
IEICE Electronics Express, Vol.19, No.16, 1–6

LETTER

Sample-wise dynamic precision quantization for neural network accelera-
tion
Bowen Li1, Dongliang Xiong1, a), Kai Huang1, Xiaowen Jiang1, Hao Yao2, Junjian Chen2, and Luc Claesen3

Abstract Quantization is a well-known method for deep neural networks
(DNNs) compression and acceleration. In this work, we propose the
Sample-Wise Dynamic Precision (SWDP) quantization scheme, which can
switch the bit-width of weights and activations in the model according to
the task difficulty of input samples at runtime. Using low-precision net-
works for easy input images brings advantages in terms of computational
and energy efficiency. We also propose an adaptive hardware design for the
efficient implementation of our SWDP networks. The experimental results
on various networks and datasets demonstrate that our SWDP achieves an
average of 3.3× speedup and 3.0× energy saving over the bit-level dynam-
ically composable architecture BitFusion.
Keywords: convolutional neural networks, dynamic quantization, hardware
accelerators
Classification: Integrated circuits (logic)

1. Introduction

Deep neural networks have achieved state-of-the-art per-
formance in various computer vision tasks such as image
classification [1] and object detection [2]. With the devel-
opment of DNNs, their application scenarios become more
extensive, fromGPUs to domain-specific accelerators [3, 4].
Static networks with fixed computational graphs and param-
eters are difficult to adapt to diverse inference resource bud-
gets. In contrast, networks with dynamic depth [5], width
[6] and kernel size [7] tackle this problem and become an
emerging research topic. Many accelerators with execution
prediction are also proposed to reduce the computation of
DNNs [8, 9].
Quantization is a common step in DNNs deployment

[10, 11, 12]. However, dynamic bit-width quantization has
not been well studied. On the one hand, previous algorithm
research focused on training a set of model weight to sup-
port quantization with a variety of bit-widths [13, 14, 15].
The network can directly switch precision without retraining
when the deployment scenario changes. On the other hand,
previous hardware accelerators provide flexible architectural
support for variable bit-width across DNN layers and mod-
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els [16, 17, 18, 19]. But none of them take the finer-grained
differences between the input samples into consideration.
Since the classification difficulty of different inputs is differ-
ent for the neural network, using a low-precision model to
infer easy images can achieve the effect of acceleration and
energy-saving without a significant network accuracy drop.
However, it is hard to predict the classification difficulty and
allocate appropriate precision for each input picture. It is
a common issue for all networks with input-dependent dy-
namic architecture. Dynamic pruning tackled this by intro-
ducing an additional gate module for dynamic filter selection
or width decision [20, 21]. Multi-exit networks commonly
consider the classifier confidence to decide whether to early-
exit the architecture [5].
To address this, we propose an algorithm-architecture

co-design named sample-wise dynamic precision (SWDP).
Specifically, we adopt the quantization scheme proposed in
our previous work (Dynamic Precision Onion Quantization)
DPOQ [22]. The key idea of DPOQ is to train a network
that supports multiple-precision quantization, and the high-
precision network reuses the intermediate results from the
low-precision network during forward propagation. There-
fore, we regard the low-precision output as an early exit and
try to find the optimal exit for each sample in this work. The
automatic precision adaption is illustrated in Fig. 1. Input
images are routed to whether to use high precision regarding
the confidence of low-precision output. The cost of obtain-
ing the n-bit high-precision network results after the n/2-bit
low-precision network has been run is running another n/2-
bit network instead of the whole n-bit network.
We also design the hardware implementation for SWDP

algorithm based on the variable precision architecture Bit-
Fusion [16]. Extra element-wise addition for intermediate
results and the input sample difficulty comparator are intro-
duced to support our sample-wise precision decision algo-
rithm. The main contributions of this work are summarized
as:

Fig. 1 Overview of sample-wise dynamic precision for inference.
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1. We propose the dynamic quantization scheme named
SWDP, whose precision is adaptive to the input diffi-
culty.

