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Methylome-wide analysis of IVF neonates that underwent
embryo culture in different media revealed no significant
differences
Rebekka M. Koeck 1,2, Florence Busato3, Jorg Tost3, Dimitri Consten4, Jannie van Echten-Arends5, Sebastiaan Mastenbroek 6,
Yvonne Wurth4, Sylvie Remy 7, Sabine Langie7,8, Tim S. Nawrot9,10, Michelle Plusquin9, Rossella Alfano 9, Esmée M. Bijnens9,11,
Marij Gielen12, Ron van Golde13, John C. M. Dumoulin13, Han Brunner1,14, Aafke P. A. van Montfoort13,15✉ and
Masoud Zamani Esteki1,2,15✉

A growing number of children born are conceived through in vitro fertilisation (IVF), which has been linked to an increased risk of
adverse perinatal outcomes, as well as altered growth profiles and cardiometabolic differences in the resultant individuals. Some of
these outcomes have also been shown to be influenced by the use of different IVF culture media and this effect is hypothesised to
be mediated epigenetically, e.g. through the methylome. As such, we profiled the umbilical cord blood methylome of IVF neonates
that underwent preimplantation embryo development in two different IVF culture media (G5 or HTF), using the Infinium Human
Methylation EPIC BeadChip. We found no significant methylation differences between the two groups in terms of: (i) systematic
differences at CpG sites or regions, (ii) imprinted sites/genes or birth weight-associated sites, (iii) stochastic differences presenting
as DNA methylation outliers or differentially variable sites, and (iv) epigenetic gestational age acceleration.
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INTRODUCTION
Since its first successful implementation in 1978, more than 8
million children1 (~3% of all births in European countries) have
been conceived through in vitro fertilisation (IVF)2. Although most
of these children are born seemingly healthy, assisted reproduc-
tive technology (ART) singletons are at increased risk of adverse
perinatal3 and childhood4,5 outcomes as compared to their
naturally conceived counterparts. For instance, IVF neonates are
at higher risk of preterm birth (<37 weeks, relative risk (RR)
1.4–2.0), low birth weight (<2500 g, RR 1.6–1.7), being small for
gestational age (RR 1.5) and perinatal mortality (RR 1.7–2.0)3. Later
life outcomes mainly relate to growth and weight, as well as
disturbed cardiometabolic function, demonstrated by increased
systolic blood pressure, suboptimal diastolic function, lower low-
density lipoprotein and higher fasting insulin levels4–6.
The IVF process involves 2–6 days of in vitro embryo culture,

during which embryos are exposed to an artificial environment
that is influenced by the culture medium, atmospheric conditions
(oxygen levels) and laboratory plastics. Over the years, a variety of
culture media have been used7–11, which have been shown to
affect short- and long-term health outcomes of the resultant
offspring in both animal and human studies. In human studies

culture medium composition has been linked to differences in
birth weight12–14, postnatal weight15,16 and the childhood
developmental profile17. Previously, we conducted a multi-centre
randomised controlled trial (RCT) among six Dutch IVF centres to
compare the effect of G5 (Vitrolife) and HTF (Lonza) media on
pregnancy and neonatal outcomes. Of note is that the G5 medium
contains amino acids8,18, while HTF does not. While it was found
that G5 led to lower fertilisation rates, it generated more embryos
that were suitable for transfer and had a higher implantation rate,
leading to a higher cumulative live birth rate14. At birth, G5
neonates were more likely to be born prematurely and with lower
birth weights14 even when birth weight was corrected for
gestational age, indicating an additional effect of the culture
medium on birth weight.
Although no causative mechanism for these differences in

outcome has been established, the findings are consistent with
the Developmental Origins of Health and Disease (DOHaD)
paradigm. This paradigm suggests that adversity during early life,
such as during the peri-conception period, makes the resultant
offspring more vulnerable to disease in later life19 and this effect
may be mediated by the epigenome, and specifically DNA
methylation20. In the context of IVF, the handling of gametes
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and embryos and exposure to the in vitro environment or the
hormone-primed uterus represent environmental exposures that
could contribute to the observed disease susceptibility21. Further
evidence for the involvement of DNA methylation is that
epigenetically regulated imprinting disorders, although still rare,
are more common after IVF22. Moreover, the period of in vitro
embryo culture of IVF procedures coincides with the process of
epigenetic reprogramming, during which DNA methylation marks
are almost completely erased and re-established23,24. This process
has been shown to be responsive to environmental cues24.
Relatively few studies have used molecular assays to assess the

