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1 | INTRODUCTION

COVID-19, the respiratory disease caused by the betacoronavirus SARS-CoV-2, was first observed in Wuhan, the capital
of the Hubei province in the China, in December 2019. It has quickly spread across continents and has been declared
a global pandemic on March 11, 2020 (WHO, 2020). The first confirmed COVID-19 patient in Belgium was a Belgian
national who was repatriated from the Hubei province in early February. As the person was quarantined immediately after
repatriation, he very likely did not infect other individuals within Belgian borders. The second known case was confirmed
on March 1, 2020, the date that is commonly referred to as the start of the epidemic in Belgium. As COVID-19 incidences
increased, a number of federal measures were taken to curtail community transmission, including the implementation of
a semilockdown of the country on March 18, 2020.

Limited available resources for testing, in terms of both chemical supplies and manpower, posed a difficulty during
the early phase of the Belgian outbreak. As a result, only patients with severe symptoms of COVID-19 and health care
workers were tested. From May 2020, the testing strategy was adapted, in which all symptomatic cases were tested to
enhance contact tracing (Desson et al., 2020). As a result, the limitations in the testing strategy during the initial phase
of the outbreak have hampered the understanding of the spatial spread of the virus. In addition, the reported number of
confirmed cases is an underestimation of the number of infected cases, given that many patients are asymptomatic and
paucisymptomatic patients who may not seek health care.

In order to spatially model COVID-19 incidence during the March-April 2020 wave, Neyens et al. (2020) applied
standard spatial statistical methods to aid the analysis of the suboptimal test-confirmed cases’ data by using auxiliary
self-reported data on COVID-19 symptoms that were collected during the third round of the Big Corona Study (hence-
forth, BCS). The BCS (Corona study 2020) is an open online survey and an initiative of the University of Antwerp, in
collaboration with Hasselt University, KU Leuven, and the Free University of Brussels. Since March 17, 2020, the study
has collected weekly (biweekly from June 2, 2020, onward) data on COVID-19-related themes through self-reporting by
the general Belgian public, including the incidence of COVID-19 symptoms within communities. The response rates have
been high, with approximately 5% of the Belgian population (537, 172 individuals) participating during its first round on
March 17, 2020.

Neyens et al. (2020) used data of all 397,131 respondents (approximately 3.5% of the Belgian population) during the
third round of the BCS (March 31, 2020) to estimate symptoms incidence via a spatially discrete binomial Leroux model
(Leroux et al., 1999). These estimated incidences were subsequently used as predictors in a Poisson Leroux model of con-
firmed COVID-19 cases, as reported by the Belgian government between April 7 and 9, 2020, that is, approximately 7-9
days later than the BCS’s third round. The investigators reported, among other things, that the model-based spatial symp-
toms’ incidences have a significant, but limited, predictive performance, when used as an explanatory variable in a spatial
analysis of test-confirmed COVID-19 cases diagnosed 7-9 days later.

The limited prediction capabilities of the model presented in Neyens et al. (2020) are possibly explained by data misalign-
ment between the test-confirmed and symptoms data: (i) the test-confirmed data might overrepresent local outbreaks in
nursing homes. These could have distorted the epidemiological signal of the general population, since limited test capacity
has led to primarily administering COVID-19 tests to those with a severe pathology, which occurs more frequently among
elderly; (ii) the BCS underrepresents elderly and nonadults. This is not necessarily a problem in a comparative study,
but it might lead to biased results when only very little signals can be obtained from these age groups. An efficient and
straightforward solution is to restrict the analysis to the working population.

Although the method of Neyens et al. (2020) provides a straightforward strategy to pool information from the spatial
incidence of COVID-19-like symptoms to improve the estimation of the spatial distribution of test-confirmed incidence,
an important disadvantage of this method is that it does not correct for uncertainty in the model-based predictions of
symptoms’ prevalences. An extension is to model both outcomes simultaneously, for example, by using a random-effects
structure that allows both processes to be correlated. The joint analysis of both processes can improve the predictive
inference of COVID-19 incidence risk. We refer to Neyens et al. (2016) for an overview of bivariate modeling approaches
in a disease mapping context.

