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Abstract

Objective. Bioluminescence imaging (BLI) is a valuable tool for non-invasive monitoring of
glioblastoma multiforme (GBM) tumor-bearing small animals without incurring x-ray radiation
burden. However, the use of this imaging modality is limited due to photon scattering and lack of
spatial information. Attempts at reconstructing bioluminescence tomography (BLT) using mathema-
tical models of light propagation show limited progress. Approach. This paper employed a different
approach by using a deep convolutional neural network (CNN) to predict the tumor’s center of mass
(CoM). Transfer-learning with a sizeable artificial database is employed to facilitate the training
process for, the much smaller, target database including Monte Carlo (MC) simulations of real
orthotopic glioblastoma models. Predicted CoM was then used to estimate a BLI-based planning
target volume (bPTV), by using the CoM as the center of a sphere, encompassing the tumor. The
volume of the encompassing target sphere was estimated based on the total number of photons
reaching the skin surface. Main results. Results show sub-millimeter accuracy for CoM prediction with
amedian error of 0.59 mm. The proposed method also provides promising performance for BLI-
based tumor targeting with on average 94% of the tumor inside the bPTV while keeping the average
healthy tissue coverage below 10%. Significance. This work introduced a framework for developing
and usinga CNN for targeted radiation studies for GBM based on BLI. The framework will enable
biologists to use BLI as their main image-guidance tool to target GBM tumors in rat models, avoiding
delivery of high x-ray imaging dose to the animals.

Introduction

In recent years, small animal image-guided irradiation platforms have boosted pre-clinical cancer research.
These platforms ensure accurate treatment planning and dose delivery to animal models (Tillner eral 2014,
Butterworth et al 2015, Koontz et al 2017, Verhaegen et al 2018). They often use integrated cone-beam computed
tomography (CBCT) as their primary anatomical image guidance system. Due to limited soft-tissue contrast,
often contrast-enhanced CBCT is needed to improve tumor segmentation accuracy. However, in some cases,
such as glioblastoma multiforme (GBM), tumor visibility is low even with contrast agents. Furthermore, despite
recent advances in precision imaging systems dedicated to small animals, current state-of-the-art systems deliver
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Figure 1. Small animal irradiation platform (XRad 225Cx, Precision X-ray, Inc.): (a) design of the integrated irradiation and imaging
system (b) acquired micro-CBCT slice in an axial plane with hand-delineated tumor contour overlaid in yellow (c) surface rendering
of Monte Carlo simulation of optical photons emerging from the skin (d) measured BLI signal at different angles, with the reference
specified in (a), projected onto the optical light image.

asubstantial imaging radiation dose to achieve the highest resolution required for targeting (Verhaegen et al
2011). There have been several attempts to reduce the delivered dose by using magnetic resonance (MR) guided
treatment planning (Gutierrez et al 2015, Chiu et al 2018, Vanhove and Goethals 2019). However, since this
technology is not yet integrated into modern pre-clinical irradiation platforms, CT-MR registration is required,
which causes geometric uncertainties (Verhaegen et al 2018).

Bioluminescence imaging (BLI) can be a compelling option to facilitate image-guided radiotherapy. BLI
relies on optical photons emitted by a chemical reaction between an enzyme and a corresponding injected
substrate. In most in vivo BLI experiments, tumor cells are genetically modified to express firefly luciferase
before implantation. Since these genetically modified cells are the only ones in the animal’s body that generate
such enzymes, only these cells emit light upon activation (Darne et al 2013). Therefore, hereafter the terms
tumor and light source are used interchangeably.

