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A B S T R A C T   

The Population Reference Interval (PRI) refers to the range of outcomes that are expected in a healthy population 
for a clinical or a diagnostic measurement. It is widely used in daily clinical practice and is essential for assisting 
clinical decision-making in diagnostics and treatment. In this manuscript, we start from the observation that each 
healthy individual has its own range for a given variable, depending on personal biological traits. This Individual 
Reference Interval (IRI) can be calculated and be utilised in clinical practice, in combination with the PRI for 
improved decision making. Nonparametric estimation of IRIs would require quite long time series. To circumvent 
this problem, we propose methods based on quantile models in combination with penalised parameter estimation 
methods that allow for information-sharing among the subjects. Our approach considers the calculation of an IRI 
as a prediction problem rather than an estimation problem. We perform a simulation study designed to 
benchmark the methods under different assumptions. From the simulation study we conclude that the new 
methods are robust and provide empirical coverages close to the nominal level. Finally, we evaluate the methods 
on real-life data consisting of eleven clinical tests and metabolomics measurements from the VITO IAM Frontier 
study.   

1. Introduction 

In the early days of clinical practice diagnostic, (laboratory) tests 
were developed to be performed with basic equipment, resulting in 
rapid evaluation of the results, and the rendering of a diagnostic 
opinion. Choice of an appropriate test, its performance, and interpre-
tation entirely depended on the practitioner [1]. 

In today’s medical practice, clinical laboratory tests are routinely 
performed by certified clinical laboratories for examining the clinical, 
physiological or molecular state of a patient. Reference intervals (RI) are 
essential for the interpretation of clinical laboratory tests, assisting the 
professionals regarding diagnosis and decision making in patient care. 
Such intervals are calculated from a reference population of healthy 

individuals and will be referred as Population Reference Intervals (PRI) 
[2]. For any particular clinical marker, the specific PRI is compared with 
the laboratory test results from the patient; when the result is within the 
PRI a normal reading is declared. If the test results are outside the PRI 
boundaries, the context of the patient explaining the results and other 
tests are taken into account to determine a course of action. The prac-
titioners would also often look at the difference between the test results 
and the historical measurements; whether there is an unexpected change 
or a monotonic trend that may indicate abnormalities, even though the 
test results are still within the PRI. This type of trend assessment of the 
data should be done prior to the RI estimation but not within the area 
this study. 

Besides the PRI, clinical decision limits (CDLs) are also often 
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reported for some clinical tests. While the PRIs describe the distribution 
in an apparently healthy population and hence can assist in separating 
the healthy individuals from the unhealthy ones, the CDLs can define 
and associate a significantly higher risk of adverse outcome or an onset 
of a specific disease [3]. The CDL is composed by one clinical threshold, 
usually an upper limit, computed based on clinical outcome studies 
(prospective cohort studies, meta-analysis). The typical clinical tests 
that report the CDLs values include some lipid parameter: total choles-
terol, low-density lipoprotein cholesterol (LDL cholesterol), high- 
density lipoprotein cholesterol (HDL cholesterol), among others. Other 
clinical parameters with CDLs relate to diabetes intervention (hemo-
globin A1c (HbA1c), fasting glucose) [3]. Although clear differences 
exist between the PRIs and CDLs, and the International Federation of 
Clinical Chemistry and Laboratory Medicine (IFCC) also recommends to 
only report CDLs (when available), Following the reviewer’s sugestion 
the current clinical practice for most tests involves reporting the PRIs for 
the clinical interpretation. 

At present, the PRI estimation methods [4–6] typically require cross- 
sectional data, i.e. data that consist of one measurement for each subject 
in the sample. The latter is assumed to represent a population of healthy 
people. In general, the methods can be grouped into the parametric and 
the non-parametric methods. The former relies on distributional as-
sumptions, while the latter simply estimates the PRI bounds by the 
appropriate sample order statistics (i.e. the empirical quantiles). In 
practice, many PRIs are computed using the non-parametric methods as 
they are free of distributional assumptions, but such methods require 
sufficiently large samples. An example of this is the method to obtain 
PRIs by using the existing clinical and laboratory data from the elec-
tronic medical record, and by applying a posteriori approach it can 
extract the reference intervals associated with ICD9 codes diseases [7]. 
Combined with the bootstrap resampling technique, the non-parametric 
methods may provide a robust estimate and it fulfills the recommen-
dations of IFCC [8,9]. A study has been presented to compare these 
classical methods for PRI estimations on a large cross-sectional data, 
which showed that the non-parametric methods are more preferable [2]. 
These methods, however, are not appropriate when data comes as time- 
series as they do not adequately capture the within and between-subjects 
variability. 

Despite the widespread use of the PRI in daily clinical practice, it falls 
short in providing the individual context necessary to recognize diseases 
at an early stage. Precision health starts from the premise that each 
person has its individual specification of ”healthy”, resulting from in-
dividual biological traits. This hypothesis is also supported by the real- 
life data of healthy individuals, that each individual’s clinical test re-
sults and metabolomics measurements tend to cluster together, sepa-
rated from the peers, such as shown in Fig. 1. From this perspective, 

definition of personalised health would benefit from PRIs that are 
subject-specific. We refer to such intervals as Individual Reference In-
tervals (IRI). Such an interval would indicate what test results can be 
expected with e.g. a probability of 95%, when that person is in its 
healthy state. Since the number of available data from a single subject is 
typically small, the conventional methods for PRI calculation cannot be 
used for the IRI. Recently, Coşkun et al. [10] proposed a method that 
allows for the calculation of IRIs starting from time series data. For a 
100α% IRI for subject i, their lower and upper bounds are computed as 
yi ± z0.5+α/2TVyi, where yi is the sample mean of the time series data of 
subject i, z0.5+α/2 is the 100(0.5+α/2) percentile of a standard normal 
distribution (α is the nominal coverage probability τ2 − τ1) and TV is the 
square root of the total variation which they express as the sum of the 
squared coefficients of variation of the biological variation and the 
analytical imprecision. However, from this description, particularly 
from its symmetric construction and the use of the standard normal 
distribution, it is clear that it is a parametric method that relies on the 
normal distribution of the clinical test results. In this paper, we will 
propose nonparametric methods for the calculation of IRIs that do not 
rely on distributional assumptions, starting from rather short time-series 
from multiple subjects. We will approach the problem as a prediction 
problem. 