2. We design the hardware architecture implementation
for efficient SWDP inference acceleration.

3. We perform extensive experiments and demonstrate
that our SWDP outperforms its static counterparts.

2. Sample-wise dynamic precision quantization

In this section, we introduce the proposed algorithm method
for sample-wise dynamic quantization. The approach in-
volves two steps: training a network supporting multi-
precision and determining the inference precision.

2.1 Multi-precision quantization
Multi-precision quantization can satisfy various hardware
resource budgets, and has awide range of application scenar-
ios. For example, the DNNs deployment platform switches
from cloud hardware to edge hardware, or the system may
enter low-power mode or high-speed mode if the battery
level changes even in the same mobile device. We adopt
the multi-precision quantization scheme from our previous
work DPOQ. The main calculation of neural networks is
concentrated in convolution or fully-connected layer, which
can be divided into multiple multiplication and accumula-
tion calculations. The quantized n-bit integer weight W is
split into the corresponding n/2-bit high part Wh and low
partWl , and reformulates the outputO of a convolution layer
with input I as:

O = I ∗ ((Wh <<
n
2
) +Wl) = Oh +Ol (1)

The whole computation is split into two parts, the calcula-
tion of Ol can be saved as long as the quantization error is
acceptable. However, due to the nonlinear activation func-
tion, outputs after the first convolution have different inputs
and can not be directly reformulated. Therefore, Wh and
Wl are treated as two independent n/2-bit weights rather
than the above high and low part of the n-bit integer weight.
Thanks to the learnable characteristic of neural network pa-
rameters, the weight Wl can be trained to approximate the
output difference caused by weight Wh quantization error
with min | |O −Oh − Il ∗Wl | |2. When training a network, it
is to minimize the final loss.
Most networks are built from basic blocks, and each basic

block contains several convolutional, batch normalization
and ReLU layers. Different form DPOQ, the frequency
of such error compensation is reduced from layer-wise to
block-wise to further save data transmission, as shown in
Fig. 2. The upper half network and the lower half network
are termed as the backbone network and the compensation
network, separately. The low-precision network is wrapped
in the high-precision network as a part and thus the whole
network looks like an onion. The benefit of this scheme is
that it allows simple precision switch by only increasing or
decreasing part of the network.
Since the data distributions of two precision contradict

each other, precision shift batch normalization (PSBN) is
adopted. The PSBN provides an individual set of learnable

Fig. 2 Detailed basic block with multi-precision quantization.

scale γ and shift β for each precision. Those are channel-
wise parameters, and the cost is neglected compared with
the convolutional layer. The interaction of two precision
networks is an element-wise addition, whose cost is almost
the same as the shortcut connections in ResNet [1]. Note
that the dual-precision network can be easily extended to a
multi-precision network by adding a network with difference
bit-width and the corresponding connections. In this paper,
we train the network with 4 kinds of precision (bit list =
{2, 4, 8, 16}) by default, and the weight bit-widths of 4
subnetworks are 2, 2, 4 and 8. We train networks of all
precision jointly:

Loss =
∑

k∈bitlist

αkLossk (2)

Where each loss is assigned with a parameter α to weigh its
contribution. The default value of α is 1. Moreover, a scale
can be multiplied to the gradient from high precision to low
precision during backward propagation. This gradient scale
parameter is used to adjust the training preference, which
balances the influence of high precision output loss and low
precision output loss on low precision weights. The value
of gradient scale depends on the bit-widths of high and low
precision networks.

2.2 Precision decision
After the network is trained, it can be quantized to flexible
bit-width. Same as shallow-deep network [23], assigning
simple samples with low precision not only provides sig-
nificant improvements in inference time, but also prevents
overfitting. Next step is to find the optimal precision for
every input. With the help of our unique data reuse mech-
anism, the low precision output is an early-exit. The low
precision inference and the high-precision inference can be
carried out successively without repeated calculations, and
their predictions can be combined to obtain the ensemble
result.
We use the output confidence as the condition of criterion

for exit decision in classification problems. Confidence is
the maximum output after softmax, and it is ∈ [0,1]. By
comparing the confidence with a user-selected threshold,
we can determine the degree of precision between current
precision and higher precision for inference. The selection of
threshold is a performance-complexity trade-off depending
on the actual application requirements. Our work is plotting
the accuracy-operation diagram.
The trained network supports 4 kinds of precision, which

means we have 3 thresholds to be set, namely T2→4, T4→8
and T8→16. Our goal is to achieve maximum accuracy un-
der any computation budget. In this section, we discuss
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Fig. 3 Computation VS. accuracy (ResNet20 in CIFAR100).

