER * GROUP * CONDITION (F2,70 = 4.67, p = 0.012) 

(see Fig. 7). While a 1 dB increase was linked to a 113.54 ms reaction time decrease during the mixed 

limb condition, it was associated with a 8.92 ms increase during the same side condition (t = 3.4, p = 

0.010). Increased beta ERD was associated with better performance in older adults during mixed limb 

movements, but worse performance in younger adults (i.e., a 1 dB increase was linked to a 40.75 ms 

reaction time increase) (t = 2.97, p = 0.034).  
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Figure 7. Relationship between parietal beta event-related desynchronization for younger and older 

adults per task condition.  

 

Functional connectivity 

Time-frequency plots are shown in Fig. 8, quantitative results are shown in Fig. 9 and Fig. 10 provides 

an overview of all connectivity results. 
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Figure 8. Functional connectivity. Mean time-frequency inter-site phase clustering per electrode pair, 

condition and group. The y-axis displays frequency (Hz), the x-axis displays cue-locked time (ms) [-500 

→ 1800ms], and the color gradient displays functional connectivity (%). 

 

 

Figure 9. Functional connectivity (inter-site phase clustering) per electrode pair, frequency band and 

condition. Within each violin plot, box plots are shown. Dashed (within-group) lines denote significant 

contrasts (p < 0.05). No group * condition contrasts were significant after multiple comparison 

correction. Thus, all results are on the group- or condition-averaged level.  
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Figure 10. Functional connectivity results for the theta and alpha band. Only electrode pairs containing 

a significant condition or age group effect are shown. Line thickness is based on the functional 

connectivity magnitude in the specific condition or age group. 

 

Interhemispheric central functional connectivity (C3–C4) 

Theta central (C3–C4) connectivity was related to CONDITION (F2,76= 6.09, p = 0.004). Connectivity was 

higher during mixed (23.26 ± 26.03%) versus same limb (10.98 ± 17.74%) (t = -3.49, p = 0.018) 

movements.  

Alpha C3–C4 connectivity was related to CONDITION (F2,76= 6.43, p = 0.003). Connectivity was higher 

during mixed (43.66 ± 41.07%) versus same side (22.11 ± 25.69%) (t = -3.45, p = 0.025) movements.  

 

Frontocentral functional connectivity 

Theta left frontal – right central connectivity (F3–C4) was related to CONDITION (F2,76= 9.16, p < 0.001) 

and GROUP (F1,37= 6.03, p = 0.019). Connectivity was lower during same side (16.37 ± 26.90%) versus 

mixed limb (34.91 ± 30.65%) (t = -3.98, p = 0.005) movements. No GROUP contrasts survived 

correction for the multiple electrode pairs. 

Theta right frontal – left central connectivity (F4–C3) was related to CONDITION (F2,67 = 6.73, p = 0.002). 

No contrasts survived multiple comparison correction. 

 

Frontoparietal functional connectivity 
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Alpha left frontoparietal (F3–P3) connectivity was related to CONDITION (F2,76 = 4.9, p = 0.01) and 

GROUP (F1,37 = 7.06, p = 0.012). No contrasts survived multiple comparison correction. 

Alpha right frontoparietal connectivity (F4–P4) was related to GROUP (F1,37 = 6.78, p = 0.013). No 

contrasts survived multiple comparison correction. 

Alpha left frontal – right parietal connectivity (F3–P4) was related to GROUP (F1,37 = 5.3, p = 0.027). No 

contrasts survived multiple comparison correction. 

Alpha right frontal – left parietal connectivity (F4–P3) was related to GROUP * CONDITION (F2,74 = 5.83, 

p = 0.005). No contrasts survived multiple comparison correction. 

 

Centroparietal functional connectivity 

Theta left central – right parietal connectivity (C3–P4) was related to CONDITION (F2,76 = 14.15, p < 

0.001). Connectivity was higher during the mixed (53.04 ± 58.47%) versus same limb (29.23 ± 46.16%) 

(t = 5.03, p < 0.001) and same side (34.03 ± 63.30%) (t = 4.02, p = 0.004) movements.  

Alpha left central – right parietal connectivity (C3–P4) was related to GROUP (F1,37 = 14.15, p < 0.001). 

No contrasts survived multiple comparison correction. 

