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Abstract 

Objective: Polymorphisms of the fatty acid desaturase (FADS) gene cluster have been associated with obesity and 
its-related consequences. This cross-sectional study aimed to investigate whether the adherence to dietary non-
enzymatic antioxidant capacity (NEAC), reflecting the antioxidant potential of the whole diet, modifies the association 
of FADS2 rs174583 polymorphism with cardio-metabolic risk factors in obese adults.

Methods: The present study included 347 healthy obese adults (aged 20–50 years). Dietary NEAC was assessed by 
a validated food frequency questionnaire with 147 items and estimated through total radical-trapping antioxidant 
parameters (TRAP), oxygen radical absorbance capacity (ORAC), and ferric reducing ability of plasma (FRAP) with the 
use of published databases. FADS2 rs174583 polymorphism was characterized using PCR–RFLP. ANCOVA multivariate 
interaction model was used to analyze gene-diet interactions.

Results: after adjustment for the confounding variables (age, physical activity, SES and WC), this study showed 
significant interactions between rs174583 polymorphism and adherence to dietary ORAC on the serum cholesterol (P 

Interaction = 0.029), LDL-C (P Interaction = 0.025) and HDL-C levels (P Interaction = 0.049) among the male group; minor allele 
carriers who had the highest adherence to the NEAC (ORAC) showed a better metabolic profile (lower TG and LDL-C 
and higher HDL-C) (P < 0.05). Among women, the dietary ORAC-rs174583 interactions were statistically significant for 
the serum insulin concentration (P Interaction = 0.020), QUICKI (P Interaction = 0.023) and HOMA-IR (P Interaction = 0.017); the 
highest QUICKI and the lowest HOMA-IR and serum insulin levels were observed in the CC homozygote carriers with 
the moderate compliance with the dietary ORAC (P < 0.05). In addition, the dietary TRAP modified the association 
between FADS2 variant and change in LDL-C levels (P Interaction = 0.037); the homozygous wild-type (CC) women who 
placed in the top tertile of TRAP had significantly the lowest LDL-C levels than those in the second tertile (P < 0.05).

Conclusion: These data indicate that the FADS2 rs174583 polymorphism interacts with the dietary NEAC to influence 
cardio-metabolic risk factors in obese subjects. Replication in prospective cohort studies among other populations is 
required to confirm the results of our study.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  abbasalizad_m@yahoo.com

3 Drug Applied Research Center, Tabriz University of Medical Sciences, 
Attar-Neishabouri Ave, Golgasht St, Tabriz 5165665931, Iran
Full list of author information is available at the end of the article



Page 2 of 12Khodarahmi et al. BMC Endocrine Disorders          (2022) 22:167 

What is already known about this topic?
The role of fatty acid desaturase 2 genetic variants in 
promoting obesity and obesity-related disorders like 
insulin resistance and dyslipidemia is reported in pre-
vious studies. However, it is unknown that how dietary 
indices particularly dietary antioxidants can alleviate 
the role of these genetic variants in the obesity-related 
comorbidities.

What does this article add?
In the current work, for the first time, we evaluated the 
effects of dietary non-enzymatic antioxidant capacity 
(NEAC) on cardio-metabolic risk factors among different 
genotypes of the fatty acid desaturase 2 genetic variant in 
obese individuals to further highlight the role of dietary 
antioxidant indices in prevention of genetic susceptibility 
to obesity-associated disorders.

Introduction
Obesity, as a major global health problem, is increasing 
at an alarming rate worldwide [1]. It has been estimated 
that globally, more than 13% of the world’s adult popula-
tion are obese. Similarly, based on available national data, 
approximately 22% of Iranian adults were affected by obe-
sity in 2016 [2]. There is accumulating evidence showing 
that plasma fatty acids composition has significant effects 
on development of obesity-related non-communicable 
diseases [3]. On the other hand, both experimental and 
clinical studies have suggested that oxidative stress which 
is characterized by reduced antioxidant capacity and/or 
overproduction of reactive oxygen species (ROS) plays 
an important role in the development of obesity-related 
health outcomes [4].

Obesity is a multifactorial abnormality caused by both 
environmental and genetic factors and complex inter-
actions between them [5]. Diet, as a key environmental 
factor, can interact with genetic background to affect the 
susceptibility to plenty of diseases [6]. Several studies 
have provided evidence that intake of dietary compounds 
with antioxidant activity is inversely associated with 
oxidative stress–induced conditions such as obesity [7]. 
Recently, the concept of dietary total antioxidant capac-
ity (TAC) has been introduced to estimate the cumula-
tive effects of antioxidants in the overall diet [8]. Dietary 
non-enzymatic total antioxidant capacity (NEAC), also 
known as TAC, can be measured through different 
chemical assays: oxygen radical absorbance capacity 
(ORAC), ferric reducing ability of plasma (FRAP) and 

total radical-trapping antioxidant parameters (TRAP) 
[9]. Numerous studies have indicated that dietary NEAC 
values are inversely related to cardio-metabolic risk fac-
tors [10] and other diet-related non-communicable dis-
eases such as cardiovascular disease (CVD) [11], type 2 
diabetes (T2D) [12], and cancers [13]. Nevertheless, the 
current evidence with regard to the relationship between 
NEAC and health outcomes is far from conclusive [14]. 
In addition, research regarding the effects of dietary 
NEAC on health outcomes has mostly been carried out 
in the western countries [15] and limited information is 
available from the middle-eastern populations [16].