effects of different IVF culture media on the resultant embryos and
neonates. For instance, the methylome of IVF neonates from a
culture medium trial has only been investigated in one prior study.
As a follow-up to the aforementioned G5 versus HTF RCT,
placental DNA methylation at selected imprinting control regions
was compared in resultant singletons finding no significant
differences within these regions25. In contrast, most other work
so far has focused on comparing the placenta or umbilical cord
blood (UCB) methylome of IVF neonates in general to their
naturally conceived counterparts26–32. These studies were recently
summarised in a systematic review and meta-analysis30 which
described that most sites or regions identified to be differentially
methylated were inconsistent or contradictory between studies,
likely due to differences in the methylome analysis methods,
heterogeneity within the cohorts and due to sample size. The
majority of included studies used targeted approaches to look at
imprinting genes, and a meta-analysis of such studies conducted
on the placenta and UCB samples revealed only significant
differential methylation at the PEG1/MEST imprinting gene locus30.
Methylation at the imprinted regions KvDMR1, H19 CTCF3 and
CTCF6 and SNRPN may also be perturbed in IVF placentas, but
these did not reach statistical significance in the meta-analysis30.
The epigenetic deregulation in these cases is thought to occur
post-fertilisation as it involves both paternally and maternally
methylated regions and the methylation levels differ only by a few
percent, indicating that the loss or gain of methylation only affects
a minority of alleles. The findings from genome-wide methylation
studies on these tissues have been contradictory, with some
studies identifying differential methylation, predominantly with
small differences, and others not29–31. Interestingly, some studies
report increased variation in DNA methylation in IVF offspring28,29,
suggesting a stochastic rather than a systematic universal effect of
IVF on the methylome. This is substantiated by the reported
increased rate of so-called methylation outliers (i.e. samples with
an outlying methylation value at a given site or region) in the IVF
group25. The contribution of different culture media to systematic
or stochastic methylome differences on a genome-wide scale
remains undetermined.
In this study, we investigated the effect of different IVF culture

media on the DNA methylation of human IVF neonates on a
genome-wide scale. To this end, we profiled the UCB methylome
of IVF neonates that underwent embryo culture in G5 or HTF
medium as part of a RCT. Additionally, the methylome profiles of
this IVF cohort are compared to data from two reference birth
cohorts of naturally conceived individuals (Fig. 1a).

RESULTS
In the present study, we investigated genome-wide DNA
methylation patterns of DNA samples derived from UCB collected
at birth from 114 IVF neonates that had undergone embryo
culture in G5 or HTF medium. 106 of the UCB samples (n= 59 G5,
n= 47 HTF) yielded sufficient DNA for DNA methylation profiling
using the EPIC array (Fig. 1a). Maternal characteristics, IVF
treatment parameters and neonatal outcomes were comparable
between the culture medium groups. In the G5 group, although
not statistically significant, a higher percentage of pregnancies

were complicated by hypertension and pre-eclampsia than in the
HTF group (hypertension—14 vs. 6%, pre-eclampsia 7 vs. 2% for
G5 and HTF pregnancies respectively). Delivery by caesarean
section was lower (12%) in the G5 group compared to the HTF
group (23%) (Table 1 and Supplementary Table 1).
All of the 106 samples that underwent DNA methylation

analysis by EPIC array met our QC criteria (Methods). One sample
from the G5 group was excluded from our analyses based on a
mismatch between the recorded and predicted sex (Fig. 2a). Of
the approximately 850,000 CpG sites represented on the EPIC
array, we retained 696,205 sites for our analyses and 689,139 of
these represented complete observations with no missing values
in any samples.

Global analysis of DNA methylation
Principal component analysis (PCA) did not reveal any separation
of the culture medium groups within the first eight principal
components (PCs) (Figs. 1b, 2c) that explain a total of 46.7% of the
variance within our data (Supplementary Table 2), indicating that
the culture media are not the main contributors to the variance of
our data. Instead, the first eight PCs were significantly associated
with sample characteristics including sex (PCs 5 and 8), gestational
age (PC7), sample plate (PCs 1, 2, 4 and 6) as well as cellular
composition of the samples (PCs 1–7) (Fig. 2b, c). Therefore, we
corrected for these technical factors in our subsequent analyses,
alongside potential confounders (sex, gestational age, maternal
age, treatment centre and pregnancy complications) that were
chosen a priori based on literature and expert opinion. The
distribution of all beta values (all sites in all samples) was also
similar between the culture medium groups (Fig. 1d).