As the BCS is a voluntary survey, response rates vary among citizens with different ages, genders, and socioeconomic
backgrounds. In particular, the data might be preferentially sampled Diggle et al. (2010), a phenomenon that reflects pro-
cesses that generate spatial response rates that are stochastically dependent on the spatial process under investigation. In
the BCS, the geographical distribution of public engagement to participate in the BCS might reflect a similar mechanism.
Geographical tendencies in response rates can depend on several unmeasured processes that are associated with increased
COVID-19 symptoms’ incidence. When left unaccounted for, preferential sampling can invalidate predictive inferences.
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Diggle et al. (2010) propose a joint modeling approach where a spatial model of the outcome of interest shares a spatial
random effect with a point process model, which corrects for the choice of sampling locations.

In this study, we propose a joint modeling framework to improve the estimation of the spatial distribution of the latent
COVID-19 incidence. In essence, a model is proposed that simultaneously analyzes three spatial processes: (i) the reported
incidence of COVID-19, based on test-confirmed cases, the process of main interest; (ii) the incidence of COVID-19-like
symptoms, as obtained by self-reporting by Belgian citizens; and (iii) the geographical distribution of participants of the
BCS. We apply Bayesian estimation to fit this model. Processes (i) and (ii) are linked via a bivariate random-effects struc-
ture. Processes (ii) and (iii) share a conditional autoregressive (CAR) random-effects term. To the best of our knowledge,
this is the first study that proposes the extension of a joint model that accounts for preferential sampling toward the con-
text where two correlated disease outcomes are simultaneously analyzed. We extend the modeling framework of Neyens
et al. (2020) considerably: (i) by correcting the causal pathway via modeling incidences of symptoms and test-confirmed
cases simultaneously in a joint modeling framework; (ii) by accounting for sampling bias due to preferential sampling
in self-reported survey data; and (iii) by optimizing the alignment between the data of the self-reported symptoms and
test-confirmed cases by focusing on the working-age population.

2 | METHODOLOGY

Two data sources collected during the initial phase of the epidemic, March and April, 2020, are used: (i) reported test-
confirmed cases in Belgium and (ii) self-reported symptoms data from the BCS, an online survey.

The first data set is provided by the Belgian public health institute (Sciensano). It contains 2124 confirmed COVID-19
cases between the age of 25 and 64 diagnosed between April 7 and April 9, 2020. The data include for each diagnosed
case the residential information (municipality), age, and gender. The number of confirmed COVID-19 cases in munic-
ipality i (i = 1,...,589) is denoted as Y;;. We perform an internal age-gender standardization (Waller & Gotway, 2004)
to calculate the municipality-specific expected number of cases, E;. This internal age-gender standardization uses an
age/gender-specific incidence rate (pg) for a standard population (here, the Belgian population), computed as the total
observed number of cases in the age/gender-group g divided by the age/gender-specific standard population number. The
expected number is then calculated as the sum over the different age/gender-strata of the age/gender-specific incidence
rate multiplied with the population number in municipality i (ng ), that is, E; = ) pgh, ;. The standardization procedure

uses age intervals that allow for optimal balance in the BCS data, as detailed in the following paragraph, namely, those
containing 25-44, and 45-64, respectively. The upper left panel of Figure 1 depicts then the standardized incidence rates,
SIR; =Yy, /E;.

The second data set contains crowd-sourced COVID-19 symptoms, self-reported during the third round of the BCS
(March 31, 2020). This survey is designed to collect data on epidemiological, socioeconomic, behavioral, and psychological
trends in the Belgian population during the SARS-CoV-2 outbreak of 2020. The majority of the respondents comes from
Flanders, the northern Dutch-speaking part of Belgium (Figure 1, bottom left). Data of the third round of the survey are
investigated, since we are interested in the spatial distribution of the COVID-19 incidence in the early phase of the Belgian
epidemic. Furthermore, the number of participants between the age of 25 and 64 of the BCS in the third round is 320,463.

