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Abstract
Objective.Bioluminescence imaging (BLI) is a valuable tool for non-invasivemonitoring of
glioblastomamultiforme (GBM) tumor-bearing small animals without incurring x-ray radiation
burden.However, the use of this imagingmodality is limited due to photon scattering and lack of
spatial information. Attempts at reconstructing bioluminescence tomography (BLT)usingmathema-
ticalmodels of light propagation show limited progress.Approach.This paper employed a different
approach by using a deep convolutional neural network (CNN) to predict the tumor’s center ofmass
(CoM). Transfer-learning with a sizeable artificial database is employed to facilitate the training
process for, themuch smaller, target database includingMonteCarlo (MC) simulations of real
orthotopic glioblastomamodels. PredictedCoMwas then used to estimate a BLI-based planning
target volume (bPTV), by using theCoMas the center of a sphere, encompassing the tumor. The
volume of the encompassing target sphere was estimated based on the total number of photons
reaching the skin surface.Main results.Results show sub-millimeter accuracy for CoMpredictionwith
amedian error of 0.59mm.The proposedmethod also provides promising performance for BLI-
based tumor targetingwith on average 94%of the tumor inside the bPTVwhile keeping the average
healthy tissue coverage below 10%. Significance.This work introduced a framework for developing
and using aCNN for targeted radiation studies for GBMbased onBLI. The frameworkwill enable
biologists to use BLI as theirmain image-guidance tool to target GBM tumors in ratmodels, avoiding
delivery of high x-ray imaging dose to the animals.

Introduction

In recent years, small animal image-guided irradiation platforms have boosted pre-clinical cancer research.
These platforms ensure accurate treatment planning and dose delivery to animalmodels (Tillner et al 2014,
Butterworth et al 2015, Koontz et al 2017, Verhaegen et al 2018). They often use integrated cone-beam computed
tomography (CBCT) as their primary anatomical image guidance system.Due to limited soft-tissue contrast,
often contrast-enhancedCBCT is needed to improve tumor segmentation accuracy. However, in some cases,
such as glioblastomamultiforme (GBM), tumor visibility is low evenwith contrast agents. Furthermore, despite
recent advances in precision imaging systems dedicated to small animals, current state-of-the-art systems deliver
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a substantial imaging radiation dose to achieve the highest resolution required for targeting (Verhaegen et al
2011). There have been several attempts to reduce the delivered dose by usingmagnetic resonance (MR) guided
treatment planning (Gutierrez et al 2015, Chiu et al 2018, Vanhove andGoethals 2019). However, since this
technology is not yet integrated intomodern pre-clinical irradiation platforms, CT-MR registration is required,
which causes geometric uncertainties (Verhaegen et al 2018).

Bioluminescence imaging (BLI) can be a compelling option to facilitate image-guided radiotherapy. BLI
relies on optical photons emitted by a chemical reaction between an enzyme and a corresponding injected
substrate. Inmost in vivoBLI experiments, tumor cells are geneticallymodified to express firefly luciferase
before implantation. Since these geneticallymodified cells are the only ones in the animal’s body that generate
such enzymes, only these cells emit light upon activation (Darne et al 2013). Therefore, hereafter the terms
tumor and light source are used interchangeably.

BLI is performed by capturing the emitted photons outside the animal’s body. Therefore, it can provide fast
in vivo images withminimal background noise and no radiation dose. Currently, BLI ismainly used to acquire
2Dprojection images, possibly at several angles. Figure 1 shows a schematic representation of a small animal
irradiation platform (XRad 225Cx, PrecisionX-ray, Inc., North Branford, CT) (Weersink et al 2014), an
acquired slice of a CBCT volume, the result ofMonteCarlo (MC) simulation of optical photons emerging from
the skin, and the BLI observations. However, the lack of 3D spatial information, i.e. depth, shape and location, of
the photon-emitting volume, as shown infigure 1(d), currently limits BLI use in small-animal preclinical cancer
research. Thus, the development of accurate 3D bioluminescence tomography (BLT) reconstruction algorithms
can open new doors for pre-clinical image-guided radiotherapy. In addition, BLT allows targeting selective
regions inside tumorswith ionizing radiation, investigating the tumor response to treatment, andmany other
research opportunities (O’Neill et al 2010, Kalra and Bally 2012). However, due to the limitations of the BLI-
based targeting, a sub-millimeter targeting accuracy is considered satisfactory but there are no available
guidelines or consensus about it.