BLIis performed by capturing the emitted photons outside the animal’s body. Therefore, it can provide fast
in vivo images with minimal background noise and no radiation dose. Currently, BLI is mainly used to acquire
2D projection images, possibly at several angles. Figure 1 shows a schematic representation of a small animal
irradiation platform (XRad 225Cx, Precision X-ray, Inc., North Branford, CT) (Weersink et al 2014), an
acquired slice of a CBCT volume, the result of Monte Carlo (MC) simulation of optical photons emerging from
the skin, and the BLI observations. However, the lack of 3D spatial information, i.e. depth, shape and location, of
the photon-emitting volume, as shown in figure 1(d), currently limits BLI use in small-animal preclinical cancer
research. Thus, the development of accurate 3D bioluminescence tomography (BLT) reconstruction algorithms
can open new doors for pre-clinical image-guided radiotherapy. In addition, BLT allows targeting selective
regions inside tumors with ionizing radiation, investigating the tumor response to treatment, and many other
research opportunities (O’Neill e al 2010, Kalra and Bally 2012). However, due to the limitations of the BLI-
based targeting, a sub-millimeter targeting accuracy is considered satisfactory but there are no available
guidelines or consensus about it.

Due to its importance in animal studies, much effort has been spent developing BLT reconstruction
algorithms (Chaudhari et al 2005, Ahn et al 2008, Zhang et al 2016, Gao et al 2018, Zhang et al 2018, Deng et al
2020, Ren et al 2020). However, the reconstruction problem remains a challenge, and most of the commercial
small-animal image-guided irradiators lack comprehensive BLT capabilities. Therefore, the development of
novel methods to tackle this problem continues to be an active research area. We can categorize the current
state-of-the-art methods into model-based (Deng et al 2020, Ren et al 2020) and deep learning (DL) based
algorithms (Gao et al 2018).
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Figure 2. The proposed framework, consisting of: (a) source training on a pre-training database, consisting of the simulated
bioluminescence skin fluence (BSF) of different artificial tumors inside a unique standard geometry (b) target training on the real-case
database.

Model-based reconstruction methods aim to mathematically model light propagation inside the biological tissue
and then solve the derived highly ill-posed inverse problem to reconstruct the 3D source distribution. These
conventional methods require several estimations and approximations to solve the mathematical models that
introduce errors in the final solution (Gao et al 2018). DL-based algorithms, on the other hand, utilize artificial
intelligence (AI) to find the optimal solution and avoid modeling errors. It has been shown that Al can tackle many
complicated inverse problems more efficiently than model-based counterparts (Vandewinckele et al 2020). To the best
of our knowledge, the use of Al for BLT reconstruction has been limited to the work of Gao et al (2018). Gao’s method
consisted of registering all the possible inputs to a standard mesh, predicting the light source within the standard mesh,
and then transferring back to the original space. However, the registration algorithm embedded within Gao’s method
can contribute considerably to the geometrical uncertainty. Furthermore, the multi-layer perceptron architecture used
by Gao limits the maximum resolution or the depth of the DL algorithm that can be used.

This paper proposes a deep learning-based framework to improve BLT-guided radiation targeting for
orthotopic GBM tumors. While Gao’s method relies on registration, the proposed solution uses 3D photon
counting at the skin boundary to predict the tumor’s center of mass (CoM) and provides a unified solution for
different geometries. The presented method employs deep convolutional neural networks (CNNs), allowing
higher input resolution compared to Gao. In addition, the proposed deep-learning framework eliminates the
necessity of image registration by employing transfer learning. Initially, a CNN is trained to predict the light
source within a unique standard geometry. The acquired knowledge is then transferred to a second CNN to
predict the light source in a variety of head geometries.

Materials and methods

The general framework, shown in figure 2, consists of three main steps: (1) Monte Carlo computation of 3D
bioluminescence skin fluence (BSF) starting from optical photons emitted from a volume source embedded in
the specimen, (2) predicting the center of mass (CoM) of the source volume using a CNN, and (3) defining the
targeting volume based on the estimated tumor volume. Here, we consider the BSF as the number of optical
photons emerging from the skin boundary. In in vivo experiments, BSF can be obtained using backprojection of
the 2D BLI images recorded by the BLI camera onto the skin surface of the CBCT image (Weersink et al 2014).
Currently, most BLI cameras only record under discrete angles, which results in a discrete sampling of the full
BSF under specific angles. However, in this paper a continuous BSF is directly computed using Monte Carlo
simulations, bypassing modeling the camera under various angles and the backprojection procedure. In
addition, modelling of the optical camera would cause the simulations to be very slow and highly inefficient.
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In this study, two sets of MC simulations of BSF are employed to create pre-training and real-case databases.
The pre-training database contains a large number of tumor cases inside a reference geometry of one rat, while
the real-case database includes the simulation output of several real rat GBM cases. By using the pre-training
database, we allow a deep CNN to learn general features from observations inside a unique arbitrary geometry
and then use transfer learning to generalize the acquired knowledge to a wide variety of rat head geometries.
Subsequently, a regression model is used to estimate the tumor volume based on the input BSFE. Then, assuming
aspherical target volume, the predicted CoM and CBCT-based tumor volume can determine the target volume.

