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Virtualization Overhead of Multithreading in X86
State of the Art & Remaining Challenges

Stijn Schildermans, Jianchen Shan, Kris Aerts, Jason Jackrel and Xiaoning Ding

Abstract—Despite great advancements in hardware-assisted virtualization of the x86 architecture, certain workloads still suffer
significant overhead. This work dissects said overhead in the context of multi-threading. We describe the state of the art, pinpoint
challenges and suggest improvements, aiming to provide a valuable reference to developers and users of virtualization systems alike.
We study the virtualization overhead of the PARSEC and SPLASH2X multithreaded benchmarks in a variety of scenarios using a
state-of-the-art system. Through controlled experiments, source code analysis and literature review, we quantify the virtualization
overhead multithreading still induces and link it to its root causes, after which we suggest possible mitigation strategies.
Multithreading still induces high virtualization overhead, mainly caused by synchronization, spinning at user level and NUMA
management. The overhead is diverse in nature and embodiment as it is a function of many system and workload properties.
System-level solutions are feasible, but often imply difficult trade-offs. Systematic workload optimization is a promising alternative.

Index Terms—Multi-threading, virtualization, overhead, performance, guidelines, classification.
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1 INTRODUCTION

V IRTUALIZATION is known to have many benefits, as
exemplified by the blooming popularity of cloud com-

puting [1]. However, these benefits come at a cost, mainly
in the form of efficiency and performance losses. Identifying
and mitigating said losses is a long-standing challenge for
researchers at all system layers [2], [3], [4], [5], [6]. Thanks
to these efforts, most virtualized workloads can presently
achieve near-native performance [7]. Some types of work-
loads however deviate from this trend. Prominent examples
of such workloads are multi-threaded applications [8]. Be-
cause deploying these applications in a virtualized setting
is becoming the norm in this era of cloud computing, HPC,
IoT and big data, we deem optimizing their performance in
this context paramount. With this work we aim to contribute
thereto by providing an overview of the state of the art re-
garding hardware-assisted virtualization of multithreading
in x86, identifying major outstanding issues and exploring
to what extent these can be addressed.

A major motivation for this work is our observation that
research regarding virtualization of computation-intensive
workloads is losing momentum. We speculate that con-
siderable progress in this field over the past decade and
the emergeance of containerization are main drivers of this
trend. We find both of these reasons unfounded. Virtualiza-
tion is still widely used in industry due to its distinct bene-
fits over containerization such as far fewer security risks and
increased flexibility [9]. Furthermore, this paper will show
that virtualization overhead is still far from eliminated in
the studied context, and that accepted solutions to some
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issues have much room for improvement. We thus aim to
reinvigorate research into hardware virtualization for x86,
in particular for multi-threaded applications.

We specifically target multi-threaded applications for 4
reasons. Firstly, literature lacks a systematic study regarding
the issues arising from virtualizing this application type, in
contrast to many others [10], [11], [12]. While studies related
to our goal are plentiful [13], [14], [15], their scope is lim-
ited to specific phenomena. Secondly, thread-coordination
with minimal VMM intervention is conceptually challeng-
ing and demands much research attention [8]. Thirdly,
multi-threaded applications are by nature very sensitive
to overhead. As we will show in §5.2, a small amount of
overhead may cause significant performance degradation.
Lastly, virtualization technology has advanced considerably
in recent years, addressing many classic problems affecting
multi-threaded workloads, such as lock-holder preemption
[16]. We aim to assess to what extent these advancements
are successful and which challenges remain.

1.1 Methods
The paper first formally defines virtualization overhead.
Based on this definition, we present a quantitative anal-
ysis of virtualization overhead for multi-threaded work-
loads based on controlled experiments using state-of-the-
art hardware-assisted x86 virtualization techniques. We use
common performance profiling tools to collect our results
and verify them through source code analysis and literature
review. Besides plainly describing the overhead, we provide
a deeper understanding thereof by linking it to its concep-
tual causes. Lastly, we reflect on promising directions for
future work that may mitigate said causes.

While we can not guarantee that all our findings are
universally applicable, we cover a wide variety of system
configurations and workloads to minimize the threats to va-
lidity inherent to empirical work such as this. Moreover, we
reflect on how our findings would translate to scenarios we
did not cover explicitly (e.g. other hardware/hypervisors).
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1.2 Main Findings & Contributions

• We propose a definition for virtualization overhead that
explicitly divides it into internal system effects and external
application effects. This allows overhead to be described
accurately and unambiguously.
• With the latest virtualization support, overhead imposed
on individual threads is low. For sequential applications,
overhead is mainly incurred by handling I/O.
• Virtualization overhead for multi-threaded applications
has been significantly reduced in recent years thanks to
various advancements in virtualization technology.
• Multi-threaded computations still suffer significant virtu-
alization overhead, especially when the system is overcom-
mitted. Thus, further improvements are desirable.
• For multi-threaded applications, there can be a large
divergence between internal virtualization overhead and
externally observed performance degradation when the
overhead is incurred on the critical path.
• Most virtualization overhead incurred by multi-threaded
applications is caused by interaction between threads, in
the form of data sharing (especially in NUMA systems)
and synchronization (especially spinning at user level and
blocking synchronization).
• Most multi-threaded workloads benefit from being con-
solidated using virtualization. Some even consume less
resources when consolidated.
• Abstraction of underlying NUMA architectures still poses
an issue for multi-threaded applications. Modern techniques
to optimize vCPU placement are still lacking.
• Remaining overhead is hard to tackle at the system level.
Application-level solutions are, however, promising and
understudied as of now.

2 BACKGROUND

2.1 Hardware-assisted Virtualization

Virtual machines (VMs) allow execution environments to re-
main identical when underlying implementations, systems,
or hardware change. VMs range from single-process (e.g.
JVM) to whole system VMs running a complete OS [17].

Most guest instructions are executed directly on the
hardware [18]. Privileged and sensitive operations must
however be handled differently because they can break
the virtualization barrier. Today, hardware-assisted virtual-
ization has become the dominant technique to implement
this in x86. This involves the CPU trapping to a dedicated
piece of software, a hypervisor (VMM) (e.g., Xen [19],
vSphere [20], and KVM [21]), when it detects a sensitive
operation. The VMM handles the traps and coordinates
VMs. Intel and AMD both implement this technology in
most of their CPUs (resp. VT-x and AMD-V [16], [22]).

Contrary to other methods, hardware-assisted virtual-
ization allows the guest to run in the CPU’s privilege
ring 0, allowing it to execute most privileged instructions
without costly traps to the hypervisor, which itself runs in a
dedicated VMX root mode, with full control over the system.
The CPU traps to root mode when the VM carries out a
sensitive operation, allowing the VMM to intervene. Such
traps are called VM exits. System administrators can control
to a large extent which operations trigger VM exits [23].

