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Understanding rhythmic behavior in the context of coupled auditory and motor systems
has been of interest to neurological rehabilitation, in particular, to facilitate walking.
Recent work based on behavioral measures revealed an entrainment effect of auditory
rhythms on motor rhythms. In this study, we propose a method to compute the neural
component of such a process from an electroencephalographic (EEG) signal. A simple
auditory-motor synchronization paradigm was used, where 28 healthy participants were
instructed to synchronize their finger-tapping with a metronome. The computation
of the neural outcome measure was carried out in two blocks. In the first block,
we used Generalized Eigendecomposition (GED) to reduce the data dimensionality
to the component which maximally entrained to the metronome frequency. The
scalp topography pointed at brain activity over contralateral sensorimotor regions. In
the second block, we computed instantaneous frequency from the analytic signal
of the extracted component. This returned a time-varying measure of frequency
fluctuations, whose standard deviation provided our “stability index” as a neural outcome
measure of auditory-motor coupling. Finally, the proposed neural measure was validated
by conducting a correlation analysis with a set of behavioral outcomes from the
synchronization task: resultant vector length, relative phase angle, mean asynchrony,
and tempo matching. Significant moderate negative correlations were found with
the first three measures, suggesting that the stability index provided a quantifiable
neural outcome measure of entrainment, with selectivity towards phase-correction
mechanisms. We address further adoption of the proposed approach, especially with
populations where sensorimotor abilities are compromised by an underlying pathological
condition. The impact of using stability index can potentially be used as an outcome
measure to assess rehabilitation protocols, and possibly provide further insight into
neuropathological models of auditory-motor coupling.

Keywords: auditory-motor coupling, entrainment, synchronization, instantaneous frequency,
eigendecomposition, finger-tapping, stability index, EEG
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INTRODUCTION

Auditory stimuli such as music or metronomes can entrain
human movement, and this phenomenon can be used for
neurological rehabilitation purposes. Particularly, evidence has
been established that auditory stimuli can facilitate walking
in persons with Parkinson’s disease (Ghai et al., 2018; De
Bartolo et al., 2020), stroke (Yoo and Kim, 2016; Hutchinson
et al., 2020), and multiple sclerosis (Moumdjian et al., 2019b).
Auditory stimuli convey temporal structures that serve as
affordances for the motor system to interact with (Leman, 2016).
In our previous work, we showed that auditory rhythms can
entrain a person’s motor rhythms, thus affecting abilities for
walking. The underlying mechanism can be explained in terms
of sensorimotor phase-locking, prediction error minimization,
and/or dynamical interactions (Phillips-Silver et al., 2010;
Leman, 2016). The outcome of an entrainment process is
typically a more stable state of synchronization (Phillips-Silver
et al., 2010; Moens et al., 2014; Leman, 2016). So far, the
entrainment effect has been quantified by means of behavioral
outcome measures, in particular temporal outcomes of the
rhythmic auditory-motor coupling (Moumdjian et al., 2018),
which contributed to a better understanding of underlying
mechanisms as a result of the interaction (Moumdjian et al.,
2019c, 2020), and to the development of task-oriented training
tools for walking in persons with the neurological disease of
multiple sclerosis (Moumdjian et al., 2019a,b).

Part of the variability in entrainment can be attributed
to individual synchronization abilities. When presented with
auditory stimuli and asked to walk to them, there are participants
who spontaneously synchronize, and others who do not.
This ability is not only limited to neurological populations
(Moumdjian et al., 2019c), but also holds true for healthy
participants (Van Dyck et al., 2015) where the percentage of
spontaneous synchronizers vs. non-synchronizers is about 50%
−50%. A number of factors contribute to the tendency to
rhythmically entrain and synchronize (Wilson and Cook, 2016).
The first factor is temporal perception and prediction. Studies
on Parkinson’s disease have concluded that those participants
with higher perceptual sensorimotor synchronization abilities,
quantified by behavioral sensorimotor tapping tasks involving
finger tapping (Dalla Bella et al., 2017b), had a better outcome
on their walking parameters after being subjected to walk to
auditory stimuli (Dalla Bella et al., 2017a). The second factor is
motor (e.g., physical capacity) and/or cognitive (e.g., attentive
and pre-attentive) functions. For example, studies comparing
spontaneous and instructed synchronization of walking (Leow
et al., 2018; Moumdjian et al., 2019c) and running (Van
Dyck et al., 2020) to music have been conclusive that explicit
instructions to synchronize resulted in a higher synchronization
tendency, as compared to spontaneous synchronization. The
former study also noted this difference across different motor
thresholds which was provided as a result of walking to different
tempi, starting from the natural comfortable tempo and up
to+ 10%, in increments of 2% (Moumdjian et al., 2019b,c).

Up to now, most studies on neurological populations,
investigating entrainment and synchronization during walking

tasks, are based on empirical evidence using behavioral
outcomes (Moumdjian et al., 2018). However, we believe that
the development of complementary neurological outcomes
could offer a further understanding of entrainment and
synchronization, potentially leading to the development of more
individualized and more fine-tuned rehabilitation approaches.

The present study, therefore, aims at quantifying a neural
outcome measure of entrainment and synchronization in
combination with behavioral outcomes. We propose the use of
electroencephalography (EEG) as a method to measure neural
entrainment of the motor system to rhythmic stimuli. The novel
outcome measure is based on a finger tapping task (Bavassi
et al., 2013; McPherson et al., 2018; Lopez and Laje, 2019).
Figure 1 shows a graphical illustration of this study’s rationale
and proposed contribution to the current state of the art.

