INVERSION OF AROMATICITY OF NH-TAUTOMERS OF FREE-BASE CORROLES IN THE LOWEST TRIPLET T-1-STATE

Peer-reviewed author version

Gladkov, L. L.; Klenitsky, D., V; Vershilovskaya, I. V.; MAES, Wouter & Kruk, M. M. (2022) INVERSION OF AROMATICITY OF NH-TAUTOMERS OF FREE-BASE CORROLES IN THE LOWEST TRIPLET T-1-STATE. In: Journal of Applied Spectroscopy, 89 (3), p. 426 -432.

DOI: 10.1007/s10812-022-01374-w Handle: http://hdl.handle.net/1942/38020

ИНВЕРСИЯ АРОМАТИЧНОСТИ NH-ТАУТОМЕРОВ СВОБОДНЫХ ОСНОВАНИЙ КОРРОЛОВ В НИЖНЕМ ТРИПЛЕТНОМ Т₁ СОСТОЯНИИ

Л. Л. Гладков,¹ Д. В. Кленицкий,² И. В. Вершиловская,² В. Маес,³ Н. Н. Крук ^{2*} УДК 535.37+539.19

 ¹ УО «Белорусская государственная академия связи»
 220114, Минск, ул. Ф. Скорины, 8/2, Беларусь; e-mail: llglad@tut.by
 ² УО «Белорусский государственный технологический университет»
 220006, Минск, ул. Свердлова, 13а, Беларусь; e-mail: m.kruk@belstu.by; krukmikalai@yahoo.com
 ³ Институт исследования материалов, Университет Хассельта

В-3590, Дипенбек, ул. Агора, 1, Бельгия; e-mail: wouter.maes@uhasselt.be

(Поступила 5 апреля 2022)

Методами квантовой химии исследована ароматичность в нижнем триплетном T_1 состоянии NH-таутомеров свободных оснований корролов с различной архитектурой периферического замещения. Установлено, что доминирующие контуры π -сопряжения у NH-таутомеров различаются, однако для каждого из таутомеров доминирующие контуры π -сопряжения в основном синглетном S_0 и возбужденном триплетном T_1 состояниях одинаковы. Обнаружено, что степень ароматичности макроцикла в триплетном T_1 состоянии заметно уменьшается по сравнению с основным S_0 состоянием. Показано, что в триплетном T_1 состоянии макроцикла свободных оснований корролов следует считать антиароматичным. Обсуждается взаимосвязь степени ароматичности с конформацией макроцикла и электронными эффектами периферических заместителей.

Ключевые слова: свободные основания корролов, NH-таутомеры, триплетные состояния, π-сопряжение, ароматичность.

INVERSION OF AROMATICITY OF NH-TAUTOMERS OF THE FREE BASE CORROLES IN THE LOWEST TRIPLET T₁ STATE

L. L. Gladkov,¹D. V. Klenitsky,² I. V. Vershilovskaya,² W. Maes,³ M. M. Kruk^{2*}

UDC 535.37+539.19

 ¹ Belarusian State Academy of Communications,
 220114, Minsk, F. Skorina str., 8/2, Belarus; e-mail: llglad@tut.by
 ² Belarusian State Technological University,
 220006, Minsk, Sverdlov Str., 13a, Belarus; e-mail: m.kruk@belstu.by; krukmikalai@yahoo.com
 ³ Institute for Materials Research (IMO-IMOMEC), Hasselt University,
 B-3590, Diepenbeek, Agoralaan 1, Belgium; e-mail: wouter.maes@uhasselt.be

(Received 5 April 2022)

Aromaticity in the lowest triplet T_1 state of NH-tautomers of the free base corroles with different architecture of peripheral substitution has been studied with quantum chemistry methods. It was established that dominating π -conjugation pathways differed for NHtautomers, but dominating π -conjugation pathways in the ground singlet S_0 and excited triplet T_1 states for each of two tautomers kept the same. It was found that macrocycle aromaticity degree in the triplet T_1 was distinctly lower compared to the ground S_0 state. It was shown that macrocycle of the free base corroles in the triplet T_1 state should be considered as antiaromatic. Relationships of the aromaticity degree with the macrocycle conformation and electronic effects of peripheral substituents were discussed.