2.2 Virtualization Performance Issues

It is well-known that applications tend to show lower per-
formance when virtualized for various reasons. Below we
elaborate on the most important of these, as well as the
techniques already adopted to mitigate the issues:
• Multiple VMs often share hardware resources. Due to
inefficient resource management policies in the VMM or
unmanaged contention between VMs, applications may be
unnecessarily starved of resources such as CPU, cache or
memory. Many efforts have been made to improve this (e.g.
memory deduplication [24], Intel RDT [25]).
• At the VMM level, emulation of sensitive operations is still
a major cause of performance degradation for certain work-
loads. While some virtualization techniques (i.e. paravirtu-
alization) avoid this cost, doing so has other drawbacks such
as reduced flexibility [26].
• I/O operations, such as accessing I/O ports, DMA, and
interrupts, are all privileged and trapped. Additionally, for
high bandwidth I/O devices, extra data needs to be copied
to the VMM. Techniques mitigating this include paravirtu-
alization (e.g. paravirtualized drivers sharing I/O buffers
between VM and VMM) [27] and hardware assistance [11].
• In virtualized systems, guest memory accesses have to
be translated to VMM-managed machine addresses. Two
techniques are common for this, namely VMM-level shadow
page tables [28] and hardware-level nested paging [29]. Both
techniques are still in use, and cause (limited) overhead in
their own ways [26]. Neither of them is universally superior.
• Spinning synchronization is often used to coordinate
short critical sections in OS kernels. When the hardware is
overcommitted however, the VMM may deschedule a vCPU
holding a spin lock, causing the vCPUs waiting for that
lock to waste cycles. This is known as lock holder preemption
(LHP) [13]. Various related problems have been identified
(e.g. lock-waiter preemption [30]). Several approaches have
been proposed to mitigate such issues. Hardware extensions
that trigger a VM exit when a vCPU executes excessive
amounts of PAUSE instructions -indicating spinning- are
already widely adopted (Pause Loop Exiting (PLE) for Intel
[16] and Pause Filter (PF) for AMD [22]).
• VCPUs holding a blocking-based lock can also be desched-
uled by the VMM while other threads are waiting for it.
When a thread blocks on such a lock and the guest has
no more useful work to do, it will issue a HLT instruction,
triggering a VM exit and running the VMMs scheduler ex-
cessively. This is known as the blocked-waiter wakeup (BWW)
problem [15]. Some VMMs implement halt polling to help
mitigate this. When a VM exit due to HLT occurs, the VMM
will spin for some time before executing its scheduler or
halting the pCPU, hoping the vCPU is woken up by the
guest. If so, vCPU execution is immediately resumed.
• Usually the guest is unaware of the exact physical
hardware configuration. This can decrease e.g. cache and
memory performance. Particularly for NUMA systems this
is an issue, since NUMA-unaware scheduling can greatly
increase memory and synchronization latency [1]. Several
solutions to this problem have been developed, such as
NUMA-aware VMM schedulers [31], dedicated VMM-level
NUMA locality managers [32] and exposing the NUMA-
architecture to the guest [33].
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Fig. 1. Breakdown of potential virtualization effects and their causes.
The dotted box circles the scope of the paper.

3 DEFINING VIRTUALIZATION OVERHEAD

Thoroughly analyzing virtualization overhead requires un-
ambiguously defining it. Most literature only measures
performance degradation when executing an application
in a VM (e.g., the increase in wall-clock execution time).
However, we argue that the toll on the entire system should
be considered. Fig. 1 provides a breakdown of this toll.

Based on fig. 1, virtualization overhead consists of a
set of system effects, viewed internally from the host’s
perspective, which translate to a set of application effects,
viewed externally from the user’s perspective. These are not
necessarily correlated. For example, when a server is not
overloaded, I/O operations may be offloaded to redundant
cores, not slowing down the workloads in the VMs. We
argue that this ‘concealed’ cost is important for 2 reasons:
firstly, public cloud environments are evolving towards
charging consumers for CPU cycles used by their VMs [34],
rather than VM uptime (e.g. serverless environments [35]).
Secondly, ’concealed cost’ may become ’visible’ after all in
certain scenarios (e.g. under heavy server load). Below we
provide a formal definition of both effect classes from fig. 1.

3.1 System Effects
Any excess resource usage caused by virtualization (cycles,
memory, bandwidth,. . . ) is a system effect. However, we are
only interested in system effects due to multithreading. As
this is a purely computational concept, the main resource of
interest to us is the CPU. While other metrics such as mem-
ory usage may be important, from a pragmatic perspective
this is only an issue when they bottleneck the system. This
will however be reflected by increased CPU cycles. Thus,
we define the system effects of virtualizing multithreading
in terms of CPU cycles as reduced resource efficiency, δηr:
Let Cp(W,P (Sw)) be the CPU cycles used by workload W
on physical system P (Sw), with Sw all settings for P . Let
Cv(W,V (Sw), P (Sv)) be the system cycles used by W on a
virtual machine V (Sw) with the same settings, hosted on a system
P (Sv). Then δηr =

Cv(W,V (Sw),P (Sv))−Cp(W,P (Sw))
Cp(W,P (Sw)) .

Sv includes all system settings only visible to the VMM,
e.g. the VMM used, concurrent VMs, etc. Sw reflects all
settings observable within the (guest) OS, e.g. concurrent
applications, CPU count, etc. Note that it is almost im-
possible to guarantee Sv and Sw remain constant between
executions due to non-deterministic aspects of the system
(e.g. interrupts, background processes,. . . ). To reduce the
variance in Sv and Sw to negligible levels, experimental
results should always be averaged over many iterations.

3.2 Application Effects
Like system effects, application effects encompass different
metrics such as latency, throughput, etc. The main metric of
interest however is wall-clock execution time. Other metrics
indirectly translate thereto (e.g. reduced system throughput
increases execution time). Analogously to reduced resource
efficiency, we can thus define reduced temporal efficiency, δηt,
as the increased time needed to execute a workload in a
VM. One addition must be made though. Since wall-clock
time is measured externally and Sv may include temporally
multiplexing resources between V (Sw) and other tasks, we
must take the effective resources available to the VM into
account. We thus essentially separate the effects of resource
sharing from those of virtualization. Based on §3.1, we use
the amount of available CPU time as a proxy for resources
in general. This yields the following definition for δηt:

δηt =
tv(W,V (Sw),P (Sv))×γv−tp(W,P (Sw))×γp

tp(W,P (Sw))×γp
with tp and tv the real times for executing the workload
in resp. the physical and virtual environments and γp and
γv the ideal effective CPU count available to the workload
given Sw and Sv in each resp. environment.

4 EXPERIMENTAL SETUP

Below we describe the main experiments for this study. We
carefully designed these so that our findings are as general
as possible. Wherever this generality is not guaranteed -as is
often the case with empirical work- we reason on how our
results would translate to other prevalent contexts in §6.

4.1 System
The CPU is by far the most important hardware component
in hardware-assisted virtualization. Since Intel dominates
the corporate x86 server CPU market, with AMD having
a market share of only 8%, we focus on Intel VT-x for our
experiments [36]. However, results can be safely generalized
to AMD-v, since it is nearly identical to VT-x [16], [22]. To
our knowledge, no studies suggest a notable performance
difference in any regard between these technologies.

Concerning hypervisors, four players dominate with a
combined market share of over 95%: VMWare, Hyper-v,
Xen, and KVM [37]. Unfortunately, the most popular of
these -VMWare and Hyper-v- are closed source. This means
we can not verify empirical results by analyzing VMM
source code for these VMMs. We therefore limit our detailed
analysis to Xen (HVM) and KVM. Because previous studies
have shown that KVM is in general by a narrow margin
slower than Xen for CPU-bound workloads [38], we pick
KVM for our experiments in an effort to err on the side
of caution, minimizing the risk of our results being overly
optimistic in a generalized context.