3 relationships of the threshold values. The first one is
confidence-prior, 3 thresholds are set with the same value.
The problem of the confidence-prior way is that it never
considers the cost. For example, the computational cost of
raising the precision of an input from 2 bits to 4 bits is much
less than that from 8 bits to 16 bits, but they have the same
priority when their confidences are the same. So the second
one is cost-prior, 3 thresholds are simplified to one and the
other two thresholds are either 1 or 0. The problem of the
cost-prior way is that the growth of accuracy becomes slower
with complexity increases. The third one is normalization,
the relationship of 3 thresholds is described by the following
formula:

T1/4
2→4 = T1/2

4→8 = T8→16 (3)

Where threshold is normalized toT8→16 with power function,
because it will not change the value range of [0,1]. The
exponent for T2→4 is calculated as (4 − 2)/(16 − 8) = 1/4
considering the cost of different bit-widths.
The accuracy-operation diagram of the three relationships

is shown in Fig. 3. The number of computations is the
relative value to the 16-bit quantized network. The accuracy
is obtained from the ensemble results. From the figure, it
can be seen that the problems of the confidence-prior way
and the cost-prior way mentioned in the above analysis are
reflected in the figure, and the normalization way achieves
the highest cost performance almost everywhere.

3. Hardware architecture design

In order to give full play to the superiority of our variable bit-
width quantization scheme, our hardware implementation
needs to support various numerical precision. Many state-
of-the-art accelerators support variable precision [16, 17,
18, 19].
Stripes [17] uses bit-serial compute units, whose exe-

cution time scales linearly with the length of the numeri-
cal representation used. But it only supports the neuron
(weight) precision to be variable. BitFusion [16] is another
bit-flexible accelerator. The fusion unit in it can offer mul-
tiply operation between operands with 2-bit, 4-bit, 8-bit and
16-bit, which adapts to our algorithm well. We believe that
{2,4,8,16} quantization is a reasonable bit selection. Firstly,
it covers almost all scenarios. Secondly, too fine-grained
bit width adjustment has little significance. Especially in
the range of 8-16 bits, increasing or reducing 1 bit has little
impact on network accuracy and inference cost. Therefore,

Fig. 4 Hardware architecture overview.

our hardware implementation adopts the design of the fusion
unit (FU) in BitFusion.

3.1 Overall architecture
We illustrate the overview of our hardware implementation
in Fig. 4. The major components in the design are listed as
follows: on-chip buffers, a systolic array, an accumulator, a
controller and post-process unit.
The on-chip buffer is composed of weight buffer, input

buffer and output buffer. Network parameters and input im-
ages are stored in the off-chip DRAM. Double buffering is
applied to overlap computation and off-chip data access. To
provide data with different bit widths, a series of registers
and multiplexers are placed at the buffer data port. We also
add an extra data path from the input buffer to the accumu-
lator to ensure that the intermediate data of the backbone
network can be sent to the compensation network during
high precision inference.
The systolic array of FU is the main operation execution

module, and it has advantages of high data reuse rate and
simple control. Input data is shared across columns, different
columns of FUs compute different output channels. Partial
sums of output data are accumulated across rows, different
columns of FUs compute different input channels. The con-
struction of FU is detailed in the figure, the decomposed
multiplication results of 4 combinations of most significant
bit (MSB) and the least significant bit (LSB) of weights and
activations are left-shifted and added together.
The accumulator accumulates partial sums until all in-

put channels and kernels are traversed. It can support
the element-wise addition in increasing precision. The
post-process unit is used to accomplish the operations af-
ter multiply-accumulation including pooling, activation and
quantization. And it can also perform Softmax function and
output confidence to the controller.
The controller records states and generates control signals

for the whole system. We add an additional comparator in
the controller to judge the difficulty of input samples by
comparing the calculated confidence with the user-defined
threshold. If the confidence is larger than the threshold or the
highest precision inference is performed, the done interrupt
will be set. Otherwise, higher precision is required to be
applied in the network for more accurate predictions.

