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Abstract Classical symmetric distributions like the Gaussian are widely used.
However, in reality data often display a lack of symmetry. Multiple distribu-
tions have been developed to specifically cope with asymmetric data. These can
be grouped under the name “skewed distributions”. In this paper we present a
broad family of flexible multivariate skewed distributions for which statistical
inference is a feasible task. The studied family of multivariate skewed dis-
tributions is derived by taking affine combinations of independent univariate
distributions. These univariate distributions are members of a flexible family
of asymmetric distributions and are an important basis for achieving statistical
inference. Besides basic properties of the proposed distributions, also statisti-
cal inference based on a maximum likelihood approach is presented. We show
that under some mild conditions, weak consistency and asymptotic normality
of the maximum likelihood estimators hold. These results are backed up by
a simulation study which confirms the developed theoretical results and some
data examples to illustrate practical applicability.
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1 Introduction

Multivariate distributions provide the necessary ingredients to model all sorts
of events where multidimensional data occur. They have established their im-
portance in economics, chemistry, biology, etc. The most prominently present
multivariate distribution is the multivariate normal distribution, which is a
member of the class of multivariate elliptical distributions. In general, the
more widely used distributions tend to be multivariate elliptical extensions
of their univariate counterparts, thereby mimicking the multivariate normal
distribution. The general formulation of a multivariate elliptical distribution
generated by a univariate density generator f̃ is, according to Azzalini (2013),

f(x;µ,Σ) =
Γ
(
d
2

)
2π

d
2 det(Σ)

1
2 kd

f̃
(
(x− µ)TΣ−1(x− µ)

)
x ∈ Rd.

(1)
In this, µ ∈ Rd is a location parameter, Σ ∈ Rd×d is a positive definite matrix
and f̃ is such that

kd =

∫ ∞

0

sd−1f̃(s2)ds < ∞.

However, being elliptical has one major drawback in the form of a severe degree
of symmetry of the distribution which, in reality, is not always present.

To better model asymmetric data, many asymmetric (or skewed) distribu-
tions have been proposed in both univariate and multivariate settings. Exam-
ples of the latter are the multivariate split normal distribution (Villani and
Larsson (2007)), the multivariate slash Laplace distribution (Punathumparam-
bath (2012)), and the bivariate alpha-skew normal distribution (Louzada et al.
(2017)), and the multivariate slash- and skew-slash Student’s t-distributions
(Tan et al. (2015)), among others. These distributions lack generality and a
unified approach concerning statistical inference. However, an exception to
this is the family of skew-elliptical distributions. A univariate skew-elliptical
distribution has as density function

h(z; ξ, σ, α) = 2σ−1f
(
σ−1(z − ξ)

)
G(ασ−1(z − ξ)) z ∈ R.

In this, f is a symmetric unimodal density, G the cumulative distribution func-
tion of an absolutely continuous, symmetric (around zero) univariate random
variable and (ξ, σ, α) ∈ R × R

+\{0} × R respectively a location, scale and
skewing parameter.

In Azzalini and Dalla Valle (1996) the first multivariate extension was pre-
sented, the multivariate skew-normal distribution. In, among others, Azzalini
and Capitanio (2003) and Azzalini (2013), this was generalised to the multi-
variate skew-elliptical distribution, which has density function of the form

hd(z) = 2fd(z)G(w(z)) z ∈ Rd, (2)

with fd an elliptical density as in (1), and G is an absolutely continuous,
symmetric around zero, cumulative distribution function. Further herein the
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function w : Rd → R is such that w(−z) = −w(z), for all z ∈ Rd. There are
ample of combinations of distributions that can be made via this construction.
Within this family, the most popular member is the multivariate skew-normal
distribution, obtained by taking fd a standard multivariate normal density and
G the univariate standard normal cumulative distribution function. If these are
replaced with their Student’s t-counterparts, one obtains the popular skew-t
distribution. Further extensions of the family are possible, see for example Ad-
cock and Azzalini (2020) for the extended skew-elliptical distributions which
incorporate an extra parameter.

There are however a variety of other general multivariate skewing mech-
anisms available. In Ley and Paindaveine (2010) a transformation approach
is proposed. For a diffeomorphism H, a multivariate skewed distribution is
obtained as the function X → fH(X) |det (∇H(X))|. Another class of dis-
tributions are the Transformation of Scale distributions developed in Jones
(2010) (univariate) and Jones (2016) (bivariate). An advantage of these distri-
butions is that they are closed under marginalisation (i.e. the marginals have
the same distributions as the bivariate vector). In Transformation of Scale
distributions skewness is introduced in the following way.

f̂(x, y) = 2g(W−1
1 (x),W−1

2 (y)),

where g(·, ·) is a continuous bivariate density function and W−1
j , for j = 1, 2 is

the inverse of an increasing (transformation) function Wj which has to satisfy
certain properties. See Jones (2016) for more details. Besides skewed distribu-
tions obtained by transformations, be it in on the density or the distribution
function, Arnold et al. (2006) constructed multivariate skewed distributions
by employing the Rosenblatt construction. This idea was further extended in
Abtahi and Towhidi (2013) by introducing the unified skew symmetric distri-
bution. The density of a member of this family is given by

sd(z) = f(z)p (F (z1), F (z2|z1), . . . , F (zd|z1, . . . , zd−1)) ,

with z ∈ Rd, f(z) the density function of a symmetric random vector U ∈ Rd

(with this, central symmetry is meant, i.e. f(−x) = f(x)), p(·) a d-variate
density function on [0, 1]d and F (·|z1, . . . , zi−1) the distribution of Ui|U1 =
z1, . . . , Ui−1 = zi−1.