For the guest OS we opt for Linux since it is by far the
most popular server OS, with the only noteworthy competi-
tor being Windows [39]. The latter is however closed-source,
making analysis of results again difficult. Moreover, we
intuitively expect the guest OS not to be a major contributor
to virtualization cost, which justifies only using 1 guest OS.

We create environments with 4, 8, 16, 32 and 64 CPUs.
To emulate P (Sw) from §3, we use taskset1 to limit the

1. https://linux.die.net/man/1/taskset

https://linux.die.net/man/1/taskset
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usable CPUs. To emulate V (Sw), we create VMs with said
vCPU counts and 64 GB of memory. The vCPUs were laid
out in a way preventing the vCPU stacking problem [40].

Concretely, the host system is a HPE ProLiant DL385
Gen10 server with 4 Intel Xeon Gold 6138 20-core proces-
sors and 256GB of memory. Hyperthreading was disabled,
as were C states deeper than C1 to prevent performance
degradation due to CPU power management [41]. Ubuntu
Server 18.04.2 (kernel 4.15) is the OS for both the host and
the guest, as it is the most recent version of one of the
most popular Linux distributions at the time of writing [42].
Because each CPU only has 20 cores, we spread the CPUs for
the 32- and 64-core environments equally over resp. 2 and
4 sockets. This allows us to study how virtualization cost is
influenced by NUMA architectures as an added benefit.

4.2 Workloads & Measurement
Since this study focuses on multithreading as a concept,
multithreaded, computation intensive benchmarks employ-
ing minimal I/O are a natural workload choice. We prefer
using a well-rounded benchmark suite over hand-picking
or devising arbitrary programs. We found that the PAR-
SEC 3.0 and SPLASH2X benchmark suites fit our require-
ments perfectly [43]. These suites contain 26 multithreaded,
computation-intensive workloads designed to cover a wide
range of real-world tasks ranging form games to scientific
computation, maximizing generalizability of results.

All benchmarks were compiled using pthreads and
run with their ’native’ inputs [43]. The level of parallelism
is set equal to the number of CPUs for each test. We
always pre-warmed the OS buffer cache to minimize I/O
operations. We take the average of 10 iterations as our result.
We use the perf2 profiling tool for all measurements.

4.3 Scenarios
Because certain forms of overhead only appear when multi-
ple VMs share resources [13], we conduct all experiments in
2 scenarios: undercommitted (UC) and overcommitted (OC). We
launch resp. 1 and 2 identical VMs running a benchmark in-
stance on the same pCPU set. By using identical workloads
we avoid unfair resource allocation, which is known to be an
issue for synchronization-heavy workloads [44]. When both
VMs demand all available resources, each will receive 50%
thereof. Thus, γv =

γp
2 . VMM cycles can also be split equally

between VMs, so thatCv = CV MM

2 +CVM =
Csys

2 . Note that
when the VMs would not be running identical workloads,
these measurements would be much more complicated.

Since in §3 P (Sw) ∼= V (Sw), Cp and tp refer to under-
committed native execution, even when Sv includes over-
committing the system. This is conceptually sound, since
multiplexing system resources between V (Sw) and other
tasks is opaque to the VM and thus a virtualization effect
from the perspective of the workload. On the other hand,
this intertwines the effects of virtualization and hardware
consolidation. To address this, we supplement the UC and
OC data sets discussed above with the data set ’overcom-
mitted base 2’ (OC2), which directly compares Cv and tv for
2 concurrent VMs each running one instance ofW to Cp and
tp when executing 2 concurrent instances of W on P (Sw).

2. https://man7.org/linux/man-pages/man1/perf.1.html
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Fig. 2. Box plots of virtualization overhead for the sequential versions of
all PARSEC and SPLASH2X workloads, aggregated for each scenario.

5 RESULTS

5.1 Sequential Applications
We first briefly analyze virtualization overhead for sequen-
tial applications to compare it to their multithreaded coun-
terparts. Fig. 2 shows the aggregate results for sequential
executions of all PARSEC and SPLASH2X workloads.

As fig. 2 shows, virtualization overhead has been mini-
mized for sequential workloads. On average, both δηr and
δηt are negligible. Some outliers can be observed however.
Detailed analysis reveals that these are attributable to I/O.
This is a well-known issue, as described in §2.2.

Generally, δηr > δηt in fig. 2. In the OC scenario, δηt is
even negative. We found that QEMU is responsible for this,
as it has to handle write-backs of newly generated data
(reads come from the pre-warmed OS buffer cache). This
consumes up to 20% of the CPU cycles. Because QEMU runs
on a separate thread in parallel with the VMs, this does not
increase δηt. On the contrary, this effect results in a negative
δηt in the OC scenario since a vCPU from the second VM
may run while the first is waiting for QEMU.

5.2 Multithreaded Applications
We collected virtualization overhead for multithreaded ap-
plications analogously to §5.1. Fig. 3 shows the results with
a separate set of bars for each vCPU count.

Fig. 3 shows that also for multithreaded applications,
δηt is limited in general. In the OC scenario, it is even
strongly negative; increasingly so as the vCPU count in-
creases. Firstly, this is caused by processing I/O in the
background, as described in §5.1. Secondly, the 2 instances
of the benchmark that share each pCPU can compensate
for each other’s idle time. When a vCPU starts to idle in
the UC scenario, the pCPU is also idle. In the OC scenario
however, a vCPU from the other VM can be scheduled, thus
increasing system throughput. This is confirmed by the OC2
data set, for which δηt is positive as in a native setting this
consolidating effect also occurs.

Fig. 3 also shows that multithreaded applications still
suffer high virtualization overhead compared to sequential
ones. Overhead tends to greatly increase with vCPU count,
indicating that mitigating it will only gain importance as
time goes on, since VMs tend to become ever larger in size.

https://man7.org/linux/man-pages/man1/perf.1.html
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Fig. 3. Box plots of metrics of interest for multi-threaded executions of all PARSEC and SPLASH2X workloads. Results are shown separately for
each vCPU count. Overcommitted results are measured in 2 ways, as described in §4. Results for all benchmarks are aggregated for each scenario.

However, we are pleased to find that great advancements
have been made in the past few years. For example, a study
from only 5 years ago found that the performance of Dedup
could be degraded by more than 500% when the system is
overcommitted [8], much more than any value in fig. 3.

When comparing figures 2 and 3, the variance between
benchmarks appears to be much greater for multithreaded
executions than for sequential ones. For some benchmarks
δηr is strangely negative, while for others it may be over
150%. To gain a deeper understanding of these results,
we provide a detailed breakdown of the multithreaded
executions in fig. 4, showing the average and maximum
δηt (4a) and δηr (4b) for each benchmark for all vCPU counts
combined with overlapping bars. Fig. 4b breaks each of the
overlapping bars down into 2 parts stacked on top of each
other: cycles spent in the guest and host, resp.