Interestingly, fatty acids status has been related to the 
risk of multiple diet-related chronic diseases [17] and, 
accordingly, the determinants of fatty acid metabo-
lism such as genetic variants in fatty acid desaturases 
(FADS) should be completely understood. Recently, 
genome wide association studies (GWAS) have indi-
cated that polymorphisms in the FADS gene cluster 
have a main effect on obesity and other metabolic dis-
eases [18, 19]. The FADS1 and FADS2 genes, located 
closely on the chromosome 11 (11q12–13.1), encode 
delta-5-desaturase (D5D) and delta-6-desaturase 
(D6D), respectively; the essential enzymes involved in 
the homeostasis of polyunsaturated fatty acids (PUFA) 
[20, 21]. Reports indicate that changes in the activ-
ity of D5D and D6D enzymes can lead to alteration in 
the profile of endogenous fatty acids and subsequently, 
development of non-communicable diseases, such as 
obesity, T2D, metabolic syndrome (MetS), and CVDs 
[22, 23]. A number of recent studies have revealed that 
the activities of these enzymes can be affected by sin-
gle‐nucleotide polymorphisms (SNPs) of FADS1 and 
FADS2 genes [24, 25]. However, the results of studies 
are not consistent enough to approve the outcomes 
of SNP association studies; this suggests that interac-
tions between genetic and environmental factors such 
as diet may be influential. On the other hand, a num-
ber of studies have demonstrated that oxidative stress 
is involved in the pathogenesis of psychiatric diseases 
which may cause development of obesity and its-related 
metabolic complications [26]. Therefore, a diet high in 
antioxidants may protect against oxidative stress and 
result in improvement of the mental health [27]. In 
other words, obesity-related consequences are affected 
by the interactions between psychological parameters, 
obesogenic environment such as unhealthy dietary 
intakes and sedentary lifestyle [28]. Hence, assessment 
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of gene-diet interactions is important as it helps to gen-
erate individualized effective dietary strategies [29]. So, 
we aimed to examine how dietary antioxidant capacity 
interacts with genetic variant of FADS2 (rs174583) in 
relation to changes in cardio-metabolic risk factors of 
obese adults.

Materials and methods
Participants
This cross-sectional study was conducted in Tabriz city, 
one of the major cities in the northwest of Iran, dur-
ing November 2017 to October 2018. Individuals were 
enrolled using convenience sampling method through 
announcements and posters placed in public areas of 
the city. Participants were included if they met the fol-
lowing criteria: good health, obesity (body mass index 
(BMI) ≥ 30) and ages of 20–50  years. At the beginning 
of the study, 400 participants were willing to participate 
in the study. The exclusion criteria were pregnancy, lac-
tation, menopause, a history of CVDs, T2D, cancer, 
renal disease, hypertension, hyperlipidemia and hepatic 
disorders or taking any medications and supplements 
which influence weight and variables studied such as 
loop diuretics, cortico-steroids, antidepressants, anti-
hypertensive agents and statins, any recent surgery such 
as bariatric, and daily energy intake outside the range of 
800–4200  kcal/day [30, 31]. Finally, all these exclusions 
left 347 subjects for analysis. To calculate the sample size, 
the association between dietary quality indices and obe-
sity was considered as a key dependent variable. For this 
purpose, with regard to the correlation coefficient (r) of 
0.25 [32], α = 0.05 and power of 80%, using G-power soft-
ware, the minimum sample size was estimated at 160. To 
perform sex-stratified analyses, the final sample size of 
340 was considered for our study. Written informed con-
sent was obtained from each participant before taking 
part in this study and the study protocol was approved by 
the ethics committee of the Tabriz University of Medical 
Sciences (registration code IR.TBZMED.REC.1400.889).

Definition of MetS
The presence of MetS was identified based on criteria 
established by the Iranian National Committee of Obe-
sity [33]. Participants with three or more of the following 
criteria were considered to have MetS: waist circumfer-
ence > 95  cm (men and women), high blood pressure 
(systolic blood pressure (SBP) ⩾130  mmHg or diastolic 
blood pressure (DBP) ⩾85  mmHg, fasting triglyceride 
(TG) level ⩾150  mg/dl, fasting high-density lipoprotein 
cholesterol (HDL-C) level less than 40  mg/dl (men) or 
50 mg/dl (women), and fasting blood sugar ⩾100 mg/dl.