Three procedures will be described for constructing the IRIs, allow-
ing for both variation within and between subjects, and requiring time- 
series data of several subjects for model fitting. The first approach makes 
directly use of Linear Quantile Mixed Models (LQMM) and has been 
proposed recently [2], but it has not been properly evaluated yet. This 
method only allows for the separate estimation of the lower and upper 
bounds of the IRIs. Our second method is based on a new Joint Quantile 
Model (JQM) that simultaneously models the subject-specific lower and 
upper bounds. A penalised parameter estimation procedure is proposed, 
which allows for considering the subject-specific effects to be fixed and 
for the calculation of IRIs. For the calibration of the penalty parameters 
we take the perspective of predictive modelling. The last method is 
based on a quantile model that was originally proposed for longitudinal 
data [11] and for which the subject-specific effects are also fixed and 
estimated by a penalised estimation method. The optimisation of the 
penalty parameter makes use of the same procedure that we developed 
for the JQM method. A major difference with the JQM method is that it 
does not produce IRIs with subject-specific lengths. 

In Section 2, we describe the materials and the methods with cor-
responding model formulations. In Section 3, the methods are evaluated, 
both using simulated data as well as the real-life cohort study data. This 
cohort study data has been collected by The Flemish Institute for 
Technological Research (VITO) in a pilot time-series study in which, 
during 12 months, 30 healthy individuals donated blood, urine, and 
stool samples at monthly visits [12]. These samples were collected after 
an overnight fasting for at least eight hours. At bimonthly visits, both 
their metabolomics measurements and clinical tests were taken and 
assessed by accredited labs and appointed doctors. Finally, a conclusion 
is formulated in Section 4. 

Throughout the paper, we will use different terms such as: 1) clinical 
tests/clinical test results, the results of the medical test performed from 
blood and urine samples of participants, 2) metabolomics measurements, 
the results of the targeted NMR metabolomics performed using the 
Nightingale platform for the analysis of blood plasma, and 3) model 
parameters, any values that describe an aspect of a population and need 
to be estimated from the statistical models. 

2. Materials and methods 

2.1. VITO IAM frontier data 

The VITO IAM Frontier study contains several types of data, 
including clinical, omics (proteomics, metabo-lomics, genomics), and 

Fig. 1. The first two principal components of 11 clinical tests and metab-
olomics measurements in the IAM Frontier dataset. Different colors represent 
different individuals. Data from one individual are clustered together. 
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physical characteristics of 30 healthy individuals that were measured 
throughout a one year period. In this paper we focus on eleven clinical 
tests and metabolomics measurements, assessed by two independent 
accredited laboratories (see Section 4 in the Supplementary Document for 
descriptions). These include glucose, triglyceride, total cholesterol, LDL, 
HDL, and non-HDL cholesterol, albumin, creatinine, apolipoprotein A1, 
apolipoprotein B, and the ratio of apolipoprotein B to apolipoprotein A1. 
The similarity of clinical tests and corresponding metabolomics mea-
surements is very high since in principle they measure the same chem-
ical compound presents in the body. Although a reasonable difference 
was still observed as different technologies were used, but most of both 
results have the same interpretation w.r.t. the PRIs. Table 1 gives a 
general overview of the data and a similarity matrix are presented in 
Figure S15 in the Supplementary Document. 

2.2. Principal component analysis 

Initial data exploration was done to the IAM Frontier dataset using 
the Principal Component Analysis (PCA). Fig. 1 shows the first and the 
second principal components (PCs) implemented in the standardised 
values of eleven clinical tests and metabolomics measurements. These 
two PCs already explain 68% of the variance, where data from the same 
individual are clearly clustered together. This indicates that the healthy 
definition can differ from one individual to another, demonstrating the 
importance of calculating the IRI. 

2.3. Linear quantile mixed model 

2.3.1. Model description 
In this section we describe a method based on separately fitting two 

LQMMs [14,15] that only include a fixed intercept and a subject-specific 
random intercept to model the between-subject variability of the 
reference intervals. This is essentially not a new method; it has been 
proposed earlier [2] for IRI calculation, but it has not been properly 
evaluated yet. 

Consider the quantile function Q(τ) of a random variable Y. This is 
defined for all τ ∈ [0,1] as Q(τ) = inf{y ∈ R : F(y)⩾τ}. The index i is 
added to the quantile function, i.e. Qi(τ), to make it refer to the distri-
bution of the measurement Yi of subject i = 1,…,N in the dataset. The 
probabilities τ1 and τ2 > τ1 are chosen so as to make [Qi(τ1),Qi(τ2)] the 
IRI of subject i with nominal coverage probability τ2 − τ1. The quantile 
model for subject i then becomes 

Qi(τ1) = β01 + u1i (1)  

Qi(τ2) = β02 + u2i, (2)  

where β01, β02 ∈ R are the fixed intercepts, and u1i and u2i are the 
subject-specific random effects. In this paper we assume these random 
intercepts u1i and u2i to follow zero-mean normal distributions with 
variances ψu1 and ψu2, respectively. Moreover, the random intercepts 
are assumed to be independently distributed. For the estimation of the 
parameters, we follow the procedure of quantile regression models with 
only a random intercept [14,15] and use the implementation in the 
lqmm R package [16]. 

2.3.2. IRI for a new subject 
Suppose we have estimates of all β parameters and predictions of all 

uis (u1i and u2i) from all subjects i (i = 1,…,N). We now aim to compute 
the IRI of a new subject, say subject m for which some data is already 
available, but not used as part of the training data for fitting the quantile 
model. We can still use the estimates β̂01 and β̂02 as fixed effects, but we 
need predictions of the new subject-specific effects u1m and u2m. These 
predictions are obtained as the mean of the posterior distribution [um|ym,

β̂], where ym denotes the available historical data from the new subject 
m and β̂ denotes the estimated intercepts from model (1) and (2). This 
procedure is a modification of the estimated best linear predictor (eBLP) 
of the LQMM [16] and is explained in detail in Section 1 in the Supple-
mentary Document. We adapted this procedure so that we only use ym 
instead of the data used for fitting the quantile model Yi. 