Key words: corrole free bases, NH-tautomers, triplet sates, π -conjugation, aromaticity.

Введение. Известно, что нижнее возбужденное триплетное Т₁ состояние играет ключевую роль в дезактивации энергии электронного возбуждения тетрапиррольных макрогетероциклических соединений [1-2] и их гетерозамещенных аналогов [3-5]. К настоящему времени установлено, что конфигурационное взаимодействие в нижнем триплетном Т₁ состоянии тетрапиррольных макроциклов заметно изменяется по сравнению с основным S₀ или нижним возбужденным S₁ синглетными состояниями [2,6-7]. Показано, что заселение Т₁ состояния сопровождается конформационными макроцикла [8-9]. Совокупность этих факторов приводит к перестройками возмущению электронного взаимодействия между атомами макроцикла и может обусловить изменения конфигурации контура π-электронного сопряжения в макроцикле, и степени ароматичности макроцикла в целом. Изменение ароматичности молекул при заселении нижнего триплетного T₁ состояния показано Бердом в 1972 г. [10], однако до недавнего времени для макрогетероциклических соединений, содержащих пиррол, тиофен, либо фуран эта концепция оставалась невостребованной у олигопиррольных макроциклических соединений [11-13]. Установлено, что действительно происходит инверсия ароматичности при заселении нижнего триплетного Т₁ состояния, проявляющаяся в изменениях характера альтернирования связей в макроцикле, величины коэффициента экстинкции, химических сдвигов протонов в спектрах ¹Н ЯМР, магнитных характеристик. Показано [14-15], что константы скорости внутримолекулярных переходов также существенно отличаются для ароматического и антиароматического макроциклов. Степень ароматичности определяет положение и величину экстинкции полос в спектрах поглощения, положение спектра и квантовый выход флуоресценции, симметрию спектров ИКпоглощения и комбинационного рассеяния, величину зазора между заполненными и вакантными молекулярными орбиталями, конформацию макроциклических соединений [16-17 и ссылки в них]. Идентификация степени ароматичности и возможность ее подстройки путем внешних воздействий являются ключом к успеху в создании новых органических соединений с заданными свойствами для использования в качестве люминесцентных сенсоров, органических излучающих элементов, светособирающих антенн, фотопреобразователей и других элементов органической электроники [18-20].

Макроцикл корролов – сокращенных аналогов порфиринов – имеет планарную топологию и включает 26 π -электронов, которые удовлетворяют правилу ароматичности Хюккеля [4n + 2]. Однако не все из 26 π -электронов в равной степени

вовлечены в формирование контура *π*-электронного сопряжения. Недавно нами было показано, что доминирующий контур сопряжения в макроцикле свободных оснований корролов содержит 18 *π*-электронов [21]. При этом установлено, что из-за асимметричного строения макроцикла доминирующие контуры *π*-сопряжения различаются для двух NH-таутомеров. Доминирующий 18-членный контур *π*- сопряжения в каждом из таутомеров включает в себя дипиррометеновый фрагмент, который приводит к характерному для каждого из таутомеров распределению электронной плотности в макроцикле. Показано, что если путем присоединения периферических заместителей стабилизировать характерное для одного из таутомеров распределение электронной плотности, то можно сместить NH-таутомерное равновесие в направлении стабилизации данного таутомера [21].

Следует отметить, что NH-таутомеры свободных оснований корролов в нижнем триплетном T_1 состоянии характеризуются существенно большими отклонениями от планарного строения макроцикла, чем в основном S_0 состоянии [22-24]. Увеличение степени непланарных искажений макроцикла может сопровождаться и изменением типа неплоскостных искажений, который определяет характерные изменения двугранных углов между пиррольными фрагментами, и, следовательно, степень их π -сопряжения. Таким образом, конформационный фактор в совокупности с изменениями электронной структуры при заселении нижнего триплетного T_1 состояния способен оказать существенное влияние на ароматичность по сравнению с основным S_0 состоянием.

В настоящей работе с использованием методов квантовой химии нами рассчитана молекулярная геометрия NH-таутомеров свободного основания в основном синглетном S_0 и нижнем возбужденном триплетном T_1 состояниях, для четырех корролов, различающихся архитектурой периферического замещения. Для данных соединений определена степень ароматичности каждого из двух NH-таутомеров. В качестве меры ароматичности использовали индекс ароматичности I_{HOMA} , вычисленный согласно модели гармонического осциллятора для ароматичности.