A point of attention for multivariate distributions should be the tail behav-
ior when the distribution shows clearly distinct behavior in different directions
(marginals). This point is also mentioned in Babić et al. (2019). Skew-elliptical
distributions have a single parameter to govern tail-behavior for all d dimen-
sions, which can be too restrictive. Even though the skewing parameter does
have an impact on the tail behavior, in a classical skew-t distribution, for ex-
ample, it is still only regulated by the degrees of freedom. See also Jones (2008)
and Balakrishnan and Captitanio (2008), among others. This problem is pos-
sibly shared with distributions obtained through transformations, depending
on what transformation was used. Our goal is to provide a unified, tractable
framework for statistical inference for the entire considered family with the
added flexibility of allowing different types of behavior in different directions.
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We start from the univariate quantile-based asymmetric (QBA) family of
distributions recently studied in Gijbels et al. (2019). In its simplest form, the
density function of a QBA-distribution is defined as

fZ(z;η) = 2α(1− α)

{
f (−(1− α)z;κ) if z ≤ 0

f (αz;κ) if z > 0,
(3)

with η = (α,κT )T . In this f(.;κ) is a unimodal, symmetric (around zero)
continuous density function. The interpretation of the elements contained in
the parameter vector η is as follows. The parameter α ∈ (0, 1) governs the
skewness and κ are possible different parameters (excluding location or scale
parameters) of fZ . An example for the latter is the degrees of freedom pa-
rameter of a Student’s t-distribution. Note that when α = 0.5 then fZ = f
everywhere and hence the density fZ is symmetric. When α deviates from
0.5 one obtains a skewed distribution. This family of distributions falls in the
category of two-piece or split-type distributions. Note that (3) does not incor-
porates a location or scale parameter. As made clear later on, including them
would lead to identifiability problems for the multivariate extension. A vast
literature is available on the approach of two-piece distributions, dating back
as far as Fechner (1897). A recent review regarding two-piece distributions
was provided by Wallis (2014). There are different ways of constructing two-
piece distributions, i.e. different parametrisations are possible. See for example
Rubio and Steel (2014). We opt to choose the particular parametrisation as
in Gijbels et al. (2019), since it allows to provide statistical inference for any
member of the resulting family of asymmetric multivariate distributions.

Applying the univariate skewing mechanism to a multivariate distribution
is a common technique used to create multivariate skewed distributions. Exam-
ples can be found in Azzalini and Dalla Valle (1996) and Louzada et al. (2017).
For two-piece distributions in general, this is proposed in Arellano-Valle et al.
(2005) and Bauwens (2005). The downsides of such an approach are twofold,
namely loss of tractability and flexibility. A different technique in obtaining
multivariate distributions is the mechanism used in Villani and Larsson (2007)
and generally exposed in Ferreira and Steel (2007). Fernández and Steel (1998)
introduced the renowned Fernández-Steel skew distribution, and proposed the
use of an affine combination of independent univariate skewed distributions to
construct a multivariate skewed distribution.

Due to the general applicability of the affine combinations technique and
its clear interpretation, and the close relation between the QBA-family and the
Fernández-Steel distributions we opt for this technique to construct the pro-
posed family of multivariate asymmetric distributions. In doing so, the added
flexibility of different behavior in different directions is guaranteed. Ferreira
and Steel (2007) introduced the multivariate skewing technique of affine combi-
nations by taking, as the name suggests, affine combinations of (independent)
univariate skewed distributions. For a random vector of independent univari-
ate skewed distributions (in their example Fernández-Steel skewed distribu-
tion) ϵ = (ϵ1, . . . , ϵd)

T , a flexible multivariate distribution is thus obtained as
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a distribution of a random vector

S = MT ϵ+ µ.

In this, M ∈ Rd×d is the mixing matrix and µ ∈ Rd a location shift. In Fer-
reira and Steel (2007) the density function is provided, and conditions on M
for the model to be identifiable are described. Expressions for moments are
given. Inference is presented in a Bayesian context. What we will present is a
similar approach, using the family of QBA-distributions for the independent
univariate skewed components and an alternative set of identifiability con-
ditions to obtain a family of multivariate skewed distributions. In doing so,
the added flexibility of different behavior in different directions is guaranteed.
Statistical inference results are developed for the maximum likelihood estima-
tor (MLE). The literature of the linear combinations technique is expanded
from a Bayesian setting in Ferreira and Steel (2007), to a frequentist setting
with a general (unified) approach of obtaining maximum likelihood inference.
Although it is in a specific (family) setting, these results can be extended to
other families of distributions and provide a way to obtain statistical inference
results.