A total number of 57 labeled CBCT images are used in this study. This dataset is augmented to create the pre-
training database containing 40 000 samples. The implementation details of the data augmentation algorithm is
discussed in the supplementary materials B (available online at stacks.iop.org/PMB/67,/144003 /mmedia). The
data within each database is split randomly into training, validation and test sets. Furthermore, 12-fold cross-
validation is used to assess the deep learning model’s performance on the real-case database. This means that the
real-case database is split into twelve parts, and a model is trained on 11 parts and tested on the 12th part. This
process is repeated for each of the 12 folds. This method is beneficial in evaluating small databases and allows the
model to be trained and tested on all the samples in the database. Eventually, the quantified overlap between the
predicted target volume and tumor volume will be considered as objective quality metric.

Monte Carlo simulations

In order to reconstruct the light source from the physical observations, i.e. 2D BLI images acquired with a
camera, an accurate forward photon transport model is first needed. In this study, MC simulations with the
GATE framework (Cuplov et al 2014) were employed as the forward model of light propagation to build the
necessary databases. Four major assumptions were made prior to the simulations: (1) tumors are uniformly
labeled with the light-emitting agents, (2) emission intensity is constant during the short imaging time, (3) the
only materials in the region of interest are bone, brain, air, and water, and (4) light scattering and absorption is
governed by constant scattering and absorption coefficients per material. The first two assumptions cause the
simulations to have a constant number of emitted photons per unit volume, i.e. a voxel, while the latter two
introduce simplification to the simulation geometry and the model.

The starting point of this study was previous iz vivo experiments of an F98 rat orthotopic glioma model
(Mowday et al 2020). Contrast-enhanced CBCT (CE-CBCT) images, with 0.1 mm resolution in all directions,
were acquired at different time points in a tumor-growth study from 35 different animals resulting in 57 images
in total. The brain hemispheres and tumor were carefully hand-delineated by trained specialists on each of these
images. Hereafter, this database will be referred to as the F98 database.

All the images are padded or cropped into a single grid size of 375 x 450 x 375, equal to the most common
size in the database, providing a fixed size. Furthermore, the Hounsfield units (HU) are converted to mass
density using the corresponding calibration curve, generated using a piecewise bi-linear fit between the mean
HU and the mass density of specific materials in the calibration phantom (Vaniqui et al 2017). Subsequently, the
simulation geometry is built by segmenting the mass density images into brain, water, air, and bone. The brain is
considered as the hand-delineated contour. Bone and air contours are obtained by thresholding the mass density
image with their corresponding thresholds. Everything else in the image is considered as water. Eventually, the
geometry of the simulations is configured by assigning optical properties to different tissue segments. Figure 3
shows the reduced scattering (,ui) and absorption coefficients (1) of brain and bone tissues used in this study
(Mesradi et al 2013, Soleimanzad et al 2017). In addition, the predefined optical properties in GATE are used for
water and air. The optical source is defined based on the tumor contour with a similar emission spectrum as
firefly luciferase (Zhao et al 2005) and the same optical properties as the brain tissue (figure 3). Finally, to
decrease memory usage and simulation time, the resulting simulation geometry is downscaled to a
250 x 300 x 250 grid with a resolution of 0.1551 mm”.