Analysis of DNA methylation at individual CpG sites
Next, we investigated associations between the culture medium
and DNA methylation at single CpG sites in an epigenome-wide
analysis (EWAS) using linear mixed-effects models (Methods). Less
than 0.01% of sites (37 sites in total) had a group mean difference
of more than 10%, with the most extreme difference being 23.6%.
After correcting for multiple testing, no statistically significant
differentially methylated positions (DMPs) were found between
the two culture medium groups (Fig. 3a, b). As pregnancy
complications, such as gestational diabetes and pre-eclampsia,
could affect or be affected by the methylome, we conducted the
analyses twice, once with pregnancy complications included as a
binary variable (yes/no) and once where all samples from
complicated pregnancies (n= 18) were excluded. The results from
this analysis were comparable to those of the first analysis
(Supplementary Fig. 1).
To reduce the number of comparisons, we also chose to repeat

the analyses with sites of potential interest only, namely sites
within imprinted genes33 and sites previously associated with
birth weight34. After the data were pre-processed, 8726 sites
within imprinted genes were tested. The maximum group mean
difference amongst the imprinted sites was 6.9% (Fig. 3a). None of
the sites were found to be significantly differentially methylated
between the culture medium groups. Of the 914 CpG sites
consistently found to be associated with birth weight in the meta-
analysis by Küpers et al.34, 749 passed our quality control (QC)
criteria and were included in the analysis. Amongst these sites, the
maximal group mean difference was 3.0% and we did not find any
of them to be statistically differentially methylated (Fig. 3b).
Excluding the samples from complicated pregnancies did not
change the result of either analysis (Supplementary Fig. 1a, b).

Regional analysis of DNA methylation
After looking at the methylation levels of individual sites, we
looked at methylation across larger genomic regions, namely
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whole genes, promoters, and CpG islands (CGIs). Our analyses
included 28,009 genes, of which 207 were imprinted genes, 42,035
promoters and 25,238 CGIs. The maximal group mean difference
of any gene was 8.1%. Imprinted genes showed even lower group
mean differences than imprinted sites, with a maximal difference
of 3.6%. No genes were found to be significantly differentially
methylated between the G5 and HTF groups (Fig. 3c). The
maximal group mean differences for promoters and CGIs were
10.0% and 12.1%, respectively (Fig. 3d, e) and no promoters or
CGIs were found to be significantly differentially methylated

between the culture medium groups. Excluding samples from
pregnancies with complications did not affect the results
(Supplementary Fig. 2a–c).

Differential DNA methylation variance in IVF samples
To assess the contribution of stochastic DNA methylation
alterations to the observed phenotypes in our IVF cohorts, we
assessed differential variance, using the iEVORA algorithm35, and
identified methylation outliers, using previously described thresh-
olds36, in all samples. Applying this threshold, we identified a total
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of 157,160 outliers within the 105 analysed samples, with a
predominance of hypomethylation outliers (114,693 hypomethy-
lation outliers and 42,467 hypermethylation outliers) (Fig. 4). The
median number of all, both hypo- and hypermethylation, outliers
in each G5 sample was 571 (567.5 IQR) and 536 (269 IQR) in each
HTF sample (Fig. 4), which was not found to be significantly
different (p= 0.86) between the culture medium groups. Further-
more, when considering hypomethylation and hypermethylation
outliers separately, no significant difference was found between
the culture medium groups. Outlier burden, the total number of
outliers per sample, was not significantly associated with
gestational age, birth weight or maternal age. Only technical
features of our samples, including sample plate and cell
composition, were significantly associated with outlier burden
(Supplementary Table 3). An association between pregnancy
complications and the total number of outliers was not tested
statistically, but amongst the samples with very high numbers of
outliers (above the upper quartile), only 1 was born after a
pregnancy complicated by pre-eclampsia. The results were
comparable when the samples taken from neonates that had
experienced pregnancy complications were excluded (Supple-
mentary Fig. 3 and Supplementary Table 4). When applied to the
full cohort, the iEVORA algorithm identified 262 CpG sites with

significantly different variances between the culture medium
groups (Supplementary Table 5, sheet 1). Of these sites, 90%
(235 sites) were more variable in the G5 group as compared to the
HTF group. 202 of the 262 differentially variable CpG sites were
annotated with a gene name and four genes, namely FAM38A,
MEF2C, OCA2 and TNNT2, each contained two differentially
variable sites. Additionally, three of the differentially variable sites
were located within imprinting genes, namely PEX10, MAGI2 and
OBSCN. None of the differentially variable sites were amongst the
birth weight-associated sites37. We then repeated the analysis
excluding all participants who had experienced pregnancy
complications which identified 105 differentially variable sites
(Supplementary Table 5, sheet 2). Of these sites, 56% (50 sites)
were more variable in the G5 group than the HTF group and 65 of
the sites were the same as those identified in the analysis
where all the participants were included. Seventy-nine of the sites
were annotated with a gene name and multiple differentially
variable sites were identified in two of the genes, namely two sites
within the TNNT2 gene and three sites within the MOV10L1 gene.
Furthermore, one site was found to be differentially variable in the
imprinted gene PEX10 and none of the identified sites were birth
weight-associated sites. GO and KEGG enrichment analyses of the
differentially variable sites identified by iEVORA did not identify
any significantly enriched ontologies or pathways after multiple
testing corrections (Supplementary Table 5, sheets 4–7).