Although the survey was also available in French, English, and German, the BCS, being an initiative of the University of
Antwerp, was most intensively promoted in Dutch speaking Flanders, and in particular in the province of Antwerp, which
explains the largest response rates in the Antwerp region. All participants were asked to indicate which of the following
COVID-19-like symptoms they experienced during the week preceding the third round of the survey (March 24-30, 2020),
if any: (i) a rapidly increasing fever, (ii) a high fever, (iii) a dry cough, (iv) shortness of breath, (v) chest pain, (vi) muscle
pain, (vii) exhaustion, (viii) chills, (ix) nausea, (x) painful eyes, (xi) a sore throat, (xii) a rattling cough, and/or (xiii) a
running nose. We denote Y»;; = 1, when person j = 1, ..., n; in municipality i experienced at least one of the most common
symptoms (according to WHO, 2020; Yang et al., 2020), which we define as symptoms (i)—(iv); otherwise, Y,;; = 0. The
observed proportion of participants reporting at least one of these key symptoms is depicted in Figure 1 (top right).

The choice of a time difference between the symptoms’ prevalence (situation before March 31, 2020) and COVID-19
cases (diagnosis on April 7, 8, or 9) reflects the delay between symptoms and testing. Neyens et al. (2020) investigated
multiple delay periods and came to the conclusion that delay times of 7-9 days provided the best predictive results, while
not being drastically better than slightly shorter or longer delay periods. Due to computational limitations related to our
modeling approach (Section 2.1), we have opted to focus on this particular recommended delay period.
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FIGURE 1 Top left: SIR map of the number of confirmed COVID-19 cases in the age interval 25-64 between April 7 and April 9, 2020,
per municipality, as reported by the Belgian population health institute. Top right: the proportion of respondents reporting at least one
COVID-19 like symptoms, as reported by 320,463 respondents between the age of 25 and 64 during the third round of the Big Corona Study on
March 31, 2020. Bottom left: the proportion of the population between the age of 25 and 64 per municipality taking the survey on March 31,
2020. Bottom right: summary statistics of the proportion (%) and the total number of the respondents between the age of 25 and 64 taking the
survey on March 31, 2020

2.1 | Statistical model

A joint model is fitted that consists of three submodels that simultaneously analyze test-confirmed cases, crowd-sourced
symptoms based on the BCS, and the response rates in the BCS. We define the model as follows:

Y,; ~ Poisson(E;6,),
Y»ij ~ Bernoulli(7;;),
n; ~ Poisson(E,, ;1;),
6; = exp(ag + vy; + Uy, ®
7j = expit(By + B1Aj + B2Gj + B3A4;G;j + vy + Uy + Suy ),

¥ = exp(yo + V1R1; + V2R + vy +up ),
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where 0; denotes the relative risk of confirmed COVID-19 cases for municipality i and E,, ; represents the expected number
of respondents in municipality i, which is calculated via the same internal age-gender standardization as was applied
to obtain E;. We will refer to ; as the response factor, a multiplicative parameter representing the surplus or reduced
number of respondents, according to what one would expect based on the general response rate in the whole population.
Predictions of 7;; are based on the total Belgian population and not on the survey population. Parameters o, S, and
7o represent process-specific intercepts. A; =1 for people in the age interval 45-64 years, 0 for the age interval 25-44
years; G; = 1 for males, 0 for females. The dummy variables R, and R, represent whether the BCS respondents reside in,
respectively, the Brussel Capital Region or the Walloon Region, with the Flemish Region as the reference group.