Pre-training database
The pre-training database is constructed to include a large number of possible tumor variations inside a single
reference geometry (i.e. a single rat specimen). Figure 4 displays the workflow used to build the pre-training
database. Initially, one of the F98 samples, in which the region of interest is located in the center of the 3D
volume and there is no bed present in the image, is chosen as the reference geometry. However, instead of
directly simulating different tumor shapes and positions, an indirect approach, based on the superposition
principle, is used in this study. In other words, the output of the MC simulation for any arbitrary tumor shape is
represented by the sum of the outputs of independent simulations of smaller volume units within the tumor.
After obtaining the simulation geometry as described in the previous section, the brain is further partitioned
into small voxel-like portions called super-voxels, as shown in figure 4. Each of the super-voxels includes several
adjacent voxels grouped to decrease the total number of required simulations. Super-voxels are often cubical,
except the super-voxels located at the edge of the brain. Subsequently, a MC simulation is done for every super-
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voxel inside the brain, assuming that the super-voxel is the light source. Therefore, after repeating this procedure
for every super-voxel inside the brain, the simulation output of any arbitrarily shaped tumor can be obtained by
superposition of the output of the MC simulations for constituent super-voxels. However, there is always a
trade-off between the number of available tumor cases covering all the possible shapes, based on the size of the
super-voxels, and the computational cost. In other words, larger super-voxels limit the size and shape variety of
the tumors quite drastically while reducing the number of MC simulations needed. In this study, the maximum
size of the super-voxelsis 5 x 5 x 5 voxels, resulting in a minimum resolution of 0.77 mm? compared to the

original resolution of 0.1551 mm”.

The required simulations and consequently the simulation time for building the pre-training database are
substantially reduced with the method described above. Nonetheless, the brain includes several hundred
thousand voxels in a micro-resolution CBCT. Therefore, even with the super-voxel scheme, thousands of MC
simulations are still needed to build the pre-training database. To decrease the computation time per simulation,
we disabled the optical absorption process in the simulations for the pre-training database only, since tracking
the many scattering interactions of photons which end up being absorbed before reaching the skin is highly
inefficient. However, disabling absorption in the MC simulations causes errors in the BSF since a photon might
reach places far away from the source, which it would not be able to reach in reality. Nevertheless, the pre-training
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database serves to establish a crude relation between the geometry of the light source and the BSF, which will then in
subsequent steps be refined.

Once the BSF is known for every super-voxel, a realistic database of tumor cases is needed to build the pre-
training database. In this study, the hand-delineated tumor contours of the F98 database are used as the possible
tumor shapes. The tumor shape database is further augmented by applying semi-random affine
transformations, with zero translation, to the initial shapes. The augmentation algorithm is designed semi-
randomly to ensure that all the real shapes, with exact scale and orientation, are present in the final database, as
well as alarge population of random cases. Then, for each case in the augmented shape database, a vector of all
the possible coordinates for the tumor’s central placement is calculated, where the entire tumor is encapsulated
inside the brain. The final pre-training database consists of the tumor cases that resulted from random sampling
of the coordinate vector. This way, we increased the size of the pre-training database drastically to more than
40000 cases. Finally, the MC-simulated BSF is obtained for each of these cases by combining the simulation
output corresponding to super-voxels inside the tumor.

Real case simulations

In the second database, hereafter referred to as real-case database, one MC simulation is performed for each of
the samples in the F98 animal experiment. In contrast to the pre-training database, one simulation geometry is
constructed for each animal, based on their respective CE-CBCT head volume, as described before. In addition,
the light source is considered as the hand-delineated tumor contour. Furthermore, the photon absorption
process is modelled in the MC simulations for this database to better fit the actual measurements.