Our approach is based on Steady-State Evoked Potentials
(SSEPs) (Vialatte et al., 2010; Norcia et al., 2015). Given a
steady periodic stimulation, a series of subsequent evoked
responses are elicited in the electrical brain activity, generating
a periodic pattern of transients in the EEG signal. By
transforming the signal to the frequency domain by means
of Fast Fourier Transform (FFT), it can be observed that
the EEG spectrum is dominated by a prominent peak at the
stimulation frequency and its harmonics. Upon exposure to
rhythmic auditory stimuli, patterns emerge in brain activity
and match the dominant spectral features of the stimulation.
Studies show that neural entrainment can be measured at
different hierarchical levels of the stimulus temporal structure,
or of its representation (Nozaradan et al., 2011). As the sound
envelope of a musical stimulus exhibits a periodic low-frequency
amplitude modulation in correspondence with the beat, it is
possible to observe a match between the beat-related harmonics
of the EEG spectrum and the sound spectrum (Lenc et al.,
2018). However, the observed entrained components are not
always entirely driven by sensory stimulation. In fact, given
the same energy in the stimulus, SSEP amplitude is modulated
by attention (Andersen et al., 2011; Kashiwase et al., 2012),
internal representation of metric structure (Nozaradan et al.,
2012), sensorimotor integration (Nozaradan et al., 2015) and
interpersonal coordination (Varlet et al., 2020).

The SSEP technique is relatively straightforward in modeling
bottom-up and top-down components of rhythm perception
in terms of Fourier coefficients. However, in order to link
behavioral entrainment to a neural outcome measure, we believe
that the signal phase should not be left out of the picture.
Rajendran and Schnupp (2019) showed that shuffling the phase
of a signal resulted in drastic differences in its time domain
representation, whereas it remained invariant in the frequency
domain. Although the analysis of peak amplitudes or z-scoress in
a static spectrum might convey information about the outcome
of neural entrainment, it is arguably insensitive to its dynamics
in the time domain. One should consider that oscillatory
processes in the brain are hardly stationary (Cohen, 2017) and
the very definition of entrainment implies that an oscillator
dynamically changes its frequency in order to achieve stable
synchronization. This is precisely the phenomenon we intend to
capture. Therefore, in order to quantify neural entrainment of
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FIGURE 1 | Graphical illustration of the study’s rationale and the proposed contribution to the current state of the art.

rhythmic stimuli, we argue in favor of a time-varying measure
based on the phase of the neural entrained component.

With this study, we progress beyond the state of the art in
the research on neural entrainment by optimizing the calculation
of a neural outcome measure of auditory-motor coupling. We
argue that such a measure can be used together with its
behavioral counterparts. In combination, both the behavioral
and neurological measures may unveil a further layer of the
underlying mechanisms of the rich dynamical processes during
motor and auditory interactions. Our first aim is to extract from
the EEG signal the component which is maximally entrained
to a periodic stimulus. For that, we compute a stability index
to quantify frequency fluctuations over time. Our second aim
is to validate the proposed index with a set of quantified
behavioral outcome measures of auditory-motor coupling and
entrainment (Moumdjian et al., 2018). In an auditory-motor
coupling task, healthy participants were instructed to tap their
index finger synchronizing to an auditory metronome (as
illustrated in Figure 1). We hypothesized that our stability index
would significantly correlate with the behavioral measures of
entrainment. Specifically, a stable behavioral performance is
expected to correlate with a stable entrained component, whereas
a poor performance would result in wider frequency fluctuations
over time.

MATERIALS AND METHODS

Participants
Twenty-eight (N = 28) right-handed participants took part
in the study (18 females, 10 males; mean age = 29.07 years,
standard deviation = 5.73 years). None of them had a
history of neurological, major medical, or psychiatric disorders.

All of them declared not to be professional musicians
upon recruitment, although some of them had musical
experience. Handedness was assessed by means of the Edinburgh
Handedness Inventory (Oldfield, 1971). The experiment was
approved by the Ethics Committee of Ghent University (Faculty
of Arts and Philosophy) and informed written consent was
obtained from each participant, who received a 15e coupon as
economic compensation for their participation.

Experimental Procedure
The experimental task consisted of a tapping synchronization
paradigm, in a sitting position. Participants were provided
with a custom-made pad containing piezo sensors to detect
tapping onsets, and were instructed to tap their right index
finger along with the assigned metronome during 390 seconds.
During the task, participants were sitting on a comfortable chair
equipped with armrests, so that their elbow could lay in a fixed
position. Tapping movements were limited to wrist flexion in
order to prevent movement-artifacts contamination of the EEG
signal. Participants were monitored online and video-recorded
by means of a USB camera to verify their compliance with
the instructions. The importance of avoiding head and trunk
movements was stressed.

Auditory Stimuli
Participants were presented with the stimuli via
DefenderShieldr air-tube earplugs. Ableton Live 10r was
adopted as software for the metronome stimuli presentation.
A periodic auditory cue was presented at a rate of 100 BPM to
half of the participants, and 98.5 BPM to the other half (1.67 Hz
and 1.64 Hz, respectively). The reason for such a minimal gap
lies in the rationale of a larger experimental design in which the
recordings were performed (Rosso et al., under review).
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Behavioral Data Acquisition
Finger tapping onsets were recorded with a Teensy
3.2 microcontroller, operating as serial/MIDI hub in the
setting. On the one hand, it received an analog input from
piezo sensors inside the pads and printed on the serial port of
the stimulation computer a timestamp each time a finger-tap
pushed the signal above a resting threshold. The threshold was
conservative enough to prevent false positives due to signal
bouncing. Every time a metronome beat onset was presented to
a participant, a MIDI message was sent to the Teensy to log its
timestamp on the serial port. All timestamps were rounded to
1 ms resolution, which corresponds to 1 kHz sampling rate. The
same device triggered the start of the EEG recording by sending
a TTL trigger via a BNC connection.