The response factor is modeled using two random effects. One is the area-specific parameter v, ;, v, ; ~ N(0, o2), denot-
ing small-scale variation that is specific to the process that generates the response rate. The second area-specific term u,, ;
corrects for possible preferential sampling, which is shared between the linear predictor of the symptoms’ incidence and
that of the response rate. We parameterize it as an intrinsic CAR random-effects term, such as introduced by Besag and
Kooperberg (1995):

p 2
up,ilup,—i ~ N(#p,i’fp’i>’

Bpi=— 2 Upks (2)
m; '
k~i
2
2 ™y
T2 .= .
bl m;

where k ~ i indicates two adjacent areas and m; are the number of neighbors of area i. The parameter § estimates the
amount of preferential sampling, based on recommendations by Pati et al. (2011), who extended the preferential sampling
model of Diggle et al. (2010).
To quantify the stochastic correlation between the COVID-19 confirmed cases and the crowd-sourced symptoms, we
use correlated random effects v;=(vy;, ;)" and/or u;=(uy;, uy;)". Three model parameterizations were considered.
Option 1 assumes spatial correlation on a multivariate scale. In this case, a bivariate intrinsic CAR random effect (Jin
et al., 2007; Martinez-Beneito & Botella-Rocamora, 2019) is defined as

1 s 1
uilu—i7QNNZ<E§ukaE )1 (3)

where

2 pm
Q= ) . 4)
PsT1T2 7

The diagonal terms of the covariance matrix Q represent the conditional dependence between neighboring areas for either
the confirmed cases or the COVID-19-like symptoms, while the off-diagonal terms represent the spatial conditional depen-
dence between the confirmed cases and symptoms. In addition, v;; and v,; capture small-scale spatial variation and are
univariately normally distributed, v;; ~ N(0, 0]2.) , j=1,2.

Option 2 shares a bivariate normally distributed small-scale heterogeneity term, defined as

vi ~ 'A/Z(Or 2) ) (5)

0% Pu9192
Y= , ) (6)
Pu9103 0,

where
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In addition, the processes generating the confirmed cases and the symptoms include process-specific intrinsic CAR
random effects, u;; and u,;, defined similarly as (2).

Option 3 uses a multivariate CAR convolution model, which combines a bivariate intrinsic CAR random effect, as
defined in (3), and a bivariate normally distributed heterogeneity term, given by (5).

Option 4 models u as a bivariate intrinsic CAR random effect (given by Equation 3) and v,; as univariate normally
distribution, similar as option 1. However, the small-scale heterogeneity of the confirmed COVID-19 cases, which is rep-
resented by the parameter vy;, is modeled via a gamma distribution instead of a lognormal distribution. The relative risk
of the confirmed cases is then defined as

0; = vy; exp(ag + uy;), @)

with vy; ~ gamma(a, a).

A gamma distribution for the confirmed cases is opted for since flexible alternatives to the Gaussian distribution are
frequently preferred when modeling COVID-19 incidence data. Schumacher et al. (2020) uses, for example, mixed-effect
models for COVID-19 deaths and Mamode Khan et al. (2020) considers Conway-Maxwell Poisson terms. Option 4, there-
fore, leads to an extension of the combined model, which was introduced by Molenberghs et al. (2010) and adapted to a
spatial setting in Neyens et al. (2012).

2.2 | Analysis procedure

R 3.6.0 (R Core Team, 2019) was used to perform the analysis, via the R package NIMBLE (Numerical Inference for statis-
tical Models for Bayesian and Likelihood Estimation, NIMBLE Development Team, 2019; de Valpine et al., 2017). NIMBLE
applies Markov chain Monte Carlo (MCMC) techniques. Lawson (2020) gives NIMBLE code for Bayesian disease mapping.
We provide the codes to fit all models as supplementary material. Additional information regarding fitting the combined
model can be found in Neyens et al. (2012).

An N(0, 103) prior is used for the process-specific intercepts and covariate coefficients. For the variance parameters of
the random-effects terms, a gamma(0.01, 0.01) hyperprior is assigned. For the hyperparameter a of option 4, an exp(1)
distribution is taken. A Wishart prior with 2 degrees of freedom is used for the covariance matrix of the bivariate random-
effects structure. The scaled matrix was defined as (O(')1 0?1). A sensitivity analysis of the prior choices has been added as
Appendix B. We denote covariate effects as significant, when their associated 95% credible interval does not include 0.