Due to its importance in animal studies,much effort has been spent developing BLT reconstruction
algorithms (Chaudhari et al 2005, Ahn et al 2008, Zhang et al 2016, Gao et al 2018, Zhang et al 2018,Deng et al
2020, Ren et al 2020). However, the reconstruction problem remains a challenge, andmost of the commercial
small-animal image-guided irradiators lack comprehensive BLT capabilities. Therefore, the development of
novelmethods to tackle this problem continues to be an active research area.We can categorize the current
state-of-the-artmethods intomodel-based (Deng et al 2020, Ren et al 2020) and deep learning (DL) based
algorithms (Gao et al 2018).

Figure 1. Small animal irradiation platform (XRad 225Cx, Precision X-ray, Inc.): (a) design of the integrated irradiation and imaging
system (b) acquiredmicro-CBCT slice in an axial planewith hand-delineated tumor contour overlaid in yellow (c) surface rendering
ofMonte Carlo simulation of optical photons emerging from the skin (d)measured BLI signal at different angles, with the reference
specified in (a), projected onto the optical light image.
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Model-based reconstructionmethods aim tomathematicallymodel light propagation inside thebiological tissue
and then solve thederivedhighly ill-posed inverseproblemto reconstruct the 3Dsourcedistribution.These
conventionalmethods require several estimations andapproximations to solve themathematicalmodels that
introduce errors in thefinal solution (Gao et al2018).DL-based algorithms, on theotherhand, utilize artificial
intelligence (AI) tofind theoptimal solutionandavoidmodeling errors. It has been shown thatAI can tacklemany
complicated inverseproblemsmore efficiently thanmodel-based counterparts (Vandewinckele et al2020). To thebest
of ourknowledge, theuseofAI forBLTreconstructionhasbeen limited to theworkofGao et al (2018).Gao’smethod
consistedof registering all thepossible inputs to a standardmesh, predicting the light sourcewithin the standardmesh,
and then transferringback to theoriginal space.However, the registration algorithmembeddedwithinGao’smethod
cancontribute considerably to the geometrical uncertainty. Furthermore, themulti-layer perceptronarchitectureused
byGao limits themaximumresolutionor thedepthof theDLalgorithmthat canbeused.

This paper proposes a deep learning-based framework to improve BLT-guided radiation targeting for
orthotopicGBM tumors.While Gao’smethod relies on registration, the proposed solution uses 3Dphoton
counting at the skin boundary to predict the tumor’s center ofmass (CoM) and provides a unified solution for
different geometries. The presentedmethod employs deep convolutional neural networks (CNNs), allowing
higher input resolution compared toGao. In addition, the proposed deep-learning framework eliminates the
necessity of image registration by employing transfer learning. Initially, a CNN is trained to predict the light
sourcewithin a unique standard geometry. The acquired knowledge is then transferred to a secondCNN to
predict the light source in a variety of head geometries.

Materials andmethods

The general framework, shown infigure 2, consists of threemain steps: (1)MonteCarlo computation of 3D
bioluminescence skin fluence (BSF) starting fromoptical photons emitted from a volume source embedded in
the specimen, (2) predicting the center ofmass (CoM) of the source volume using aCNN, and (3) defining the
targeting volume based on the estimated tumor volume.Here, we consider the BSF as the number of optical
photons emerging from the skin boundary. In in vivo experiments, BSF can be obtained using backprojection of
the 2DBLI images recorded by the BLI camera onto the skin surface of theCBCT image (Weersink et al 2014).
Currently,most BLI cameras only record under discrete angles, which results in a discrete sampling of the full
BSF under specific angles. However, in this paper a continuous BSF is directly computed usingMonte Carlo
simulations, bypassingmodeling the camera under various angles and the backprojection procedure. In
addition,modelling of the optical camera would cause the simulations to be very slow and highly inefficient.