Outcome Measures
Behavioral data and neurophysiological data were measured.
These are outlined below:

Behavioral Data
The timestamps of finger-tapping and metronome beat onsets
were imported in Matlabr and used to calculate a set of
behavioral outcome measures of auditory-motor coupling and
entrainment (Moumdjian et al., 2018). Before doing so, we
removed the finger-tapping onsets following the previous one by
less than 350 ms, as false positives could occasionally be recorded
when a participant pushed the pad for too long or accidentally
laid the hand on it. On average, 0.4 false positives were removed
for every participant (standard deviation = 0.8). From the finger-
tapping and metronome beat onsets time series, we calculated the
following measures: relative phase angle, resultant vector length,
mean asynchrony, and tempo matching. Below, details of the
measures and the formulae used calculate these measures are
outlined (Moens et al., 2014; Moumdjian et al., 2018):

Relative Phase Angle
This is an error measure of synchronization based on the phase
difference between two oscillators (i.e., the participant tapping
and the metronome beat onsets).

ϕ = 360 ∗
(

Tn − Bn
B(n+1) − Bn

)
Where Tn is the participant’s tap onset n and Bn is the onset
of the closest metronome beat. A negative angle indicates that
the participant is tapping ahead of the metronome beat, while
a positive angle indicates that the participant’s tap is lagging
behind the metronome beat. Alternatively, following recent work
on modeling participants and periodic cues of systems of coupled
oscillators in finger-tapping studies (Heggli et al., 2019), we
processed the phase time series for participants and metronomes
by interpolating the onsets as a ramp wave, wrapped from 0 to
2π radians at 1 kHz sampling rate. Provided with an estimate of
the oscillators’ positions on their cycle with a temporal resolution
of 1 ms, we subtracted each participant’s phase time series from
the respective metronome. Finally, the CircStats toolbox (Berens,
2009) for Matlabr was used to calculate the mean angle from the
resulting relative phase time series (in radians).

Resultant Vector Length
This expresses the stability of the relative phase angles over
time. A unimodal distribution implies a high resultant vector
length, whereas uniform and bipolar distributions result in a
low resultant vector length. The measure was processed with the
CircStats toolbox (Berens, 2009), using the relative phase time
series as input. The measure ranges from 0 to 1, where 1 indicates
perfect synchronization over time at a given relative phase angle
and is calculated as follows:

R =

∣∣∣∣∣ 1
N

N∑
n = 1

eiφTn
∣∣∣∣∣

Mean Asynchrony
This consists of the mean difference between the participant’s
tap onsets and the respective closest metronome’s beat onset
expressed in milliseconds.

Mean asynchrony =
1
N

N∑
n = 1

Tn − Bn

Tempo Matching Accuracy
This indicates to what extent the overall tempo of the
participant’s tapping matches with the tempo of the metronome
beats, based on inter-onset-intervals (IOIs). Inter-beat deviation
(IBD) is calculated as the mean difference of a subject’s IOIs with
respect to the inter-beat-intervals.

IDB =
1
N

N∑
n = 2

(Bn − B(n−1))− (Tn − T(n−1))

Bn − B(n−1)

Neurophysiological Data
In order to compute our proposed outcome measure of
neural entrainment, the following EEG processing pipeline was
conducted. It consists of signal pre-processing, extraction of
the entrained component via generalized eigendecomposition,
and the computation of the stability index. The workflow is
summarized in Figure 2.

Data Acquisition
Participants were equipped with a 64-channel waveguardTM

original EEG headset (10-10 system, with Ag/AgCl electrodes).
Data were recorded with an ANT-Neuro eegoTMmylab system at
1 kHz sampling rate. Impedances were monitored in the eegoTM

software environment and kept below 20 kΩ. In comparison
with stricter thresholds (e.g., 5 kΩ or 10 kΩ), the choice made it
feasible to maximize the homogeneity of impedance levels across
electrodes, and in turn, optimize the covariance matrices used in
our source separation. A referential montage was adopted, with
‘‘CPz’’ as the reference electrode.

Pre-processing
Pre-processing was carried out with a pipeline integrating
functions from the Fieldtrip toolbox (Oostenveld et al., 2011) for
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FIGURE 2 | Electroencephalographic (EEG) processing pipeline. The present pipeline illustrates the steps through which the proposed stability index was
computed. Following the pre-processing, generalized eigendecomposition (GED) was performed on a broad set of regions of interest (ROIs). The vector of weights w
associated with the highest eigenvalue was used as a spatial filter. By multiplying the data from the 37 channels behind the frontocentral line (1), we produced a
single time series. The weights of the excluded channels were set to 0. The resulting “entrained component” (2) went through a cascade of computational steps: first,
it was narrow-band filtered with a Gaussian filter centered at the stimulus frequency, in order to extract reliable phase time series unaffected by broad-band
components (center = 1.65 Hz; width at half-maximum = 0.3 Hz). The “filtered component” (3) was then Hilbert-transformed to produce the “analytic signal” (4), from
which we computed the “phase angles” time series (5). Finally, the phase was unwrapped, its first derivative was used to compute the “instantaneous frequency” (6),
and a sliding moving median was applied in order to level out eventual artifactual peaks. The plot shows how the pipeline results in a time-varying measure of
frequency over time, which fluctuates around the stimulation frequency (i.e., the thin horizontal line intercepting the y-axis at 1.65 Hz). The standard deviation of the
instantaneous frequency provides a global measure of the stability of the entrained component for a given time window, which in our case was the whole duration of
the task. We named such a global measure “stability index”, for it equals 0 in the case of a flat horizontal line. Such a scenario would be observed in the ideal case of
a perfectly stable component oscillating like a simple sine wave.