Epigenetic gestational age as a marker of developmental
maturity
Gestational age can be predicted from DNA methylation levels at
certain CpG sites (epigenetic clock)38,39. Similar to birth weight,
these have been used to comment on developmental maturity at
birth and gestational age acceleration (GAA), i.e. when epigenetic
gestational age (eGA) is more advanced than clinical gestational
age (cGA), has been positively correlated with birth weight37,39,40.
eGA estimates derived using the Bohlin prediction model38

were more strongly correlated (Pearson correlation coefficient=
0.77) with our data and had a lower root mean squared error
(RMSE= 1.29) than the estimates derived with the Knight
prediction model39 (Pearson correlation coefficient= 0.55,
RMSE= 1.45), therefore only the results from the Bohlin
epigenetic clock are shown. However, of note is that both
prediction models were trained using data from the Human-
Methylation450 (450K) array and of the 96 sites used for the
Bohlin eGA prediction model, eight sites with coefficients ranging
from −15.5 to 6.1 are no longer present on the EPIC array. We
removed these sites from the prediction model. When applying
the prediction model to 450K data from the ENVIRONAGE study
(n= 159), the omission of these eight CpG sites lead to a mean
increase in the predicted gestational age by 0.73 weeks (range
0.17–1.10 weeks) (Supplementary Fig. 4a). Therefore, we cannot
thoroughly evaluate absolute epigenetic gestational age, but we
assume that all samples will be similarly affected by the missing
sites and thus can compare the GAA between culture medium
groups. GAA was calculated by regressing eGA on cGA while
correcting for cell composition of the samples (Methods). In
G5 samples the median GAA was 0.01 (0.64 IQR) and in HTF
samples the median GAA was 0.03 (0.92 IQR), which was not
significantly different (p= 0.42) (Fig. 5). Additionally, we found no
significant correlation between GAA and birth weight (Pearson
correlation=−0.17, p= 0.08). The results were comparable when
participants who had experienced pregnancy complications were
excluded from the analysis (Supplementary Fig. 4b).

Comparison of IVF neonates to naturally conceived neonates
Even though the main aim of this study was to investigate the
effect of two different culture media on the methylome of IVF
neonates, we also sought to compare the methylomes of the IVF

Table 1. Maternal and neonatal characteristics (see also
Supplementary Table 1).

Characteristic Culture medium P value

G5 (n= 59) HTF (n= 47)

Maternal characteristics

Age (years) 33.2 ± 3.6 33.1 ± 3.6 0.861

Nulliparous 43 (73) 35 (74) 1.000

Smoking before
pregnancy (yes)

10 (17) 10 (21) 0.752

Smoking during
pregnancy (yes)

2 (3) 3 (6) 0.794

Fertility treatment

Indication for fertility
treatment

0.630

Unexplained 8 8

Female factor 14 8

Male factor 35 31

Treatment type 1.000

IVF 19 (33) 16 (34)

ICSI 38 (67) 31 (66)

Pregnancy characteristics

Pregnancy complication

Diabetes 2 (3) 1 (2) 1.000

Hypertension 8 (14) 3 (6) 0.362

Pre-eclampsia 4 (7) 1 (2) 0.496

Delivery by caesarean section 7 (12) 11 (23) 0.220

Neonatal outcomes

Sex (female) 29 (49) 26 (55) 0.663

Gestational age at birth
(weeks)

39.7 ± 1.2 39.3 ± 1.3 0.127

Birth weight (g) 3404.9 ± 459.7 3449.1 ± 432.5 0.672

Continuous variables are shown as mean ± SD and categorical variables are
shown as n (%). Maternal age at the time of ovum pick-up is shown.
ICSI intracytoplasmic sperm injection.
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neonates to those of naturally conceived neonates using
previously published data from the FLEHS and ENVIRONAGE
longitudinal cohort studies. However, as these samples were not
processed concurrently with the IVF samples it is not possible to
correct for technical variation between the studies meaning that
any effect of the IVF process cannot be differentiated from
technical differences. These findings are demonstrated in the
supplementary material (Supplementary Table 6: participant
demographics, Supplementary Fig. 5: processing of FLEHS and
ENVIRONAGE data, Supplementary Fig. 6: comparison of IVF and
naturally conceived neonates).