Материалы и методы исследования. В качестве объектов исследования выбраны свободное основание незамещенного коррола (H₃K), 7,13-диметил-8,12-ди-*н*-бутилкоррол (H₃TAлкK) и 2,3,7,13,17,18-гексаметил-8,12-ди-*н*-бутилкоррол (H₃OAлкK), содержащие алкильные группы в С_b-положениях макроцикла, 10-(4,6-

дихлоропиримидинил)-5,15-димезитил-коррол (H₃ПМез₂K), с замещением арильными группами в С_m-положениях макроцикла (расположение заместителей AB₂ типа). Молекулярная структура исследованных соединений приведена на рис. 1.

Оптимизацию молекулярной конформации двух NH-таутомеров исследуемых соединений в основном синглетном S_0 и нижнем возбужденном триплетном T_1 состояниях, а также расчет спектра нормальных колебаний проводили методом функционала плотности (DFT) с обменно-корреляционнным функционалом PBE и трехэкспоненциальным базисом 3z с помощью программного пакета для квантовохимических расчетов «Природа» [25-26]. После оптимизации геометрии рассчитывался спектр нормальных колебаний. Критерием достижения стационарной точки являлось отсутствие мнимых частот колебательных мод. Оптимизация конформации тетрапиррольных молекул методом функционала плотности с учетом электронной корреляции позволяет получить адекватные значения длин связей, которые согласуются со значениями, полученными из данных рентгеноструктурного анализа [7]. Для оптимизированной структуры рассчитывали энергию основного состояния каждого из двух NH-таутомеров, энергии молекулярных орбиталей и определяли длины связей между скелетными атомами макроцикла.

В модели гармонического осциллятора (*англ*. HOMA – harmonic oscillator model of aromaticity) характер альтернирования длин связей связывается непосредственно с величиной ароматичности [27]. Степень ароматичности молекулы определяли с помощью индекса ароматичности *I*_{HOMA}:

$$I_{\text{HOMA}} = 1 - \sum_{j=1}^{2} \frac{\alpha_j}{n_j} \sum_{i=1}^{n_j} (R_{\text{OITT}j} - R_i)^2,$$

где: α_j – эмпирический параметр, определяемый атомами, формирующими данную связь, и равный 257,7 и 93,52 соответственно для С–С связей и С–N связей; *R*_{оптj} – оптимальная длина С–С и С–N связей, соответственно равная 1,388 и 1,334 Å.

В модели НОМА величины $R_{\text{опт}j}$ выбираются таким образом, чтобы обеспечить для молекулы бензола величину индекса ароматичности I_{HOMA} , равную 1 [28]. Для ароматических тетрапиррольных макроциклов индекс ароматичности оказывается равным 0,87–0,90, при этом длины связей C_a – C_m практически одинаковы: 1,40–1,41 Å, в то время как для антиароматических тетрапиррольных молекул индекс ароматичности может существенно снижаться до 0,5 и меньше, а длины связей C_a – C_m заметно альтернированы: 1,36–1,49 Å [16, 28 и ссылки в них].

Величину среднеквадратичного отклонения атомов от средней плоскости тетрапиррольного макроцикла Δ23 рассчитывали по формуле

$$\Delta 23 = \sqrt{\frac{1}{23} \sum_{i=1}^{23} \Delta z_i^2} ,$$

где: Δz_i – отклонение *i*-го атома макроцикла от средней плоскости макроцикла 7С [23]. Молекулярную конформацию макроцикла определяли по диаграммам Эшенмозера [29], которые строили на основании координат атомов оптимизированных молекулярных структур.

Результаты и их обсуждение. Рассчитанные значения индекса ароматичности I_{HOMA} для различных контуров π -сопряжения в исследуемых молекулах в основном синглетном S₀ и нижнем возбужденном триплетном T₁ состояниях суммированы в табл. 1. В табл.1 также приведены значения параметра среднеквадратичного отклонения атомов макроцикла от средней плоскости $\Delta 23$ и указан характер неплоскостных искажений.