Dietary intake and dietary non‑enzymatic antioxidant 
capacity assessment
Usual dietary intake during the previous year was 
assessed via face-to-face interviews using a valid and reli-
able 147-items semi-quantitative food-frequency ques-
tionnaire (FFQ) [34, 35]. All information was collected by 
trained dietitians. Participants were asked to report their 
frequency and amount of the intake of each food item 
during the last year based on a daily, weekly, monthly 
basis and then by using household measures, portion 
sizes of consumed foods were converted to gram/day. 
Daily intake of energy and nutrients collected through 
the FFQ were analyzed using Iranian Food Composition 
Table (FCT) [35] and complemented with the USDA FCT 
[36].

The values of NEAC, as a marker of dietary antioxidant 
potential, were calculated using the following indicators 
[9, 37, 38]: FRAP which measures the in vitro reduction 
of the ferric ion to ferrous ion in the presence of antioxi-
dants, TRAP which measures the chain-breaking anti-
oxidant potential to scavenge peroxyl radicals and ORAC 
that estimates the antioxidant capacity against peroxyl 
radicals by measuring the area under the curve of radical-
induced fluorescence decay. Since there was no available 
database to calculate the quantity of antioxidants in Ira-
nian foods, ORAC, FRAP and TRAP values assigned to 
each food item were obtained from previously published 
databases [37, 39, 40]. We assigned the NEAC for 100, 
59, and 57 food items in the FFQ by ORAC, FRAP, and 
TRAP, respectively. We calculated dietary NEAC with-
out the contribution of coffee since it remains unclear 
whether the main contributors to the in  vitro antioxi-
dant capacity of coffee; the Maillard products from the 
coffee roasting process, are absorbed efficiently due to 
their high molecular weight and if the same antioxidant 
activity is displayed in vivo [41]. To calculate total daily 
dietary NEAC for every participant, the frequency of 
consumption of each food item was multiplied by its cor-
responding NEAC values and, then, they were summed 
up. Subjects were categorized based on tertiles of ORAC, 
FRAP and TRAP.

Socio‑demographic, blood pressure and anthropometric 
measurements
General information such as age, gender, marital sta-
tus, smoking, medical history, and socioeconomic sta-
tus (SES) was collected using questionnaires which were 
administered to individuals by face-to-face interviews 
[42]. SES was determined through the following ques-
tions: educational status, occupational position, house 
ownership, and family size which were considered as 
individual indicators. In the current study, education was 
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measured as a categorical variable where participants 
were asked to specify their highest level of educational 
attainment. This variable was recorded on a 5-point scale 
ranging from 0 to 5 (illiterate: 0, less than diploma: 1, 
diploma and associate degree: 2, bachelors: 3, masters: 
4 and higher: 5). Female subjects’ occupational class was 
categorized into five groups (housewife, employee, stu-
dent, self-employed and others). Occupational status of 
male subjects was categorized as follow: unemployed: 
1, worker, farmer and rancher: 2, others: 3, employee: 4 
and self-employed: 5. Accordingly, participants were cat-
egorized as ≤ 3, 4–5, ≥ 6 in terms of family size. Besides, 
they were given scores 1 and 2 if they were tenant and 
landlord, respectively. Next, each participant received a 
score between zero and 15 for the whole SES score and, 
then, individuals were classified into 3 categories: low, 
middle, and high according to SES tertiles. A short ver-
sion of the International Physical Activity Questionnaire 
(IPAQ) was used to assess the physical activity level of 
participants [43]. Body weight of participants was meas-
ured in light clothing using a Seca scale (Seca, Ger-
many) with an accuracy of 0.1 kg. A tape measure with 
a precision of 0.1 cm was used to measure height while 
subjects were standing in the normal position without 
shoes. Participants’ body composition measurements 
were conducted through bioelectrical impedance analy-
sis (BIA) technology (Tanita, BC-418 MA, Tokyo, Japan). 
Waist circumference was obtained in the slimmest area 
while participants were at the end of a normal exhalation, 
using an unscratched tape and was recorded to the near-
est 0.1 cm. SBP and DBP were measured using a mercury 
sphygmomanometer twice, after 15 min rest in a sitting 
position and finally, the average of the two measurements 
was recorded.

Mental health and appetite assessments
The severity of the various mental disorders was deter-
mined using a validated self-administered the Depres-
sion, Anxiety and Stress Scale-21 Items (DASS-21) 
questionnaire [44, 45]. The Cronbach’s alpha (internal 
consistency) for the DASS questionnaire in Iranian popu-
lation has been reported as follows: 0.77 for depression, 
0.79 for anxiety, and 0.78 for stress [44]. This question-
naire consists of 21 items comprising 3 subscales of 7 
items which assess the emotional states of depression, 
anxiety and stress over the last week. Each item in this 
instrument was rated based on a Likert scale from 0 “did 
not apply to me at all” to 3 “applied to me very much or 
most of the time” through individual structured inter-
views with the subjects. The related items scores for 
each subscale were summed and multiplied by a fac-
tor 2 to give a total score that ranges from 0 to 42 and 
then participants were divided into 5 categories: normal, 

mild, moderate, severe and extremely severe, according 
to cut-off scores which have been proposed by Lovibond 
and Lovibond [46]. Higher subscale scores reflect more 
severe psychological disorders.