3.2 Dynamic precision cost
The precision of the backbone network and three com-
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Fig. 5 Data mapping for W2A4 compensation network.

pensation networks for {2,4,8,16} quantization are W2A2,
W2A4, W4A8 and W8A16, separately. The number of bit
operations for our 4-bit dynamic precision quantization Fdp4
is the sum of the bit operations of W2A2 network Fw2a2 and
W2A4 network Fw2a4 as follows:

Fdp4 = Fw2a2 + Fw2a4 = (2 ∗ 2 + 2 ∗ 4)Fnet = 12Fnet (4)

where Fnet is the number of operations of the network, it is
calculated as:

Fnet =

L∑
l=1

Fconv(l) =
L∑
l=1

Ml ∗ Nl ∗ Xl ∗ Yl ∗ K2
l (5)

where Fconv(l) is the number of multiplications in the lth
convolutional layer, M and N are the output and input chan-
nels, X and Y are output feature size, K is the filter kernel
size. Reducing the bit-width of the network almost reduces
the bit-level computations quadratically. For the above we
can see that our Fdp4 cost less than the static W4A4 quan-
tization Fw4a4 = 16Fnet . Similarly, Fdp8 = 44Fnet <
Fw8a8 = 64Fnet , Fdp16 = 172Fnet < Fw8a8 = 256Fnet .
The drawback of our dynamic precision quantization is that
it introduces extra memory data transmission because of the
sequential execution mechanism of each precision.

3.3 Data mapping
The dynamic precision network has several subnetworks
with different bit-widths. The weight parameters of the
subnetworks are stored separately. Fig. 5 takes the W2A4
compensation network as an example, and shows the data
storage format in the buffer and the computation mapping in
the FU.
Eight 4-bit input activations or sixteen 2-bit weights are

organized into one word in the buffer. In this logically
fusing mode, the FU can only process 8 weights at a time.
Therefore, W9 to W16 are registered for the next run to
avoid repetitive access to the weight buffer. The FU is
configured to construct 8 Fused-PEs and each PE supports
W2A4 operands for multiply operations. The 8 multiply
results from Fused-PEs are accumulated together to generate
one single outgoing partial sum.

4. Experimental results

4.1 Dynamic precision results
We evaluate our SWDP on benchmarks of diverse net-
works (LeNet-5 [24], VGG16 [25], ResNet20 and ResNet18

Table I Multi-precision quantization results.

Network Method Top-1 Accuracy @ Precision
(Dataset) 2 4 8 16/fp
LeNet-5 baseline 98.45 98.85 98.99 98.90
(MNIST) SWDP 98.55 98.98 99.02 99.19
ResNet20 baseline 88.16 91.56 92.26 92.79
(CIFAR10) SWDP 88.23 91.16 92.47 92.86
ResNet20 baseline 60.95 67.80 68.13 68.45

(CIFAR100) SWDP 60.56 67.62 70.64 71.77
VGG16 baseline 91.10 92.33 92.76 92.89

(CIFAR10) SWDP 91.27 93.00 93.32 93.44
VGG16 baseline 67.86 70.55 70.98 71.35

(CIFAR100) SWDP 67.95 71.82 72.62 73.04
ResNet18 baseline 65.22 70.25 70.72 69.76
(ImageNet) SWDP 64.92 68.50 72.71 73.68

Fig. 6 Sample proportion of each bit widths.