В соответствии с ранее полученными результатами [21], из восьми возможных контуров π-сопряжения, удовлетворяющих правилу Хюккеля, наибольшие значения индекса ароматичности I_{НОМА} получены для 18-электронных контуров как в основном синглетном S₀, так и в нижнем возбужденном триплетном T₁ состояниях. Можно предложить, что заселение триплетного T₁ состояния не влияет на делокализацию электронов В макроцикле свободных оснований корролов. Очевидно, что доминирующим контуром π-сопряжения в макроцикле является один из 18электронных контуров. При этом наибольшие значения индекса ароматичности Інома для основного и возбужденного состояний наблюдаются для одних и тех же контуров (табл. 1). Следовательно, можно предложить, что форма доминирующего контура лсопряжения каждого из NH-таутомеров не изменяется в возбужденном состоянии.

Необходимо отметить, что контуры π-сопряжения для длинноволнового таутомера T1 и коротковолнового таутомера T2 различаются. Так, коротковолновые таутомеры T2 всех исследованных соединений имеют одинаковый доминирующий контур 18-2 (см. рис. 2). Значения индекса ароматичности *I*_{НОМА} для этого контура наибольшие как в основном, так и в нижнем триплетном T₁ состоянии. С точки зрения предложенной нами ранее «дипиррометеновой» концепции формирования контура π-сопряжения свободного основания коррола [21], заключающейся в том, что

оптимальное π -сопряжение в макроцикле достигается при вовлечении в 18-членный контур дипиррометенового фрагмента, такой результат легко объясним. Только контуры 18-2 и 18-4 содержат дипиррометеновый фрагмент, но у последнего сопряжение по внешней стороне пиррольного кольца *D* проигрывает по эффективности сопряжению по внутренней стороне кольца *D* в контуре 18-2 [21].

В случае длинноволнового таутомера T1 прослеживается зависимость формы доминирующего контура π -сопряжения от архитектуры периферического замещения макроцикла. Так, у незамещенного коррола H₃K в основном S₀ состоянии значения индекса ароматичности *I*_{НОМА} сразу для трех контуров 18-1, 18-2 и 18-4 практически одинаковы (соответственно 0,649, 0,649 и 0,655). В каждом из этих контуров содержится дипиррометеновый фрагмент, а у контура 18-4 можно выделить два таких фрагмента. Очевидно, что при разветвлении макроциклического тока на пиррольных кольцах *С* и *D* сила тока, протекающего по внутренней и внешней сторонам пиррольных колец оказывается практически одинаковой. В триплетном T₁ состоянии индекс ароматичности *I*_{НОМА} в контуре 18-2 сильнее уменьшается по сравнению с контурами 18-1 и 18-4. Величины индекса ароматичности *I*_{НОМА} у контуров 18-1 и 18-4 близки, однако у первого она несколько выше (0,522 против 0,514). Таким образом, можно предположить, что в триплетном T₁ состоянии доминирующим контуром π сопряжения у таутомера T1 незамещенного коррола H₃K является контур 18-1.

Аналогичная картина наблюдается для окта-замещенного производного H₃OAлкК, который содержит алкильные группы во всех C_b-положениях макроцикла. Для контуров 18-1, 18-2 и 18-4 в основном S₀ состоянии таутомера T1 значения индекса ароматичности *I*_{HOMA} практически одинаковы, а в триплетном T₁ состоянии доминирует контур 18-1 (см. табл. 1).

Для длинноволнового таутомера T1 тетра-замещенного H_3 TAлкК алкильными группами в C_b-положениях пиррольных колец *B* и *C* макроцикла доминирующим контуром π -сопряжения является контур 18-1. Форма контура остается неизменной при заселении триплетного T₁ состояния. Преимущественная стабилизация контура 18-1 по сравнению с незамещенным корролом, по-видимому, обусловлена смещением электронной плотности, донированной алкильными заместителями, на внутреннюю сторону пиррольного кольца *C*. Отсутствие аналогичного влияния алкильных заместителей пиррольного кольца *B* можно объяснить тем, что иминный протон

пиррольного кольца *С* участвует в формировании внутримолекулярной водородной связи с атомом азота пиррольного кольца *D*.