To assess participant’s appetite level, a 10-cm visual 
analog scale (VAS) questionnaire, with prior evidence of 
validity and reliability, was applied [47]. This tool includes 
different questions about feeling of hunger, satiation, 
fullness, prospective food consumption, thirst, and the 
desire to eat something sweet, salty, or fat. Participants 
were asked to complete this questionnaire by making a 
mark across a 100 mm horizontal line corresponding to 
their feelings and, subsequently, VAS score was deter-
mined by measuring the distance from the left side of the 
line to the mark. For the rest of information about tech-
nical methodology, see the supplementary data.

Statistical analysis
Normal distribution of data was checked by descriptive 
measures such as coefficients of skewness and kurtosis, 
mean and standard deviation [48]. Data were presented 
as means ± standard deviations for normally distributed 
quantitative variables, the median (25th and 75th per-
centile) for variables with skewed distributions and the 
frequency (%) for discrete variables. The comparison of 
categorical variables was performed by Chi-square test. 
Quantitative variables with normal and non-normal 
distribution were compared with Analysis of variance 
(ANOVA) and the Kruskal–Wallis tests, respectively. 
Sex-stratified multivariable multinomial logistic regres-
sion analysis was applied to test the associations between 
dietary NEAC and rs174583 polymorphism of FADS2 
gene. The potential interactions between FADS2 poly-
morphism (rs174583) and dietary NEAC on cardio-met-
abolic risk factors based on sex groups were examined 
by ANCOVA multivariate interaction model, after con-
trolling for confounding variables (age, physical activity, 
SES and WC). Since the interaction effects are difficult 
to explain, all significant interactions were depicted as 
graphs to help their interpretations. All statistical analy-
ses were conducted using the Statistical Package for 
Social Sciences (SPSS, Inc., Chicago, IL, version 21). A 
P-value less than 0.05 was considered to be statistically 
significant in all analyses.

Results
Study population characteristics
Briefly, after application of the exclusion criteria, 53 
potential subjects were excluded from the study and, 
consequently, 347 healthy obese adults (58.2% male, 
41.8% female) aged 20 to 50 years were recruited.
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Comparisons between FADS2 rs174583 genotypes
The general characteristics of participants based on 
FADS rs174583 genotypes are provided in Table  1. No 
significant differences were found regarding anthropo-
metric, socio-demographic, dietary and mental health 
parameters across FADS2 rs174583 genotypes; neither in 
men nor in women.

Associations of FADS2 rs174583 with dietary NEAC
Table  2 presents sex-stratified analysis for the relation-
ship between dietary NEAC and FADS rs174583 geno-
types. No statistically significant association was found 
between NEAC indicators and FADS2 polymorphism; 
neither in crude nor in the adjusted models among both 
female and male subjects.

Differences in distribution of MetS and means 
of cardio‑metabolic variables between FADS2 rs174583 
genotypes according to gender
Sex-stratified analysis for the association between labo-
ratory and clinical parameters and FADS rs174583 gen-
otypes are displayed in Table 3. As shown in this Table, 
male TT-genotype carriers had higher mean values of TG 
(P = 0.037) and AIP (P = 0.041) compared to other geno-
type categories (CT, CC), whereas no significant associa-
tions were revealed among female participants.

Sex‑stratified interaction analysis between dietary NEAC 
and FADS2 rs174583 in relation to cardio‑metabolic risk 
factors
We performed sex-stratified covariance analyses to ver-
ify whether adherence to the dietary NEAC modifies 
the association of the FADS2 rs174583 polymorphism 
with cardio-metabolic risk factors. Subsequently, sta-
tistically significant interactions are illustrated in Figs. 1 
and 2. Among male participants, after adjustment for 
confounding variables (age, physical activity, SES and 
WC), the interactions between rs174583 polymorphism 
and adherence to dietary ORAC on serum cholesterol (P 
Interaction = 0.029), LDL-C (P Interaction = 0.025) and HDL-C 
levels (P Interaction = 0.049) were statistically significant. In 
male CT-genotype carriers, the serum levels of choles-
terol (P = 0.004) and LDL-C (P = 0.001) in subjects who 
assigned to the highest tertile of ORAC were significantly 
lower than subjects in the first category. Additionally, 
male subjects with homozygous minor allele geno-
type had higher means of HDL-C when had the highest 
compliance with dietary ORAC (P = 0.029). From our 
analyses among women, the dietary ORAC-rs174583 
interactions were statistically significant for serum insu-
lin concentrations (P Interaction = 0.020), QUICKI (P Inter-