Figure 2.The proposed framework, consisting of: (a) source training on a pre-training database, consisting of the simulated
bioluminescence skin fluence (BSF) of different artificial tumors inside a unique standard geometry (b) target training on the real-case
database.
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In this study, two sets ofMC simulations of BSF are employed to create pre-training and real-case databases.
The pre-training database contains a large number of tumor cases inside a reference geometry of one rat, while
the real-case database includes the simulation output of several real rat GBMcases. By using the pre-training
database, we allow a deepCNN to learn general features fromobservations inside a unique arbitrary geometry
and then use transfer learning to generalize the acquired knowledge to awide variety of rat head geometries.
Subsequently, a regressionmodel is used to estimate the tumor volume based on the input BSF. Then, assuming
a spherical target volume, the predicted CoMandCBCT-based tumor volume can determine the target volume.

A total number of 57 labeledCBCT images are used in this study. This dataset is augmented to create the pre-
training database containing 40 000 samples. The implementation details of the data augmentation algorithm is
discussed in the supplementarymaterials B (available online at stacks.iop.org/PMB/67/144003/mmedia). The
data within each database is split randomly into training, validation and test sets. Furthermore, 12-fold cross-
validation is used to assess the deep learningmodel’s performance on the real-case database. Thismeans that the
real-case database is split into twelve parts, and amodel is trained on 11 parts and tested on the 12th part. This
process is repeated for each of the 12 folds. Thismethod is beneficial in evaluating small databases and allows the
model to be trained and tested on all the samples in the database. Eventually, the quantified overlap between the
predicted target volume and tumor volumewill be considered as objective qualitymetric.

MonteCarlo simulations
In order to reconstruct the light source from the physical observations, i.e. 2DBLI images acquiredwith a
camera, an accurate forward photon transportmodel isfirst needed. In this study,MC simulationswith the
GATE framework (Cuplov et al 2014)were employed as the forwardmodel of light propagation to build the
necessary databases. Fourmajor assumptionsweremade prior to the simulations: (1) tumors are uniformly
labeledwith the light-emitting agents, (2) emission intensity is constant during the short imaging time, (3) the
onlymaterials in the region of interest are bone, brain, air, andwater, and (4) light scattering and absorption is
governed by constant scattering and absorption coefficients permaterial. Thefirst two assumptions cause the
simulations to have a constant number of emitted photons per unit volume, i.e. a voxel, while the latter two
introduce simplification to the simulation geometry and themodel.

The starting point of this studywas previous in vivo experiments of an F98 rat orthotopic gliomamodel
(Mowday et al 2020). Contrast-enhancedCBCT (CE-CBCT) images, with 0.1 mm resolution in all directions,
were acquired at different time points in a tumor-growth study from35 different animals resulting in 57 images
in total. The brain hemispheres and tumorwere carefully hand-delineated by trained specialists on each of these
images. Hereafter, this databasewill be referred to as the F98 database.

All the images are padded or cropped into a single grid size of 375×450×375, equal to themost common
size in the database, providing a fixed size. Furthermore, theHounsfield units (HU) are converted tomass
density using the corresponding calibration curve, generated using a piecewise bi-linear fit between themean
HUand themass density of specificmaterials in the calibration phantom (Vaniqui et al 2017). Subsequently, the
simulation geometry is built by segmenting themass density images into brain, water, air, and bone. The brain is
considered as the hand-delineated contour. Bone and air contours are obtained by thresholding themass density
imagewith their corresponding thresholds. Everything else in the image is considered as water. Eventually, the
geometry of the simulations is configured by assigning optical properties to different tissue segments. Figure 3
shows the reduced scattering ( sm¢) and absorption coefficients ( am ) of brain and bone tissues used in this study
(Mesradi et al 2013, Soleimanzad et al 2017). In addition, the predefined optical properties inGATE are used for
water and air. The optical source is defined based on the tumor contourwith a similar emission spectrum as
firefly luciferase (Zhao et al 2005) and the same optical properties as the brain tissue (figure 3). Finally, to
decreasememory usage and simulation time, the resulting simulation geometry is downscaled to a
250× 300× 250 gridwith a resolution of 0.1551 mm3.

Pre-training database
The pre-training database is constructed to include a large number of possible tumor variations inside a single
reference geometry (i.e. a single rat specimen). Figure 4 displays theworkflowused to build the pre-training
database. Initially, one of the F98 samples, inwhich the region of interest is located in the center of the 3D
volume and there is no bed present in the image, is chosen as the reference geometry. However, instead of
directly simulating different tumor shapes and positions, an indirect approach, based on the superposition
principle, is used in this study. In otherwords, the output of theMC simulation for any arbitrary tumor shape is
represented by the sumof the outputs of independent simulations of smaller volume units within the tumor.