Fig. 4 provides several insights. Firstly, the OC2 data
set explains why δηr < 0 for some benchmarks in the
OC scenario (e.g. FFT, Radiosity, s.Raytrace). Namely, over-
committing has a positive effect on ηr in a native setting
as well. This is thus an effect of consolidation rather than
virtualization. The main causes are the following:

• Reduced lock contention: As the system is overcommit-
ted, the effective CPU utilization of individual benchmarks
is lower. As less threads are competing for the same spin
locks, less cycles are wasted spinning;
• NUMA management: When the system is overcommitted,
the scheduler can do a better job of balancing the workload
between different NUMA nodes, thus reducing memory
latency. This is discussed in detail in §6.1.
• Reduced idling: When a CPU runs out of work, the OS
performs several operations to prepare it to idle. We explain
this in detail in §6.2.1. When the system has more work, it is
less likely to start idling, thus eliminating these operations.

Lastly, δηr and δηt may be wildly divergent for multi-
threaded workloads in contrast to their sequential counter-
parts according to figures 2 and 3. To better understand this,
we define the overhead impact factor ω = 1+δηt

1+δηr
as a measure

of the correlation between system and application effects.
For multithreaded applications, the variance in ω (σω) is
very high. For example, for Bodytrack, UC ω ≈ 1.1, while
for Ocean CP, OC ω ≈ 0.6. This suggests that overhead may
vary in nature depending on the workload.

The main reason for the high σω in fig. 4 is that the
runtime of a multithreaded application is determined by
its critical path [45]. When δηr is located mostly on the
critical path, δηt increases drastically. Otherwise, δηr may
have little to no effect on δηt. To illustrate this, we collected
the cycles spent by each (v)CPU for Bodytrack and Ocean CP,
64 vCPUs, UC. Fig. 5 shows the distribution of the native
and virtualized cycles by vCPU ID, normalized to native.

Fig. 5 shows that system-level overhead is distributed
very differently between vCPUs for Bodytrack and Ocean
CP. None of the vCPUs show much overhead for Bodytrack,
except for 1. It is likely other vCPUs will at some point have
to wait for this overhead-heavy vCPU since it has so much
work, thus slowing down the entire application. For Ocean
CP, the distribution of extra work is much more egalitarian.
Because of this, many of the extra cycles are likely not part
of the critical path, yielding a much smaller ω.

6 VIRTUALIZATION OVERHEAD BREAKDOWN

The large variance in δηr , δηt and ω between benchmarks
in §5.2 suggests that multiple causes are responsible, war-
ranting detailed analysis. Because fig. 4 reveals patterns
in overhead profiles between benchmarks, we begin by
categorizing them based on said profiles. Since δηr and
δηt are not strongly correlated and δηt represents merely the
external symptoms of δηr , we focus only on the latter as
a guiding metric for this categorization. Some benchmarks
exhibit characteristics of several overhead profiles and were
therefore added to multiple categories.
• Negligible overhead (OH): Barnes, Ferret, FFT, FMM, Fre-
qmine, LU NCB, parsec.Raytrace, Radiosity, splash2x.Raytrace,
Swaptions, Water NSquared and Water Spatial.
• High guest OH: Blackscholes, Canneal, Fluidanimate, Ocean
CP, Ocean NCP and Radix.
• High host OH: Bodytrack, Dedup, Facesim, Vips and Volrend.
• High OC OH: LU CB, Streamcluster, Vips, Volrend, X264.
Below we discuss each of the categories defined above
in detail. Because figures 3 and 4 indicate that overhead
varies severely between VM sizes, we start each analysis by
breaking the overhead down for each VM size in the most
relevant scenario, after which we reason about the causes
and reinforce our conclusions with empirical evidence. We
carefully consider the generality of our findings.
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6.1 High Guest Overhead

Several benchmarks with high guest overhead display most
overhead in the UC scenario in fig. 4. While some show
higher OC overhead, the OC2 data is similar to UC, indi-
cating that even on physical systems, overcommitting adds
overhead. The increase in OC overhead is thus due to re-
source consolidation rather than virtualization. We therefore
conclude that analyzing the UC scenario is sufficient for this
category of benchmarks. Fig. 6 shows the results.
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Fig. 6. Breakdown of virtualization overhead for the benchmarks with
high guest overhead per studied vCPU count in the UC scenario.

In fig. 6, overhead is negligible for vCPU counts below
32, after which it increases enormously. Since from 32 vCPUs
we use multiple sockets, NUMA may be the culprit. Namely,
memory-intensive applications may often access data on
remote NUMA nodes. In a VM, the guest scheduler lacks
NUMA information, preventing it from optimizing locality
like it would natively. For computation-intensive workloads
like ours, cycles per instruction (CPI) can prove this hypoth-
esis by indicating memory latency [46], as shown in fig. 7.
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Fig. 7 verifies our intuition. Overhead is highest for the
benchmarks with the highest CPI, being the most memory-
intensive benchmarks. For native executions, CPI increases
slightly with CPU count. When virtualized, this increase is
much more pronounced, particularly for 64 vCPUs. Ocean
CP is the only exception. Detailed analysis shows that this
benchmark is bottlenecked by memory bandwidth. When
more CPU sockets are used, available bandwidth increases,
improving performance despite increased memory latency.

For all benchmarks in fig. 6, ω is low. The reason for this
is that performance-critical data tends to be accessed often
and thus cached. Only data that is rarely used is fetched
from main memory, which is usually input for worker
threads and therefore not directly on the critical path.

Abstraction of the underlying system is a core concept of
virtualization, implying that the above issue is independent
of the virtualization technology used. Rather, it depends on
the host system P (Sv). All popular virtualization platforms
are known to struggle with NUMA locality [4], [47].

6.2 High Host Overhead

Most benchmarks in this category suffer most in the UC
scenario. Those that do not (Vips and Volrend) are also
included in the ’high overcommitted overhead’ category. To
avoid duplicate results, we only break down the overhead
in detail for the UC scenario here. Fig. 8 shows the results.

Fig. 8 is interesting. δηr rises until 32 vCPUs, but drops
severely at 64. δηt however keeps rising for all benchmarks
except Vips. ω thus varies greatly between benchmarks
and vCPU counts. It is obvious that a deeper analysis is
necessary. Since any host operations are preceded by a VM
exit in hardware-assisted virtualization, we break down the
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host-level CPU cycles by VM exit reason in fig. 9. We show
both the UC and OC scenarios to include meaningful results
for Vips and Volrend.

Fig. 9 explains the variance in ω observed in fig. 8.
The strange pattern for δηr is exclusively attributable to
scheduling. When scheduling cycles are ignored in fig. 8,
one observes a consistent, high ω. This makes sense, since in
the UC scenario, VMM-level scheduling only occurs when
the VM voluntarily yields the vCPU. Therefore, host-level
scheduling is rarely on the critical path. Most other VM
exits are caused by the VM performing sensitive operations.
Many of these are by nature highly likely to be on the critical
path, thus yielding a high ω. Below, we discuss fig. 9 in
detail in terms of the high-level overhead causes.