CNN-based center of mass predictor

This study uses a 3D CNN consisting of five convolutional layers, one max-pooling layer, and two fully
connected layers to predict the tumor’s CoM (figure 2). The network’s input consists of the normalized 3D BSF
at the skin level, and the output is the set of 3D coordinates of the tumor’s CoM. Input normalization is
performed by rescaling the values of 3D BSF within the range [0, 1]. The hyperparameters of the network are
optimized by a manual grid search using the pre-training database. Furthermore, an on-the-fly data
augmentation algorithm, consisting of rigid-body transformation, is implemented for the real-case training
phase to increase model robustness and generalizability. The aforementioned transformation includes small
random rotations around the sagittal axis and translation since the prone animal is supported by abed and an
anesthesia nose cone. In addition to data augmentation, we included additive Gaussian noise in the on-the-fly
data augmentation algorithm to make the model more robust against realistic measurement noise.

As shown in figure 5, the training process consists of the following steps: (i) collection of pre-processing steps
including normalization and on-the-fly augmentation, (ii) applying the current state of the CNN model to the
data and predicting the CoM, (iii) comparing the predicted CoM with the ground truth based on aloss function
and (iv) adjusting the parameters of the CNN model to minimize to the error. In this paper, we used the mean
squared error (MSE) as the loss function determining the error between the predictions and the ground truth.
Furthermore, an early stopping criterion based on the best validation loss is implemented to avoid possible
overfitting.

The proposed framework utilizes transfer learning to improve the learning procedure. Transfer learning
consists of first training a model on a general large database and then fine-tuning that model for a specific task
(Panand Yang 2010). As a result, the pre-trained model learns the most important features from a sufficiently
meaningful database and fine-tunes the learned knowledge to fit best to the target problem. Romero et al (2020)
showed transfer learning is beneficial in cases with small-size training database, only if the pre-training
corresponds to the same anatomical site as the target problem. In other words, the similarity between pre-
training and the target databases can impact the performance of the deep-learning model. Therefore, in this
study, both pre-training and real-case databases are built using MC simulations, thus ensuring the similarity
between source and target task. However, there are still two major differences: (1) the pre-training database
consists of various tumor shapes inside a unique head geometry while this is not the case for the real-case
database, and (2) MC simulation in the pre-training database is done without considering optical photon
absorption. Subsequently, any solution on the source domain cannot achieve high performance when directly
applied on the target domain. Therefore, weights trained during the pre-training are transferred to a new
identical model as the initial weights. This process is known as transfer learning (Pan and Yang 2010) and is often
used to overcome issues caused by small-sized training database in the target task. As a result, the new model can
employ the acquired prior knowledge in the context of the target problem. Consequently, all the transferred
weights are re-trained using the real-case database to yield the best result. Further details about the
implementation of the transfer learning algorithm used in this paper are provided in the supplementary
material, section C.
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Figure 5. Details of the training process: 3D bioluminescence skin fluence (BSF) is used as input for the network after pre-processing
steps and the parameters of the network are adjusted based on the loss function, i.e. mean square error.

Targeting planning volume
In this study, the hand-delineated CBCT-based tumor contours are considered the ground truth for the gross
tumor volume (GTV). The GTV is further simplified and approximated as the enclosing sphere containing the
tumor since almost all commercially available small animal irradiators currently lack the capability to shape
complex radiation fields and offer mostly circular or rectangular fields (Verhaegen et al 2018). Furthermore,
tumors are typically irradiated with substantial geometric margins to avoid tumor miss and take tumor motion
and setup uncertainties into account (Vaniqui et al 2019). Therefore, we can estimate the BLI-based GTV
(bGTV) and build the corresponding planning target volume (PTV) with the predicted tumor’s CoM and
volume. Tumor cells are the only bioluminescence light emitter inside the animal resulting in an almost zero
background signal. Thus, the total number of detected photons correlates linearly with the tumor volume (Deng
etal 2020, Mowday et al 2020). Therefore, tumor volume can be estimated by performing logistic regression
between the total number of surface photon counts and the tumor volume in the training database.