Theta right central – left parietal connectivity (C4–P3) was related to CONDITION (F2,76 = 18.75, p < 

0.001) and GROUP (F1,37 = 6.2, p = 0.017). Connectivity was higher in the mixed (45.08 ± 48.67%) versus 

same limb (20.74 ± 32.48%) (t = 5.47, p < 0.001) and same side (22.25 ± 38.77%) (t = 5.13, p < 0.001) 

movements. No other contrasts survived multiple comparison correction. 

 

Relationship between behavioral performance and functional connectivity.  

Reaction time was related to alpha interhemispheric central FUNCTIONAL CONNECTIVITY (C3–C4) * 

GROUP (F1,105 = 5.25, p = 0.216). In older adults, a 1% connectivity increase was related to a 1.62 ms 

reaction time decrease, while it was associated to a 0.16 ms reaction time increase in younger adults. 

However, this effect did not survive multiple comparison correction.  

Reaction time was related to theta right frontal – left central FUNCTIONAL CONNECTIVITY (F4–C3) * 

GROUP (F1,100 = 12.73, p = 0.009). A 1% connectivity increase in older adults was associated with a 

3.047 ms reaction time increase, while it was associated with a 0.184 ms reaction time decrease in 

younger adults (t = 3.52, p = 0.009). 
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Discussion 

Here, we demonstrated that aging negatively impacts interlimb coordination involving all four limbs, 

and that the discrepancy between younger and older adults is most apparent in the most complex 

interlimb movements. We identified several oscillatory spectral and functional connectivity dynamics 

that are associated with age-related changes in interlimb coordination performance and/or interlimb 

movement complexity. 

 

Motor performance 

Mixed limb movements are the most demanding interlimb movements and same limb movements are 

the least demanding. These results are in line with the functional space model (Kinsbourne and Hicks, 

1978), which portrays the brain as a functional space, wherein functional distance dictates inter-

regional collaboration/interference (Boisgontier et al., 2014). According to this model, 

interhemispheric, homologous areas are functionally closest to another due to callosal connections, 

followed by intrahemispheric regions. Finally, non-homologous interhemispheric regions, which are 

responsible for mixed limb movements, are furthest from each other. An interaction between age 

group and movement condition was present. Qualitative inspection of figure 4 indicates that this 

interaction was likely attributable to the most difficult mixed limb condition. During the same limb 

and same side conditions, the difference between younger and older adults in reaction times 

remained mostly consistent (± 225 ms), while the difference doubled in the mixed limb conditions (± 

550 ms). As such, an age-complexity effect seemed to be present. Although primarily described in the 

cognitive field (Bashore et al., 2014; Smulders et al., 1999), Boisgontier et al. (2016) also reported an 

age-complexity effect using the multi-limb reaction time task, attributing it to a decline of the 

inhibitory neural pathways (Levin et al., 2014).  

Although not within the direct scope of the current work, analyses of the task accuracy 

(Supplementary materials 2) substantiate the observation that mixed limb movements are the most 

demanding movements. Moreover, no between age-group accuracy contrasts remained significant 

after multiple comparison correction. This, together with the finding that distinct differences in 

reaction times were present across both groups, seems to suggest that older adults prioritized 

accuracy over speed, which is in line with previous research (Starns and Ratcliff, 2010). 
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Spectral EEG characteristics 

Beta ERD was consistently higher in older adults. As a certain beta power level seems required for 

movement execution and resting beta levels are elevated in older adults, the age-related beta ERD 

increase seems to reflect a compensational mechanism to enable older adults to reach movement 

execution (Heinrichs-Graham and Wilson, 2016; Heinrichs-Graham et al., 2018; Toledo et al., 2016). 

Our findings indicate that also in complex interlimb coordination, beta ERD serves this compensational 

role. Moreover, we found that enhanced beta ERD is linked to better task performance in older adults 

during mixed limb movements. This further points in the direction of beta ERD serving as a successful 

compensatory mechanism in older adults (Goble et al., 2010; Heuninckx et al., 2005; Heuninckx et al., 

2008; Rueda-Delgado et al., 2019). In all three neural regions, movement complexity significantly 

affected beta ERD. An interaction between task complexity and age group was even present in the 

frontal and central regions. Based on the post-hoc contrasts and Figure 4, this interaction effect 

seemed to be driven by changing beta ERD levels along with task complexity in older adults, whereas 

beta ERD remained much more consistent across movement conditions in younger adults. A similar 

effect was present for central alpha ERD.  