6.2.1 Blocking Synchronization
Blocking synchronization is prevalent in multithreaded ap-
plications. VMM intervention is usually not necessary in this
process, as it is mostly implemented in user space. There are
however 3 exceptions to this rule:
• When a thread blocks and no other work is available
for the (v)CPU, the OS executes the HLT instruction. This
generates a VM exit. The VMM then usually schedules
another vCPU, if available. Because scheduling is expensive,
KVM implements an optimization called halt polling [48]:
The host first polls for a dynamically determined amount
of time before scheduling. If the vCPU is woken up by the
guest kernel during this time, it is immediately rescheduled.
• When a contended lock is released, usually one waiting
thread is woken up. If there are any idle CPUs, the kernel
sends one of them a RESCHEDULE inter-processor interrupt
(IPI). On the receiving (v)CPU, the scheduler is invoked and
the newly awoken thread is run [44]. Sending an IPI requires
writing to the ICR MSR, which triggers a VM exit.
• Linux updates the global system time through the scheduler
tick: periodic per-CPU timer interrupts driven by the CPU’s
time stamp counter (TSC) (250 Hz for Ubuntu 18.04). When
a thread blocks and no runnable tasks are available for
the (v)CPU, an idle governor runs to predict heuristically
how long the CPU will likely be idle. If the predicted idle
time is sufficiently long, the idle governor reduces the tick
frequency to 1 Hz for that CPU. When the CPU wakes up
again, the original tick frequency is restored [31]. This is
called tickless kernel mode and yields energy savings of up
to 70% [49]. However, altering the tick frequency requires
writing to the TSC_DEADLINE MSR, inducing a VM exit.
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All the above causes are correlated. When a thread blocks
and there are no other runnable tasks for the vCPU, the
guest usually disables its scheduler tick and halts it, result-
ing in 2 VM exits. When the thread is woken up again, 2
more VM exits follow for sending a RESCHEDULE IPI and re-
activating the scheduler tick. Thus, each blocking operation
results in up to 4 VM exits. Fig. 9 shows that each of these
operations can be costly. We were especially surprised to
find that TSC_DEADLINE MSR writes account for a δηr of
up to 10%, since tickless kernels have been described before
as having a positive effect on virtualization [50].

While 3 out of 4 VM exits associated to blocking
synchronization are caused by MSR writes, fig. 9 shows
that scheduling overhead still dominates. We found that
scheduling is almost always triggered by a HLT VM exit.
When halt polling is successful (i.e. the vCPU is woken up
before the polling ends and is immediately rescheduled),
the cost of handling this VM exit is limited. When it is un-
successful however (i.e. the polling interval expires and the
vCPU needs to be descheduled anyway), the cost becomes
very high. Because cycles spent on unsuccessful polling only
slow down the scheduling process, we consider them as
scheduling overhead as well in fig. 9.

Halt polling has 3 interesting implications for virtual-
ization overhead. Firstly, δηr is in general much higher for
32 vCPUs than for 64 in fig. 9. This is a consequence of
the heuristics KVM uses to manage the polling threshold.
If the poll was unsuccessful, KVM grows or shrinks the
threshold if the vCPU was blocked for resp. a short or
long time. [31]. As vCPU counts increase, so do contention,
average blocking time and the polling threshold. At 64
vCPUs however, the average blocking time is so long that
the polling threshold shrinks to 0. We confirmed this by
measuring the success rate of halt polling, which drops from
30% on average for 4 vCPUs, to close to 0% for 64 vCPUs.
Secondly, halt polling is largely responsible for the strange
evolution of ω in fig. 8. By design, halt polling expends
CPU cycles to improve performance, lowering ω ever more
as the polling threshold grows up to 32 vCPUs. When the
polling threshold shrinks back to 0 for 64 vCPUs, ω rises
drastically as δηr drops at the expense of δηt. Lastly, δηr is
higher in the UC scenario compared to OC in fig. 9. Contrary
to the UC scenario, polling can degrade system throughput
in the OC scenario, as other VMs may use the cycles spent
on polling to make progress. KVM solves this by disabling
polling altogether when the CPU has other runnable tasks
[31], reducing δηr in the OC scenario.

Halt polling overhead may vary between VMMs. In Xen
HVM for example, halt polling is not implemented. δηr will
thus be lower in the UC scenario for Xen than for KVM,
while δηt will be higher. In the OC scenario, scheduling
overhead for Xen will be comparable to KVM. On the other
hand, as the root cause of the TSC_DEADLINE MSR writes
lies in the guest OS, this overhead may vary between guests.
The induced VM exits are handled comparably by Xen and
KVM, as are IPIs. In terms of hardware, Intel and AMD offer
unique APIC virtualization extensions (resp. APICv [16] and
AVIC [22]). While implementation details differ, their effect
and performance are similar. Both eliminate the need for
VMM intervention to inject the IPI and acknowledge its
receipt, but still require a VM exit to write the ICR MSR.

6.2.2 Virtual Memory Management
Fig. 9 shows that Dedup and Vips spend a lot of cycles on
processing TLB shootdown IPIs. The TLB is a per-CPU cache
that stores page table entries (PTEs) [16]. TLB consistency
across different CPUs has to be maintained by the OS. When
a process changes a PTE, the OS sends a TLB shootdown IPI
to all other CPUs using the same virtual address space to
make them flush the altered entry from their TLBs [31]. This
induces a VM exit due to the ICR MSR being written.

The high-level cause of TLB shootdown IPIs is data
sharing between threads. The exact amount of such IPIs
is highly dependent on the application source code and
underlying system libraries. The glibc memory allocator can
in some cases perform excessive heap resizing operations
that induce these IPIs. For example, when an application
often allocates small amounts of memory at the top of
the heap and frees it a short while later, glibc will trim
the heap and return the pages to the OS, only to request
them again soon after. This induces many madvise and
mprotect system calls, which send the vast majority of TLB
shootdown IPIs observed in fig. 9 [5]. While there are other
causes of IPIs such as page migrations, we found them to be
insignificant for our workloads compared to heap resizing.

The direct virtualization overhead for sending a TLB
shootdown IPI is identical to that for rescheduling IPIs.
As this overhead is handled comparably across hardware
platforms and VMMs, similar performance can be expected
for AMD- or Xen-based systems.

6.2.3 Spinning at Kernel Level
Some years ago, spinning at kernel level was a serious issue
for overcommitted virtualized systems in the form of LHP
and related issues, as described in §2.2. Our experiments
however show that PLE is very effective at dealing with
this. We found that for our experiments, only Vips in the OC
scenario suffers from many PLE VM exits. While the over-
head caused by these exits themselves is low, they invoke
the scheduler, inducing significant scheduling overhead. As
Vips incurs negligible HLT and preemption timer VM exits
compared to the other workloads suffering high host-level
virtualization overhead, almost all the scheduling overhead
for Vips shown in fig. 9 can be attributed to PLE. Neverthe-
less, we consider this scheduling overhead acceptable, since
it is comparable to that for other benchmarks in the OC
scenario and the scheduler would otherwise be triggered
anyway by other mechanisms.

Despite our reassuring results, PLE is not a fundamental
solution, since it can only trigger a VM exit after some spin-
ning has already occurred. Because this spinning takes place
in the guest kernel, it is visible as guest-level overhead in
fig. 4. Overall however, we are pleased to note considerable
progress in dealing with LHP and related issues in recent
years. Only half a decade ago, δηt was over 500% for Dedup
on overcommitted systems, mainly due to LHP [8]. Thanks
to PLE, δηt ≈ −20% (OC) or δηt ≈ 50% (OC2).

AMD implements pause filter (PF) in its CPUs, which
is identical to Intel’s PLE [22]. Both solutions are treated
equally by KVM as well. Xen source code reveals that it
handles PLE/PF much like KVM. We thus conclude that
spinning at kernel level has been tackled effectively across
hardware and virtualization platforms.
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6.3 High Overcommitted Overhead
Naturally, we break down the overhead for this category in
the OC scenario. We choose the OC2 data set to eliminate the
effects of server consolidation, as we are purely interested in
the overhead itself. Fig. 10 shows the results.