Note that extensive modeling indicated that results of this three-way joint model can be moderately sensitive to the initial
parameter values. Therefore, parameter estimates of three separate model fits on each process, that is, without correlated
or shared random effects, are used as starting values for the MCMC sampling of the covariates. For convergence purposes,
two MCMC chains are generated, with a burn-in of 15,000 iterations and 35,000 additional iterations per chain.

3 | RESULTS

Model selection was conducted to select the correlated random effects structure between the confirmed cases’ and the
crowd-sourced symptoms’ processes, using WAIC (Watanabe-Akaike Information Criterion, Watanabe, 2010). The WAIC
estimate was the lowest for option 4 (WAIC 17,401.38), as compared to option 1 (WAIC 17,414.68), option 2 (WAIC 17,426.42),
and option 3 (WAIC 17,428.63). Moreover, we investigated which random-effects structure performs better when prediction
is the objective using the LMPL (log marginal predictive likelihood; Geisser & Eddy, 1979). Only very small differences
between the LMPL estimates of the different options were noticed, which were too small to prefer a single structure
(Vranckx et al., 2021). Hence, based on the WAIC, this section gives the results of the model where the processes generating
the confirmed cases and symptoms are linked via a bivariate spatial correlation, in addition to a univariate normal uncor-
related heterogeneity term for the symptoms’ processes and a gamma uncorrelated heterogeneity term for the confirmed
cases’ process. An overview of the results for options 1, 2, and 3 is given in Appendix A.

We find significant stochastic dependency between the COVID-19 confirmed cases’ and crowd-sourced symptoms’
processes (Table 1, g, = 0.5421). Furthermore, both the crowd-sourced symptoms’ process and the test-confirmed process
have area-specific variance estimates that are considerably large as compared to the unstructured heterogeneity. No
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TABLE 1 Fitof the joint model with a bivariate spatial random effect, and a univariate gagmma and normal small-scale heterogeneity
terms for the combined test-confirmed cases, respectively, crowd-sourced symptoms processes (option 4)

Estimate 95% equal tail
Effect Parameter (posterior median) credible interval
Test-confirmed COVID-19 process
Intercept Ao —0.0190 (—0.0828, 0.0431)
Area-specific variance rf 0.3147 (0.1810, 0.5161)
Unstructured variance Gf 0.1268 (0.0848, 0.1867)
Test-confirmed COVID-19 and crowd-sourced symptoms processes
Spatial correlation Ps 0.5421 (0.2206, 0.7561)
Crowd-sourced symptoms process
Intercept Bo —1.4786 (—1.4985, —1.4543)
agecat B —0.3162 (—0.3385, —0.2911)
male B —0.0339 —0.0588, —0.0084)
agecat * male Bs 0.0070 (—0.0393, 0.0453)
Area-specific variance rg 0.0108 (0.0069, 0.0170)
Unstructured variance 0'5 0.0019 (0.0010, 0.0033)
Preferential sampling
Preferential sampling é —0.0319 (—0.0771, 0.0116)
Area-specific variance ff, 0.4839 (0.4052, 0.5688)
Responses rate process
Intercept Yo —0.0284 (—0.0945, 0.0439)
regioncat, 71 —1.0641 (—1.3903, —0.7898)
regioncat, Vs —1.7345 (—1.8962, —1.5892)
Unstructured variance o2 0.0117 (0.0047, 0.0248)

evidence of preferential sampling is found, as indicated by a nonsignificant parameter . Therefore, a joint model of
the COVID-19 confirmed cases’ process and crowd-sourced symptoms’ process will not lead to biased predictions due
to informative sampling. Note that, although we do not find stochastic association between the response rates and the
symptoms’ incidence, individuals residing in Brussels or in the Walloon region are significantly associated with a lower
response rate in the BCS, as compared to Flemish citizens. This is arguably due to the fact that the survey was mostly
carried out in Flanders, as we see in Figure 1.