After obtaining the simulation geometry as described in the previous section, the brain is further partitioned
into small voxel-like portions called super-voxels, as shown infigure 4. Each of the super-voxels includes several
adjacent voxels grouped to decrease the total number of required simulations. Super-voxels are often cubical,
except the super-voxels located at the edge of the brain. Subsequently, aMC simulation is done for every super-
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voxel inside the brain, assuming that the super-voxel is the light source. Therefore, after repeating this procedure
for every super-voxel inside the brain, the simulation output of any arbitrarily shaped tumor can be obtained by
superposition of the output of theMC simulations for constituent super-voxels. However, there is always a
trade-off between the number of available tumor cases covering all the possible shapes, based on the size of the
super-voxels, and the computational cost. In otherwords, larger super-voxels limit the size and shape variety of
the tumors quite drastically while reducing the number ofMC simulations needed. In this study, themaximum
size of the super-voxels is 5×5×5 voxels, resulting in aminimum resolution of 0.77mm3 compared to the
original resolution of 0.1551mm3.

The required simulations and consequently the simulation time for building the pre-training database are
substantially reducedwith themethod described above.Nonetheless, the brain includes several hundred
thousand voxels in amicro-resolutionCBCT. Therefore, evenwith the super-voxel scheme, thousands ofMC
simulations are still needed to build the pre-training database. To decrease the computation time per simulation,
we disabled the optical absorption process in the simulations for the pre-training database only, since tracking
themany scattering interactions of photonswhich end up being absorbed before reaching the skin is highly
inefficient.However, disabling absorption in theMCsimulations causes errors in theBSF since a photonmight
reachplaces far away from the source,which itwould not be able to reach in reality.Nevertheless, the pre-training

Figure 3.Optical properties spectrumof brain and bone, and photon emission spectrumused in theMonte Carlo simulations (Zhao
et al 2005,Mesradi et al 2013, Soleimanzad et al 2017).

Figure 4.Workflowused to build the pre-training database.
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database serves to establish a crude relation between the geometry of the light source and theBSF,whichwill then in
subsequent steps be refined.

Once the BSF is known for every super-voxel, a realistic database of tumor cases is needed to build the pre-
training database. In this study, the hand-delineated tumor contours of the F98 database are used as the possible
tumor shapes. The tumor shape database is further augmented by applying semi-random affine
transformations, with zero translation, to the initial shapes. The augmentation algorithm is designed semi-
randomly to ensure that all the real shapes, with exact scale and orientation, are present in the final database, as
well as a large population of random cases. Then, for each case in the augmented shape database, a vector of all
the possible coordinates for the tumor’s central placement is calculated, where the entire tumor is encapsulated
inside the brain. Thefinal pre-training database consists of the tumor cases that resulted from random sampling
of the coordinate vector. This way, we increased the size of the pre-training database drastically tomore than
40 000 cases. Finally, theMC-simulated BSF is obtained for each of these cases by combining the simulation
output corresponding to super-voxels inside the tumor.

Real case simulations
In the second database, hereafter referred to as real-case database, oneMC simulation is performed for each of
the samples in the F98 animal experiment. In contrast to the pre-training database, one simulation geometry is
constructed for each animal, based on their respective CE-CBCThead volume, as described before. In addition,
the light source is considered as the hand-delineated tumor contour. Furthermore, the photon absorption
process ismodelled in theMC simulations for this database to better fit the actualmeasurements.

CNN-based center ofmass predictor
This study uses a 3DCNNconsisting offive convolutional layers, onemax-pooling layer, and two fully
connected layers to predict the tumor’s CoM (figure 2). The network’s input consists of the normalized 3DBSF
at the skin level, and the output is the set of 3D coordinates of the tumor’s CoM. Input normalization is
performed by rescaling the values of 3DBSFwithin the range 0, 1 .[ ] The hyperparameters of the network are
optimized by amanual grid search using the pre-training database. Furthermore, an on-the-fly data
augmentation algorithm, consisting of rigid-body transformation, is implemented for the real-case training
phase to increasemodel robustness and generalizability. The aforementioned transformation includes small
random rotations around the sagittal axis and translation since the prone animal is supported by a bed and an
anesthesia nose cone. In addition to data augmentation, we included additive Gaussian noise in the on-the-fly
data augmentation algorithm tomake themodelmore robust against realisticmeasurement noise.