Once the BLI-based gross tumor volume (bGTV) is obtained, a sphere around the predicted CoM is
considered as the bioluminescence-based PTV (bPTV). The radius of the bPTV is calculated based on

equation (1)
R= S/ibGTV + m, )
4m

where bGTV is the bioluminescence-based gross tumor volume and m is a constant margin. Here, the sum of
the average CoM and volume prediction uncertainties is considered as the margin (equation (2)).

m = Ucom + Uyolume- (2)

This study uses two metrics to evaluate the predicted bPTV, namely tumor and healthy tissue coverage. We
defined the coverage metric for the tissue of interest as follows:
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Ctissue = e > (3)
Vtatal

tissue

where VEETY and V2"l correspond to the number of voxels inside the predicted planning volume and the total
number of voxels for each specific tissue. In an ideal case, the algorithm should score 0% healthy tissue coverage
while targeting all of the tumor. However, this is not feasible due to the spherical approximation of the tumor
shape.

In order to underline the inherent uncertainties of the proposed method and their contribution to the
targeting accuracy, the coverage metrics are employed in four different scenarios: (a) the ideal case in which both
CoM and tumor volume are estimated perfectly with zero error, namely GT1, (b) the situation where the CoM is
perfectly captured but the tumor volume is estimated according to the proposed solution, GT2, (c) the case in
which the volume is predicted accurately with no error but CoM is predicted using the CNN network, referred as
GT3, and (d) both CoM and volume are predicted according to the presented solution. Furthermore, the three
ideal cases, namely GT1-3, do not contain any added margin (m = 0) to allow a fair investigation of each
uncertainty source in the proposed framework and show the effect of added margin. Consequently, separating
the effect of each prediction uncertainty provides a better understanding of the proposed method and its
limitations.

Results

The performance of the proposed method is evaluated in two parts: (1) CoM prediction accuracy and (2)
planning coverage evaluations. For the former, we investigated the CoM predictions using the ACoM metric,
which measures the Euclidean distance in millimeter between the CT-based and predicted CoM. For the latter,
tumor and healthy tissue coverage metrics are obtained, which quantify which percentage of each tissue falls
inside the planning volume (equations (2), (3)). This section describes all the objective measures with the
median, interquartile range, and outliers.

The proposed method provided excellent performance in ACoM. As shown in figure 6, the proposed
method can achieve submillimeter accuracy in CoM predictions in both databases. The median ACoM in the
pre-training database is around 0.1 mm with an interquartile range of 0.12 mm which is of the same order as the
image slice thickness in the CT image (0.1 mm). The method’s performance decreased when moving to the real-
case database with a median and interquartile range of 0.6 + 0.43 mm with only one outlier of 1.5 mm,
correspondingtoal mm? tumor. Figures 6(b) and (c) show the variation of ACoM based on the tumor volume
in each database. As shown in figure 6(b), the proposed method can provide accurate results for various tumor
sizes and in most cases the predicted CoM falls within the boundaries of the tumor. However, the model
struggles to predict the CoM for very small tumors, with a volume smaller than 10 mm” (about 2700 image
voxels), since the resulting BSF is relatively small and susceptible to noise. In practice, targeting tumors below 10
mm” is very challenging because it would require beams of approximately 1-3 mm. If we exclude the results of
this category of tumors, the model performance improves to 0.5 £ 0.4 mm. In addition to accurate predictions,
DL models can provide fast inference. The proposed network’s average prediction time is 18.87 + 0.04 mson an
NVIDIA Quadro RTX 5000 GPU (Santa Clara, CA, USA).

Figure 7 underlines the importance of transfer learning with the pre-training database in the proposed
framework. In this figure, two models have been trained with an identical training database: one is a raw model
with randomly initialized weights and the other model is the result of pre-training. These two models are
referred to as model without and with transfer learning in figure 6. As shown, the trainingloss, i.e. the mean
squared error between predicted and actual CoM in the training phase, starts at a much lower point and
converges better to the end point. Therefore, the model with transfer learning is far more capable in learning and
converging towards a better solution.

The performance evaluation of the bPTV is shown in figure 8, with a linear fit of CT-based GTV versus the
total BSF shown in supplementary materials (Pearson’s rvalue of 0.8). bPTV estimation based on the predicted
CoM shows promising results. The proposed method averages more than 94 4 9% tumor coverage while
keeping the mean healthy tissue coverage around 7 £ 3%.