2.4. Joint quantile model 

2.4.1. Model description 
In this section we introduce a Joint Quantile Model (JQM) which 

forms the basis for simultaneously estimating the bounds of the IRIs. 
Upon using the same notation as before, we define the JQM by the 
following three equations (i = 1,…,N; j = 1,…,ni): 

Qi(0.5) = β0 + ui (3)  

Qi(τ1) = β0 + ui + ziβ1 (4)  

Qi(τ2) = β0 + ui + ziβ2 (5)  

where β0 and the subject-specific effects ui and zi are shared among all 
models (hence the term joint quantile model). 

According to the model the median of the data of subject i is given by 
β0 + ui. Similar as with the LQMM in Section 2.3.1, with τ1 and τ2 > τ1 
such that τ1 + τ2 = 1, we can interpret the quantiles in (4) and (5) as the 
lower and the upper bounds of an IRI for subject i, with coverage 
probability τ2 − τ1. The length of the IRI is given by Qi(τ2) − Qi(τ1) =

Table 1 
Subject demographics and data description of 11 metabolomics measurements and clinical tests in the IAM Frontier study. The medians are presented together with the 
interquartile ranges (IQR) in parentheses.  

Characteristic (Median (IQR)) N  = 30 individuals, n  = 6 time points    

Clinical Metabolomics PRI (Lower, Upper bound) [13] 

Gender 15 males, 15 females    
Age (years) 51 (47, 54)    
Albumin (g/l) 46.00 (44.00, 48.00) 41.91 (40.12, 43.6) (35, 50) 
Apolipoprotein A1 (g/l) 1.70 (1.48, 1.91) 1.55 (1.34, 1.70) (0.80, 1.70) 
Apolipoprotein B (g/l) 0.96 (0.79, 1.08) 0.90 (0.77, 1.01) (0.25, 1.20) 
Apolipoprotein B/A1 (ratio) 0.57 (0.45, 0.70) 0.60 (0.46, 0.72)  
Creatinine (μmol/l) 78.23 (70.72, 91.05) 81.53 (72.61, 94.1) (53, 106) 
Glucose (mmol/l) 5.11 (4.77, 5.49) 5.19 (4.89, 5.64) (3.90, 6.10) 
LDL cholesterol (mmol/l) 3.20 (2.69, 3.68) 2.88 (2.34, 3.30) (0, 4.12) 
HDL cholesterol (mmol/l) 1.61 (1.22, 1.84) 1.51 (1.15, 1.73) (1.03, 1.55) 
non-HDL cholesterol (mmol/l) 3.81 (3.21, 4.27) 3.55 (3.06, 4.04) (0, 4.00) 
Total cholesterol (mmol/l) 5.34 (4.77, 5.86) 5 (4.50, 5.48) (0, 6.18) 
Triglycerides (mmol/l) 1.12 (0.78, 1.53) 1.20 (0.83, 1.61) (0.11, 2.15) 

*IQR, interquartile range; PRI, population reference interval; LDL, low-density lipoprotein; HDL, high-density lipoprotein.  
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zi(β2 − β1). Hence, this model does not only allow for subject-specific 
locations of the reference intervals (given by ui), but it also allows for 
subject-specific lengths. In this respect, the zis are individual scaling 
factors restricted to be non-negative (zi⩾0), and β0 +β1 and β0 +β2 are 
the lower and upper bounds of an IRI of a subject with ui = 0 and zi = 1. 

Since parameters are shared in three quantiles, these parameters will 
need to be estimated by considering the three models simultaneously. 
Several approaches for estimating the model parameters can be 
considered. For example, we could have assumed that the subject- 
specific uis and zis are random effects, distributed according to a user- 
specified distribution (e.g. normal distribution for ui and inverse 
gamma for zi). From this perspective, the uis act as random intercepts 
such as in the LQMM. However, the terms ziβ1 and ziβ2 with zi as a 
random effect, do not fit into the class of LQMMs. Moreover, in the 
LQMM approach the distribution of the random effects would need to be 
specified and therefore the method would enforce a distributional 
assumption which we want to avoid. While the LQMM literature often 
focuses on the inference of the model parameters, our objective is to 
construct IRIs that have the correct probabilistic interpretation when 
applied to new test results of subjects. From this perspective, our 
objective is closer related to predictive modelling than to inference. For 
these reasons, we do not follow the LQMM approach. See Section 3 of the 
Supplementary Document. Instead we consider the subject-specific uis and 
zis as fixed parameters and hence they will have to be estimated from the 
training data. With this large number of parameters, and knowing that 
the training data only contains short time series, we propose a penalised 
estimation procedure with ℓ2 penalty, in which the penalty parameters 
are calibrated to make the coverage of the IRIs close to the nominal 
coverage level τ2 − τ1. The details of this procedure are deferred to the 
next section. We refer to this JQM method with types of two subject- 
specific effects (ui and zi) estimated by a penalised procedure as the 
Penalised JQM2 (PJQM2). 

2.4.2. Parameter estimation 
We propose to estimate β0 as the median of all data. Further, we 

estimate βk, k = 1, 2 and the subject-specific effects by minimising the 
function 

M(β, u, z; λ) =
∑2

k=1

∑N

i=1

∑ni

j=1
ρτk

(yij − β0 − ui − ziβk)+

λu

∑N

i=1
u2

i + λz

∑N

i=1
(zi − 1)2

(6)  

in which ρτ(w) = w(τ − w⩽0) is the check function. The first term cor-
responds to the objective function for estimating parameters in linear 
quantile models, and the two last terms are ℓ2 penalty terms with user- 
specified penalty parameters λu, λz⩾0. The first penalty term forces the 
subject-specific effects ui to zero as λu increases (i.e. the subject-specific 
medians are shrunk towards one another), and the scaling factors zi are 
shrunk towards 1 as λz increases, bringing the lengths of the IRIs closer 
to one another. 