DISCUSSION
To the best of our knowledge, the genome-wide analysis of the
influence of different IVF culture media on the methylome of
human IVF neonates presented here is the largest cohort on
which such a study has been conducted to date. Despite this, our

sample size was insufficient to conduct sub-group analyses
looking specifically at sex or treatment type (IVF vs. ICSI), which
could reveal clinically relevant differences. We have investigated
the impact of two compositionally different media, namely G5
from Vitrolife and HTF from Lonza, which were shown to influence
IVF outcomes during the original RCT14. However, these pheno-
typic differences, e.g. in birth weight, were no longer significant in
the sub-group of the original RCT that is presented here. We have
found no evidence that these culture media lead to systematic or
stochastic methylation differences in the resultant IVF neonates.
To facilitate a comparison between different modes of concep-
tion, samples from well-matched naturally conceived individuals
would have ideally been collected and processed alongside the
IVF samples.
In line with findings from previous studies, examining the

methylome of IVF children born after embryo culture in different
media, we identified no differentially methylated positions or
regions and only moderate group mean differences, largely less
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than 10%. This was also seen when the methylation status of
imprinting genes in the placenta of the same individuals was
analysed25. Similarly, a comparison of IVF children (aged 7 or 8)
born after embryo culture in a global medium (Life Global), or
single-step medium (Irvine Scientific) found no evidence of
differential methylation between the medium groups at imprint-
ing genes, transposable elements or on a genome-wide scale41,42.
The lack of differential methylation between G5 and HTF

neonates may seem surprising given the stark differences in
medium composition, which include the complete lack of amino
acids in HTF medium, while G5 contains all amino acids except
non-essential glutamate, glutamine and glycine8, and the addition
of hyaluronan and lipoic acid to G5 medium14. Although the direct
interplay between these individual components and DNA
methylation has not been investigated in human embryos, it
seems plausible that amino acid availability may influence the
functional capacity of DNA methylation establishment and
maintenance machinery. The sensitivity of embryos to these
environmental differences is further supported by the finding that
gene expression differences exist between embryos cultured in G5
or HTF medium43,44 and it is known that gene expression can be
regulated by DNA methylation. However, the lack of differentially

methylated sites or regions could be explained by a number of
reasons. Firstly, dysregulated DNA methylation may be transient
during in vitro embryogenesis and therefore not be detectable
in neonates. Secondly, alternative epigenetic marks, such as
histone modifications, may mediate the association between the
culture media and the observed gene expression and phenotype
differences. Additionally, in the sub-group of participants recruited
for this follow-up study, phenotypic differences, such as birth
weight, were less than in the full RCT cohort, which may have
reduced the magnitude of any culture medium-induced effects.
Finally, even though our study is the largest described methylome
study after an IVF culture medium trial, we still lack the power to
detect methylation differences with a magnitude of less than 10%.
Although exact power estimates are challenging without the
existence of prior data to establish the expected variance within
our study population, simulation studies by Saffari et al.45 and Tsai
et al.46 estimates that a sample size of 211 or more participants
would be required to achieve 80% power to detect significant
methylation differences with an effect size of 7% or less,
respectively, using array-based assays such as the EPIC array45,46.
However, it remains to be determined whether mean differences
of less than 10%, representing methylation loss or gain at any site

Targeted Analyses

Imprinting genes

Birth weight 
associated sites

Fig. 3 Analysis of systematic methylation differences between G5 and HTF neonates: differentially methylated positions and regions.
Volcano plots showing differential methylation between G5 and HTF neonates where the grey dots represent all individual CpG sites (a, b) or
multiple CpG sites aggregated into genomic regions, namely genes (c), promoters (d), CpG islands (e). Imprinted genes (c) and sites within
them (a) are highlighted in purple while CpG sites associated with birth weight are shown in green (b). No significantly differentially
methylation positions or regions (FDR adjusted p value < 0.1) were identified when comparing the two culture medium groups.
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in just a small proportion of an individual’s cells, represent
clinically significant differences47.
An alternative to the theory that peri-conception environmental

differences induce systematic methylation differences, relates to
the presence of stochastic epimutations that are either induced by
the environment48 or provide a survival benefit if selection
pressure is applied by certain environmental conditions49. In
placenta samples of the same individuals as those described
in this study, DNA methylation outliers were also identified in all
samples without a difference in outlier burden between the
culture medium groups25. Whether the number of outliers
identified per individual is comparable between the two studies
is difficult to assess due to the different thresholds used to define
outliers and the different techniques used to analyse the
methylome that differ vastly in their coverage of the genome. In
the field of cancer biology, the iEVORA algorithm has been used to
identify so-called field defects, which represent stochastic
methylation alterations in normal pre-cancerous tissues that later
undergo neoplastic transformation35. Frequently, sites identified
as differentially variable in pre-cancerous samples become
differentially methylated in tumour samples, suggesting that sites
of this nature could be interesting biomarkers for disease with a
later onset. In this study, such epimutations could be linked to
later development of disease phenotypes, such as cardiometabolic
diseases, although it should be noted that the differentially
variable sites identified were not enriched in pathways relating to
cardiovascular or metabolic function and it is not yet known
whether there will be a difference in the prevalence of
cardiometabolic disease between G5 and HTF offspring. None-
theless, these sites warrant further clinical and molecular follow-
up. Alternatively, differential variability at certain CpG sites could
be driven by factors that are only experienced by a few individuals