The variables age and gender have significant effects, while the interaction effect between age and gender is not sig-
nificant. Leaving out the interaction term gives similar model results which shows robustness in terms of model fit, and
a very small difference in WAIC estimates is observed, leading to no clear support for the model with or without the
interaction term (Vranckx et al., 2021). Therefore, we here present the model with the interaction term between age and
gender due to the primary purpose of using the age and gender variable as confounding variables in this epidemiological
process. Women have the highest probability of experiencing at least one typical COVID-19 symptom; this probability is
also increased in the age interval between 25 and 44 years. This can be explained by age-dependent variation in social
distancing behavior, as was suggested by analyses of the adherence to measures against disease transmission, based on
the BCS.

Figure 2 (top left) shows the relative risk of test-confirmed cases, the spatial distribution of the probability of expe-
riencing at least one typical COVID-19 symptom (top right), as well as the exceedance probabilities (bottom). For the
test-confirmed cases, the exceedance probabilities are defined as P(§; > 1.5). The threshold 1.5, which represents an impor-
tant increased risk, is chosen in line with choices in Neyens et al. (2020), for consistency purposes. However, the method is
flexible to change this threshold when necessary. For the BCS-based symptoms’ incidences, the exceedance probabilities
are set as P(#; > 0.165), where 7; represents the symptom’s incidence in the general population of each municipality.
The threshold value 0.165 is the mean proportion of respondents reporting at least one COVID-19-like symptom. Based on
both the relative risks of confirmed COVID-19 cases and the predictions of the probability of reporting at least one of the
typical COVID-19 symptoms in the BCS, a main cluster of increased COVID-19 incidence is observed around the area of
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FIGURE 2 Top left: the relative risk predictions of confirmed COVID-19 cases. Top right: the predicted probability of having at least one
COVID-19 symptoms. Bottom left: P(R; > 1.5); bottom right: P(#; > 0.165). These maps are all based on the joint model with a bivariate
spatial random effect, and a univariate gamma and normal small-scale heterogeneity terms for the combined test-confirmed cases,
respectively, crowd-sourced symptoms processes (option 4)

Sint-Truiden, which is situated in the central-east part of Belgium. Note that this region is well-known for its large COVID-
19 outbreak during March and April 2020. Compared to Neyens et al. (2020), fewer local outbreaks appear in the relative
risk predictions based on the test-confirmed COVID-19 process. Furthermore, in the Walloon region, that is, the southern
part of Belgium, there is more discrepancy between the maps of the confirmed COVID-19 cases and crowd-sourced symp-
toms processes, most likely due increased uncertainty as a result of generally low response rates in the BCS throughout
that region.

4 | DISCUSSION

In this manuscript, a joint model for the spatial analysis of COVID-19 incidence in the working-age population that
accounts for preferential sampling is presented. Different bivariate random-effects structures were considered to link the
confirmed COVID-19 cases process to the crowd-sourced symptoms’ incidence process. Model-based symptoms’ incidence
predictions that are obtained in the BCS are moderate significantly associated with the heterogeneity in the relative risks
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of the confirmed cases that are reported approximately 1 week to 9 days after reporting ongoing symptoms. In addition,
we find little evidence of preferential sampling in reporting symptoms in the BCS.

Our results highlight, to a substantially larger extent than the results in Neyens et al. (2020), the opportunities of a
large-scale online survey to signal incidence trends with a lead time of a week or longer. This is illustrated by the overlap
between the test-confirmed risk map and the symptoms-based incidence map (Figure 2), where considerably less anoma-
lies are observed in the relative risk predictions based on the test-confirmed data, as compared to the analyses of Neyens
etal. (2020). This can be explained by the difference in age category considered; Neyens et al. (2020) studied the whole pop-
ulation, while in this manuscript only the working-age population is considered. By not including elderly, local outbreaks
in nursing homes are not accounted for in the confirmed COVID-19 cases’ process, which provides improved insights in
the spatial dynamics of the epidemic. A number of conclusions are similar to those obtained by Neyens et al. (2020). First
of all, our analysis yields similar insights in the demographic heterogeneity in key COVID-19 symptoms. Furthermore, we
find a modest, but significant, stochastic dependency between the relative risks of the COVID-19 confirmed cases and the
incidences of the crowd-sourced symptoms, which is in line with the moderately significant covariate effects of predicted
symptoms’ incidences on test-confirmed relative risks. Both analyses also pinpoint the same important cluster of elevated
COVID-19 risk around the city of Sint-Truiden, in the central-east part of Belgium.