[1]) and datasets (MNIST [26], CIFAR10, CIFAR100 [27]
and ImageNet [28]). We adopt the LSQ [29] to quantize
weights and activations. The network training and evalu-
ating are implemented under the Pytorch framework [30]
with 8 NVIDIA RTX 2080Ti GPUs. For training models,
we use the SGD optimizer with a momentum of 0.9 and a
weight decay of 5e-4. The initial learning rate is 0.1 and
decays with cosine scheduler. The batch size is 256. All the
networks are trained from scratch, and for MNIST, CIFAR
and ImageNet datasets, networks are trained for 10, 160 and
90 epochs, respectively.
The quantization results of individual training baseline

and our SWDP are listed in Table I. From the results we
can see that our SWDP achieves higher accuracy than the
baseline in most cases. With the increase of bit width, the
advantages of our method are more obvious. For example,
Our SWDP significantly boosts accuracy of 3.3% on 16-bit
ResNet20 of CIFAR100 dataset over the full-precision base-
line. The results prove that multi-precision quantization is
feasible, and it is able to further improve trade-off between
accuracy and efficiency with dynamic precision quantiza-
tion.
Based on the above trained network, we try to find the op-

timal inference precision for the input samples by comparing
confidence against the thresholds. Fig. 6 shows the propor-
tion of samples in the dataset of each precision, “ResNet”
and “CIFAR” are abbreviated to “RN” and “C” in the figure.
And we guarantee that the accuracy of SWDP is no lower
than that of static 8-bit quantization under this confidence
threshold setting. It can be seen from the figure that the
bit widths vary across networks and datasets to guarantee
no degradation of prediction accuracy. Most of the samples
in the dataset are quite easy to classify. More than half of
the images can be applied with 2-bit quantization, and only
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Fig. 7 Normalized performance of SWDP over BitFusion.

Fig. 8 Energy breakdown.

less than 5% images require 16-bit quantization. This offers
great potential for acceleration.

4.2 Hardware results
To evaluate the performance of our hardware architecture,
we develop a simulator as the behavior model and imple-
ment the accurate RTLmodel with Verilog HDL. The design
is synthesised by Synopsys Design Compiler under 45 nm
technology with the commercial standard-cell library. The
on-chip buffers are modeled by the CACTI [31]. The system
clock is run at the frequency of 500 MHz.
To evaluate the performance and energy of our implemen-

tation, we make a comparison with BitFusion using their
open-source simulator1. For the same area budget, we use
the same systolic array size of 16 × 32 and buffer size of
112 KB for both designs. The BitFusion operates on the 8-
bit quantization network for all input samples. Our SWDP
supports assigning flexible bit width to each sample, and the
proportion of each bit width is summarized in Fig. 6. The
normalized performance is presented in Fig. 7, and it shows
that our SWDP achieves 3.3× speedup and 3.0× energy ef-
ficiency on average. The highest improvements of 6.7×
speedup are achieved on VGG16-C10 because of its low av-
erage bit width and wide network channel. The worst effect
is on RN20-C100, but still saves 1.9× relative processing
latency and 1.7× energy over BitFusion.
To make a further insight into the energy consumption

reduction, we show the energy breakdown for each compo-
nent in Fig. 8. Most of the energy (over 80%) is consumed
in data movement from off-chip DRAM to on-chip SRAM.
Quantization reduces the number of bits used for data repre-
sentation, so it significantly saves the memory access energy
of DRAM and Buffers. Moreover, the multiply-accumulate
computation is simplified with the decrease of operands pre-
cision and its energy consumption is reduced almost quadrat-
ically. However, computation energy accounts for a small

1 https://github.com/hsharma35/bitfusion

share in the whole system, the overall energy saving mainly
depends on a reduction in data transmission.
In conclusion, our adaptive sample-wise dynamic pre-

cision leads to improvements in performance and energy
since it compresses network models and simplifies calcula-
tion processes.

5. Conclusion

In this paper, we propose the sample-wise dynamic preci-
sion quantization and design the corresponding hardware.
Our SWDP not only saves redundant computation for easy
samples with low-precision inference, but also preserves
representation power for hard samples with high-precision
inference. The experimental results show that our SWDP
achieves remarkable advantages in computational and en-
ergy efficiency compared to the static networks.
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