The outline of the paper is as follows. In Section 2 the quantile-based
asymmetric family of distributions is extended to create a family of flexible
asymmetric multivariate distributions. Along with the formulation of the den-
sity function of the proposed family, probabilistic properties are also derived.
A brief discussion on ways to measure asymmetry is included. In Section 3, the
focus shifts towards the asymptotic distribution of maximum likelihood param-
eter estimates. This asymptotic behaviour is illustrated by a simulation study,
of which results are presented in Section 4. Before ending the exposition with
a short conclusion in Section 6, some real-data applications are presented in
Section 5. Proofs of the main theoretical results are deferred to the Appendix.
A brief explanation about the relation to independence component analysis,
and proofs of the other theoretical results are given in the Supplementary Ma-
terial. This material also includes an extension involving asymmetric Student’s
t-distributions. R codes for the practical use of the methodology are available
via the GitHub platform at https://github.com/Anonymous162222/LCQBA.
Furthermore, an R markdown document, guiding the user through some ex-
amples, is provided in the Supplementary Material.

2 Family of flexible asymmetric multivariate distributions and its
probabilistic properties

2.1 Defining the family

Despite the wide array of available distributions that can be used in an affine
combination, in what follows, we restrict ourselves to members of the QBA-
family. We opt to use this type of distribution with flexibility in mind, i.e.
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possibly different behavior with respect to asymmetry in the different direc-
tions. Starting from a family of univariate distributions which is in its own
right flexible and contains the symmetric counterparts of its members, is ben-
eficial for the obtained multivariate distributions.

Define Z = (Z1, . . . , Zd)
T where Zj , j = 1, . . . , d, has a density function

fZj
(zj ;ηj) as in (3) with ηj = (αj ,κ

T
j )

T and generated by a symmetric,
unimodal continuous density fj . Throughout the paper we assume that all
generating densities fj are continuously differentiable. Furthermore, we assume
that the components of the random vector Z are independent. Therefore Z has
a joint density

fZ(z;η) =

d∏
j=1

fZj
(zj ;ηj),

in which z = (z1, . . . , zd)
T ∈ Rd and η = (ηT

1 , . . . ,η
T
d )

T . The proposed asym-
metric multivariate density is defined as the density of a d-variate random
vector X

X = ATZ+ µa, (4)

in which µa = (µa,1, . . . , µa,d)
T ∈ Rd is a location shift and A ∈ Rd×d, a non-

singular matrix, governs the dependence structure. By introducing a location
shift and scaling in (4), the need for a location and scale parameter in each of
the components of Z is superfluous. Therefore, location and scale parameters
are not included in (3). By the transformation formula for affine combinations
of random variables, the joint density of X is

fX(x;A,µa,η) = |det(A)|−1
d∏

j=1

fZj
((x− µa)

T (A−1)·,j ;ηj), (5)

where we introduced the notation that for any matrixM,M·,j denotes the j-th
column of M and Mi,· the i-th row of M.Ferreira and Steel (2007) considered
construction (4) and densities of the form (5), using closely related two-piece
distributions (with different parametrisations). Obviously, feasibility of statis-
tical inference for the parameters A,µa and η in (5) heavily depends on the
specific choice of the univariate two-piece distributions, and inference results
for these.

As an illustration of what this type of distribution looks like, consider the
following example.

Example 1 Consider the following three models. For the first model, take as the
first univariate component a QBA-normal distribution (fZ1

) and as the second
component a QBA-logistic distribution (fZ2

) with the following parameters

α =

(
0.25
0.65

)
, µa =

(
20
20

)
, and A =

[
12 4
−5 8

]
.

The second model is a variation of the first one wherein A is replaced with

B =

[
7 −6
0 3

]
. For the third model, the QBA-logistic component of the first
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model is replaced with a QBA-Student’s t-distribution with five degrees of

freedom, and A is replaced with C =

[
12 0
0 8

]
. The contourplots of the densi-

ties of the resulting distributions are depicted in Figure 1. As can be seen, the
mixing matrix can greatly impact the shape and scale of the resulting distri-
bution. Note the change of main directions of the contours, when comparing
the plots of Figure 1(a) and 1(b). This is due to the change of mixing matrix
from A to B. The contourplot in Figure 1(c) shows the benefit of combining
different distributions. Note the heavier tails in the X2 direction.
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(a) First model.
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(b) Second model.
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(c) Third model.

Fig. 1: Contour plots of the bivariate models of Example 1.

2.2 Probabilistic properties of the family

Starting from the analytical expression for the density in (5), some of its basic
properties can be derived. It is important to note that some of these properties,
like moments and even the cumulative distribution function, may lack closed-
form expressions.

2.2.1 Cumulative distribution function

The cumulative distribution function of any member of the proposed family is
given by

FX(y;A,µa,η) =

∫ y1

−∞
· · ·

∫ yd

−∞

d∏
j=1

1

|det(A)|
fZj

((x − µa)
T
(A

−1
)·,j ;ηj)dx1 · · · dxd. (6)

In general, no analytical expression can be obtained for (6) due to the complex-
ity of the integral. There are some specific cases where it is possible to derive a
closed form expression, for example when only QBA-Laplace distributed ran-
dom variables are used. In general however, numerical approximations of the
cumulative distribution function are easy to obtain via Monte Carlo simula-
tion. This is due to the ease with which the target distribution can be sampled,
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as for each component of Z the quantile function is available in a formulation
related to the quantile function of the underlying symmetrical density. To ob-
tain a sample from X, the same technique as the construction of (4) can be
employed. Based on the sample, an approximation of the cumulative distribu-
tion function can then be obtained through its empirical counterpart.