The benchmarks in fig. 10 seem to consist of 2 subgroups:
those with resp. positive (LU CB, Vips, X264) and negative
(Streamcluster, Volrend) virtualization overhead. Note that
besides overcommitting overhead, Streamcluster suffers from
NUMA locality issues, distorting the results.

In an effort to understand the patterns in fig. 10, we
compare the callstack of the UC and OC executions of the
benchmarks in terms of CPU cycles. We only show the
64 vCPU variants, since fig. 10 indicates there is limited
variance between vCPU counts. Fig. 11 shows the results.

Fig. 11 shows that for subgroup 1 in fig. 10 the system
function smp_call_function_many is mainly responsi-
ble for the difference between UC and OC CPU time, while
for subgroup 2 some application-level functions are the
culprit. We discuss each group in detail below.

6.3.1 TLB Shootdown Preemption
smp_call_function_many is a system-level function
used to send TLB shootdown IPIs. In the OC scenario, these
IPIs thus become even more costly. Namely, the sending
vCPU must synchronize with the receiving vCPUs by means
of a spin lock before proceeding. When a receiving vCPU is
not running, the sender must wait until it is rescheduled,
which leads to excessive spinning. While PLE largely mit-
igates this, PLE itself is not cost-free (see §6.2.3). This also
explains the many PLE VM exits for Vips observed in fig. 9.
This is known as the TLB shootdown preemption problem [51].

6.3.2 User-Level Spinning
Streamcluster and Volrend show greatly increased CPU time
for particular application functions in the OC scenario. By
analyzing the source code of these functions, we found that
they implement their own spinning-based synchronization
at user level, rather than using kernel routines. Previous
research has shown that many applications make use of
similar primitives [52]. This leads to an LHP-like problem
at user level. PLE can not intervene here, as it relies on
the PAUSE instruction to work. User-level synchronization
primitives rarely compile down to this instruction. More-
over, PLE only works in kernel mode (CPL=0) [16].

We use Volrend as an example to illustrate the user-
level spinning problem, since it suffers the most from this
issue. When analyzing the source code of the Ray_Trace
function, which consumes approx. 10 times more cycles
in the OC scenario in fig. 11, we find that it utilizes the
following user-level spin-based barrier:

LOCK( Global−>CountLock ) ;
Global−>Counter − −;
UNLOCK( Global−>CountLock ) ;
while ( Global−>Counter ) ;

Listing 1. User level spin-based barrier in volrend.

By definition, user-level spinning is heavily dependent on
the application source code. Additionally, we found 2 factors
that influence the severity of user-level spinning:
• Increasing thread- and vCPU counts lead to more intensive
spinning synchronization, as shown in our experiments.
This problem will thus gain importance towards the future,
as VM sizes tend to grow.
• More frequent task switches increase the chance that
a thread holding a lock gets preempted, increasing the
severity of user-level spinning. Figures 4 and 10 prove this,
as Volrend shows high overhead for the OC data set, but
negative overhead for the OC2 data set. Firstly this indicates
that the overcommitted native execution is much slower
than the undercommitted one, meaning that user-level spin-
ning is also an issue when running natively. Secondly, the
overcommitted virtualized execution is faster than its native
counterpart because in each VM there is only one instance
of the benchmark, while natively 2 instances are run within
the same OS for the OC2 data set. As time slices are allocated
to vCPUs at a much larger granularity than to threads, it is
much less likely that a lock-holding thread is preempted in
a VM, thus reducing user-level spinning.
From fig. 4, it is clear that user-level spinning is an as of
yet unaddressed issue with potentially severe performance
implications in both native and virtualized contexts. On
the other hand, fig. 11 shows a decrease in kernel-level
spinning (native_queued_spin_lock_slowpath) and
blocking synchronization (pthread_mutex_trylock) for
Streamcluster, for reasons explained in §5.2. Combined with
the NUMA issues for this benchmark identified above,
this illustrates the complexity of quantifying overhead and
categorizing the benchmarks.

Since user-level spinning originates from the application,
it must be treated as a conceptual rather than an imple-
mentation issue from the VMM’s perspective. Therefore, all
VMMs and hardware are equally prone to this problem.
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7 MITIGATION

It is evident that multithreading still induces substantial
virtualization overhead stemming from various sources.
Conceptually, we can group these sources in 2 categories:
thread coordination and NUMA locality. The former can be
split further into blocking synchronization, spinning syn-
chronization and memory management. Below we highlight
the challenges to further reducing overhead for each of these
categories and discuss promising research directions.

7.1 Thread Coordination
7.1.1 Blocking Synchronization
Research efforts regarding overhead induced by blocking
synchronization mainly focus on vCPU scheduling. Cur-
rently, halt polling is already adopted in KVM, albeit seem-
ingly at a high cost (see §6.2.1). To clarify this perception,
we compared δηr and δηt from the experiments in fig. 8
to identical experiments with halt polling disabled. Fig. 12
shows the results. We omit the OC scenario since the impact
of halt polling is much smaller there, as discussed in §6.2.1.

Fig. 12 shows that halt polling is not very efficient.
While it reduces δηt by up to 14%, this comes at a great
cost in cycles. When performance is the only concern, this
is justifiable. However, in these days of efficiency being a
primary concern and cloud providers charging users by the
CPU-ms, such situations are becoming a rarity. Moreover,
halt polling is much less effective when the system is
overcommitted and/or VM sizes are large, indicating that
it is not a durable solution in heavily consolidated cloud
environments, especially towards the future.

The above issues are inherent to the polling concept. It is
very hard to balance performance and efficiency, especially
on the overcommitted systems where any cycles spent on
polling reduce throughput. The reluctance of Xen to adopt
halt polling underpins this. Therefore more intelligent solu-
tions are highly desirable. Existing research has attempted to
replace polling by computation migrated from other vCPUs,
but this introduces vCPU overloading as a side-effect [15].
A recent solution, vScale [53], can reduce such side-effects,
but requires substantial changes to the guest OS.

IPI-induced overhead has received much attention from
hardware manufacturers. APICv and AVIC reduce IPI-
induced overhead by 60%. Nevertheless, our results indicate
that this issue is still significant, especially since IPIs are
often on the critical path. Strict co-scheduling could solve

this problem since it would eliminate the need for intercept-
ing IPIs because whenever a guest CPU sends an IPI, the
receiving vCPU is guaranteed to be running on the intended
pCPU. However, co-scheduling has its own issues such as
CPU fragmentation [44].

Overhead related to management of the scheduler
tick can be swayed by tweaking the boot parameter
CONFIG_NO_HZ in Linux [49]. One can choose to never
disable the scheduler tick, only disable it on idling CPUs
(default), or disabling it on CPUs that have at most 1
runnable task. We found that never disabling the tick does
not improve performance accordingly. While we did find
a large reduction in writes to the TSC_DEADLINE MSR, the
writes to the ICR MSR increased drastically, since the sched-
uler will be much more likely to send RESCHEDULE IPIs
to idling cores when the tick was not disabled. Moreover,
on highly overcommitted systems this may lead to over-
whelming overhead, as the host must handle each guest’s
tick interrupts individually [50]. Disabling the tick for CPUs
that have at most one runnable task can be a solution for
some workloads, but for others such as dedup that have
many more threads than cores by design this merely offsets
the problem from the transition between 1 and 0 runnable
tasks to that between 2 and 1.