Overall, our results indicate that beta ERD is modulated by task complexity especially in older adults 

and in younger adults to a lesser extent. This implies that beta ERD not only acts as a rigid mechanism 

to reach a movement execution threshold but also reflects characteristics of the executed motor 

behavior, with increased beta ERD being reflective of more complex motor behavior (Heinrichs-

Graham and Wilson, 2016; Kilavik et al., 2013). As such, our observation can be reconciled by a wealth 

of studies demonstrating that beta modulations are not merely involved in motor execution but also 

reflect motor demands (Boonstra et al., 2007; Daffertshofer et al., 2007; Nakayashiki et al., 2014; 

Tzagarakis et al., 2010). 

Beta and alpha ERD was spatially widespread in older adults, while more bound to the central region 

in younger adults. As ERD in these frequencies has been linked to increased fMRI blood oxygenated 

level dependent signal (Formaggio et al., 2008; Stevenson et al., 2011), this observation is in 

agreement with various studies indicating that older adults recruit additional regions (i.e., prefrontal 

areas) during the preparation and execution of interlimb movements (Maes et al., 2017). Although 

one might associate this diffuse spatial distribution to an age-related dedifferentiation process where 

brain activity becomes increasingly non-specific as a result of dysfunctional inhibitory mechanisms 

(Koen and Rugg, 2019), this does not seem to be the case here. Indeed, increased parietal activation 

(i.e., increased beta ERD) was associated with better behavioral performance in older adults during 

the most difficult mixed limb movements  
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Theta ERS was generally lower in older adults, which is consistent with previous work reporting the 

same phenomenon during a sensorimotor four-choice reaction time task and a memory task (Karrasch 

et al., 2004; Yordanova et al., 2020). Both for the central and parietal regions, an interaction between 

age group and movement condition was present. Theta ERS decreased with task complexity in older 

adults, while it remained consistent across all movement conditions in younger adults. Based on the 

age-related decline of theta ERS and behavioral performance, and on the role of theta in motor 

regulatory and sensorimotor processing (Cruikshank et al., 2012; Karrasch et al., 2004; Pellegrino et 

al., 2018; Yordanova et al., 2020), it seems plausible that the reduction of theta ERS in older adults is 

reflective of dysfunctional motor regulatory and sensorimotor processes. This is further substantiated 

by the finding that higher frontal theta ERS was associated with better behavioral performance across 

both age groups.  

Future work should use noninvasive brain stimulation to provide causal evidence for these 

hypotheses. For instance, beta transcranial alternating current stimulation (tACS) could be 

administrated in older adults during complex interlimb movements. If this would improve interlimb 

coordination performance and increase beta ERD, this could serve as causal evidence in favor of the 

compensational function of beta ERD. Alternatively, future work could use a closed-loop EEG-tACS 

protocol to alter state-dependent beta levels during performance of different interlimb movements. 

This way, protocols could take the observation of increased beta ERD during more complex 

movements into account. Enhancement of frontal theta ERS through tACS or repetitive transcranial 

magnetic stimulation, could provide causal evidence for the importance of theta ERS for adequate 

motor control.  

 

Functional connectivity dynamics 

Functional connectivity dynamics were solely situated in the theta and alpha bands. While the effect 

of age group on spectral dynamics was mostly dependent on the interlimb movement condition, this 

was not the case for functional connectivity.  

Although no age group related post-hoc contrasts survived multiple comparison correction, task-

related functional connectivity tended to be reduced in older adults, suggesting the presence of a 

generalized age-related phenomenon [e.g., due to a reduction of white matter integrity or gray matter 

atrophy (Andrews-Hanna et al., 2007)]. In contrast, age-related increases in event-related functional 

connectivity have also been reported (Heitger et al., 2013; Kiyama et al., 2014; Loehrer et al., 2016). 

However, as these studies used bimanual tasks and different functional connectivity measures (i.e., 
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EEG dynamic causal modelling, fMRI graph analysis and fMRI structural equation modelling), it is 

difficult to directly compare results. Furthermore, the scale of the investigated networks differed 

substantially across studies. While the aforementioned studies mostly focused on small-scale 

connectivity (i.e., primary motor cortex, dorsal premotor cortex and supplementary motor area), we 

investigated large-scale intra- and interhemispheric connectivity. Notably, Rowe et al. (2006) 

demonstrated a differential aging effect on small- versus large-scale motor networks during a motor 

task. While local motor regional connectivity increased as a result of aging, large-scale connectivity 

(i.e., interhemispheric and frontoparietal connectivity) decreased. Thus, the work of Rowe et al. (2006) 

seems to partially integrate our work with the results of Heitger et al. (2013); Kiyama et al. (2014); 

Loehrer et al. (2016).  