action = 0.023) and HOMA-IR (P Interaction = 0.017) even 

after adjustment for confounding variables. According to 
these interactions, in CC genotype group, serum insulin 
levels (P = 0.026) and HOMA-IR (P = 0.010) were sig-
nificantly lower in female participants who were assigned 
in the second tertile of dietary ORAC in comparison 
with the first category. In contrast, the highest QUICKI 
was observed in the female CC-genotype carriers who 
had moderate compliance with the dietary ORAC 
(P = 0.018). Moreover, we found a relevant interaction 
between adherence to the dietary FRAP in relation to 
serum HDL-C concentrations (P Interaction = 0.039) among 
women, whereas adjustment for potential confounders 
eliminated this significant interaction. In addition, the 
dietary TRAP modified the association between FADS2 
variant and change in LDL-C levels (P Interaction = 0.037); 
the homozygous wild-type (CC) women who placed 
in the top tertile of TRAP had significantly the lowest 
LDL-C levels than those in the second tertile (P = 0.018).

Discussion
To the best of our knowledge, this is the first study that 
has investigated the interactions between FADS2 gene 
polymorphism (rs174583) and dietary NEAC in relation 
to cardio-metabolic risk factors. We documented the 
interactions of FADS2 gene rs174583 SNP with dietary 
NEAC (ORAC), in changing serum lipid profiles among 
male subjects; minor allele carriers who had the highest 
adherence to the NEAC showed a better metabolic pro-
file (lower TG and LDL-C and higher HDL-C). Among 
female subjects, dietary ORAC intake modified the rela-
tionship of FADS2 variant with glycemic indices; the 
highest QUICKI and the lowest HOMA-IR and serum 
insulin levels were observed in the CC homozygote car-
riers with moderate compliance with the dietary ORAC. 
Additionally, being in the highest tertiels of TRAP could 
show beneficial effects in decreasing LDL-C in homozy-
gous females for the major allele (CC).

The frequency of T minor allele of FADS2 rs174583 
polymorphism was 36% which was lower than what had 
been previously reported in European (HapMap data-
base) and Taiwanese population [49]. Differences in study 
design, sample size, dietary habits, lifestyle and popula-
tion characteristics such as ethnicity may partly explain 
the discrepancies in allele frequencies among different 
studies.

Although no association was found between psychiat-
ric variables and rs174583 in the current research, it has 
been shown that minor allele of the FADS2 rs174583 has 
a positive relationship with perinatal depressive disorders 
risk among Canadian women [50]. Besides, it is gener-
ally supposed that abnormalities exist in the composition 
of fatty acids particularly ω-3 PUFAs in human tissues, 
play an important role in the pathogenesis of both mood 
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Table 1 Characteristics of participants according to the FADS2 rs174583 genotypes

Data are presented as mean (SD) or median (25 and 75 percentiles). aAnalysis of variance for continuous variables and χ2 test for categorical variables. WC Waist 
circumference, SES Socio-economic status, FM Fat mass, FFM Fat free mass, FADS Fatty acid desaturase, ORAC  Oxygen Radical Absorbance Capacity, FRAP Ferric 
Reducing Ability of Plasma, TRAP Total Radical-Trapping Antioxidant Parameter

Men Women

CC CT TT Pa CC CT TT Pa

Age (y) 39.06 (7.55) 37.03 (6.34) 41.20 (5.20) 0.168 37.42 (7.20) 37.43 (7.91) 36.50 (8.14) 0.961

Weight (kg) 103.16 (10.26) 101.43 (10.63) 101.59 (14.18) 0.783 88.79 (13.58) 88.64 (12.28) 94.82 (7.50) 0.517

WC (cm) 113.25 (7.11) 112.46 (7.82) 114.00 (10.17) 0.827 102.75 (9.27) 101.38 (9.51) 105.67 (9.18) 0.083

FM (kg) 29.61 (7.19) 28.63 (6.95) 31.16 (8.97) 0.597 38.50 (8.76) 37.90 (8.80) 41.73 (4.34) 0.590

FFM (kg) 73.61 (5.65) 72.82 (6.17) 70.43 (6.51) 0.340 50.30 (5.84) 50.76 (4.53) 53.08 (4.08) 0.473

Appetite 35.29 (10.21) 35.41 (10.24) 31.40 (7.73) 0.503 32.58 (8.95) 31.78 (8.06) 33.50 (8.34) 0.862

Physical activity 
level, (%)

0.921 0.225

 Low 40.0 33.3 30.0 62.5 57.1 100.0

 Moderate 25.7 38.5 40.0 16.7 31.0 0.0

 High 34.3 28.2 30.0 20.8 11.9 0.0

Marital status, 
(%)