All the issues with blocking synchronization are caused
by discontinuous CPU availability to idle vCPUs. Efficiently
increasing CPU availability in system software must handle
difficult trade-offs (e.g., polling vs. blocking). System soft-
ware has no direct knowledge of the workload, and must
rely on heuristical approaches. Hardware solutions increase
the hardware contexts in a core to guarantee a hardware
context for each vCPU and ensure CPU availability without
reducing throughput. As full-fledged hardware solutions
are not readily available, enabling SMT can increase CPU
availability and serve as a mitigation.

Because system solutions are challenging, an alterna-
tive approach is desirable. Literature shows that one such
approach could be adopting a different application ar-
chitecture that focuses on data parallelism and eliminat-
ing dependencies between threads as much as possible.
Such application-level solutions can be highly effective for
synchronization-heavy workloads [5]. The obvious down-
side of this approach is that it can be labor-intensive. How-
ever, solutions aiding in this process exist. For example,
parallel patterns can abstract the implementation details of
multithreading from developers. The authors of [54] have
applied this technique to the PARSEC benchmark suite. We
profiled their implementation to asses its effectiveness in re-
ducing virtualization-sensitive synchronization operations.
Fig. 13 shows the results for all the PARSEC benchmarks
identified in §6.2.1 as having high synchronization over-
head, broken down per vCPU count in the UC scenario.
Comparable results are expected in the OC scenario.

Fig. 13 shows promising results. All synchronization op-
erations have been reduced by up to 70%. The improvement
tends to increase with vCPU count. One exception seems to
be the HLT operations for Dedup. However, profiling Dedup
in detail reveals that these operations are induced by I/O
rather than synchronization. Fig. 13 also suggests this, as
the RESCHEDULE IPIs are drastically reduced. This suggests
that application-level solutions indeed have great potential.
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Our results in §6.2.3 show that spinning in guest OS
kernels is no longer a major concern for virtualized mul-
tithreaded applications, largely thanks to PLE. In Linux,
this hardware mechanism is supplemented by PV-spinlocks,
further reducing LHP-like problems in many critical areas
[31].

On the other hand, user-level spinning remains a chal-
lenge. Apart from co-scheduling with its known issues,
addressing this issue at system level is very challenging, be-
cause programs may implement spinning in many different
ways. This makes detecting user-level spinning at runtime
without knowledge of application specifics prohibitively
expensive if not impossible. Because the problem originates
in user space, solutions at application level are naturally
highly appealing as such an approach allows tackling the
issue directly and precisely. Below we discuss a few options:

• Alternative synchronization primitives could be used in a
variety of ways. Firstly, spinning can manually be replaced
by blocking synchronization in application source code. We
explored this approach for volrend, finding that δηr and
δηt were reduced by resp. 60% and 25% in the OC, 64
vCPU scenario. These results are somewhat modest since
blocking synchronization is much more costly than spin-
ning and introduces new host-level overhead (see §6.2.1).
Alternatively, spin-then-block primitives which first spin
for a short, heuristically determined time, after which they
block can be used. Programming language APIs should
provide such abstractions. Complementarily, compilers and
interpreters could also be extended to detect basic user-level
spinning constructs and replace them with these spin-then-
block primitives.
• A solution exploiting PLE is possible by making user-level
spin locks compile down to the PAUSE instruction, either
through automated detection by the compiler/interpreter or
through the use of dedicated primitives and extending the
hardware so that PLE works at user level.
• A VMM-level solution could be to use pause exiting rather
than pause-loop exiting, which generates a VM exit on each
PAUSE instruction [16]. On such an exit, the VMM can
reschedule the vCPU immediately for a while until a thresh-
old is reached. If the vCPU keeps exiting, LHP is likely and
another vCPU can be scheduled. This principle is similar to
halt polling. While this approach may be more demanding
in terms of resources, it does not burden application devel-
opers and does not require hardware extensions.

7.1.2 Memory Management
The last sizeable remaining challenge regarding virtualizing
memory in x86 is TLB consistency. The core issue here is the
fact that in x86, the TLBs are populated by hardware but
-in contrast to other caches- have to be synchronized by the
OS. Because of this, the contents of each TLB are opaque to
the OS, leaving little room for optimization. Even in a native
context, this can have problematic performance implications
[55]. In VMs, TLB shootdown cost is even greater due to the
ICR MSR write VM exits associated to sending IPIs and TLB
shootdown preemption. Our results from §6.2.2 show that
despite recent hardware improvements (APICv/AVIC), TLB
shootdown overhead can still be significant. We envision
several possible mitigation strategies:
• Many alternative TLB designs have been proposed, e.g.
using a shared TLB or implementing various forms of TLB
synchronization in hardware [56]. These proposals could
easily be extended to work for virtualized systems since
modern TLBs contain a VM ID tag for each TLB entry [16].
• Strict co-scheduling could eliminate the need for VMM
handling of ICR writes as well as TLB shootdown preemp-
tion. Implementation and drawbacks are already discussed
in §7.1.1 in the context of scheduling IPIs.
• Since the root cause of most TLB shootdowns for
computation-intensive multithreaded workloads lies at ap-
plication level, altering source code is a viable option as
well. However, besides laborious, this is highly challenging
since memory allocators are very complex. Identification
and correction of problematic code without greatly compro-
mising memory efficiency is therefore not an easy task.
• Application memory allocators could be tweaked so that
they call system routines inducing IPIs much less often
at the inevitable expense of some memory efficiency. Es-
sentially, we argue that rising TLB shootdown cost due
to increasingly parallel and virtualized systems warrants
reconsidering the trade-off between memory efficiency and
performance from a memory allocator design perspective.
We consider this the most promising approach.

7.2 NUMA Locality
Several approaches already exist to deal with excessive
memory latency in VMs. Two methods are common: pass-
ing through the hardware NUMA architecture to the VM,
and using automated heuristical NUMA-optimization algo-
rithms at VMM level. The former method is available in ev-
ery major VMM [4]. The latter is integrated in most common
VMM and OS schedulers. Besides, one can use dedicated
daemons that advise the kernel on optimal memory locality.
Optimizing these automated techniques is the subject of
active research, independent of the VMM used [4], [47].

We assess the effectiveness of both NUMA-optimization
methods described above for the 64 vCPU, UC variant of
the benchmarks from figure 6. Since the former method
relies on the guest OS scheduler, identical performance can
be expected for any VMM. For the latter method, much
more variance between VMMs is possible, since each VMM
uses its own algorithm. However, results for 1 algorithm
may give some indication of how others will behave. We
pick numad3, which is a common dedicated NUMA local-

3. https://linux.die.net/man/8/numad

https://linux.die.net/man/8/numad
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Fig. 14. Memory locality normalized to native for varying NUMA man-
agement techniques applied to the benchmarks with high guest over-
head in the UC, 64 vCPU scenario.

ity management daemon for Linux/KVM. We analyze the
number of local and remote memory accesses using the tool
pcm-numa4. Fig. 14 shows the results, normalized to native.