As shown infigure 5, the training process consists of the following steps: (i) collection of pre-processing steps
including normalization and on-the-fly augmentation, (ii) applying the current state of the CNNmodel to the
data and predicting theCoM, (iii) comparing the predictedCoMwith the ground truth based on a loss function
and (iv) adjusting the parameters of the CNNmodel tominimize to the error. In this paper, we used themean
squared error (MSE) as the loss function determining the error between the predictions and the ground truth.
Furthermore, an early stopping criterion based on the best validation loss is implemented to avoid possible
overfitting.

The proposed framework utilizes transfer learning to improve the learning procedure. Transfer learning
consists offirst training amodel on a general large database and thenfine-tuning thatmodel for a specific task
(Pan andYang 2010). As a result, the pre-trainedmodel learns themost important features from a sufficiently
meaningful database andfine-tunes the learned knowledge tofit best to the target problem. Romero et al (2020)
showed transfer learning is beneficial in cases with small-size training database, only if the pre-training
corresponds to the same anatomical site as the target problem. In other words, the similarity between pre-
training and the target databases can impact the performance of the deep-learningmodel. Therefore, in this
study, both pre-training and real-case databases are built usingMC simulations, thus ensuring the similarity
between source and target task.However, there are still twomajor differences: (1) the pre-training database
consists of various tumor shapes inside a unique head geometry while this is not the case for the real-case
database, and (2)MCsimulation in the pre-training database is donewithout considering optical photon
absorption. Subsequently, any solution on the source domain cannot achieve high performancewhen directly
applied on the target domain. Therefore, weights trained during the pre-training are transferred to a new
identicalmodel as the initial weights. This process is known as transfer learning (Pan andYang 2010) and is often
used to overcome issues caused by small-sized training database in the target task. As a result, the newmodel can
employ the acquired prior knowledge in the context of the target problem. Consequently, all the transferred
weights are re-trained using the real-case database to yield the best result. Further details about the
implementation of the transfer learning algorithmused in this paper are provided in the supplementary
material, sectionC.
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Targeting planning volume
In this study, the hand-delineated CBCT-based tumor contours are considered the ground truth for the gross
tumor volume (GTV). TheGTV is further simplified and approximated as the enclosing sphere containing the
tumor since almost all commercially available small animal irradiators currently lack the capability to shape
complex radiation fields and offermostly circular or rectangular fields (Verhaegen et al 2018). Furthermore,
tumors are typically irradiatedwith substantial geometricmargins to avoid tumormiss and take tumormotion
and setup uncertainties into account (Vaniqui et al 2019). Therefore, we can estimate the BLI-basedGTV
(bGTV) and build the corresponding planning target volume (PTV)with the predicted tumor’s CoMand
volume. Tumor cells are the only bioluminescence light emitter inside the animal resulting in an almost zero
background signal. Thus, the total number of detected photons correlates linearly with the tumor volume (Deng
et al 2020,Mowday et al 2020). Therefore, tumor volume can be estimated by performing logistic regression
between the total number of surface photon counts and the tumor volume in the training database.

Once the BLI-based gross tumor volume (bGTV) is obtained, a sphere around the predicted CoM is
considered as the bioluminescence-based PTV (bPTV). The radius of the bPTV is calculated based on
equation (1)

R bGTV m
3

4
, 13 ( )

p
= +

where bGTV is the bioluminescence-based gross tumor volume and m is a constantmargin. Here, the sumof
the average CoMand volume prediction uncertainties is considered as themargin (equation (2)).

m u u . 2CoM volume ( )= +

This study uses twometrics to evaluate the predicted bPTV, namely tumor and healthy tissue coverage.We
defined the coveragemetric for the tissue of interest as follows:

Figure 5.Details of the training process: 3D bioluminescence skin fluence (BSF) is used as input for the network after pre-processing
steps and the parameters of the network are adjusted based on the loss function, i.e.mean square error.
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, 3tissue

tissue
bPTV

tissue
total

( )=

whereVtissue
bPTV andVtissue

total correspond to the number of voxels inside the predicted planning volume and the total
number of voxels for each specific tissue. In an ideal case, the algorithm should score 0%healthy tissue coverage
while targeting all of the tumor.However, this is not feasible due to the spherical approximation of the tumor
shape.