0.844 0.569

 Married 82.9 82.1 80.0 79.2 90.5 83.3

 Single 17.1 17.9 20.0 20.8 9.5 16.7

SES, (%) 0.973 0.827

 Low 0.0 0.0 0.0 4.2 7.1 0.0

 Middle 38.2 25.6 50.0 83.3 76.2 83.3

 High 61.8 74.4 50.0 12.5 16.7 16.7

Stress, (%) 0.663 0.501

 Normal 48.6 38.5 40.0 29.2 33.3 50.0

 Mild 5.7 7.7 10.0 20.8 14.3 16.7

 Moderate 17.1 23.1 20.0 33.3 28.6 33.3

 Severe 17.1 15.4 20.0 12.5 23.8 0.0

 Extremely 
severe

11.4 15.4 10.0 4.2 0.0 0.0

Anxiety, (%) 0.666 0.250

 Normal 48.6 38.5 40.0 45.8 21.4 16.7

 Mild 5.8 7.6 10.0 12.5 11.9 16.7

 Moderate 17.1 23.1 20.0 16.7 31.0 50.0

 Severe 17.1 15.4 20.0 8.3 14.3 16.7

 Extremely-
severe

11.4 15.4 10.0 16.7 21.4 0.0

Depression, (%) 0.104 0.431

 Normal 45.7 53.8 80.0 29.2 35.7 50.0

 Mild 8.6 12.8 10.0 12.5 19.0 0.0

 Moderate 28.6 20.5 0.0 25.0 26.2 33.3

 Severe 8.6 7.7 0.0 25.0 7.1 0.0

 Extremely 
severe

8.6 5.1 10.0 8.3 11.9 16.7

ORAC (µmol TE/d) 16,177.95 
(12,781.03, 
23,482.19)

17,133.49 
(12,591.73, 
23,604.74)

19,642.65 
(9,936.24, 
37,167.90)

0.948 24,658.08 
(14,030.06, 
29,422.07)

20,017.15 
(16,051.33, 
29,259.28)

19,565.08 
(15,060.64, 
28,376.06)

0.788

FRAP (mmol 
Fe+2/d)

36.95 (16.49) 38.47 (18.69) 43.36 (16.95) 0.733 47.87 (20.43) 45.07 (18.84) 45.95 (10.61) 0.813

TRAP (mmol 
TE/d)

24.89 (15.86, 30.73) 23.32 (15.85, 38.23) 27.03 (15.54, 43.58) 0.816 31.89 (13.29) 31.42 (15.18) 29.27 (7.86) 0.868
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disorders and chronic diseases such as CVDs [51, 52]. In 
the present study, we documented significant differences 
in serum TG level and AIP between different genotypes; 
TT genotype group had a higher TG and AIP compared 
to other genotype categories, which were in accord-
ance with some previous studies [53, 54]. For instance, a 
recent publication by Mazoochian et al. reported a higher 
level of TG in minor allele homozygote group (TT) of 
rs174583 than CT heterozygote carriers with T2D [53]. 

Despite the fact that exact mechanisms contribute to the 
association between FADS genetic variants and disease 
development remain unknown; current evidence has sug-
gested that FADS genetic variations may impair desatu-
rases leading to changes in n-3/n-6 PUFA status which 
has been associated with the risk of several chronic dis-
eases [49, 55].

Generally, the present study showed that improving 
adherence to dietary NEAC (reflected in ORAC and 

Table 2 Odd’s ratio (OR) and confidence interval (CI) for the association between NEAC tertiles and FADS2 rs174583 genotypes

The multivariate multinomial logistic regression was used for estimation of ORs and confidence interval (CI). aAdjusted for age, physical activity and socio-economic 
status. bAdditionally adjusted for waist circumference

Men Women

CC CT TT CC CT TT

ORAC. Total score
 Crude 1(Ref.) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1(Ref.) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

 Model 1a 1(Ref.) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1(Ref.) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

 Model 2b 1(Ref.) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1(Ref.) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

FRAP. Total score
 Crude 1(Ref.) 0.99 (0.97–1.02) 0.98 (0.96–1.03) 1(Ref.) 1.01 (0.98–1.04) 1.02 (0.97–1.07)

 Model 1a 1(Ref.) 0.99 (0.97–1.01) 0.99 (0.96–1.04) 1(Ref.) 1.01 (0.98–1.04) 1.02 (0.97–1.08)

 Model 2b 1(Ref.) 0.99 (0.97–1.02) 1.00 (0.96–1.03) 1(Ref.) 1.01 (0.98–1.04) 1.02 (0.97–1.08)

TRAP. Total score
 Crude 1(Ref.) 1.00 (0.97- 1.03) 0.99 (0.93–1.04) 1(Ref.) 1.00 (0.97–1.04) 1.02 (0.96–1.08)