Finally, figure 9 presents the visualization of the BLI-based tumor targeting as elaborated in this paper. As
can be observed, the proposed method provides good overlap of the targeting volume with the tumor while
sparing most of the healthy tissue.

Results of the uncertainty analysis of the proposed solution are presented in figure 10. The first ground-truth
case (GT1) targets only 79% of the tumor with maximum healthy tissue conservation, with an average brain
coverage of 0.5%. In the second ideal case (GT2), both metrics on average increased to 84% and 0.9%. Finally,
the third ideal scenario (GT3) resulted in a substantial decrease in the tumor coverage with an average of 49.3%
while further increasing the average brain coverage to 1%.
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Figure 6. Performance evaluation of the proposed method in CoM prediction: (a) comparison of model performance in pre-training
and real-case database (b) scatter plot of ACOM versus tumor volume in pre-training database (c) scatter plot of ACOM versus tumor
volume real-case database.
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Figure 9. Visualizations of the output in three different animals (a)—(c) shown in different planes. Green, red, and yellow contours
represent brain, tumor and predicted BLI-based targeting volume respectively.

Discussion

This paper proposed a deep CNN to predict the tumor’s CoM based on BLI and estimate the treatment volume
accordingly. Nearly all previously published methods rely on very complicated and approximative mathematical
physics models of light propagation to predict light distribution within the biological tissue as a surrogate for
tumor location. Solving these models needs various approximations and estimations, which can reduce the
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(GT3) volume estimation is accurate while CoM is predicted using the deep learning model, and the result of the proposed solution as
presented in figure 8.

reconstruction accuracy. In contrast, Al algorithms can learn the best statistical model that can be fitted to the
data. Although often slow during the training process, Al solutions can be fast during the inference phase. The
proposed method achieves a runtime of milliseconds in the inference phase and it can thus contribute
substantially to real-time targeting once translated to real BLI measurements. Furthermore, the proposed
solution can predict the location of the tumor with sub-millimeter accuracy and construct a spherical target
volume that captures, on average, more than 94% of the tumor while only including 7% of the brain volume, all
of which provide an accurate BLI-based GBM targeting for rat models.

In this study, we only investigated the feasibility of using a CNN to improve the reconstruction accuracy of
BLI determined volumes. The proposed method can achieve high accuracy in predicting tumor location and
encompassing volume in the reference geometry. In the pre-training database, the accuracy of the position
prediction is approximately equal to the CBCT imaging resolution used to create the inputs. However, training
one model for each unique animal is a cumbersome task. Therefore, we explored transfer learning to solve this
issue and extrapolate the learned knowledge to predict CoM in different animals. Figure 6 highlights the added
value of transfer learning. Although we noticed a slight increase in the ACoM in the real-case database compared
to the pre-training, the final result still provides sub-millimeter accuracy in most cases.

Since designing complex field shaping devices for small animal irradiation platforms is a very challenging
task, all commercial units use static collimators with circular or rectangular shapes to irradiate the planned
volume. Therefore, in this study, the BLI-based gross target volume was estimated using a sphere around the
predicted CoM. As shown in figure 7, the bPTV covers 94% of the tumor on average and spares most of the
normal tissue around it. Therefore, the proposed algorithm can be used to provide bioluminescence-based
targeting for a large variety of cases. However, in this paper, only simulated BSF and not camera-acquired BSF of
real-case GBM bioluminescence acquisitions are used, as the first step towards developing a CNN-based method
for BLI-based targeting. However, approximating the target volume as an enveloping sphere brings inherent
error to the proposed solution, which is shown in figure 10. In the best-case scenario, for which both CoM and
the volume are known, employing the enveloping sphere approximation will reduce the tumor coverage score
substantially. However, this effect can be mitigated by adding a margin to the spherical envelope. Furthermore, it
has been confirmed that the volume estimation is overestimating the size of the tumor in most cases. However,
the inaccuracy imposed by estimating tumors with their enveloping sphere, even in the best-case scenario, limits
the overall accuracy of the model. In the future, more advanced Al models can be employed to enhance the
proposed framework and enable full tumor shape prediction. In addition to the inherent limitations of the
spherical estimation method used here, the uncertainties incorporated in CoM and volume predictions, as
presented in figure 10, contribute to increased brain coverage while reducing tumor coverage. However, the
added margin compensates for such errors and provides an acceptable tumor coverage while keeping the brain
coverage below 10%.