In order to underline the inherent uncertainties of the proposedmethod and their contribution to the
targeting accuracy, the coveragemetrics are employed in four different scenarios: (a) the ideal case inwhich both
CoMand tumor volume are estimated perfectly with zero error, namelyGT1, (b) the situationwhere theCoM is
perfectly captured but the tumor volume is estimated according to the proposed solution, GT2, (c) the case in
which the volume is predicted accurately with no error but CoM is predicted using theCNNnetwork, referred as
GT3, and (d) bothCoMand volume are predicted according to the presented solution. Furthermore, the three
ideal cases, namelyGT1-3, do not contain any addedmargin (m=0) to allow a fair investigation of each
uncertainty source in the proposed framework and show the effect of addedmargin. Consequently, separating
the effect of each prediction uncertainty provides a better understanding of the proposedmethod and its
limitations.

Results

The performance of the proposedmethod is evaluated in two parts: (1)CoMprediction accuracy and (2)
planning coverage evaluations. For the former, we investigated theCoMpredictions using theΔCoMmetric,
whichmeasures the Euclidean distance inmillimeter between theCT-based and predicted CoM. For the latter,
tumor and healthy tissue coveragemetrics are obtained, which quantify which percentage of each tissue falls
inside the planning volume (equations (2), (3)). This section describes all the objectivemeasures with the
median, interquartile range, and outliers.

The proposedmethod provided excellent performance inΔCoM.As shown infigure 6, the proposed
method can achieve submillimeter accuracy inCoMpredictions in both databases. ThemedianΔCoM in the
pre-training database is around 0.1mmwith an interquartile range of 0.12mmwhich is of the same order as the
image slice thickness in theCT image (0.1 mm). Themethod’s performance decreasedwhenmoving to the real-
case databasewith amedian and interquartile range of 0.6±0.43 mmwith only one outlier of 1.5 mm,
corresponding to a 1mm3 tumor. Figures 6(b) and (c) show the variation ofΔCoMbased on the tumor volume
in each database. As shown in figure 6(b), the proposedmethod can provide accurate results for various tumor
sizes and inmost cases the predicted CoM falls within the boundaries of the tumor.However, themodel
struggles to predict the CoM for very small tumors, with a volume smaller than 10mm3 (about 2700 image
voxels), since the resulting BSF is relatively small and susceptible to noise. In practice, targeting tumors below 10
mm3 is very challenging because it would require beams of approximately 1–3 mm. If we exclude the results of
this category of tumors, themodel performance improves to 0.5±0.4 mm. In addition to accurate predictions,
DLmodels can provide fast inference. The proposed network’s average prediction time is 18.87±0.04 ms on an
NVIDIAQuadro RTX5000GPU (Santa Clara, CA,USA).

Figure 7 underlines the importance of transfer learningwith the pre-training database in the proposed
framework. In thisfigure, twomodels have been trainedwith an identical training database: one is a rawmodel
with randomly initializedweights and the othermodel is the result of pre-training. These twomodels are
referred to asmodel without andwith transfer learning infigure 6. As shown, the training loss, i.e. themean
squared error between predicted and actual CoM in the training phase, starts at amuch lower point and
converges better to the end point. Therefore, themodel with transfer learning is farmore capable in learning and
converging towards a better solution.

The performance evaluation of the bPTV is shown infigure 8, with a linearfit of CT-basedGTVversus the
total BSF shown in supplementarymaterials (Pearson’s rvalue of 0.8). bPTV estimation based on the predicted
CoMshows promising results. The proposedmethod averagesmore than 94±9% tumor coveragewhile
keeping themean healthy tissue coverage around 7±3%.

Finally, figure 9 presents the visualization of the BLI-based tumor targeting as elaborated in this paper. As
can be observed, the proposedmethod provides good overlap of the targeting volumewith the tumorwhile
sparingmost of the healthy tissue.