 Model 1a 1(Ref.) 1.00 (0.97–1.04) 0.98 (0.93–1.04) 1(Ref.) 1.01 (0.97–1.04) 1.03 (0.96–1.11)

 Model 2b 1(Ref.) 1.00 (0.97–1.04) 0.98 (0.93–1.04) 1(Ref.) 1.01 (0.97–1.05) 1.03 (0.96–1.11)

Table 3 Clinical and biochemical characteristics of study participants according to rs174583 genotypes

Data are presented as mean (SD) or median (25 and 75 percentiles). aAnalysis of variance for continuous variables and χ2 test for categorical variables. WC Waist 
circumference, HOMA-IR Homeostasis model assessment of insulin resistance, LDL-C Low density lipoprotein cholesterol, HDL High-density lipoprotein-cholesterol, 
SBP Systolic blood pressure, DBP Diastolic blood pressure, TG Triglyceride, QUICKI Quantitative insulin sensitivity check index, AIP Athrogenic index of plasma, MetS 
Metabolic syndrome

Men Women

CC CT TT Pa CC CT TT Pa

LDL‑C, (mg/dl) 116.78 (24.67) 120.63 (30.85) 114.36 (28.81) 0.755 113.64 (30.80) 118.61 (35.12) 133.27 (28.73) 0.435

HDL‑C, (mg/dl) 42.14 (5.35) 43.62 (7.60) 40.10 (7.65) 0.303 48.50 (11.03) 48.90 (7.78) 42.00 (13.74) 0.252

Cholesterol, 
(mg/dl)

184.20 (26.95) 189.67 (36.44) 189.90 (32.69) 0.744 182.79 (34.08) 188.48 (35.55) 198.50 (34.51) 0.591

TG, (mg/dl) 111.00 (81.00, 
153.00)

111.00 (88.00, 
140.00)

171.00 (132.50, 
247.00)

0.037 80.00 (68.75, 
128.00)

99.50 (73.75, 
130.25)

107.00 (86.75, 
152.00)

0.551

AIP 0.07 (0.23) 0.06 (0.23) 0.26 (0.21) 0.041 -0.07 (0.28) -0.06 (0.20) 0.08 (0.28) 0.369

Glucose, (mg/dl) 91.00 (85.00, 
97.00)

92.00 (87.00, 
97.00)

96.50 (87.00, 
109.25)

0.633 90.00 (86.00, 
94.00)

89.00 (85.00, 
97.25)

93.00 (82.00, 
109.50)

0.836

Insulin, U/mL 11.40 (9.00, 19.30) 13.20 (8.60, 24.80) 10.45 (5.58, 13.98) 0.144 17.45 (9.28, 27.25) 13.15 (8.55, 19.15) 20.10 (10.75, 
42.55)

0.265

HOMA‑IR 2.68 (2.00, 4.79) 3.22 (1.95, 5.30) 2.24 (1.09, 3.38) 0.246 3.89 (1.87, 6.25) 3.02 (1.94, 4.79) 4.52 (2.45, 10.93) 0.326

QUICKI 0.33 (0.03) 0.32 (0.03) 0.34 (0.03) 0.285 0.33 (0.04) 0.32 (0.03) 0.31 (0.04) 0.426

SBP (mmHg) 114.63 (23.04) 117.82 (12.45) 120.00 (14.14) 0.618 112.29 (13.87) 113.52 (13.32) 111.83 (7.76) 0.913

DBP (mmHg) 75.54 (15.88) 76.41 (11.12) 76.50 (9.14) 0.955 76.25 (10.40) 77.14 (12.44) 71.33 (7.66) 0.514

Mets (%) 41.2 38.2 20.6 0.303 43.8 50.0 6.2 0.478
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TRAP) can significantly attenuate the genetic associa-
tion with cardio-metabolic risk factors. These findings 
propose that male carriers of the minor allele (CT and 
TT) and female homozygous carriers of the major allele 
(CC) of FADS2 rs174583 appear to be protected against 
increase in metabolic risk factors when they consume 
antioxidant-rich foods. As mentioned above, some 
of the significant interactions were found to be sex-
specific. There is no clear mechanism to explain these 
gender-dependent heterogeneities; however, differ-
ence in regional depots of adipose tissue and hormonal 
status may be reasons for these sex-based differences 
[56]. Besides, it seems that the non-significant higher 

dietary NEAC score may help to describe, in part, these 
inconsistences. For example, men with TT genotype 
had a non-significant higher median of ORAC com-
pared with other genotypes (CT and CC). A wealth of 
evidence has accumulated about gender differences in 
dietary intakes and eating behavior; compared to men, 
women had healthier dietary pattern, lifestyle and food 
choices [57]. To date, there is no study in the literature 
regarding the interactions between FADS2 rs174583 
and dietary antioxidant intakes, as measured by over-
all NEAC scores, in relation to health outcomes with 
which we can directly compare our findings. Nonethe-
less, our results are supported by some observational 