Matlab (MathWorks Inc., USA). Bad channels were identified
by means of visual inspection of raw time series and variance
distribution across channels. The recordings were re-referenced
to the average of all the electrodes after channel rejection, to avoid
noise leakage into the average. A high-pass Butterworth filter
with 1 Hz cut-off was applied to the raw recordings to remove
slow drifts. We preferred to choose this conservative threshold,
given that occasional head movements and sweat potentials
are more likely to occur over a long continuous recording. A
low-pass Butterworth filter with 45 Hz cut-off was applied to
remove high-frequency muscular activity. A notch filter centered
at 50 Hz was applied to remove power-line noise up to the 3rd
harmonic.

Independent component analysis (ICA) was conducted on
full rank data to remove blinks and eye-movement artifacts,
by means of visual inspection of topographical maps and
time series of component activation. For this purpose, we
ran the ‘‘runica’’ algorithm as implemented in Fieldtrip,
excluding the reference ‘‘CPz’’ and the bad channels time
series from the input matrix. Only those components which
exhibited the stereotyped frontal distribution generated by
blinks and lateral eye movements were removed. Although
other artifactual sources could have been identified, we limited
the selection to a few unambiguous components for the
sake of replicability. A minimum of one and a maximum

of three components were removed for every participant.
The dataset was inspected prior to ICA decomposition and
following ICA back-projection. Special attention was given to
the electrodes where the activation of the artifactual component
was maximal, namely the F, AF, and Fp clusters. Rejected bad
channels were finally reconstructed after artifact removal, by
computing a weighted average of all neighbors as implemented
in Fieldtrip.

Recordings were treated as a continuous experimental run,
without segmentation in epochs. This implies that no ‘‘bad trials‘‘
were removed. Further in this section, we will present how we
dealt with transient bursts of artifactual activity in the continuous
recording.

Generalized Eigendecomposition (GED)
In order to avoid channel selection bias while optimizing the
signal-to-noise ratio between the entrained component and the
broadband neural activity, we applied GED as first described
in the context of source separation for rhythmic entrainment
(Cohen and Gulbinaite, 2017). The technique consists of a spatial
filter to reduce the multivariate dataset to one dimension, guided
by some criteria: in this case, it was attunement to the stimulation
frequency. This was achieved by computing the weighted average
of a set of channels, where the vector of weights W was calculated
by solving the following eigenequation:
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R−1SW = 3W

where S is the covariance matrix calculated from the
narrow-band filtered signal; R is the reference covariance
matrix calculated from the broad-band signal; Λ is a set of
eigenvalues. GED identifies eigenvectors W that best separate
the signal (‘‘S’’) covariance from the reference (‘‘R’’) covariance
matrix. The eigenvector associated with the largest eigenvalue is
taken as a spatial filter. That eigenvector is then used to multiply
the raw channel data to produce the single time series of our
target entrained component. In the present work, a subset of
37 channels located behind the frontocentral ‘‘FC’’ line (mastoids
excluded) was selected. By doing so, we intended to constrain
the source separation and target a sensorimotor component
entrained to the auditory stimulus. The excluded channels form
the cluster which is typically expected from a purely auditory
response at the scalp level (Nozaradan et al., 2011, 2015). The
regions of interest (ROIs) selection is visually illustrated in
Figure 2.

Given we were explicitly looking for frequency fluctuations,
our narrow-band filter needed to be large enough in order to
leave room for fluctuations around the entrained frequency.
We designed our filter as a Gaussian function in the frequency
domain, with the center at 1.654 Hz and a width of 0.3 Hz at
half of the maximum gain. The center corresponds to the average
of the two metronome frequencies. Given that the minimal
difference across frequencies (1.667 Hz and 1.641 Hz) was tested
to be negligible, we opted to design one single filter centered on
their average. Such parameter represents an optimal trade-off in
our application since it allows for fluctuations around the center
frequency without overlapping with the high-pass band filter
(cut-off = 1 Hz). We then filtered the signal on the whole subset of
37 channels by performing element-wise multiplication between
the signal spectrum and the filter kernel. The resulting spectrum
was eventually transformed with inverse Fast Fourier Transform
back in the time domain. The frequency-domain representation
of the filter kernel is provided in Supplementary Figure 1, along
with additional information in the figure’s description.

The reference R covariance matrix was here computed from
the broadband multivariate signal. Our choice differs from the
approach originally proposed by Cohen and Gulbinaite (2017)
in that they propose a use-case for higher frequency ranges,
which allows us to average the R matrices computed from two
narrow-band Gaussian flankers neighboring the central filter on
both sides. Their rationale was to minimize the contribution
of intrinsic non-task-related rhythms in frequency ranges far
from the one of interest, while avoiding bias from upper and
lower frequency neighbors. Given that we were dealing with low
frequencies (<2 Hz), it was not desirable for us to narrow-band
filter the signal in a lower flanker, as we would have reached
below the high-pass filter cut-off at 1 Hz (see Supplementary
Figure 1). Therefore, if we adopted flankers, we would have had
a bias to the right side of the spectrum.