2.2.2 Moments and characteristic function

From the linear combination of the components of Z and their independence,
it is easy to see that the mean and variance of X are

E[X] = ATE[Z] + µa,

Cov(X) = ATCov(Z)A = ATdiag(Var(Z1), . . . ,Var(Zd))A, (7)

where diag is a diagonal matrix. The expressions for E[Zj ] and Var(Zj) are
given by (see Gijbels et al. (2019))

E[Zj ] =
1− 2αj

αj(1− αj)
µj,1,

and

Var(Zj) =
(1− 2αj)

2(µj,2 − µ2
j,1) + αj(1− αj)µj,2

α2
j (1− αj)2

,

with µj,r = 2
∫∞
0

srfj(s)ds, r = 1, 2. Other moments can be derived in a
similar fashion. See Ferreira and Steel (2007) for similar moments expressions
under different parametrisations.

The moments can also be calculated through the characteristic function.
We make a distinction between the marginal characteristic functions and the
joint characteristic function.

Proposition 1 The marginal characteristic function φXk
(t) of Xk is given

by

φXk
(t) = E

[
eitXk

]
= 2deitµa,k

d∏
j=1

(
αjφ

+
j

(
−Aj,kt

1− αj

)
+ (1− αj)φ

+
j

(
Aj,kt

αj

))
,

whereas the joint characteristic function φX(t) of X is given by

φX(t) = E
[
eit

TX
]
= 2deit

Tµa

d∏
j=1

(
αjφ

+
j

(
−Aj,·t

1− αj

)
+ (1− αj)φ

+
j

(
Aj,·t

αj

))
.

In both, φ+
j (t) =

∫∞
0

eitsfj(s)ds.

The proof is straightforward and given in the Supplementary Material.
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Example 2 An easy to calculate joint characteristic function is when all Zj are
QBA-Laplace. This leads to

φX(t) = eit
Tµa

d∏
j=1

αj(1− αj)

(αj − iAj,·t)(1− αj + iAj,·t)
.

This is different from the characteristic function of an elliptical multivariate
Laplace distribution with skewing parameters m and scaling matrix Σ, which
is given by φX(t) = 1

1+ 1
2 t

TΣt−imT t
(see Kotz et al. (2001)). Hence, applying

the affine transformation principle leads to a different, possibly non-elliptical,
multivariate Laplace distribution.

2.2.3 Measures of asymmetry

Measures of asymmetry for a multivariate distribution can be characterized
as a multivariate extension of skewness measures of a univariate distribution.
For a univariate random variable X with mean µ and variance σ2, skewness
is defined as

β1(X) = E

[(
X − µ

σ

)3
]
. (8)

There is no unique equivalent of (8) for a d-variate r.v. X with mean µ ∈ Rd

and variance-covariance matrix Σ ∈ R
d×d. We briefly discuss three avail-

able measures of multivariate skewness, which resemble univariate skewness.
In particular, we provide their expressions for the considered family of multi-

variate distributions. Denote Y = Σ− 1
2 (X − µ), the standardized version of

X, where X = ATZ + µa. Recall from (7) that µ = E[X] = ATE[Z] + µa

and Σ = ATdiag(Var(Z1), . . . ,Var(Zd))A. We consider the following three
measures of multivariate skewness.

Mardia’s skewness index proposed in Mardia (1970). With X1 and X2

independent copies of X

βd(X) = E[
(
(X1 − µ)TΣ−1(X2 − µ)

)3
] =

d∑
j=1

β2
1(Zj). (9)

In this, β1(Zj) is the skewness as in (8) of the j-th component of Z as given
in Gijbels et al. (2019). Due to rotational invariance of (9), it holds that
βd(X) = βd(Y) = βd(Z).

Móri–Rohatgi–Székely measure proposed in Móri et al. (1994). This is a
vector valued measure of asymmetry given by

s(Y) = E

 d∑
j=1

Y 2
j

Y


=

d∑
i=1

d∑
j=1

(
Σ− 1

2AT
)2

j,i

(
Σ− 1

2AT
)
.,i
E
[
(Zi − E[Zi])

3
]
. (10)
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Kollo measure proposed in Kollo (2008). Like the Móri–Rohatgi–Székely
measure, this is a vector valued measure of asymmetry that takes into account
several extra terms. It is given by

b(Y) = E

 d∑
j=1

d∑
k=1

YjYk

Y

 (11)

=

d∑
k=1

 d∑
j=1

d∑
i=1

(
Σ− 1

2AT
)
j,k

(
Σ− 1

2AT
)
i,k

(
Σ− 1

2AT
)
.,k

E
[
(Zk − E[Zk])

3
]
.

All three measures of multivariate skewness are related in the sense that
they are a combination of third order cumulants of Y. Denote with B⊗C the
Kronecker product of two matrices B ∈ R

n×p and C ∈ R
m×q. The matrix

of third order central moments of Y is in this case equal to that of the third
order cumulants and given by

m3(Y) = E[Y ⊗YT ⊗Y] ∈ Rd2×d.

The vectorization operator applied to this matrix leads to

κ3(Y) = vec(m3(Y)) ∈ Rd3

.