The function M in (6) can also be considered as a log-likelihood 
function of a LQMM. The penalty terms then arise if the ui and zi were 
considered as normal random effects with mean zero and one, respec-
tively, and the penalty parameters then correspond to the (inverse) 
variance parameters. However, the theory of LQMMs do not accom-
modate for terms of the form ziβk [14,15], and our focus is on prediction 
(in the sense of Section 3 of the Supplementary Document). Our motiva-
tion is twofold. First, our model specification requires restrictions on the 
parameters to make them identifiable. This is accomplished by the 
penalisation of the uis and zis. Second, the penalisation terms (or 
shrinkage) cause information sharing between subjects. This is neces-
sary, because in realistic settings the numbers of replicates per subject 
(ni) are typically quite small, too small to nonparametrically estimate e. 
g. the 2.5% and 97.5% quantiles of IRIs. The user-specified penalty 

parameters will be selected by means of a cross-validation procedure 
aiming at calibrating the IRIs at the nominal coverage probability τ2 − τ1 
(see further down). 

In order to minimise the objective function for a given λu and λz, and 
obtain the estimates of all model parameters, we propose an iterative 
procedure. This iterative procedure is explained more in detail in Sec-
tion 2 in the Supplementary Document. The procedure for selecting the 
penalty parameters is described in Section 2.4.4. First we need to show 
how IRIs are computed for new subjects, i.e. for a subject that did not 
contribute its data for the estimation of the parameters, but for which 
some historical data is available. 

2.4.3. IRI for a new subject 
Suppose we have estimates of all β parameters and of all uis and zis 

and that the penalty parameters λu and λv have been optimised as will be 
described in the next section. We now aim to compute the IRI of a new 
subject, say subject m. We can still use the estimates β̂0, β̂1 and β̂2, but 
we need estimates of the new subject-specific effects um and zm. Our 
method proceeds along the following steps:  

1. Set ẑm = 1 (as if the new subject is an average subject).  
2. Estimate um by minimising 

∑2

k=1

∑nm

j=1
ρτk

(ymj − β̂0 − um − ẑi β̂k)+ λuu2
m.

The solution is denoted by ûm  
3. Estimate zm by minimising 

∑2

k=1

∑nm

j=1
ρτk

(ymj − β̂0 − ûm − zm β̂k)+ λz(zm − 1)2
.

The solution is denoted by ẑm.  
4. Iterate over the two previous steps until convergence. 

The IRI of subject m is then given by 

[β̂0 + ûm + ẑm β̂1, β̂0 + ûm + ẑm β̂2].

Note that the IRI of a new subject can only be computed if the subject 
comes with at least a few data points. 

2.4.4. Selection of the penalty parameters 
The selection of penalty parameters proceeds along the lines of a 

leave-one-out cross validation scheme. We use two types of coverage 
probabilities (Time Empirical Coverage (TEC) and the Subject Empirical 
Coverage (SEC)) for assessing the performance of the algorithm and 
hence select the penalty parameters that result in the optimal coverage 
of intervals. In our context, an empirical coverage is an approximation of 
the probability that an interval covers an individual clinical test result. A 
good method gives a coverage close to the nominal level (e.g. 95%). In 
particular, the TEC corresponds to the coverage of a new measurement 
of subjects that have their historical data in the training data, and the 
SEC corresponds to the coverage of a new measurement of a new subject 
that did not contribute to the training data. These training data are used 
for estimating all parameters in the models. These two types of cover-
ages are highly relevant for our purposes, as they are directly related to 
the definition of reference intervals in terms of a nominal coverage, and 
to the practical use of such intervals. We explain this algorithm in detail 
in the following steps. Consider two sets of possible values for λu and λz, 
say Lu and Lz. For each λu ∈ Lu and each λz ∈ Lz, the steps are performed 
for each subject i = 1,…,N.  

1. Compute the Time Empirical Coverage (TEC) by splitting the dataset 
into: 
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Journal of Biomedical Informatics 131 (2022) 104111

5

• Dataset Dl: dataset with all data from the last clinical test result 
from all subjects.  

• All remaining data. This dataset is referred to as the training 
dataset, illustrated as the bold font face in the matrix below. 
⎛

⎜
⎜
⎜
⎜
⎝

y11 y21 … y(N− 1)1 yN1
y12 y22 … y(N− 1)2 yN2
⋮ ⋮ ⋮ ⋮ ⋮

y1(n− 1) y2(n− 1) … y(N− 1)(n− 1) yN(n− 1)
y1n y2n … y(N− 1)n yNn

⎞

⎟
⎟
⎟
⎟
⎠

Use the training data for estimating all parameters and compute 
the empirical coverage based on the observations in Dl. This is 
calculated as the relative frequency of observations in Dl that are 
contained in the IRIs of the corresponding subjects.  

2. For a given subject i, split the dataset into four datasets:  
• Dataset D1

i : dataset with all data from subject i, except for the last 
observation.  

• Dataset D1
li : The last observation of D1

i .  
• Dataset D2

i : dataset with all data from the last clinical test results of 
all subjects except for subject i, i.e. the observations ylnl , l ∕= i.  

• All remaining data. This dataset is referred to as the training 
dataset, illustrated as the bold font face in the matrix below, for i =

N. In this matrix, D1
li = yNn. 

⎛

⎜
⎜
⎜
⎜
⎝

y11 y21 … y(N− 1)1 yN1
y12 y22 … y(N− 1)2 yN2
⋮ ⋮ ⋮ ⋮ ⋮

y1(n− 1) y2(n− 1) … y(N− 1)(n− 1) yN(n− 1)
y1n y2n … y(N− 1)n yNn

⎞

⎟
⎟
⎟
⎟
⎠

Use the training data for estimating all parameters. Compute the 
empirical coverage based on D1

li , given subject i’s historical data 
D1

i . This is a binary indicator of whether D1
li is contained in the IRI 

for subject i (since subject i was not part of the training data, its IRI 
is calculated as outlined in Section 2.4.3. The relative frequency of 
this indicator over all subjects will be referred to as the Subject 
Empirical Coverage (SEC). 