Fig. 1 Interaction between FADS2 rs174583 and dietary ORAC on serum concentration of cholesterol (A), LDL-C (B) and HDL-C (C) among men. 
Interaction between FADS2 rs174583 and dietary ORAC on serum insulin level (D)
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studies in which a modulation by diet on the associa-
tion of the FADS1 and FADS2 genes with metabolic dis-
orders like MetS has been reported [55, 58]. In a recent 
cross-sectional genome wide association study (GWAS) 
on Korean population, Park et  al. revealed statistically 
significant interactions between total fat intake and 
the FADS1 rs174547 and haplotype of FADS1 rs174547 
and FADS2 rs2845573 on MetS risk and it seemed that 
intermediate fat intake protected carriers of the FADS1 
major alleles against the risk of MetS [58]. Additionally, 
these findings are consistent with our previous study 
in which good adherence to the dietary NEAC could 
attenuate the association of melanocortin 4 receptor 

(MC4R) gene polymorphism with some of metabolic 
risk factors [59]. Since the majority of studies which 
have documented a protective role for dietary NEAC 
against obesity [10] and other health outcomes such as 
MetS [60], cancers [13] and T2D [12], it is not surpris-
ing that high intakes of NEAC neutralize detrimental 
effects of greater genetic predisposition to cardio-met-
abolic risk factors in FADS2 minor allele carriers that 
this means these individuals are more likely to respond 
to high intakes of dietary antioxidants. These protective 
influences of antioxidant-rich foods on metabolic status 
may happen through increasing insulin sensitivity and 
thermogenesis, regulation of appetite and modification 

Fig. 2 Interaction between FADS2 rs174583 and dietary ORAC on QUICKI (E) and HOMA-IR among women (F). Interaction between FADS2 
rs174583 and dietary TRAP on serum LDL-C level among women (G) and all P-values of interactions were adjusted for age, WC, physical activity and 
socio-economic status. Interaction between FADS2 rs174583 and dietary FRAP on serum concentration of HDL-C among women in crude model 
(H). The bars indicate mean. Error bars: SE of means
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of lipids and carbohydrate metabolism [61]. Nonethe-
less, in the present study, no significant difference in 
mean of appetite score was found between rs174583 
genotypes and different tertiles of NEAC (data have 
not shown). It is worth noting that regulation of appe-
tite is a complex mechanism involving the connections 
between hypothalamus and the brainstem within the 
central nervous system (CNS), gastrointestinal tract 
and adipose tissue [62]. Thus, it didn’t appear that 
antioxidant-rich foods lonely have favorable effects on 
appetite in our study. However, it has been shown that 
high intake of foods rich in bioactive redox substances 
such as vegetables and fruits exert health benefits not 
only by protecting against oxidative damages, but 
also through providing magnesium, fiber, potassium, 
and other phytochemicals which may have synergetic 
effects on prevention of human diseases [63].

The present study had some potential limitations that 
should to be taken into account when interpreting the 
results. First, since it was a cross-sectional, causation 
cannot be inferred, while these results can provide the 
hypothesis that can then be assessed more rigorously 
via prospective cohort or other studies. Second, the rel-
atively small sample size of studied subjects was a seri-
ous and major limitation of the present research which 
may restrict the achievement of an adequate statistical 
power. Thus, our results need to be taken with caution 
and replicated in large longitudinal studies. Third, as 
obese adults tend to underreport their dietary intakes, 
it may cause misclassifications in dietary variables and 
this potential bias may consequently result in an under-
estimate of the true effect. For this reason, subjects 
with extreme dietary intake values were removed from 
the analyses. Forth, although we controlled carefully for 
several confounders in the analyses, residual unknown 
confounders that might distort the findings could not 
be fully eliminated. Fifth, to calculate NEAC, the inter-
national databases were used as there were no NEAC 
values for the local foods. It should be notice that due 
to different growing conditions and geographic loca-
tion, using antioxidant values from other countries may 
not be appropriate and these figures may not be the 
same for Iranian foods. Nevertheless, it has been shown 
that the assessment of dietary NEAC through FFQ is a 
valuable and valid measure in epidemiological studies 
[63, 64]. Sixth, the assessment of dietary NEAC does 
not take into account metabolism or antioxidant bioa-
vailability. Furthermore, other variants within the FADS 
gene cluster, as well as variants in other genes contrib-
ute to the pathogenesis of obesity and related- meta-
bolic phenotypes. Last, since this study was carried out 
among population from Tabriz city, the generalizability 
cannot be taken for granted.

Conclusion
Our findings for the first time suggest that the dietary 
NEAC intakes may modify the association of the genetic 
variation in FADS2 with cardio-metabolic risk factors. So, 
our results provide more evidence that recommendation of 
antioxidant-rich foods can be a suitable strategy for disease 
prevention and health promotion particularly in people 
with susceptible genotypes; however replication in large 
cohort of other population is required.
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