The (i, j)-th element ofm3(Y) is given by E[YjYi−k∗dYk∗+1] with k∗ = {max
k∈N

k|i−
kd > 0}. In Jammalamadaka et al. (2020), it is noted that, with ∥ · ∥ the Eu-
clidean norm of a vector,

βd(Y) = ∥κ3(Y)∥2

s(Y) = (vec(Id)
T ⊗ Id)κ3(Y)

b(Y) = (1T
d2 ⊗ Id)κ3(Y),

in which 1m is a vector of ones of dimension m, and Id a d-dimensional identity
matrix. It is also clear that the Móri–Rohatgi–Székely (MRS) measure s(Y) in
(10) and the Kollo measure b(Y) in (11) are very similar, the only difference
being that the Kollo measure takes into account extra third order cumulants. In
our framework of linear combinations, the relation between the two measures
is as follows

b(Y) =

s(Y) +

d∑
k=1

d∑
j=1

d∑
i=1
i̸=j

(
Σ− 1

2AT
)
i,k

(
Σ− 1

2AT
)
j,k

(
Σ− 1

2AT
)
.,k

E
[
(Zk − E[Zk])

3
]
.

The extra term in b(Y), when compared to s(Y), can cause a sign difference
when comparing both measures, depending on the sign of elements of both

E
[
(Z− E[Z])3

]
and Σ− 1

2AT . If A is a diagonal matrix, both measures yield
the same values.
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Table 1: Measures of asymmetry for the different models in Example 1.

Model First model Second model Third model
Mardia (βd(Y)) 1.0440 1.0440 2.0044

MRS (s(Y))

[
0.9498

−0.3768

] [
0.2652

−0.9867

] [
0.6949

−1.2335

]
Kollo (b(Y))

[
1.1866
0.3813

] [
−0.5305
−1.2659

] [
0.6949

−1.2335

]

In Table 1 we list the values of these three measures of multivariate asym-
metry for the three illustrative models in Example 1. This table illustrates the
affine invariance of βd(Y) (see the first row of Table 1), and that s(Y) and
b(Y) are equal if the mixing matrix is diagonal (see the last column). Note
the remarkable higher (absolute) values of some skewness components in the
third model.

3 Parameter estimation and asymptotic theory

A natural and efficient way of obtaining parameter estimates is through max-
imum likelihood estimation. Recall that the joint density of the random vec-
tor X is given by (5). Throughout the paper we assume that this model
is correctly specified. For the moment, we restrict ourselves to densities fj
without additional parameters, i.e. for which κj is empty. Denote with θ =
(αT ,µT

a , vec(A)T )T ∈ Θ = [0, 1]d×Rd(d+1) the parameter vector of dimension
d2 + 2d. The parameters that need to be estimated are the d × d matrix A,
the d-vector µa and the d-vector of skewing parameters α. Given a realization
x(n) = (x1, . . . ,xn) of an i.i.d. sample X(n) = (X1, . . . ,Xn) of size n from X,
the log-likelihood function ℓ (θ,x) is

ℓ (θ,x)

= − ln(|det(A)|) + d ln(2) +

d∑
j=1

ln (αj(1− αj))

+

d∑
j=1

[
1
{
(x− µa)

T (A−1)·,j ≤ 0
}
ln
(
fj

(
−(1− αj)(x− µa)

T (A−1)·,j
))

+1
{
(x− µa)

T (A−1)·,j > 0
}
ln
(
fj

(
αj(x− µa)

T (A−1)·,j
))]

, (12)

where 1 {B} denotes the indicator function, i.e. 1 {B} = 1 if B holds and 0
otherwise. The finite sample version of the log-likelihood function is given by

ℓ
(
θ,x(n)

)
=

n∑
i=1

ℓ
(
θ,xi

)
,

and maximizing this log-likelihood with respect to θ leads to the maximum

likelihood estimator (MLE) for θ, denoted by θ̂
ML

n .
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The log-likelihood is continuously differentiable with respect to α, but in
general not with respect to elements ofA or µa whenever (xi−µa)

T (A−1)·,j =
0 for any i = 1 . . . , n. This occurs whenever the reference density fj is not
continuously differentiable. The latter is the case for, for example, the Laplace
distribution at its mode. In addition, the second order derivative with respect
to these parameters is non-continuous for an even larger selection of reference
densities. This is for example the case when fj is a normal density. Classical
regularity conditions thus no longer apply. In the next section we formulate a
set of conditions under which asymptotic theory for the MLE holds.

3.1 Identifiability of the model and consistency of the parameter estimator

A first issue that needs to be resolved with an eye on statistical inference is
identifiability, so no two sets of parameters should lead to the same distribu-
tion. First we give necessary and sufficient conditions to ensure that the model
is indeed identifiable. For example Allman et al. (2009) (on mixture models)
and Beckmann and Smith (2004) (p140, on linear structure models) state that
parameters of a random variable obtained from a combination of multiple uni-
variate random variables is identifiable if it is unique up to a relabeling of the
univariate random variables. Following this, we move away from the classical
definition of identifiability and impose a slightly weaker one where we need
(classical) identifiability up to a relabeling of the components of Z and the
corresponding relabeling in both α and the rows of A.

Proposition 2 Suppose X is generated according to (4). Also assume that
the vector of independent univariate random variables Z is such that all uni-
variate densities fZj

, for j = 1, . . . , d, are known up to their parameters. If the
following conditions hold, the model with density function (5) is identifiable
up to permutation of the independent components.