Results of the uncertainty analysis of the proposed solution are presented infigure 10. Thefirst ground-truth
case (GT1) targets only 79%of the tumorwithmaximumhealthy tissue conservation, with an average brain
coverage of 0.5%. In the second ideal case (GT2), bothmetrics on average increased to 84%and 0.9%. Finally,
the third ideal scenario (GT3) resulted in a substantial decrease in the tumor coveragewith an average of 49.3%
while further increasing the average brain coverage to 1%.
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Figure 6.Performance evaluation of the proposedmethod inCoMprediction: (a) comparison ofmodel performance in pre-training
and real-case database (b) scatter plot ofΔCOMversus tumor volume in pre-training database (c) scatter plot ofΔCOMversus tumor
volume real-case database.

Figure 7.Effect of transfer learning on the training process: progression of training loss of thefirst 150 epochs for a networkwithout
transfer learning (blue) and the same networkwith transfer learning (red).
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Discussion

This paper proposed a deepCNN to predict the tumor’s CoMbased onBLI and estimate the treatment volume
accordingly. Nearly all previously publishedmethods rely on very complicated and approximativemathematical
physicsmodels of light propagation to predict light distributionwithin the biological tissue as a surrogate for
tumor location. Solving thesemodels needs various approximations and estimations, which can reduce the

Figure 8.Performance evaluation of tissue coverage: (a) boxplot of coverage of tumors (red) and normal tissue (blue) (b) effect of
tumor volume on both tissue coverages.

Figure 9.Visualizations of the output in three different animals (a)–(c) shown in different planes. Green, red, and yellow contours
represent brain, tumor and predicted BLI-based targeting volume respectively.
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reconstruction accuracy. In contrast, AI algorithms can learn the best statisticalmodel that can befitted to the
data. Although often slow during the training process, AI solutions can be fast during the inference phase. The
proposedmethod achieves a runtime ofmilliseconds in the inference phase and it can thus contribute
substantially to real-time targeting once translated to real BLImeasurements. Furthermore, the proposed
solution can predict the location of the tumorwith sub-millimeter accuracy and construct a spherical target
volume that captures, on average,more than 94%of the tumorwhile only including 7%of the brain volume, all
of which provide an accurate BLI-basedGBM targeting for ratmodels.

In this study, we only investigated the feasibility of using aCNN to improve the reconstruction accuracy of
BLI determined volumes. The proposedmethod can achieve high accuracy in predicting tumor location and
encompassing volume in the reference geometry. In the pre-training database, the accuracy of the position
prediction is approximately equal to theCBCT imaging resolution used to create the inputs. However, training
onemodel for each unique animal is a cumbersome task. Therefore, we explored transfer learning to solve this
issue and extrapolate the learned knowledge to predict CoM in different animals. Figure 6 highlights the added
value of transfer learning. Althoughwe noticed a slight increase in theΔCoM in the real-case database compared
to the pre-training, thefinal result still provides sub-millimeter accuracy inmost cases.

Since designing complexfield shaping devices for small animal irradiation platforms is a very challenging
task, all commercial units use static collimators with circular or rectangular shapes to irradiate the planned
volume. Therefore, in this study, the BLI-based gross target volumewas estimated using a sphere around the
predictedCoM.As shown infigure 7, the bPTV covers 94%of the tumor on average and sparesmost of the
normal tissue around it. Therefore, the proposed algorithm can be used to provide bioluminescence-based
targeting for a large variety of cases. However, in this paper, only simulated BSF and not camera-acquired BSF of
real-caseGBMbioluminescence acquisitions are used, as the first step towards developing aCNN-basedmethod
for BLI-based targeting.However, approximating the target volume as an enveloping sphere brings inherent
error to the proposed solution, which is shown infigure 10. In the best-case scenario, for which bothCoMand
the volume are known, employing the enveloping sphere approximationwill reduce the tumor coverage score
substantially. However, this effect can bemitigated by adding amargin to the spherical envelope. Furthermore, it
has been confirmed that the volume estimation is overestimating the size of the tumor inmost cases. However,
the inaccuracy imposed by estimating tumorswith their enveloping sphere, even in the best-case scenario, limits
the overall accuracy of themodel. In the future,more advanced AImodels can be employed to enhance the
proposed framework and enable full tumor shape prediction. In addition to the inherent limitations of the
spherical estimationmethod used here, the uncertainties incorporated inCoMand volume predictions, as
presented infigure 10, contribute to increased brain coveragewhile reducing tumor coverage. However, the
addedmargin compensates for such errors and provides an acceptable tumor coveragewhile keeping the brain
coverage below 10%.