Доминирующим контуром для длинноволнового таутомера T1 H₃ПМез₂К является контур 18-4. Очевидно, что арильные заместители, имеющие стерические затруднения для свободного вращения (метильные группы и атомы хлора в *орто*-положениях арильных фрагментов), оказывают не только электронный эффект на π -сопряженную систему макроцикла, но и структурный, который дополнительно создает условия для стабилизации молекулярной конформации с меньшими двугранными углами между плоскостями соседних пиррольных колец.

Анализ изменения величины индекса ароматичности при переходе молекулы коррола из основного синглетного S_0 в нижнее возбужденное триплетное T_1 состояние позволяет сделать однозначный вывод (табл.1), что для каждого из таутомеров исследованных производных свободных оснований корролов индекс ароматичности достоверно уменьшается. Если для макроцикла в основном синглетном S₀ состоянии величина I_{HOMA} варьируется от 0,588 до 0,665, то в нижнем триплетном T₁ состоянии она составляет 0,475 – 0,547. При этом для любого из доминирующих контуров сопряжения величина Інома уменьшается не менее чем на 0,09, а для длинноволнового таутомера Н₃ПМез₂К наблюдается уменьшение величины І_{НОМА} почти на 0,17. Низкие значения І_{НОМА} следует рассматривать как результат инверсии ароматичности в возбужденном состоянии. Эти значения сопоставимы с таковыми для производных норкоррола в основном состоянии и производных гексафиринов в нижнем возбужденном триплетном T₁ состоянии [12,30], макроциклы которых считают антиароматическими. Таким образом, можно предложить, что при заселении нижнего триплетного T₁ состояния свободных оснований корролов происходит инверсия ароматичности макроцикла.

Сопоставление величины индекса ароматичности I_{HOMA} с параметром отклонения атомов макроцикла от средней плоскости $\Delta 23$ показывает (табл.1), что уменьшение ароматичности макроцикла, которое наблюдается для обоих NHтаутомеров всех исследованных соединений, сопровождается увеличением степени неплоскостных искажений при заселении триплетного состояния. Однако необходимо подчеркнуть, что формирование неплоского конформера или увеличение степени непланарности уже неплоского макроцикла способствует снижению ароматичности молекулы из-за уменьшения перекрывания p_z -орбиталей скелетных атомов, но не определяет ароматичность молекулы. Поэтому, нам представляется уместным проанализировать изменение индекса ароматичности ΔI_{HOMA} при заселении триплетного T_1 состояния как функцию разности параметров $\Delta 23$ для T_1 и S_0 состояний. Оказалось, что данная зависимость различна для таутомеров Т1 и Т2 (рис. 3). Таутомер Т2, характеризующийся одним и тем же доминирующим контуром π-сопряжения, обнаруживает снижение индекса ароматичности ΔI_{HOMA} на 0,09-0,10 при очень близких разностях параметров $\Delta 23 \sim 0.05$. По-видимому, молекулярная конформация таутомера T2 менее лабильна и доступные степени свободы не зависят от архитектуры периферического замещения макроцикла. Для таутомера Т1 получена хорошая линейная зависимость (коэффициент парной корреляции $R^2 = 0.9$) изменения индекса ароматичности ΔI_{HOMA} от разности параметров $\Delta 23$ для T₁ и S₀ состояний. Бо́льший размах изменения параметра $\Delta 23$ позволяет считать молекулярную конформацию таутомера Т1 более лабильной. При этом очевидна взаимосвязь между способом периферического замещения и изменением индекса ароматичности. Из данных, приведенных в таблице 1 видно, что как в основном S₀, так и в триплетном T₁ состоянии макроцикл имеет неплоскостные искажения либо волнообразного, либо седлообразного типа. Однако никакой корреляции между степенью ароматичности и типом неплоскостных искажений не прослеживается. Очевидно, что большую роль в определении степени ароматичности играет степень неплоскостных искажений и локальные структурные изменения макроцикла.