(I1 ) At most one component of Z can have a symmetric standard Gaussian
distribution.

(I2 ) The diagonal elements of A−1 or A are strictly positive.

For a square, invertible matrix, condition (I2 ) can always be satisfied (pos-
sibly after a permutation of the rows of A or columns of A−1 and a possible
sign change) as shown in Proposition 3. However, other conditions on A or
A−1 may also be imposed as long as they unambiguously fix the sign as men-
tioned above. For example, the condition

(I2 ∗) The first non-zero element in each column of A (or A−1) is strictly
positive,

also suffices.

Proposition 3 Let A ∈ R
d×d be an invertible matrix. Then there exists a

permutation of the rows of A such that every diagonal element of the permuted
matrix is non-zero.
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Identifiability of the model is a key requirement in getting to statistical
inference results. This is made clear in the following proposition, which states
conditions under which the MLE is weakly consistent.

Proposition 4 Let X(n) be an i.i.d. sample from X with probability density
as in (5). Assume that the following assumptions hold:

(C1 ) Assumptions (I1 )− (I2 ) hold. In other words, the parameters are identifi-
able.

(C2 ) Let ΘR = [−µu, µu]
d × [αl, αu]

d × [Al, Au]
d2

, with |µu| < ∞, 0 < αl <
αu < 1 and −∞ < Al < Au < ∞, be a compact subset of Θ. Also assume

that θ0 ∈
◦
ΘR, with

◦
ΘR the interior of ΘR.

(C3 )
∫∞
0

|ln fj(s)| fj(s)ds < ∞ ∀j ∈ {1, . . . , d}, where fj(s) are the underlying
univariate symmetric densities.

Then the maximum likelihood estimator θ̂
ML

n is weakly consistent, i.e. θ̂
ML

n
P→

θ0 for n → ∞, with θ0 the true parameter.

3.2 Asymptotic normality

Before stating conditions under which asymptotic normality of the MLE holds,
some matrix notations are introduced, needed in particular for providing ex-
pressions for the expected score and the Fisher information matrix. Denote
with A−j;−i the matrix A of which the j-th row and i-th column have been
removed. Similarly A−j,−k;−i,−l represents the matrix A in which the j- and
k-th row and the i- and l-th column have been removed. In this, the order of
the indices is of no importance as they are taken with respect to the original
matrix A. Should one start with a 2× 2 matrix, A−1,−2;−1,−2 is defined as 1.

It is important to pay attention to the indexation of the rows and columns
of the reduced matrices compared to the original one. For example, inA−j,−k;−i,−l

the r-th row has elements with row-index r+2 whereas the s-th column has el-
ements with column-index s+1 provided that r ≥ k+2, k > j and i < s ≥ l+2.

The next two well known results are also used. The first is the general
result (see for example Zhang (2011), p12) that the determinant of a matrix
A can be written as

det(A) =

d∑
l=1

(−1)l+kAk,ldet(A−k;−l). (13)

Using (13), the determinant of a reduced matrix is

det(A−k;−l) =

d∑
i=1
i ̸=l

(−1)i+j+1{j>k}+1{i>l}Aj,idet(A−j,−k;−i,−l)1{j ̸= k},

(14)
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and

∂

∂Aj,i
det(A−k;−l)

=

{
0 if j = k or i = l
(−1)i+j+1{j>k}+1{i>l}det(A−j,−k;−i,−l) otherwise.

(15)

Note the added indicator functions in the exponent of −1. These follow from
the previously made remark on the indexation of the reduced matrices.

The second result follows from the fact (see for example Zhang (2011), p13)
that it is possible to express the inverse of a matrix in terms of its adjugate
matrix (adj(A)) and determinant as

adj(A)k,l = (−1)k+ldet(A−l;−k) = det(A)(A−1)k,l.

This makes that an elements of the inverse of a matrix A can be expressed as

(A−1)k,l =
(−1)k+ldet(A−l;−k)

det(A)
. (16)

For notational simplicity, also define

Bk,l
h,j =

d∑
i=1
i ̸=l

(−1)i+j+k+l+1{j>k}+1{i>l}Ah,idet(A−j,−k;−i,−l)

det(A)
, (17)

Dk,l =
(−1)k+l+1det(A−k;−l)

det(A)
. (18)

Lemma 1 Using the introduced notation and the above results on matrix al-
gebra

∂

∂Ak,l

[
(x− µa)

T (A−1)·,j
]
=


Dk,l(x− µa)

T (A−1)·,k if j = k
d∑

h=1
h̸=j

Bk,l
h,j(x− µa)

T (A−1)·,h if j ̸= k. (19)

The proof of Lemma 1 is given in the Supplementary material. This result
is needed for both the expected score and the Fisher information matrix,
where we require an expression for the left-hand side of (19). The following
assumptions are needed:

(N1 ) γj,r =
∫∞
0

sr−1 (f ′
j(s))

2

fj(s)
ds < ∞ ∀j ∈ {1, . . . , d} and r = 1, 2, 3.

(N2 )
∫∞
0

sf ′
j(s)ds = − 1

2 or lim
s→∞

sfj(s) = 0 ∀j ∈ {1, . . . , d}.