in the study population, such as pregnancy complications.
Previously, DNA methylation differences associated with pre-
eclampsia50 and gestational diabetes51–53 have been described
when analysing UCB samples of neonates. According to our
findings, there might be an association between culture medium,
the number of differentially variable sites and pregnancy
complications, but the design of this study does not allow to
discuss the direction of causality (culture media, methylation and
pregnancy complications).
Although studies comparing naturally conceived and IVF

neonates have found some methylation differences, especially
at imprinting genes30, this has not been observed in this or other
culture medium comparisons25,41,42. This may be due to the fact
that the environmental discrepancy between two culture media
is less severe than the difference between in vivo and in vitro
embryo development, thus leading to a smaller or no effect on
the methylome. The concurrent processing of samples from
naturally conceived individuals would be required to assess
this further.
The lack of difference we observed in GAA may relate to the

fact that the eGA prediction tools were trained using the
HumanMethylation450K array and eight of the 96 probes
required for the prediction model are no longer present on
the EPIC array. These probes were therefore excluded from the
model leading to a consistent over-estimation of gestational
age. The inclusion of these sites may be important to identify a
relationship between GAA, birth weight37,39,40 and potentially
culture medium.
In conclusion, our genome-wide methylome analysis of IVF

neonates that underwent embryo culture in G5 or HTF medium
revealed no significant differences between the culture medium
groups, suggesting that the use of either culture medium will
establish a comparable DNA methylation signature, including at
imprinting genes. However, we have observed some differentially
variable sites between the culture medium groups, which seem
associated with pregnancy complications, but the persistence and
clinical significance of these findings should be assessed with
further follow-up studies. To assess whether epigenetic repro-
gramming is transiently affected by differences in culture medium
composition, epigenetic studies of embryos cultured in different
media are required.

HTF

G5

−1 0 1 2
Gestational age acceleration (weeks)

Fig. 5 Epigenetic gestational age acceleration. Raincloud plot
showing the GAA of each UCB sample in each culture medium
group. Points represent individual samples of the G5 (gold) and HTF
(blue) groups. Above a density plot and boxplot is shown. Horizontal
lines of the boxplot represent the 25th percentile, median and 75th
percentile respectively while the whiskers extend to the farthest
data point that is no more than 1.5 times the IQR from the upper or
lower quartile. GAA is represented in weeks. The groups were not
found to be significantly different (p value > 0.1).
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Fig. 4 Methylation outliers. The main panel shows the number of
hypomethylation (x-axis) and hypermethylation (y-axis) outliers per
UCB sample (G5= gold, HTF= blue). Distribution summaries, in the
form of a density plot and boxplot, are shown for hypomethylation
outliers and hypermethylation outliers in the top and right side
panels respectively. Lines of the boxplot represent the 25th
percentile, median and 75th percentile respectively while the
whiskers extend to the farthest data point that is no more than
1.5 times the IQR from the upper or lower quartile. The axes are
shown on a log10 scale. The groups were not found to be
significantly different (p value > 0.1).
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METHODS
Ethical approval
This study was approved by the local medical ethical committee,
Medische Ethische Commissie academisch ziekenhuis Maastricht/Uni-
versity of Maastricht (METC azM/UM) and registered in the Dutch Trial
register (NTR 1979/NL1866). Both parents of all neonates gave written
informed consent.

Study population and sample collection
Samples were collected as part of a culture medium comparison study14,
which was a multi-centre RCT, involving six IVF centres in the Netherlands.
Specifically, couples undergoing IVF treatments were randomised to
embryo culture either in HTF medium (Lonza, Verviers, Belgium) or Vitrolife
G1TM Version 5 (G5, Göteborg, Sweden), while all other IVF-related
procedures and conditions were kept the same. Of the 6 IVF centres, five
participated in UCB sampling. In these five centres, the study resulted in
273 singleton live births that occurred after fresh (not frozen) embryo
transfers. UCB samples were collected from as many resulting singleton
pregnancies as possible, 115 in total, irrespective of birth weight,
gestational age at birth and the presence of pregnancy complications.
Within 30min of delivery, UCB was collected by a gynaecologist, nurse or
midwife according to a standardised protocol. The samples were sent to
the Department of Obstetrics and Gynaecology at Maastricht University
Medical Centre (MUMC+) and were stored at −80 °C until they were used.

DNA extraction
DNA was extracted from thawed UCB samples using the Gentra Puregene
DNA purification kit (Qiagen Hilden, Germany) according to the
manufacturer’s instructions for 3 mL of human whole blood with minor
modifications, namely, a smaller volume (8.5 mL) of red blood cell (RBC)
lysis solution and longer centrifugation time (4 min where 2 min are
indicated and 8min where 5min are indicated).