In order to compute the respective covariance matrices from
the broad-and narrow-band signals, we used the onset timing
of the finger-taps performed by the participant to define time

windows from −100 ms to 500 ms around the events. The
approach provided us with a considerable number of covariance
matrices for each recording (645 finger-taps were expected on
average), such that we could remove the ones whose Euclidean
distance from the grand-average covariance matrix exceeded the
2.23 z-scoress (i.e., corresponding to a probability of 0.013). The
grand-average S and R covariance matrices were then calculated
free from the occasional burst of artifactual activity over the long
recording, compensating from the impossibility of performing a
procedure of trial-removal during the pre-processing.

The quality of our GED application was assessed by inspecting
the eigenspectrum, the topographical activation map, and the
power spectrum of the extracted component (see Figure 3).

Stability Index
Once the entrained component was computed, we applied on
it the same Gaussian filter (center at 1.654 Hz and 0.3 Hz
width at half maximum) in order to extract reliable phase time
series from the analytic signal. We calculated the analytic signal
with the Hilbert transform and computed the instantaneous
frequency time series from the first derivative of the unwrapped
phase angles time series as indicated in Cohen (2014). The
instantaneous frequency of a dynamical oscillating system can
be defined as the change in the phase per unit time (Boashash,
1992). The derivative can then be converted to Hz applying the
following formula:

Hzt =
s(φt − φt−1)

2π

where s indicates the data sampling rate and 8t indicates
the (unwrapped) phase angle at time t. A sliding moving
median with a window width of 400 samples was used to
smooth the instantaneous frequency time series, to remove
occasional extreme bursts due to artifactual activity distorting
phase time series. Finally, we calculated the standard deviation of
instantaneous frequency over the whole task as a global measure
of frequency stability over time, which we named the ‘‘stability
index’’. A high standard deviation is thus indicative of wide
instantaneous frequency fluctuations, and less overall stability
of the entrained component. A standard deviation equal to
0 indicates a perfectly stable component, with the instantaneous
frequency being a flat line at the constant value of the stimulus
frequency.

Statistical Analysis
In order to validate our neural outcome measure, we calculated
the Spearman coefficient for the correlation between the stability
index and the four behavioral outcome measures (Moumdjian
et al., 2018) reported above. This technique assesses the strength
and significance of monotonic relationships between variables,
regardless of its linearity. The Spearman correlation coefficient
computed on continuous variables is the equivalent of the
Pearson correlation coefficient computed on their ranks: it is
exempt from the assumption of normal distribution of the pair of
variables and robust to outliers and scaling effects. The following
classification was used to categorize the correlation (Hinkle
et al., 2002): 0.00–0.30 ‘‘negligible correlation’’, 0.30–0.50 ‘‘low
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FIGURE 3 | Group-level assessment of the source separation. The following criteria were used to assess the quality of our source separation via generalized
eigendecomposition (GED). (A) Topography. The grand-average coefficients of activation are shown in the topographic plot: maximal activation was recorded at the
left centroparietal “CP” cluster and at left temporal electrodes (“T7” and “TP7”). It should be noted that we explicitly excluded from the spatial filter the channels
located beyond the frontocentral line, for we intended to maximize an entrained response related to sensorimotor processing in the context of the task. (B) SNR
spectrum. The grand-average power spectrum is represented here in the percentage signal-to-noise ratio between each data point and the mean power in the
neighboring bins (0.5 Hz), in order to remove the physiological 1/f component of the spectrum (Freeman et al., 2003). (C) Eigenspectrum. The grand-average
eigenvalues sorted in descending order exhibit a steep exponential decay. The vector of weights w used for our spatial filter is the one associated with the highest
eigenvalue λ. Before averaging, eigenvalues were normalized and expressed as percentage of explained variance. All grand-averages were computed on the whole
sample of participants (N = 28).

correlation’’, 0.50–0.070 ‘‘moderate correlation’’, 0.70–0.90 ‘‘high
correlation’’, 0.90–0.100 ‘‘very high correlation’’.

RESULTS

Behavioral Outcome Measures
On a group level, we report that participants anticipated their
tapping onsets relative to the beat, with a mean relative phase
angle of −1.050 ± 0.681 radians and a mean asynchrony of
−77.472± 40.603 ms. In addition, on a group level, they obtained
a consistent synchronization with a relative vector length of
0.831± 0.156, and a consistent period measured by the inter-beat
deviation of−0.001± 0.01. The individual participant behavioral
results of these outcomes are reported in Table 1.

Neural Outcome Measures
Generalized Eigendecomposition
The source separation successfully extracted the entrained neural
component of interest, as assessed by its spectral features and its
topographical map of activation. The component associated with
the higher eigenvalue was selected for our analyses. Additionally,
we verified that the component associated with the second
eigenvalue was not related to the behavioral performance.
More details about the second component are provided in the
Supplementary Figures 2, 3. A detailed profile of the first
component is provided in Figure 3, and its functional meaning
will be further discussed in the next section.

Stability Index
The stability index was computed as the standard deviation of
the component’s instantaneous frequency, as described in the
‘‘Materials and Methods’’ section. On a group level, the stability

index resulted in 0.062± 0.030 Hz. A stability index of 0 indicates
a perfectly stable component, without any frequency fluctuation
over time. The individual participant results of the stability index
are reported in Table 1.