Upon completion of steps 1 and 2 for all subjects i = 1, …,N, the 
optimal (λu, λz) is then selected as the parameter combination resulting 
in the smallest of the empirical coverages TEC and SEC (i.e. min(TEC, 
SEC)), that is at least as large as the nominal coverage level. 

2.5. Joint quantile model for IRIs with constant length 

For the analysis of longitudinal data, Koenker [11] proposed a joint 
quantile model that also includes subject-specific effects as fixed effects. 
The parameters are also estimated by means of a penalised estimation 
procedure, but using an ℓ1 penalty term instead of the ℓ2 penalty that we 
introduced in the previous section. In the original paper [11], the pen-
alty parameter was assumed fixed, but here we adopt our cross- 
validation method that we introduced for the PJQM2 method. 

The penalised Joint Quantile Model (JQM) of Koenker [11] also 
simultaneously models the IRI’s boundaries. We define the following 
models 

Qi(τ1) = β01 + ui (7)  

Qi(τ2) = β02 + ui, (8)  

where β01, β02 ∈ R are the fixed intercepts, and ui is the shared subject- 
specific effect. The same as before, the quantile model in (7) and (8) act 
as the lower and the upper bounds of an IRI for subject i. The length of 
the IRI is further given by Qi(τ2) − Qi(τ1) = β02 − β01. We now see that 

the model only gives subject-specific locations of IRIs, but the length is 
constant for all subjects. We further refer this method as the Penalised 
JQM with one subject-specific effect (PJQM1). 

The parameter estimates are obtained by minimising the following 
objective function [11] 

M(β, u; λ) =
∑2

k=1

∑N

i=1

∑ni

j=1
wkρτk

(yij − β0τk
− ui)+

λ
∑N

i=1
|ui|,

where λ⩾0 is the penalty parameter. An equal weight wk = 0.5 is 
assigned so that 

∑2
k=1wk = 1. We use the implementation in the rqpd R 

package [17] to obtain the estimates of β0τk 
and ui.For the selection of 

the penalty parameter λ and the IRI estimation of a new subject, we 
follow the same procedure as described in Sections 2.4.4 and 2.4.3, 
respectively. 

The summary of the proposed methods for constructing the IRIs is 
presented in Table 2. 

3. Results 

3.1. Simulated data 

We conducted a simulation study to evaluate the performance of IRI 
computed using LQMM, PJQM2, and PJQM1 methods. Data were 
generated with linear mixed models (LMM), 

yij = β0 + ui + εij i = 1,…,N, j = 1,…n,

with β0 fixed at 0 and the ui are random intercepts. We considered both a 
standard normal distribution and a scaled χ2

4 distribution for simulating 
the ui. The latter is scaled so that is has mean 0 and variance 1. Since 
both the LMM and the quantile models are location-shift models, β0 and 
the uis from the LMM correspond to the β0 and the uis of our quantile 
models. For the error terms we considered a normal distribution with 
mean zero and variance θ2

i . This variance was either set to a constant 
(θ2

i = 1), or it was sampled from an inverse gamma distribution with 
shape parameter a and scale parameter b. The latter generates data with 
subject-specific variances (heteroscedasticity) and hence subject- 
specific lengths of the IRI. Table S1 in the Supplementary Document 
gives a description of all simulation scenarios. The choice of a and b 
values were derived from several VITO IAM Frontier clinical tests and 
hence represents realistic settings. 

For each scenario, 100 Monte Carlo simulation runs were performed. 
For each simulation run, data for N+1 subjects with n+1 repeated 
measurements were simulated. The data for the first N subjects and their 
first n repeated measurements were used for estimating the model pa-
rameters. The data for the N + 1th subject and for the (n + 1)th repeated 
measurement were used for the estimation of the empirical coverages. 
The generation of data for an additional subject and for an additional 
time point corresponds to two possible applications in real life settings: 
1) when existing subjects have new measurements, and 2) when there is 
a new subject that was not included in the data used for the parameter 

Table 2 
Summary of the models and methods described in this paper.  

Method Model Estimation 
procedure 

Subject-specific 
effects 

IRI 
length 

LQMM 2 separate 
LQMMs 

least abs. dev. 
(LAD) 

ui random varying 

PJQM2 Joint quantile 
model 

LAD +
ℓ2-penalisation 

ui and zi fixed varying 

PJQM1 Joint quantile 
model 

LAD +
ℓ1-penalisation 

ui fixed constant  
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estimation. As before, we refer to the empirical coverage that corre-
sponds to the first case as the TEC, and to the second as the SEC. 

No competitor methods are included in this evaluation study, 
because to our knowledge there are no nonparametric competitors that 
can work with a longitudinal data structure with rather short time series. 
Although the method of Coşkun et al. [10] is applicable to this data 
structure, we did not include it here as it is a parametric method relying 
on normality. The interested reader, however, may find some simulation 
results in Section 5 in the Supplementary Document. From this simulation, 
we found that this method fails detecting an unexpected small test re-
sults in a data with a highly-skewed distribution: when there are small 
new measurements, the lower bound would always detect them as 
within the interval. 

Fig. 2 shows the TEC and SEC for all scenarios at 95% nominal 
coverage. A method with a good performance would have TEC and SEC 
approximately equal to this nominal coverage. For all numbers of 
repeated measurements n and numbers of subjects N, the TECs of the IRI 
computed by PJQM1 are consistently close to the nominal coverage 
level. The TECs of LQMM and PJQM2, on the other hand, are slightly 
smaller than the nominal coverage, but they increase as n becomes 
larger. We do not observe a strong effect of n on the SEC, although the 
SECs of PJQM2 and PJQM1 are often higher and closer to the nominal 
coverage level than LQMM. We also observe that the number of subjects 
and random effect distributions do not strongly affect the performance. 
The other TEC and SEC values at different nominal coverages can be 
consulted in Figures S1 and S2 in the Supplementary Document. 