Следует отметить, что в основном S₀ состоянии ароматичность таутомера T1 ($I_{HOMA} = 0,600 - 0,665$) слабо превышает ароматичность таутомера T2 ($I_{HOMA} = 0,588 - 0,642$), однако при переходе в нижнее возбужденное триплетное T₁ состоянии индекс ароматичности I_{HOMA} снижается быстрее, чем у таутомера T2. Поэтому в триплетном T₁ состоянии ситуация меняется на противоположную: таутомер T1 является более антиароматичным ($I_{HOMA} = 0,475 - 0,522$), чем таутомер T2 ($I_{HOMA} = 0,495 - 0,547$).

Напомним, что молекулы свободных оснований корролов, замещенные в C_b- и C_m-положениях относятся к различным архетипам, которые различаются взаимным расположением двух верхних заполненных молекулярных орбиталей (B3MO и B3MO– 1) [31]. При C_m-замещении B3MO подобна орбитали а₂ порфирина, а B3MO–1 подобна орбитали а₁ порфирина, однако в случае C_b-замещения, напротив, B3MO а₁-подобна, а B3MO–1 а₂-подобна (обозначения орбиталей даны для симметрии D₄) [31]. Однако, принципиальных отличий в ароматичности алкилированных по C_b-положениям и арилированных по C_m-положениям производных не наблюдается. Поэтому можно заключить, что взаимное расположение B3MO и B3MO-1 не влияет на ароматичность макроцикла коррола.

Заключение. В работе для четырех корролов, различающихся архитектурой периферического замещения, с использованием методов квантовой химии рассчитана молекулярная геометрия NH-таутомеров свободного основания в основном синглетном S₀ и нижнем возбужденном триплетном T₁ состояниях и определена степень ароматичности каждого из двух NH-таутомеров. Установлено, что доминирующий контур *п*-сопряжения для каждого из двух NH-таутомеров исследованных соединений одинаков в основном S₀ и нижнем возбужденном T₁ состояниях, причем во всех случаях в T₁ состоянии величина индекса ароматичности I_{HOMA} уменьшается по сравнению с основным состоянием. Величина индекса ароматичности Інома = 0,475 – 0,547 в триплетном Т₁ состоянии сопоставима с таковыми для производных норкоррола в основном состоянии и производных гексафиринов в нижнем возбужденном T_1 триплетном состоянии, которые характеризуются как антиароматические. Поэтому предложено, что NH-таутомеры свободных оснований исследованных корролов испытывают инверсию ароматичности при заселении нижнего возбужденного Т₁ состояния. Проанализирована взаимосвязь изменений величины индекса ароматичности І_{НОМА} и параметра отклонения атомов макроцикла от средней плоскости $\Delta 23$ при переходе из основного S₀ в нижнее возбужденное T₁ состояние. Показано, что для таутомера Т1 существует взаимосвязь между способом периферического замещения и изменением индекса ароматичности, в то время как у таутомеров Т2 всех исследованных соединений изменения индекса ароматичности I_{HOMA} и параметра $\Delta 23$ практически одинаковы и не зависят от архитектуры периферического замещения.

Работа выполнена при финансовой поддержке Государственной программы научных исследований Республики Беларусь «Конвергенция 2025» (подпрограмма «Междисциплинарные исследования и новые зарождающиеся технологии», задание шифр 3.03.10 (НИР 2)).