In reality, BSF cannot be measured directly and it should be reconstructed using a limited set of projections
captured by the camera. This, in the best case, can only generate a partial indirect measurement of the actual BSF.
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In the future, the proposed framework of this paper will be adopted for real measurements and the accuracy of
the model will be further improved by adding more training samples to the database.

The presented CNN-based framework can achieve deeper layers in limited memory compared to the fully
connected multi-layered perceptron (MLP) counterpart implemented by Gao et al (2018). Therefore, CNN-
based models can extract and learn more features in the same amount of memory. In addition, Gao’s model
relies on registration between a standard mesh and the input mesh, which brings additional computational cost
and uncertainty. Deng et al (2020) present a CoM prediction algorithm with comparable accuracy to this paper’s
CNN-based framework. While both Deng’s method and the method presented in this work are based on a
combination of CoM and volume predictions to target tumors, Deng’s method relies on mathematical models of
light propagation and a measured unirradiated tumor growth curve. Comparison of the reported results,
between the CNN-based and Deng’s method, shows the superior performance of the CNN-based method.
While Deng et al achieved an average of 1 mm ACoM, the proposed CNN-based method can resultin 0.6 mm
ACoM on average. However, the observed improvement in the presented CNN-based method can be linked to
the use of idealized cases, i.e. MC simulations, in this study. Nonetheless, a drawback of Deng’s method is its
dependence on the unirradiated tumor growth curve. Considering the purpose of BLI-based targeting, tumors
will likely respond to the treatment which slows their growth and puts the reliability of tumor growth curve into
question. Consequently, their proposed algorithm cannot be employed in fractionated radiation studies. The
presented method, on the other hand, does not rely on the tumor growth curve and can be a useful tool in small
animal GBM studies.

The proposed CNN architecture imposes a limitation on the general use of the developed method. In other
words, the predicted single-coordinate CoM limits the valueability of the proposed framework for metastatic
tumors where two or more clusters of tumor cells or formed. However, the studied rat GBM model isnota
metastatic tumor model and only forms a single compact tumor upon proper implantation. To address this
limitation, in future works image-to-image transformer networks such as U-Net and autoencoders can be
utilized.

The findings of this paper should be extended and validated in in-phantom and in vivo animal studies. Thus
longitudinal BLI imaging can replace longitudinal CE-CBCT imaging, delivering no imaging dose to the
animals. Furthermore, the presented framework can be extended using more sophisticated deep-learning
models, such as generative adversarial networks (GANs), to obtain the BLI-based tumor contour. This would
allow for even more accurate targeting and facilitates animal studies even further. In addition, continuous
bioluminescence imaging in contrast to imaging at discrete angles might add value to the reconstruction
algorithms. However, measurement noise due to hardware limitations might be a bottleneck in such an
approach.

Conclusion

In this paper, we developed a framework using deep learning for bioluminescence-based targeting for GBM
animal models. The proposed model can predict the tumor’s CoM with submillimeter accuracy, except for
tumors smaller than 10 mm?®. In addition, we showed that the accuracy of the proposed planning scheme with
circular encompassing fields is sufficient for targeting with a high average tumor coverage. Our findings can
open the door to further investigation of Al-based approaches in the field of bioluminescence tomography. This
paper’s findings can help biologists investigate GBM using bioluminescence markers. CNN based BLI targeting
may also reduce the planning time compared to physics model-based counterparts. However, this paper mainly
focused on developing the framework based on Monte Carlo simulations to generate the necessary training
database. Further studies are needed to extend the framework for real BLI measurements.
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