The comparison of IRI lengths estimated by the three methods is 
shown in Fig. 3 for the scenario with a standard normal random effects 
N(0, 1) and normal error terms N(0, θi) where θi was sampled from an 
Inverse-Gamma(2,2.5). While PJQM2 gives varying lengths for different 
subjects, the PJQM1 only have one fixed length. From 20 simulated 

datasets, we observe that PJQM1 gives larger lengths than LQMM and 
PJQM2, and hence wider intervals (left and middle panels). However, 
when we compare them to LQMM, the PJQM2 lengths are in general 
larger (right panel). 

The percentage of observations covered in each method, computed 
based on the concept of TEC, presented in Table 3. The corresponding 
TECs are also presented in the last column. Here we see that PJQM1 has 
the closest TEC to the nominal level, as it also supported by its wider 
intervals. On the other hand, LQMM also gives similar TEC but with 
shorter lengths. In this case LQMM overcomes PJQM1. PJQM2 gives the 
lowest TEC and hence only 3.87% of the new observations are covered 
by this method (LQMM can cover 6.29%, but higher TEC). Since the 
TECs are different between PJQM2 and the other two methods, we 
therefore cannot directly compare their IRI lengths, although PJQM2 
lengths are larger than LQMMs. 

This finding is slightly different with the observation in Fig. 5, where 
LQMM lengths tend to be larger. This might be because for Fig. 3, we 
simulated the datasets from normal distribution with normal subject- 
specific variances; the same assumption that has been applied in 
LQMM. Another example of IRI lengths comparison from non-Gaussian 
data can be consulted in Figure S3 and Table S2 in the Supplementary 
Document. We also show how the IRI lengths can affect the coverage in 
Figure S4, for all scenarios implemented in the simulation study. Despite 
the closer coverages to the true nominal level, LQMM still have some 
drawbacks; the LQMM method does not always achieve convergence, 
mostly because of a non-positive definite variance-covariance matrix of 
the random effects (see Figure S6 in the Supplementary Document.). 

We have also evaluated the performance of the PJQM2 method by 
varying the shape and scale parameters a and b in the data generation, 
which is related to the subject-specific variances. The results are pre-
sented in Table 4. The number of subjects N, the number of repeated 

Fig. 2. Method performance of IRI computed using LQMM, PJQM2, and PJQM1 at the 95% nominal coverage. Data were generated from different error term and 
random effect distributions with either constant or subject-specific variance. The TEC and SEC were calculated for all scenarios of four different number of repeated 
measurements n in 30 and 50 subjects. 
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measurements within subjects n, and the nominal levels were fixed to 
30, 10, and 95%, respectively. We observe that there is no strong impact 
of different a and b on the method’s performance, except a slight in-
crease of SEC in larger b values. 

3.2. VITO IAM frontier data 

Since all data comes from healthy subjects, the data can be used to 
investigate the performance of the LQMM, PJQM2, and PJQM1 
methods. Results for the parametric method of Coşkun et al. [10] can be 

found in the Supplementary Document. As before, we will compute the 
empirical coverages (TEC and SEC) for each clinical test and metab-
olomics measurement, using the same procedure as described in Section 
2.4.4. In this way, the results presented in this section can be considered 
as a realistic, empirical assessment of the coverages. At the same time we 
use the data to illustrate the use of the IRIs. We have calculated the 95% 
IRI using the LQMM, PJQM2 and PJQM1 methods for all eleven clinical 
tests and metabolomics measurements, measured in five time-points 
from bimonthly visits. In Fig. 4, we show those IRIs of creatinine in 
the metabolomics dataset. The graph shows that the IRIs vary between 
subjects and that the lengths of the intervals are generally smaller for the 
IRIs than for the published PRI, especially for PJQM1 and PJQM2, 
suggesting that IRIs give more precise information for individuals than 
the PRI. The LQMM, on the other hand, gives larger IRIs where the 
lengths are similar to the published PRI. This large intervals are not 
favourable, as they are less precise. The LQMM method estimation as-
sumes a normal subject-specific effect, which may not be the case for this 
creatinine data, and hence overestimating the IRIs. 

These IRIs from all the three methods were estimated based on five 
historical data of subjects, and should be used for interpreting the future 
measurement(s) i.e. the sixth measurement, as indicated in the figure. 
All of the future measurements are inside the PRI, but when we examine 
subject 25, the new measurement is now outside the IRI but it is still 
within the published PRI. A similar case occurs for subject 4, when the 
new measurement is at the IRI’s borderline (from PJQM2) of the lower 
bound. In this case, the IRI can provide an early signal of potential ab-
normalities on creatinine level for this particular subject. Other exam-
ples of IRI implementation in the IAM Frontier metabolomics datasets 
can be consulted in Figure S5 and Figure S6 in the Supplementary 
Document. 

Fig. 4 also illustrates that the lengths of the PJQM2 IRIs of some 
subjects are mostly smaller than for LQMM, while they are constant for 
PJQM1. The distributions of these lengths are shown as boxplots in 
Fig. 5. These boxplots illustrate three situations. For albumin, creatinine, 
HDL cholesterol and triglycerides, the lengths of the PJQM2 intervals 
are generally smaller than for LQMM. These wider lengths of LQMM 
result in a very high coverage, as reported in Table 5. Moreover, for 
creatinine and triglycerides, the lengths of the LQMM intervals do not 
have enough variation; this was caused by the convergence problem in 
the parameter estimation. However, although the lengths of the PJQM2 
intervals are smaller, the method still can give coverages that are close to 
the nominal level. This supports the underlying idea of an IRI: it should 

Fig. 3. The IRI length comparison in 20 simulated datasets. The IRI lengths of PJQM1 were overall larger than the lengths of PJQM2. The graph also gives in-
formation about when the IRI of PJQM2 covers the new observations (similar to the concept of TEC) but PJQM1/LQMM does not, and vice versa. All data were 
generated in the scenario of N = 30 and n = 5 with subject-specific variances (εij ∼ N(0, θi) with θi ∼Inverse-Gamma(2, 2.5); ui ∼ N(0, 1)), at 95% nominal coverage. 