- [1] **Г. П. Гуринович, А. Н. Севченко, К. Н. Соловьев.** Спектроскопия хлорофилла и родственных соединений, Минск, Наука и техника (1968)
- [2] **Н.Н. Крук.** Строение и оптические свойства тетрапиррольных соединений, Минск, БГТУ (2019)
- [3] T. Chatterjee, V. S Shetti, R. Sharma, M. Ravikanth. Chem. Rev., 117 (2016) 3254-3328
- [4] И.В. Вершиловская, Е.С. Люлькович, С.Г. Пуховская, Ю.Б. Иванова, А.О. Плотникова, Н.Н. Крук. Журн. прикл. спектр., 87 (2020) 181 188 [I.V. Vershilovskaya, L.S. Liulkovich, S.G. Pukhovskaya, Yu, B. Ivanova, A. O. Plotnikova, M.M. Kruk. J. Appl. Spectr., 87 (2020) 201-207]
- [5] Т. С. Жебит, А. Д. Мельник, С. Г. Пуховская, Ю. Б. Иванова, Н. Н. Крук. Журн. прикл. спектр., 89 (2022) 35 – 42 [T.S. Zhebit, A.D. Melnik, S.G. Pukhovskaya, Yu.B. Ivanova, M.M. Kruk. J. Appl. Spectr, 89 (2022) 28 – 34]
- [6] S. Yamauchi, Y. Matsukawa, Y. Ohba, M. Iwaizumi. Inorg. Chem., 35 (1996) 2910 –
 2914
- [7] M.O. Senge, S.A. MacGowan, J. O'Brien. Chem. Comm (Camb.), 51 (2015) 17031-17063
- [8] A. Kyrychenko, J. Anderasson, J. Artensson, B. Albinsson. J. Phys. Chem. B., 106 (2002) 12613 – 12622
- [9] B. Röder, M. Büchner, I. Rückmann, M.O. Senge. Photochem. Photobiol. Sci., 9 (2010) 1152 – 1158
- [10] N. C. Baird. J. Am. Chem. Soc., 94 (1972) 4941 4948
- [11] Y. M. Sung, J. Oh, W. Kim, H. Mori, A. Osuka, D. Kim. J. Am. Chem. Soc., 137 (2015) 11856 – 11859
- [12] Y. M. Sung, M.-C. Yoon, J. L. Lim, H. Rath, K. Naoda, A. Osuka, D. Kim. Nat. Chem., 7 (2015) 418 – 422
- [13] T. Tanaka, A. Osuka. Chem. Rev., 117 (2017) 2584 2640
- [14] Y. M. Sung, J. Oh, Y. Hong, D. Kim. Acc. Chem. Res., 51 (2018) 1349-11358
- [15] J.-Y. Shin, K. S. Kim, M.-C. Yoon, J. L. Lim, J. S. Yoon, A. Osuka, D. Kim. Chem. Soc. Rev., 39 (2010) 2751 – 2767
- [16] T. Woller, P. Geerling, F. De Proft, B. Champagne, M. Alonso. Molecules, 23 (2018)1333
- [17] R. Valiev, H. Fliegl, D. Sundholm. Phys. Chem. Chem. Phys., 19 (2017) 25979 25988

- [18] В. В. Еремин, А.С. Белов. Усп. химии, **81** (2012) 662 674
- [19] Д.Б. Березин, Д.Р. Каримов, А.В. Кустов. Корролы и их производные: синтез, свойства, перспективы практического применения, Москва, ЛЕНАНД (2018)
- [20] Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений / под. ред. **О. И. Койфмана**, Москва, ЛЕНАНД, (2019) 846 с.
- [21] Д.В. Кленицкий, Л.Л. Гладков, И.В. Вершиловская, Д.В. Петрова, А.С. Семейкин, В. Маес, Н. Н. Крук. Журн. прикл. спектр., 88 (2021) 836–844 [D.V. Klenitsky, L.L. Gladkov, I.V. Vershilovskaya, D.V. Petrova, A.S. Semeikin, W. Maes, M.M. Kruk. Journ. Appl. Spectr., 88 (2022) 1111 1118]
- [22] **Н.Н. Крук, Д.В. Кленицкий, Л.Л. Гладков, В. Маес.** Труды БГТУ. Сер. 3, Физ.мат. науки и информ. **218** (2019) 20–26
- [23] M.M. Kruk, D.V. Klenitsky, W. Maes. Macroheterocycles, 12 (2019) 58-67
- [24] M. M. Kruk, D. V. Klenitsky, L. L. Gladkov, W. Maes. J. Porph. Phthal., 24 (2020) 765 – 774
- [25] D.N. Laikov. Chem. Phys. Lett., 281 (1997) 151-156
- [26] D.N. Laikov, Yu. A. Ustynyuk. Russian Chem. Bull., 54 (2005) 820 826
- [27] T.M. Krygowski, H. Szatylovicz, O.A. Stasyuk, J. Dominikowska, M. Palusiak. Chem. Rev., 114 (2014) 6383-6432
- [28] T.M. Krygowski. J. Chem. Inf. Comp. Sci., 33 (1993) 70-78
- [29] A. Eschenmoser. Ann. N.Y. Acad. Sci., 471 (1986) 108 118
- [30] S. Ukai, N. Fukoi, T. Ikeue, H. Shinokubo. Chem. Lett., 51 (2022) 182-184
- [31] Ю.Х. Ажиб, Д.В. Кленицкий, И.В. Вершиловская, Д.В. Петрова, А.С. Семейкин, В. Маес, Л.Л. Гладков, Н.Н. Крук. Журн. прикл. спектр., 87 (2020) 378-386 [Y.H. Ajeeb, D.V. Klenitsky, I.V. Vershilovskaya, D.V. Petrova, A.S. Semeikin, W. Maes, L.L. Gladkov, M.M. Kruk. Journ. Appl. Spectr., 87 (2020) 421–427]