These assumptions (N1 ) and (N2 ) are quite mild. They, as well as Condition
(C3 ), are satisfied for, for example, fj standard normal, Student’s-t, logistic or
Laplace densities (see for example Gijbels et al. (2019), as well as Example 1).
We formally state the results on the expected score and the Fisher information
matrix in Propositions 5 and 6 respectively.
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Proposition 5 Suppose Assumption (N2 ) holds, then the expectation of the
score vector for X with respect to the true underlying distribution is zero. i.e.

E

[
∂ℓ (θ;X)

∂θ

]
θ=θ0

= 0.

Proposition 6 Suppose Assumptions (N1 ) and (N2 ) hold and denote by

µj,r = 2

∫ ∞

0

srfj(s)ds κj,1 = EZj [Zj ] =
1− 2αj

αj(1− αj)
µj,1

κj,2 = EZj
[Z2

j ] =
(1− αj)

3 + α3
j

α2
j (1− αj)2

µj,2,

for j = 1, . . . , d and r = 1, 2. Then the elements of the Fisher information

matrix I(θ)i,j = E
[(

∂ℓ(θ;X)
∂θi

)(
∂ℓ(θ;X)

∂θj

)]
, i, j = 1, . . . , d exist and are given

by

E

[(
∂ℓ (θ;X)

∂αk

)(
∂ℓ (θ;X)

∂αl

)]
=

 2(α3
k+(1−αk)

3)γk,3−(1−2αk)
2

α2
k
(1−αk)

2 if k = l

0 if k ̸= l,

E

[(
∂ℓ (θ;X)

∂αk

)(
∂ℓ (θ;X)

∂µa,l

)]
= −2(A−1)l,kγk,2,

E

[(
∂ℓ (θ;X)

∂αk

)(
∂ℓ (θ;X)

∂Al,m

)]
=


Dk,m(1−2αk)(2γk,3−1)

αk(1−αk)
if k = l

2γk,2

d∑
h=1
h ̸=k

Bl,m
h,k κh,1 if k ̸= l,

E

[(
∂ℓ (θ;X)

∂µa,k

)(
∂ℓ (θ;X)

∂µa,l

)]
=

d∑
j=1

2αj(1− αj)(A
−1)k,j(A

−1)l,jγj,1,

E

[(
∂ℓ (θ;X)

∂µa,k

)(
∂ℓ (θ;X)

∂Al,m

)]
= −2

d∑
j=1
j ̸=l

αj(1− αj)(A
−1)k,jγj,1

d∑
h=1
h ̸=j

Bl,m
h,j κh,1,

E

[(
∂ℓ (θ;X)

∂Ak,l

)(
∂ℓ (θ;X)

∂Ar,s

)]

= 2
d∑

j=1
j ̸=k,r

αj(1− αj)γj,1

[
d∑

m=1
m ̸=j

d∑
h=1

h ̸=j,m

Bk,l
m,jκm,1B

r,s
h,jκn,1 +

d∑
g=1
g ̸=j

Bk,l
g,jB

r,s
g,jκg,2

]

+

[
d∑

q=1
q ̸=k

d∑
j=1
j ̸=q,r

Bk,l
j,qB

r,s
q,j

]
+

{
Dk,lDk,s(2γk,3 − 1) if k = r
0 if k ̸= r.

The proofs of both propositions are in the Supplementary Material.
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Example 3 (Example 1 continued) For the first model introduced in Example
1, the values of the quantities γj,r, µj,r and κj,r are given by

γ1,1 = 1
2 γ2,1 = 1

6

γ1,2 =
√
2√
π
γ2,2 = 1

6 + ln(2)
3

γ1,3 = 3
2 γ2,3 = 2

3 + π2

18

µ1,1 =
√
2√
π
µ2,1 = 2 ln(2) κ1,1 = 2.1277 κ2,1 = −2.8281

µ1,2 = 1 µ2,2 = π2

3 κ1,2 = 12.4444 κ2,2 = 20.1818.

In this example, we have θ = (α1, α2, µa,1, µa,2,A1,1,A2,1,A1,2,A2,2)
T . The

inverse of the Fisher information matrix becomes

I(θ)−1 =

0.4134 −0.0000 42.2235 14.0745 13.2298 0.0000 4.4099 0.0000
0.0000 0.4278 −22.4351 35.8961 0.0000 2.8205 0.0000 −4.5128

42.2235 −22.4351 6786.9789 −917.4407 1286.1011 −113.9967 554.4639 247.9866
14.0745 35.8961 −917.4407 5755.6372 791.2002 523.5225 −395.1784 −283.0692
13.2298 −0.0000 1286.1011 791.2002 583.4778 66.9827 24.1203 22.3276
0.0000 2.8205 −113.9967 523.5225 66.9827 132.5992 −107.1723 −25.5543
4.4099 0.0000 554.4639 −395.1784 24.1203 −107.1723 280.6358 −35.7241

−0.0000 −4.5128 247.9866 −283.0692 22.3276 −25.5543 −35.7241 103.0884


.

(20)
This matrix reveals that, for MLE, the hardest parameters to estimate in
this model are µa,1 and µa,2. Consider as an example the parameter A2,2,
then I(A2,2)

−1 = 103.0884. As is made clear in Theorem 1, this implies that
for a sample of n observations, the asymptotic variance of A2,2 is given by
103.0884n−1.