As fig. 14 shows, memory locality is greatly reduced for
all benchmarks when run in a VM without optimizations.
Manual NUMA exposure mitigates this issue entirely. This
solution however reduces the potential for resource consol-
idation, since vCPUs can no longer be migrated between
sockets without compromising the advantages of passing
through the NUMA architecture to the guest. While numad
achieves even better locality than manual passthrough, its
performance is unpredictable. After analyzing δηr for the
benchmarks from fig. 14, we found that for Blackscholes,
Canneal and Radix, using numad reduces δηr, despite often
increasing memory accesses. For the other benchmarks how-
ever, an additional δηr of up to 45% is observed.

From fig. 14 it is unclear which NUMA-optimization
method is preferable, since their relative performance varies
greatly between benchmarks. We investigate this further by
analyzing the benchmark for which numad shows the worst
δηr, Ocean CP, in detail. Firstly, we found that numad itself
consumes many cycles. Secondly, Ocean CP is bottlenecked
by memory bandwidth, as noted in §6.1. Numad seems to
ignore this metric, only optimizing locality. Because more
threads are scheduled on the same socket, the bottleneck
magnifies. On the other hand, manual exposure is tedious
and limits flexibility regarding resource allocation and VM
migration. Thus, neither solution is universally superior.

We were surprised to find that NUMA-locality is still
such a severe issue in virtualized systems. The underlying
issue is dynamic scheduling of vCPUs. If we can guaran-
tee that a vCPU will always be scheduled on the same
NUMA node, the NUMA architecture can be automatically
exposed to the VM. The strict co-scheduling and SMT-
based approaches proposed in §7.1 could provide exactly
this guarantee. Alternatively, if improvements are made to
numad to take more metrics into account, it can be highly
effective as well. Lastly, [4] proposes extended paravirtu-
alization (XPV) (applied in Xen). This method alters the
guest OS so that it can dynamically change its NUMA
configuration through communication with the hypervisor.
While native performance can be achieved like this without
the flexibility restrictions of classic NUMA passthrough, it
requires changes to the guest kernel, limiting its potential.

4. https://github.com/opcm/pcm

8 THREATS TO VALIDITY

As this work is based on controlled experiments, it is em-
pirical in nature. Threats to validity are inherent to any such
endeavors. We aim to provide the reader with the correct
context in which to interpret our results by discussing the
main threats to validity for this study below:

• Firstly, any work measuring benchmark performance
is faced with non-determinism inherent to some system
components (e.g. variations in scheduling, external inter-
rupts,. . . ). Despite our best efforts as described in §4, we
found that a variance of approx. 5% is to be expected
in all measurement results. Particularly benchmarks that
suffer from NUMA locality issues are sensitive to such non-
deterministic performance fluctuations, since slight varia-
tions in scheduling heavily influence their overhead.
• Naturally, our measurement results are only valid for
our exact system configuration. Nevertheless, the identi-
fied high-level overhead causes are conceptual in nature,
regardless of system or workload specifics. Moreover, in
§6 we reasoned about how our findings would translate to
other platforms. In this way, this paper is to a large extent
implementation-agnostic, despite its empirical nature.
• While we are confident that we identified the vast majority
of remaining challenges within the scope of the paper, it
is impossible to guarantee this. Due to the many layers of
abstraction in virtualized systems and quasi endless variety
of workloads these systems may be tasked with, some issues
that did not emerge in our analysis might surface under very
specific circumstances.
• Software typically evolves rapidly. While we used the
newest version of Ubuntu when we started this study, by the
time we completed it many newer Linux/Ubuntu versions
have been released. While it is impossible to redo our entire
analysis every time a new kernel version is released, we
provide a strong indication that our results will be valid
for a long time to come by running the 64 vCPU variant of 1
benchmark from each category defined in §6 using the latest
stable Linux kernel on the host at the time of finishing this
project: 4.19.88. We chose the benchmarks Bodytrack, Ferret,
Ocean CP and X264 for this purpose.

We found that all tested benchmarks yield almost iden-
tical results on the new kernel compared to kernel 4.15,
with the exception of X264 in the overcommitted scenario.
We found that the overhead induced by TLB shootdown
preemption has disappeared. After analyzing the new ker-
nel’s source code, we found that in kernel 4.16 a patch
was implemented that mitigates this problem entirely by
paravirtualizing TLB shootdowns in Linux for KVM [57].
The guest only sends IPIs to vCPUs that are running. Other
vCPUs flush their TLB on re-scheduleding. Very recently, a
similar solution has been implemented for Xen [58].

Overall, we conclude that while some variance in the ex-
act results is to be expected, our findings are solid and
largely independent of variations in system settings or non-
deterministic factors. Since our test system sports all con-
temporary industry-standard enhancements to mitigate vir-
tualization overhead, practitioners are likely to experience
performance close to our test results for several more years
as any research advancements only slowly trickle down into
industry due to reliability and compatibility concerns.

https://github.com/opcm/pcm
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9 RELATED WORK

While virtualization overhead is a popular research topic,
most studies fail to provide deep insight into overhead
causes or their link to system and application effects; let
alone differentiate between the latter [2], [59], [60]. More
profound work tends to have a very narrow scope, e.g.
nested paging [61], NUMA locality [47] or I/O [62]. Never-
theless, these studies have pinpointed various major causes
of virtualization overhead, such as false cache sharing, extra
iTLB misses and poor I/O performance, resulting in various
hardware improvements being implemented [11], [63].

In the context of multithreading, existing studies have
identified two main drivers of virtualization overhead: in-
teraction between threads which often requires costly traps
to the VMM, e.g. for handling IPIs [5], [8], [15], [44], [51]
and the semantic gap between the VMM and guest OS,
which results in a variety of issues for particularly spinning
synchronization (e.g. LHP) [14], [64]. Due to huge advance-
ments in hardware and VMM design in recent years such as
PLE and halt polling however, many of these studies have
become inaccurate to the point of obsolescence.

Concerning the overcommitted scenario, literature has
shown performance isolation and fairness issues caused by
resource contention. Due to poor management of shared
resources such as cache space, memory bandwidth and
CPU time by the VMM, some virtualized applications may
be unfairly deprived of resources in favor of competing
workloads on the host [65], [66]. Various techniques such
as cache space partitioning and improved scheduling algo-
rithms have been developed to address this. These fairness
issues are not in the scope of our paper, because they are not
specific to virtualization, nor multithreaded applications.

10 CONCLUSION

Thanks to persistent efforts from academia and industry,
hardware-assisted x86 virtualization induces minimal over-
head for sequential computation-intensive workloads on
modern platforms. Unfortunately, this is not yet the case for
their multithreaded counterparts. Overhead may manifest
itself in many different ways. The perceived application
effects may differ greatly from the underlying impact on the
system. Both of these may vary greatly between workloads
and system configurations.

The main causes of the overhead are thread-coordination
and NUMA management. Ongoing efforts on these fronts
prove that both these issues are challenging to deal with
at system level. We propose that increased attention be
given to application-level solutions, especially since our first
exploratory steps in this direction yield promising results.

While this paper touches on many known issues -
notwithstanding some novel findings-, we are the first to
perform a broad systematic analysis of virtualization over-
head related to multithreading on modern systems. In this
way, we have provided a clear overview of the state of the
art, remaining challenges and the link between overhead
causes and effects. Especially considering the enormous
advances in virtualization technology in the last decade
which render most established related work obsolete, we
consider this study a valuable asset to the research and
system development communities alike.
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