From a methodological perspective, the statistical model considered in this manuscript improves the analysis of Neyens
etal. (2020) in two aspects: (i) the two-step approach of Neyens et al. (2020), who used the predictions of the crowd-sourced
symptoms as a covariate for the confirmed COVID-19 cases, is not optimal, since it does not account for uncertainty in
the symptoms predictions. By jointly analyzing these processes, we overcome this problem; (ii) a joint model yields an
estimate of the correlated and the processes-specific variability on a spatial and nonspatial level. In addition, the model
considered in this manuscript also corrects for possible bias due to preferential sampling. Although no significant pref-
erential sampling was found, Diggle et al. (2010) argue that for each spatial analysis whereby the spatial process can be
stochastic, it is important to take this into account.

This study presented a spatial analysis that shows the opportunities of crowd-sourced data to mitigate an epidemic
during its outbreak phase. Future work will extend this modeling framework to a spatiotemporal setting to investigate
the spatial and temporal differences in infections. These models can be extensions of the CAR convolution models where
temporal correlation can be corrected for via a random-walk parameterization. In addition, the CAR and random-walk
effects can interact, which allows for purely spatiotemporal trends. One difficulty will be to correct for time-dependent
test capacity and case definitions. Besides extending the model to a spatiotemporal context, it can be further refined by
the addition of other prediction covariates, for example, information of governmental measurements, which is likely to
affect individual mobility and, through this, obstruct possible transmission routes. Furthermore, the time delay between
experiencing symptoms and being diagnosed with COVID-19 was based on results from Neyens et al. (2020), who assumed
a fixed delay. However, the delay time can be treated as a stochastic phenomenon, which has not been corrected for, due
to current computational hurdles in the current modeling framework. Future research will investigate the possibility to
map the symptoms experienced to the confirmed cases (or vice versa), using delay distributions. This allows to take into
account the uncertainty of the period between the times of symptom reporting and diagnosis. Note that the confirmed
COVID-19 cases are restricted to a specific time slot as aggregated data over a specific time, while reporting symptoms
in the BCS does not necessarily reflect the date of symptom onset, leading to uncertainty regarding the exact start of
the symptoms. Another assumption of the analysis in this manuscript is that there are no geographical differences in
test strategies across the considered regions. Discrepancies between these strategies could lead to effort-based differences
in observed incidences. Accounting for this would however entail the introduction of an additional model process that
corrects for sampling bias in the confirmed cases. We chose not to pursue this extension in this study, since this would
push our model beyond the limits of model complexity.

Note as well that we have presented analyses using a bivariate intrinsic CAR random-effects term and/or a bivariate
normally distributed heterogeneity term. Since a CAR convolution model can suffer from identifiability problems, other
random-effect structures were investigated as well, such as the multivariate Leroux prior. The random effect of a multi-
variate Leroux model is defined as the Kronecker product of the univariate CAR prior proposed by Leroux et al. (1999) and
a between-process covariance matrix. It is characterized by a single random effect that contains a spatial mixing parameter
to represent a range of weak to strong spatial correlation. However, this analysis was hampered by substantial convergence
problems and was therefore not included in the manuscript. It is important to acknowledge again that the complexity of
a three-way joint model leads us to the upper limit of what can be achieved in this data analysis. We therefore strongly
advise others to thoroughly monitor posterior convergence when undertaking a similar analysis.
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