Bisulfite conversion and methylome profiling by EPIC array
One microgram of DNA was bisulfite-treated using the EpiTect® Fast 96
DNA Bisulfite Kit (Qiagen Hilden, Germany) and analysed using the
Infinium Human Methylation EPIC BeadChip Kit (Illumina, CA, USA)
according to the manufacturer’s protocol.

Data analysis
All data were analysed using R (version 3.6.3)54. The data were visualised
using the ggplot255 and ComplexHeatmap56 packages.

Baseline characteristics. Differences in baseline characteristics between
the two culture medium groups were compared and evaluated using
Student’s t-tests for continuous variables and Pearson’s chi-squared tests
for categorical variables.

Quality control and preprocessing. We applied preprocessing functions
from the RnBeads package57 to normalise the data using subset-quantile
within array normalisation (SWAN)58, and to remove poor quality probes
and samples using the greedycut algorithm with a detection p value
threshold of 0.05. Subsequently, the following sites were removed: (i) sites
on the sex chromosomes, (ii) sites in close proximity to single nucleotide
polymorphisms (SNPs), (iii) sites with missing values in more than 5% of
the samples, and (iv) sites not in a CpG context. Sites containing missing
values in 0–5% of the samples were only used to calculate aggregated beta
values for different regions, including genes, promoters and CpG islands
(CGI), they were excluded in all analyses looking at individual sites. Unless
indicated otherwise, we used methylation beta values, which are
calculated for each individual, at each CpG site by dividing the methylated
signal intensity by the sum of the methylated and unmethylated signal
intensity. The sex of the samples was predicted by comparing the
samples’ sex chromosome methylation values and their respective
detection p values to reference data using a clustering (PCA)-based
approach, as implemented in the sEst package59. Correspondingly, each
sample was assigned two predicted sexes based on the X-chromosome
and Y-chromosome profiles respectively. If both matched, the sample was
labelled as male or female, otherwise, it was labelled as “not specified”. If a
mismatch between the recorded and predicted sex was identified, the
sample was removed from subsequent analyses (n= 1).

Cellular deconvolution of UCB samples. To estimate the cellular composi-
tion of the UCB samples, the reference-based method described by Gervin
et al.60 was implemented using the minfi package61. As recommended, the
algorithm was applied to data pre-processed with the preprocessNoob
method62 and deconvolution was carried out based on the IDOL optimised
probes contained within the FlowSorted.CordBloodCombined.450k pack-
age63. The algorithm was used to estimate the proportion of natural killer
cells, B cells, monocytes, granulocytes, nucleated red blood cells and CD4-
and CD8-T cells within each sample.

Comparison of G5 and HTF IVF neonates. All high-quality CpG sites were
used to conduct a PCA in which the beta values were centred but not
scaled. Associations between the PCs and technical or demographic
features of the samples were tested using: (i) permutation tests (with
10,000 permutations) to ascertain the significance of correlations (gesta-
tional age, maternal age, predicted cellular sample composition), (ii) a two-
sided Wilcoxon rank test for categorical data where there are two groups
(sex, culture medium, sample plate, pregnancy complication) or (iii) a
Kruskal–Wallis one-way analysis of variance for categorical variables
generating 3 or more groups (Sentrix ID, Sentrix position—array number
and sample position respectively).
Methylation M-values, representing the log2 ratio of the methylated

probe intensity compared to the unmethylated probe intensity64, were
used to test for an association between the culture medium and DNA
methylation with mixed-effects linear models implemented using the
variancePartition package65. The models were corrected for potential
confounders, namely gestational age, sex, maternal age, pregnancy
complications (included as a binary variable where the presence of
gestational diabetes, hypertension and pre-eclampsia were encoded as
“yes” and otherwise “no” was recorded) and the predicted cell composi-
tions as fixed effects while the treatment centre and batch effects (sample
plate) were included as random effects. As gestational diabetes,
hypertension and pre-eclampsia represent pathophysiologically hetero-
geneous pregnancy complications, the analyses were repeated while
excluding participants affected by any of the complications. The models
were applied to individual CpG sites or aggregate (mean) values of
multiple CpG sites within a region to identify differentially methylated
positions (DMPs) or regions (DMRs) respectively. To examine DMRs, the
M-values of all probes attributed to a specific gene, promoter or CGI were
aggregated by calculating their mean. For the targeted analyses, the
models described above were applied to (sites within) imprinted genes33

and probes associated with birth weight34. All analyses were corrected for
multiple testing using the Benjamini–Hochberg method66, and an adjusted
p value of <0.1 was considered significant.
DNA methylation outliers were defined as described previously36. In