Таблица 1. Индекс ароматичности I_{HOMA} для различных возможных 18-электронных контуров π -сопряжения двух NH-таутомеров исследуемых молекул в основном синглетном S₀ и нижнем возбужденном триплетном T₁ состояниях, параметр среднеквадратичного отклонения атомов от средней плоскости $\Delta 23$ и тип неплоскостных искажений макроцикла.

Молекула			Контур сопряжения				422 Å	Тип непл.
			18-1	18-2	18-3	18-4	Δ25, Α	искажения
H ₃ K	T1	S_0	0.649	0.649	0.503	0.665	0,163	волнообразный
		T_1	0.522	0.475	0.352	0.514	0,209	волнообразный
	T2	S_0	0.584	0.642	0.560	0.592	0,152	волнообразный
		T_1	0.480	0.547	0.465	0.524	0,204	седлообразный
Н ₃ ТАлкК	T1	\mathbf{S}_0	0.632	0.581	0.476	0.610	0,178	волнообразный
		T_1	0.516	0.413	0.291	0.466	0,207	волнообразный
	T2	S_0	0.600	0.609	0.537	0.580	0,157	волнообразный
		T_1	0.477	0.526	0.452	0.507	0,211	седлообразный
Н ₃ ОАлкК	T1	S_0	0.600	0.588	0.451	0.592	0,164	волнообразный
		T_1	0.475	0.397	0.265	0.432	0,238	седлообразный
	T2	\mathbf{S}_0	0.562	0.590	0.494	0.540	0,162	седлообразный
		T_1	0.434	0.491	0.404	0.458	0,217	седлообразный
Н₃ПМез₂К	T1	S_0	0.608	0.618	0.450	0.641	0,200	волнообразный
		T_1	0.453	0.429	0.297	0.475	0,333	волнообразный
	T2	\mathbf{S}_0	0.516	0.595	0.521	0.546	0,198	волнообразный
		T_1	0.412	0.495	0.421	0.487	0,246	волн./седл.

$$\begin{split} H_{3}K\\ R_{2} &= R_{3} = R_{5} = R_{7} = R_{8} = R_{10} = R_{12} = R_{13} = R_{15} = \\ &= R_{17} = R_{18} = H\\ H_{3}TAлкK\\ R_{8} &= R_{12} = \textit{h-бутил} \quad R_{7} = R_{13} = \textit{метил}\\ R_{2} &= R_{3} = R_{5} = R_{10} = R_{15} = R_{17} = R_{18} = H\\ H_{3}OAлкK\\ R_{8} &= R_{12} = \textit{h-бутил} \quad R_{5} = R_{10} = R_{15} = H\\ R_{2} &= R_{3} = R_{7} = R_{13} = R_{17} = R_{18} = \textit{метил}\\ H_{3}\PiMes_{2}K\\ R_{2} &= R_{3} = R_{7} = R_{8} = R_{12} = R_{13} = R_{17} = R_{18} = H\\ R_{10} &= 4, 6-\textit{дихлоропиримидин-5-ил}\\ R_{5} &= R_{15} = \textit{мезитил} \end{split}$$

Рисунок 2

Подписи к рисункам:

Рис. 1. Молекулярная структура исследованных соединений (показан таутомер Т1).

Рис. 2. Схема возможных 18-электронных контуров сопряжения в макроцикле таутомеров T1 (верхний ряд) и T2 (нижний ряд) свободного основания коррола.

Рис. 3. Зависимость изменения индекса ароматичности ΔI_{HOMA} при заселении триплетного T₁ состояния от разности параметров $\Delta 23$ для T₁ и S₀ состояний.