Correlation Analysis
As shown in Figure 4, Spearman correlation between the
behavioral outcome measures of entrainment and the stability
index revealed significant moderate negative correlations
for relative phase angle, resultant vector length and mean
asynchrony (r = −0.566, p < 0.001; r = −0.652, p < 0.001;
r = −0.523, p = 0.005, respectively). A non-significant negligible
correlation was found for the inter-beat deviation (r = 0.107,
p = 0.583).

DISCUSSION

The main contribution of the present work is methodological,
motivated by the need to compute a neural outcome measure
of neural entrainment in the context of auditory-motor coupling
and prospectively applying auditory-motor coupling paradigms
for the purpose of neurological rehabilitation. We proposed a
novel processing pipeline to compute the stability index, and
validated this neural outcome measure by testing its correlation
with a set of behavioral outcome measures in the context of a
finger-tapping task.

Behaviorally, participants exhibited the mean negative
asynchrony typically reported in finger-tapping synchronization
tasks performed by healthy participants (Aschersleben, 2002).
The mean negative asynchrony and the negative relative phase
angles confirmed that all participants but one tapped on average
ahead of the metronome, anticipating the beat. Additionally,
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TABLE 1 | The results of neural and behavioral outcome measures of entrainment per participant.

Participant ID Neural outcome measure of entrainment Behavioral outcome measures of entrainment

Stability Index Relative phase Resultant vector Mean Inter-beat
(frequency fluctuation—std) angle (radians) length (0-1) asynchrony (ms) deviation (ratio)

1 0.033 −0.387 0.958 −37.259 0.000
2 0.088 −2.332 0.647 −76.046 −0.003
3 0.023 −0.436 0.952 −41.668 −0.006
4 0.024 −0.464 0.975 −44.403 0.000
5 0.057 0.078 0.939 7.412 −0.008
6 0.138 −1.503 0.711 −122.858 0.008
7 0.077 −0.867 0.787 −83.514 −0.002
8 0.060 −0.772 0.803 −76.068 −0.003
9 0.056 −2.543 0.298 −26.583 0.042
10 0.061 −1.337 0.629 −114.613 0.001
11 0.037 −0.547 0.898 −53.906 0.000
12 0.086 −1.349 0.817 −120.805 0.000
13 0.070 −2.358 0.500 −41.690 −0.002
14 0.088 −1.273 0.800 −122.573 −0.024
15 0.045 −0.790 0.872 −74.723 0.001
16 0.125 −1.364 0.900 −130.310 0.001
17 0.051 −1.621 0.843 −152.019 0.003
18 0.028 −0.590 0.955 −57.088 −0.001
19 0.030 −0.744 0.943 −72.028 −0.009
20 0.074 −2.285 0.795 −156.864 0.001
21 0.076 −0.301 0.820 −27.093 −0.020
22 0.050 −0.574 0.943 −55.641 0.001
23 0.069 −1.223 0.824 −118.943 −0.004
24 0.032 −0.937 0.871 −90.031 −0.001
25 0.030 −0.674 0.960 −65.188 −0.001
26 0.041 −0.519 0.963 −50.530 −0.002
27 0.117 −1.018 0.931 −99.138 0.001
28 0.062 −0.670 0.942 −65.033 −0.004

Abbreviations: std, standard deviation; ms, milliseconds.

by looking at the resultant vector lengths, we also note that
consistent synchronization was maintained throughout the task.
Given these results, we can deduce that all subjects were engaged
in the process of entraining their finger-taps to the auditory beats
of the metronome.

As for the data captured by the EEG, our GED
implementation was effective in extracting the target component
maximally entrained to the rhythmic stimulus. Figure 3 provides
a quality check for our source separation by combining the
following three criteria at the group-level. The first, topography:
the grand-average activation map of the selected component
shows maximal activity in the left centroparietal cluster and in
the left temporal electrodes. Such distribution strongly suggests
the involvement of primary sensorimotor areas, given it is
contralateral to the effector (i.e., the right hand). The same
pattern was previously reported for movement-related SSEPs in
the context of overt synchronized behavior (Nozaradan et al.,
2015), and clearly differs from the frontocentral topography
typical of auditory cortical responses in absence of movement
(Nozaradan et al., 2012). Given our focus on sensorimotor
dynamics underlying overt behavior, our spatial filter was
constrained within the whole set of channels located behind the
frontocentral line. Second, the power spectrum: a single major
peak stands out at the metronome’s frequency, accompanied by
harmonics whose power approximately follows a 1/f distribution.
The dominance of the target frequency over the spectrum shows

that the extracted component is effectively fine-tuned to the
rhythmic stimulation. Third, the eigenspectrum: by sorting the
eigenvalues in descending order, it is evident how the first one
eigenvalue stands out over the rest of the spectrum. Such a
condition is particularly desirable when the goal is to reduce the
dimensionality of a multivariate dataset to one single component
that satisfies a given criterion. The eigenvector associated with
the highest eigenvalue could then be reliably used to weight the
electrodes average, and reduce the dimensionality of the dataset
to one entrained component.