Table 3 
Confusion matrix of the percentage of observations covered by IRIs of one 
method, but not by the other. The IRIs were estimated in 20 simulated data 
generated in the scenario of N = 30 and n = 5 with subject-specific variances 
(εij ∼ N(0, θi) with θi ∼Inverse-Gamma(2, 2.5); ui ∼ N(0, 1)). Example: 3.87% of 
the new observations in 20 simulated data are covered by PJQM2, but not by 
LQMM. The last column indicates the average of TEC by each method, for which 
it was also used to compute the percentage of observations coverage.    

Not covered by TEC   

LQMM PJQM1 PJQM2 

Covered by LQMM  4.19% 6.29% 0.9145 
PJQM1 4.35%  3.71% 0.9161 
PJQM2 3.87% 1.13%  0.8903  

Table 4 
Performance of the PJQM2 method for different values of the parameters a and b 
of the inverse gamma distribution. The variation of the within-subject mea-
surements as well as the IRI’s lengths increase as the b parameter increases, 
while keeping the a parameter constant. All scenarios were evaluated at the 95% 
nominal coverage level in 30 subjects with 10 repeated measurements.  

a b TEC SEC 

2 0.62 0.91 0.88 
2 1.25 0.91 0.93 
2 2.50 0.91 0.96 
2.4 0.62 0.89 0.96 
2.4 1.25 0.91 0.96 
2.4 2.50 0.89 0.86 
2.8 0.62 0.89 0.91 
2.8 1.25 0.90 0.91 
2.8 2.50 0.91 0.97  
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provide an individual-specific interval with correct coverages while 
keeping the length as small as possible. The IRI can thus be more per-
sonalised, while still having the correct protection against false positive 
results. LDL cholesterol is an example for which the length distributions 
are about the same, but only the empirical coverages of the PJQM2 in-
tervals are close to the nominal level. Finally, for glucose, the lengths of 
PJQM2 are larger than those of LQMM, but PJQM2 still gives a greater 
TEC. 

The TEC and SEC for other metabolomics measurements and clinical 

tests are presented in Table 5. A TEC and SEC as small as 50% and 57% 
are observed for LQMM, whereas they are rather consistent at 83–97% 
for PJQM2. Unsurprisingly, PJQM1 gives high TECs. This can be 
explained by the larger IRI lengths produced by PJQM1, as shown in 
Fig. 5, and therefore the new measurements are more likely fall within 
the IRIs and hence higher coverages. 

We consider IRIs estimated using the PJQM2 method of creatinine 
and albumin computed from five historical data from the clinical and 
metabolomics datasets to discuss some of the features of the IRIs (Fig. 6). 

Fig. 4. The 95% IRIs computed using LQMM, PJQM2, and PJQM1 for all 30 subjects for creatinine in the VITO IAM Frontier metabolomics dataset. The gray dotted 
points indicate the historical data used for the IRI estimation and the black dotted points are the 6th (future) measurement. The light green transparent area indicates 
the published PRI [13]. The darker green transparent area is the ’average’ PJQM2 i.e. when ui = 0 and zi = 1 in PJQM2. The order of individuals is randomised to 
ensure confidentiality. 

Fig. 5. The IRI length distributions of 6 metabolomics measurements measured from the VITO IAM Frontier. The PJQM2 method generally gives lower IRI length 
with smaller variability. 
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As before, the IRIs show between subject variability. While for creati-
nine most of the IRIs fall completely within the PRI, some subjects have 
IRIs that have one or two bounds outside of the PRI (e.g. subject 14 and 
15). If it is indeed correct that all subjects in the IAM Frontier dataset are 
healthy, this is an illustration of a subject for whom large creatinine 
levels are normal. On the other hand, the new clinical test/measurement 
at the sixth time point is still within both the PRI and its IRI, hence the 
same conclusion. Had the new clinical test/measurement fallen outside 
the IRI but still within the PRI, e.g. in subject 13 and 25, this may 
perhaps be interpreted by the GP as an indication that this subject is at 
risk of impaired kidney function or kidney disease. 

Still in Fig. 6 left panel, here we can also clearly see the effect of 

information-sharing, which is a desirable consequence of the estimation 
method and which is needed to allow for the IRI calculation based on 
only a few observations per subject. In particular, several subjects have 
observations that show rather small variability (e.g. subjects 21 and 26). 
However, their IRIs are much wider than suggested by their data. Note 
that their observations are not evenly distributed within their IRIs. This 
is a consequence of the information-sharing: some other subjects have 
much larger creatinine concentrations (e.g. subjects 11 and 15) with 
larger variability, and this also affects the IRIs of the other subjects. This 
not a problematic feature, because over all subjects the coverage is 
controlled. Moreover, the IRIs can also be seen as a compromise between 
the PRI (population interpretation) and the genuine individual RI that 
would be estimated from only the subject’s data. 

The IRIs for albumin show again between-subject variability. Here 
we see that the albumin concentrations are in general higher in clinical 
data than in metabolomics, hence the IRIs are also vary between them. 
The effect of information sharing is also present, such as in subject 26 
and subject 30. 

4. Discussion and conclusion 

We have proposed three individual reference intervals estimation 
methods that are applicable for the personalised interpretation of clin-
ical tests and metabolomics measurements. Linear Quantile Mixed 
Models (LQMM) serve as a basis for the first method for constructing the 
IRI. The variability between the IRI motivates the need for subject- 
specific interpretation of reference intervals [2]. The Penalised Joint 
Quantile Model with two subject-specific effects (PJQM2) and its 
penalised estimation procedure do not require strong distributional as-
sumptions, in contrast to the LQMM method. Due to the joint modelling 
of the lower and upper quantiles, and the introduction of penalty pa-
rameters, the subject-specific parameters (that specify the position and 
the length of the IRI) are estimated using all available data. This can also 
be interpreted as an example of information sharing: even though each 
subject may only contribute a small number of measurements that is 
insufficient for the nonparametric estimation of a reference interval, 
information is shared among subjects, allowing for the estimation of the 
intervals. We have also described the Penalised Joint Quantile Model 
with one subject-specific effect (PJQM1), which also incorporates a 
penalty parameter and the same selection procedure as in the PJQM2 
method is applied. There is only one subject-specific parameter in the 

Table 5 
Benchmarking. SEC and TEC for the VITO IAM Frontier data for the 95% IRI. The 
values between 95% ± 2.5% are printed in bold face.   