short, hypomethylation outliers were defined as beta values lower than
three interquartile ranges (IQR) from the 25th percentile, while
hypermethylation outliers were defined as beta values greater than three
times the IQR above the 75th percentile. The IQR and percentile values
were calculated using all UCB samples. Subsequently, an association
between the log10 transformed number of outliers and the culture
medium was sought using the mixed-effects linear models as described
above. To identify CpG sites with differential variance between the culture
medium groups, we applied iEVORA35 using the matrixTests package67. At
each CpG site, iEVORA applies Bartlett’s test, which is a parametric test for
differential variance, as well as a Student’s t-test. Thereafter, sites reaching
significance in Bartlett’s test after multiple testing correction (FDR corrected
p value < 0.05) and nominal significance in the t-test (p value < 0.05
without multiple testing correction) are considered significant. As such, the
output of Bartlett’s test is regularised as it is usually overly sensitive to
single outliers. Both DNA methylation outliers and iEVORA analyses were
applied to the full cohort as well as the subset of participants that had not
experienced pregnancy complications. Gene ontology (GO) and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment
analyses were conducted on differentially variable sites using functionality
from the missMethyl package68.

Estimation of epigenetic gestational age and gestational age acceleration.
Epigenetic gestational age was calculated using methods described by
Bohlin et al.38 and Knight et al.39. The accuracy of the respective
predictions was evaluated by calculating the Pearson’s correlation and
root mean squared error between eGA and cGA. The model described by
Bohlin et al. generated more accurate predictions and was therefore used
to calculate GAA as previously described38. The Bohlin eGA prediction
model was applied exactly as described by Bohlin et al. Firstly, within array
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normalisation was carried out using the BMIQ method using the RnBeads
package57. Subsequently, batch effects attributable to the sample plate
were corrected using ComBat from the sva package69. There were no
missing values in any samples at the required sites, apart from eight CpG
sites of the prediction model that are not present on the EPIC array. These
eight sites were therefore excluded from the prediction. GAA represents
the residuals from regressing eGA on cGA corrected for sample cell
composition. To determine whether there is an association between GAA
and culture medium, we applied mixed-effects linear models correcting for
sex and maternal age as fixed effects alongside IVF treatment centre as a
random effect. Again, the analysis was carried out on the full cohort and
repeated excluding those participants who had experienced pregnancy
complications.

Comparison of IVF and naturally conceived neonates
Selection and processing of data from naturally conceived individuals: To

compare the methylome of our IVF neonates to naturally conceived
individuals, we used data from two geographically similar longitudinal
birth cohorts, namely the Flemish Environment and Health Study (FLEHS,
Flanders Belgium)70,71 and the Environmental Influence on Early Ageing
study (ENVIRONAGE)72 that had both undertaken array-based methy-
lome profiling. Samples were considered for inclusion if the neonates
were born after at least 36 full weeks of gestation (comparable to the IVF
neonates included in this study). A total of 85 individuals from the FLEHS
cohort and 502 individuals from the ENIRONAGE cohort were considered
for inclusion based on this criterium. Methylation data in these studies
were generated either with Illumina’s EPIC or 450K arrays. Preprocessing
of the data from the separate studies/arrays was conducted separately
but in an identical fashion to the IVF data, with the exception of within-
study batch effects, which were corrected using ComBat69 as these could
not be corrected for using the mixed-effects models. The sample
inclusion and preprocessing steps of these two cohorts is summarised in
Supplementary Fig. 5H. After study/data type-specific processing the
data were combined, retaining only CpG sites present and passing the
QC of all the array types included. Overall, 346,403 CpG sites were
common to all platforms and studies.
To select only the data likely to be most similar to our IVF cohort, we

generated a matched selection from the ENIRONAGE neonates who had
their methylome profiled using the EPIC array. We used nearest
neighbour matching (Mahalanobis distance) based on sex, maternal
age, birth weight and gestational age to select 105 neonates to
compare to the IVF neonates. This matching was carried out using the
MatchIt package73.

Comparison of characteristics of matched IVF and naturally conceived
individuals: The participant characteristics between IVF and matched
naturally conceived individuals were compared and evaluated using
Student’s t-tests for continuous variables and Pearson’s chi-squared tests
for categorical variables. The p values obtained from this comparison are
shown in Supplementary Table 6.

Statistical testing to compare naturally conceived and IVF neonates:
Empirical Bayes moderated mixed effect linear models were used to
ascertain associations between DNA methylation and mode of concep-
tion. These models were corrected for gestational age at birth, cell
composition, sex, and maternal age as fixed effects and where relevant,
array type as a random effect. Multiple testing correction was applied
using the Benjamini–Hochberg method66, and an adjusted p value of
<0.05 was considered significant.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The dataset generated during the current study, IVF samples, are available in the
Gene Expression Omnibus (GEO) repository74 under the accession number
GSE189531. Data included from the FLEHS and ENVIRONAGE cohorts are available
from GEO under the accession numbers GSE110128 and GSE151042 respectively.

CODE AVAILABILITY
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