Applying GED in the context of neural entrainment (Cohen
and Gulbinaite, 2017) is an established method of optimizing
source separation in this context, with avoidance of major
drawbacks of electrode selection. To elaborate, we chose this
approach instead of selecting a time series based on a single
electrode or on a small cluster of electrodes in order to avoid
subjective judgment to some degree. Despite this drawback,
electrode selection is a rather common practice in the SSEP
literature (Keitel et al., 2010; Andersen et al., 2011, 2012;
Kashiwase et al., 2012; Rossion et al., 2012). In addition, with
our spatial filter, we: (a) decrease the risk of attenuating the
response in some subjects due to individual variability and
(b) are not confounded by exposure to noise which might
selectively affect a single channel. Although it is true that
computing a non-weighted average over the whole scalp is
sometimes proposed as a practice to avoid selection bias (e.g.,
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FIGURE 4 | (A) Results of the Spearman’s correlation analysis between the behavioral outcome measures and stability index of all study participants. Data are
represented on the original scale. (B) Correlations between the ranks for the behavioral outcome measures and stability index of all study participants.

see Nozaradan et al., 2016), the entrained response would be
heavily attenuated by broadband components unrelated to the
task. On the other hand, a weighted average oriented by spectral
criteria would clearly overcome such issues. Most importantly,
our methodology of GED application was optimal for single-
trial analysis and provided us with a single time series whose
time-course and dynamics could be further analyzed. Such time
series represented the starting point of our pipeline towards the
computation of the stability index (see Figure 2). It should also be
noted that rhythmic motor acts such as finger-tapping (Moelants,
2002; McAuley, 2010) and walking (MacDougall and Moore,
2005) operate within the low delta frequency range (Morillon
et al., 2019), which implies that long trials are needed to measure
the dynamics of slower oscillatory components.

In order to validate our neural outcome measure of auditory-
motor coupling, we ran correlation analyses with a set of
behavioral measures of synchronization accuracy and stability
(Moumdjian et al., 2018) in the context of a finger-tapping task
to a metronome’s beats. The stability index exhibited moderate
negative correlations with the relative phase angles, the mean
asynchrony, and the resultant vector length. To explain our
results, we first provide an explanation of the pattern we observed
in the context of the stability of the frequency fluctuations, which
are used to quantify the stability index. We observed less stability
in the frequency fluctuations of the neural entrained component
when the finger-taps were further away and with a wider
distribution relative to the beats, as reported by the relative phase
angles and resultant vector length, respectively. Conversely, when
the finger taps were closer to and in anticipation of the beat,
with a narrow distribution, we observed that the entrained neural
component stabilized its frequency fluctuations. The results
confirmed the hypothesis that these frequency fluctuations, as

quantified by the stability index, correlated with the behavioral
outcome measures of entrainment.

With our results, we also observed that the stability index was
selectively correlated with measures of phase error correction
mechanisms, and not with those of period error correction.
This is consistent with the fact that the stability index was not
correlated to the inter-beat deviations—which is a measure for
quantifying tempo matching (Moumdjian et al., 2018). In turn,
tempo matching is an outcome which describes error correction
in a period. With the above explanations, our results are
suggestive that the stability index quantifies neural entrainment,
yet limited to corrections in phase. However, we do not rule out
the possibility that we did not find any significant correlation
due to the very low individual variability in inter-beat deviations,
which resulted in a small slope of the regression line. The
result indicates that participants were very accurate in matching
the period of the metronome over the whole duration of
the task.

The selectivity of these correlations further supports the
relevance of temporal dynamics at the micro-timing scale. By
picking up on the notion of ‘‘neural entrainment to the beat’’,
which is traditionally inferred from the Fourier coefficients of
a ‘‘static’’ spectrum, we developed it towards a phase-based
measure to make it sensitive to the temporal structure of the
stimulus (Rajendran and Schnupp, 2019) and to behavioral
dynamics. From our standpoint, in order to ‘‘entrain to the beat’’
a neural component should not only be tuned to the stimulus
frequency, but it should dynamically attune depending on the
ongoing entrained behavior. The stability index proposed in this
context shows how frequency fluctuates over time as a function
of the distance from in-phase synchronization (the phase angles
and asynchrony) and consistency of the established relative-
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phase during the course of the task (resultant vector length).
Previous work provided evidence on the correlation between
cortical entrainment and overt sensorimotor synchronization
(Nozaradan et al., 2016), recording brain activity by the means
of the EEG during a passive listening task and subsequently
performing the behavioral task. The authors detected entrained
cortical activity on the frontocentral cluster of electrodes where
auditory responses are typically detected, hypothesizing that
SSEPs amplitudes would predict behavioral measures of overt
entrainment. Interestingly enough, a dissociation emerged in the
correlations between their measure of neural entrainment and
behavioral accuracy, when compared to behavioral consistency.
Specifically, the amplitude of SSEPs was related to mean
asynchrony (accuracy) rather than to the resultant vector
length (consistency), suggesting that the two are supported
by distinct neural mechanisms when processing the beat of
an auditory rhythm. In the scenario we proposed, with the
goal of relating neural entrainment to the dynamics of overt
behavior, we identified a lateralized component plausibly related
to primary sensorimotor areas. The stability index computed
from such component was related to both behavioral accuracy
and consistency. Our finding is arguably not in contradiction
with previous evidence, but rather complementary.