In reality, BSF cannot bemeasured directly and it should be reconstructed using a limited set of projections
captured by the camera. This, in the best case, can only generate a partial indirectmeasurement of the actual BSF.

Figure 10.The performance of the proposedmethod in four different scenarios: (GT1) bothCoMand tumor volume are estimated
ideally equal to the ground truth, (GT2)CoM is predicted accurately but volume is estimated according to the proposed framework,
(GT3) volume estimation is accurate while CoM is predicted using the deep learningmodel, and the result of the proposed solution as
presented infigure 8.
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In the future, the proposed framework of this paper will be adopted for realmeasurements and the accuracy of
themodel will be further improved by addingmore training samples to the database.

The presented CNN-based framework can achieve deeper layers in limitedmemory compared to the fully
connectedmulti-layered perceptron (MLP) counterpart implemented byGao et al (2018). Therefore, CNN-
basedmodels can extract and learnmore features in the same amount ofmemory. In addition, Gao’smodel
relies on registration between a standardmesh and the inputmesh, which brings additional computational cost
and uncertainty. Deng et al (2020) present a CoMprediction algorithmwith comparable accuracy to this paper’s
CNN-based framework.While bothDeng’smethod and themethod presented in this work are based on a
combination of CoMand volume predictions to target tumors, Deng’smethod relies onmathematicalmodels of
light propagation and ameasured unirradiated tumor growth curve. Comparison of the reported results,
between theCNN-based andDeng’smethod, shows the superior performance of theCNN-basedmethod.
WhileDeng et al achieved an average of 1 mmΔCoM, the proposedCNN-basedmethod can result in 0.6 mm
ΔCoMon average.However, the observed improvement in the presented CNN-basedmethod can be linked to
the use of idealized cases, i.e.MC simulations, in this study. Nonetheless, a drawback ofDeng’smethod is its
dependence on the unirradiated tumor growth curve. Considering the purpose of BLI-based targeting, tumors
will likely respond to the treatmentwhich slows their growth and puts the reliability of tumor growth curve into
question. Consequently, their proposed algorithm cannot be employed in fractionated radiation studies. The
presentedmethod, on the other hand, does not rely on the tumor growth curve and can be a useful tool in small
animalGBM studies.

The proposedCNNarchitecture imposes a limitation on the general use of the developedmethod. In other
words, the predicted single-coordinate CoM limits the valueability of the proposed framework formetastatic
tumorswhere two ormore clusters of tumor cells or formed.However, the studied rat GBMmodel is not a
metastatic tumormodel and only forms a single compact tumor upon proper implantation. To address this
limitation, in futureworks image-to-image transformer networks such asU-Net and autoencoders can be
utilized.

Thefindings of this paper should be extended and validated in in-phantom and in vivo animal studies. Thus
longitudinal BLI imaging can replace longitudinal CE-CBCT imaging, delivering no imaging dose to the
animals. Furthermore, the presented framework can be extended usingmore sophisticated deep-learning
models, such as generative adversarial networks (GANs), to obtain the BLI-based tumor contour. This would
allow for evenmore accurate targeting and facilitates animal studies even further. In addition, continuous
bioluminescence imaging in contrast to imaging at discrete anglesmight add value to the reconstruction
algorithms.However,measurement noise due to hardware limitationsmight be a bottleneck in such an
approach.

Conclusion

In this paper, we developed a framework using deep learning for bioluminescence-based targeting forGBM
animalmodels. The proposedmodel can predict the tumor’s CoMwith submillimeter accuracy, except for
tumors smaller than 10mm3. In addition, we showed that the accuracy of the proposed planning schemewith
circular encompassingfields is sufficient for targetingwith a high average tumor coverage. Our findings can
open the door to further investigation of AI-based approaches in thefield of bioluminescence tomography. This
paper’s findings can help biologists investigate GBMusing bioluminescencemarkers. CNNbased BLI targeting
may also reduce the planning time compared to physicsmodel-based counterparts. However, this papermainly
focused on developing the framework based onMonte Carlo simulations to generate the necessary training
database. Further studies are needed to extend the framework for real BLImeasurements.
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