Results pertaining to frontoparietal functional connectivity seemed to be mostly situated in the alpha 

band, although no contrasts survived multiple comparison correction. The observation that 

frontoparietal connectivity was characterized by alpha band dynamics is supported by previous 

literature designating a critical role to alpha oscillations in the frontoparietal network (Sauseng et al., 

2005; van Schouwenburg et al., 2017). Moreover, frontoparietal connectivity was prone to age-related 

changes as the variable age group was significant in all frontoparietal functional connectivity mixed 

models. Thus, our work is in agreement with previous studies stating that frontoparietal functional 

connectivity, which plays a vital role in attentional control, visuomotor integration and motor learning, 

deteriorates as a result of aging (Campbell et al., 2012; Marek and Dosenbach, 2018; Reuter-Lorenz 

and Cappell, 2008; Sauseng et al., 2005; Scolari et al., 2015). However, as no significant link between 

frontoparietal connectivity and behavioral performance was present, it is currently impossible to 

attribute the age-related decrease in frontoparietal connectivity to the decreased behavioral 

performance of older adults.  

Mainly theta band functional connectivity increased along with movement complexity (see Fig. 10). 

Given the role of theta oscillations in sensorimotor integration (Caplan et al., 2003; Cruikshank et al., 

2012; Huang and Sereno, 2018), increased connectivity in this frequency band could serve as a 

mechanism to cope with the increased motor demands associated with more complex movements. 

However, only in younger adults, theta band connectivity increases were associated with increased 

behavioral performance. In older adults, the opposite was true. To resolve this conflicting finding, 

future work could use noninvasive brain stimulation techniques capable of altering neural oscillations 

(e.g., in-phase dual site tACS, repetitive transcranial magnetic stimulation) to enhance functional theta 

connectivity and investigate the behavioral and neural effects. Altering right frontal - left central 

connectivity might be a promising starting point, given the presence of a significant relationship with 

behavioral performance.  
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Limitations and recommendations for future work  

Our work is subject to several limitations and/or recommendations that could be addressed in future 

work. First, we only included two age groups. A longitudinal study design or the inclusion of a middle-

aged group would have provided more nuanced insights into the deterioration of interlimb 

coordination across the lifespan. Second, our study does not allow to draw conclusions regarding the 

causality of the observed relationship between neural dynamics and behavior. While the analyses 

linking behavior to neural dynamics provide some insight into this matter, it is by no means of causal 

nature. Future studies should combine EEG with noninvasive brain stimulation to overcome this 

limitation. Third, our behavioral analyses included the factor BLOCK as a random intercept to account 

for motor learning effects. We chose to refrain from further analyses of BLOCK to ensure consistency 

across the analyses of the behavioral and neural data. As motor learning processes influence neural 

oscillations, it might be interesting for future work to also take BLOCK into account. To do so, more 

trials per block should be included to ensure a good signal-to-noise-ratio of the EEG data. Fourth, we 

are currently unable to determine which observed neural dynamics are reflective of action selection 

versus preparation. Future work should further investigate this, and could do so via investigation of 

the oscillatory dynamics underlying simple versus choice reaction time tasks including multiple end-

effectors. Fifth, we did not include a variable intertrial interval which implies that temporal 

anticipation could have taken place. Nevertheless, only a small percentage of the data was identified 

as anticipatory behavior (0.04%) and, on the other hand, inclusion of varying intertrial intervals could 

introduce unwanted nonlinear temporal prediction into the neural data (Egner et al., 2010; Gonsalvez 

and Polich, 2002). 

 

Conclusion 

In this study, we set out to unravel the oscillatory dynamics underlying the age-related 

deterioration of interlimb coordination involving all four limbs. On a behavioral level, older 

adults performed worse than younger adults in all movement conditions and were 

disproportionally affected by interlimb coordination complexity, indicating an age-complexity 

effect. Beta ERD was higher in older adults compared to younger adults, across all conditions 

and brain regions and increased along with task complexity mainly in older adults. Exploratory 

analyses and previous literature indicate that this age-related increase in beta ERD serves as 

a successful compensational mechanism to cope with increased motor demands. Concerning 



 25 

functional connectivity, frontoparietal alpha band connectivity results suggested an age-

related decrease, although post-hoc contrasts did not survive multiple comparison 

corrections. Large-scale theta band connectivity increased along with movement complexity, 

irrespective of the age group.  
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