One may argue that the correlation we found between
the stability index and the resultant vector length could be
spurious, a sort of epiphenomenon entirely explainable by
afferent proprioceptive feedback. Following this argument, stable
rhythmic behavior could produce steady responses in primary
somatosensory areas (Piitulainen et al., 2013; Bourguignon et al.,
2015). Our task cannot exclude the possibility that such afferent
components lead to a spurious correlation between the stability
index and resultant vector length, which quantifies behavioral
consistency. Nevertheless, such interpretation cannot explain
our crucial finding that the stability index also correlated with
behavioral accuracy. To elaborate, a more stable entrained
component was associated with smaller synchronization errors,
as quantified by measures of asynchrony and relative phase. In
this context, these are behavioral indicators of error correction.
Since we showed that a more stable entrained component
correlated with smaller error relative to the beat, we propose that
the stability index is not merely determined by proprioceptive
feedback. We thus argue that our results rather align with
evidence that motor cortices play a critical role in supporting
auditory perception and prediction (Fujioka et al., 2012; Morillon
and Baillet, 2017; Assaneo et al., 2021). In addition, within
the limits of our auditory-motor task, we pick up on the
notion of active sampling (Morillon et al., 2019), to propose
that entrainment dynamics driven by the motor system seem
to play an active role in the predictive mechanism of error
minimization underpinning auditory-motor coupling (Vuust
and Witek, 2014). However, with the current experimental
design, we cannot rule out that distinct motor, sensory and
cognitive processes were to some extent mixed in the entrained
component. This represents an important limitation of the
present study. A finer disentanglement of the neural processes
underlying entrainment should be addressed by future work,
with dedicated experimental designs.

With our work, we thus contributed methodologically to the
investigation of neural entrainment. Our method consists of
extracting the oscillatory component in the EEG signal which
is maximally entrained to a rhythmic auditory stimulus and
subsequently quantifying the stability of fluctuations over time.
The impact of this contribution has valuable prospects within the
domain of neurological rehabilitation. In previous work, we have
investigated motor and auditory entrainment in participants with
multiple sclerosis and healthy controls. Specifically, behavioral
time series were analyzed by means of detrended fluctuation
analysis (DFA; Moumdjian et al., 2020). Differences in gait
dynamics were attributed to the process of error-correction
minimization, which are required to dynamically interact with
continuous and discrete auditory structures (Moumdjian et al.,
2020) typically present in music and metronomes, respectively.
Although clinically relevant, complementing such studies with
neural outcome measures such as the stability index would
allow to explain the process of error-correction minimization
further, at the level of neural dynamics. Such a prospect has a
strong indication to optimize the individualized rehabilitation
procedure.

In conclusion, our approach can be used for better
understanding the dynamics of an entrained system over
time. While the stability index provides a global neural
outcome measure correlated with the overall synchronization
performance, the instantaneous frequency time series can offer a
more fine-grained picture of the dynamics of neural entrainment.
Neural and behavioral measurements can be complemented
within a comparative setting between healthy population and
neuropathological models, offering the possibility to dissociate
neural mechanisms based on a mapping of selective lesions.
Such neuropathological models can be recruited through studies
conducted on participants with neurological diseases, where
components of cognitive, motor or, perceptual functions can be
isolated. For instance, cerebellar lesions cover particular interest
given the role of the cerebellum in encoding the timing of
events at the micro-timing scale (Ivry et al., 1988; Ivry and
Keele, 1989; Ivry and Schlerf, 2008), and given that their neural
entrainment to auditory rhythms is selectively compromised
at faster tempi (Nozaradan et al., 2017). Respectively, this
unfolding of observations would expand the knowledge of
the complex dynamic interaction when entraining motor and
auditory systems to one another. In turn, it would pave ways
towards the development of state-of-the-art approaches within
the domain of neurological rehabilitation.
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SUPPLEMENTARY FIGURE 1 | Narrow-band filter kernel for GED. The figure
shows the wavelet kernel in the frequency domain, centered on the target

frequency of 1.65 Hz. In order to set the width of the Gaussian, we opted for a
filter that would allow some extent of fluctuations around the centered frequency,
without overlapping with the high-pass band filter (cut-off = 1 Hz). We found an
optimal trade-off by setting the Gaussian width at half-maximum at 0.3 Hz. It is
important to note that the correlations with the behavioral measures reported in
the present work are invariant to such parameters. However, one should be aware
that the scale of the stability index is inversely proportional to the width of the
narrow-band filter. This is due to the fact that a wider filter allows for wider
frequency fluctuations. Finally, the scale of the stability index is also affected by
the filter shape. It was previously proposed that symmetric plateau-shaped filters
should be preferred over a Gaussian when investigating frequency shifts, since
the latter is biased towards the center frequency (Cohen, 2014). However, we
found that the correlations are invariant when comparing plateau-shaped FIR and
Gaussian-shaped, as long as both are symmetrical. After verifying the invariance
of the results, we opted for a Gaussian filter for the sake of parsimony and
replicability: given that the center frequency is constrained by the rate of the
stimulation, the width is the only parameter to be defined by the
data analyst.

SUPPLEMENTARY FIGURE 2 | Component #2. As it can be evicted by the
right-most plot, the second eigenvalue detaches to some extent in the
eigenspectrum. We present here the activation map and the power spectrum
(normalized to signal-to-noise ratio) of the component associated with the second
eigenvalue. The spectral profile is clearly characterized by dominant peaks at
entrained frequency and harmonics, which is to be expected given the spectral
criterion adopted for the GED. It is noteworthy that the signal-to-noise ratio is

considerably lower as compared to the first component. Critically, no meaningful
pattern emerged from the topographical activation map.

SUPPLEMENTARY FIGURE 3 | Component #2 (correlations with behavioral
outcome measures). The stability index was computed from the second
component, and its correlations with the behavioral outcome measures were
tested. Correlations were considerably weaker than the ones for the component
associated with the highest eigenvalue, as quantified by the Spearman correlation
coefficients. Results are showed in the original scale and transformed to ranks.
This evidence suggests that the first component alone is related to neural
entrainment in the context of the experimental task. Acknowledging that we still
cannot completely rule out the merging of different neural processes across
components, the approach hereby proposed has proved to be valid in extracting
one single component related to auditory-motor coupling.
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