LQMM PJQM2 PJQM1  

SEC TEC SEC TEC SEC TEC 

AlbuminC 1.000 1.000 0.867 0.867 0.600 1.000 
AlbuminM 1.000 1.000 0.967 0.867 0.567 0.933 
Apolipoprotein A1C 0.567 0.500 0.833 0.700 0.867 0.933 
Apolipoprotein A1M 0.633 0.767 0.833 0.833 0.833 0.933 
Apolipoprotein BC 0.900 0.567 0.933 0.900 0.967 0.933 
Apolipoprotein BM 0.900 0.933 0.933 0.967 0.900 1.000 
Ratio Apolipoprotein B/ 

A1C 
0.700 1.000 0.967 0.900 0.900 0.933 

Ratio Apolipoprotein B/ 
A1M 

0.900 0.967 0.967 0.900 0.900 0.967 

LDL cholesterolC 0.900 0.967 0.967 0.900 0.967 0.967 
LDL cholesterolM 0.933 0.967 0.967 1.000 1.000 0.967 
CreatinineC 1.000 1.000 0.867 0.800 0.867 0.933 
CreatinineM 1.000 1.000 0.933 0.900 0.800 1.000 
GlucoseC 0.900 1.000 0.967 0.967 0.700 1.000 
GlucoseM 0.967 0.867 0.867 0.900 0.700 1.000 
HDL cholesterolC 0.900 0.933 0.833 0.833 0.900 0.900 
HDL cholesterolM 0.733 0.967 0.900 0.900 0.800 0.967 
non-HDL cholesterolC 0.767 0.733 0.933 0.933 0.900 0.933 
non-HDL cholesterolM 0.767 0.967 0.967 0.967 0.967 1.000 
Total cholesterolC 0.867 0.967 0.867 0.867 0.900 0.933 
Total cholesterolM 0.867 0.900 0.967 0.900 0.967 0.933 
TriglycerideC 0.833 0.967 0.967 0.967 0.933 0.967 
TriglycerideM 0.933 0.967 0.967 0.967 1.000 1.000 

CClinical test; M Metabolomics measurement.  

Fig. 6. The IRIs for all subjects in the VITO IAM Frontier dataset, estimated using the PJQM2 method. The gray dotted points indicate the historical data used for the 
IRI estimation and the black dotted points are the 6th (future) measurement. The green transparent area indicates the published PRI [13]. The order of individuals is 
randomised and different between creatinine and albumin. 
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model and it is shared between the upper and the lower quantiles, 
making the length of the IRIs constant over all subjects. 

Our simulation study demonstrates that for various sample sizes and 
numbers of repeated measurements, the IRI estimated by PJQM1 always 
give time empirical coverage (TEC) values close to the true nominal 
coverage level, often outperforming LQMM and PJQM2. However, the 
high coverage values of the PJQM1 intervals are related to greater 
lengths of its IRIs. It also has a feature of providing a constant length for 
all subject, leading into a less personalised interpretation. On the other 
hand, LQMM gives lower TEC and SEC values than PJQM1, and it does 
not perform well in a dataset with rather small numbers of repeated 
measurements. Therefore, the robustness of our new PJQM2 method in 
estimating the IRI is suggested: it gives consistent empirical coverages 
that are not strongly affected by the sample size, the number of repeated 
measurements, and the shape of the data distributions. 

In current practice, clinical decisions are usually binary: if the 
observation is within the PRI, it is considered normal. If the observation 
is outside the PRI, an action is usually taken. The IRI range extends this 
interpretation by providing a personal context to the PRI. The IRI also 
offers additional information to the PRI for the preventive purpose of 
one’s health. For example, if an individual’s current clinical test of a 
particular marker is outside the IRI but still within the PRI, the indi-
vidual is likely in an early phase of developing a disease, w.r.t. that 
clinical marker. The health condition of that individual might still be 
favorable at the time when the test was taken, but the IRI suggests a 
potential deviation from its own healthy range. Hence, a preventive 
action should be taken. 

The proposed methods are based on quantile models and therefore 
inherit the flexibility of a statistical modelling framework. An extension 
of the models is also being studied for incorporating baseline charac-
teristics of the subjects, such as age and sex. This is important as in-
dividual’s characteristics are generally different between males and 
females, and it is known that clinical tests may evolve over time (e.g. 
age), even if the individual is in a healthy state. Combining this infor-
mation would result in a more precise IRI as well as increasing its per-
formance, both in detecting the abnormalities in future measurements 
and in a new subject. The sex-specific effect can actually be seen in 
Fig. 6, where the IRIs of females (subject 16–20) are affected by the high 
creatinine levels in male subjects (subject 1–15). When the model is 
extended by correcting the sex effect, we will see a shorter IRIs in both 
males and females. This extension would be a topic for further research. 

Future studies with longitudinal data including both healthy and 
diseased populations could give valuable insights into the clinical utility 
of IRIs. Furthermore, currently it is a challenge to collect multiple data 
points from a single individual (which is necessary for calculating IRIs) 
where his/her data is scattered across various hospitals, institutions and 
e-health records due to technical difficulties and privacy concerns [18]. 
Cloud-based Linked Data solutions are being developed at the European 
level to address these challenges [19], hence enabling data coverage at 
the individual level. 

We believe that when the IRI is widely used in daily clinical practice 
for interpretation of the results complementary to PRIs, it will be 
immensely beneficial to extend the use of clinical, metabolomics, and 
proteomics markers to precision (and preventive) health. 

Data Availability 

The data that supports the simulation findings are reproducible. The 
codes to generate the data and produce the results are available online at 
https://github.com/murihpusparum/PenalizedJQM and in the 

Supplementary Document. The VITO IAM Frontier data is subject to data 
protection and privacy of data subjects. It can be made available upon 
request. 
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