We are now able to state the asymptotic normality result for the MLE. For
completeness, in the following (Rd, Ω, P ) is a probability space. Denote with

Ψ j(x;θ) =

[
1

2

(
∂+ℓ(θ;x)

∂θj
+

∂−ℓ(θ;x)

∂θj

)]
Ψ(x;θ) = (Ψ1(x;θ), · · · ,Ψd2+2d(x;θ))

T
(21)

λ(θ) = E [Ψ(X;θ)] ,

and

u(x;θ, r) = sup
∥θ∗−θ∥<r

∥Ψ(x;θ∗)− Ψ(x;θ)∥ .

In this, ∂+

∂θj
and ∂−

∂θj
denote the right-hand respectively left-hand derivative.

The following two lemmas are needed. Their proofs are in the Supplementary
Material.

Lemma 2 Ψ(x;θ) as defined in (21) is measurable.

Lemma 3 Under Assumption (N2 ) and continuity of both fj(x) and f ′
j(x)

on R\{0}, λ(θ) is continuous in a neighborhood of θ0.
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Theorem 1 Suppose Assumptions (C1 )− (C3 ) and (N1 )− (N2 ) hold. Then

the maximum likelihood estimator θ̂
ML

n is asymptotically normally distributed
with mean 0 and variance-covariance I(θ0)

−1, i.e.

√
n(θ̂

ML

n − θ0)
D→ N

(
0, I(θ0)

−1
)

as n → ∞,

where I(θ0) is the Fisher information matrix with elements given in Proposi-
tion 6.

3.3 Inclusion of other parameters

So far, it was assumed that κ is empty, i.e. fj , j = 1, . . . , d does not come with
extra parameters. In reality, that might not always be the case. Fortunately,
when one or more of the univariate symmetric distributions fj , j = 1, . . . , d
used to generate the multivariate distribution comes with extra parameters,
the obtained results can be directly extended. In this case the parameter vector
becomes ξ = (αT ,µT

a , vec(A)T ,κT )T , with κ = (κT
1 , . . . ,κ

T
d )

T , where κj

is the vector of additional parameters from fj . The expression for the log-
likelihood does not change much compared to (12) and is given by

ℓ (ξ,x) =

− ln(|det(A)|) + d ln(2) +

d∑
j=1

ln(αj(1− αj))

+

d∑
j=1

[
1
{
(x− µa)

T (A−1)·,j ≤ 0
}
ln
(
fj

(
−(1− αj)(x− µa)

T (A−1)·,j
)
;κj

)
+1

{
(x− µa)

T (A−1)·,j > 0
}
ln
(
fj

(
αj(x− µa)

T (A−1)·,j
)
;κj

)]
. (22)

This leads to the following

Theorem 2 If the following conditions hold

(E1) Conditions (I1 )− (I2 ) hold.
(E2) Let ΞR be a compact subset of Ξ, the parameter space of ξ. Also assume

that ξ0 ∈
◦
ΞR, with

◦
ΞR the interior of ΞR.

(E3)
∫∞
0

|ln fj(s;κj)| fj(s;κj)ds < ∞ ∀j ∈ {1, . . . , d} and all κj ∈ Kj, their
parameter space. In this fj(s;κj) are the underlying univariate symmetric
densities.

(E4) E
[
∂ℓ(ξ;X)

∂ξ

]
ξ=ξ0

= 0.

(E5) E
[
∂ℓ(ξ;X)

∂ξi

∂ℓ(ξ;X)
∂ξj

]
ξ=ξ0

< ∞ ∀i, j ∈ {1, . . . , d},

the maximum likelihood estimator

ξ̂
ML

n =
(
(α̂ML

n )T , (µ̂a
ML
n )T , (vec(ÂML

n ))T , (κ̂ML
n )T

)T

,
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of the true parameter vector ξ0 is asymptotically normally distributed with
mean 0 and variance-covariance I(ξ0)

−1, i.e.

√
n(ξ̂

ML

n − ξ0)
D→ N

(
0, I(ξ0)

−1
)

as n → ∞.

The proof of Theorem 2 is similar to that of Theorem 1 and therefore omit-
ted. Note that I(ξ0) consists of I(θ) extended with an additional block made
up of the interactions between κ and θ. A classical example of a distribution
involving other parameters is the Student’s t-distribution. The extra param-
eters are the degrees of freedom, νj , involved with each different Student’s
t-distribution. For the Student’s t-distribution, one can show that the condi-
tions are satisfied. See the Supplementary Material. In a univariate setting,
the details can be found in Gijbels et al. (2019).

4 Simulation study

To estimate the parameters of the proposed distributions in (5), MLE is used.
In order to maximize the log-likelihood, we rely on optimization software. Since
the score functions can be discontinuous at certain points, even first order op-
timization algorithms might not be appropriate as the objective function may
lack the necessary smoothness. For that reason, derivative free optimization is
resorted to.

Several derivative free optimization routines are available in the nloptr-
package (see Johnson (2018)). In order to chose an algorithm, the COBYLA-,
NEWUOA-, BOBYQA- and Nelder-Mead-algorithms were taken into consi-
deration. After extensive testing on models of different dimensionality and for
different sample sizes, the BOBYQA-algorithm (Powell (2009)) was chosen
to perform the fitting of the model. It showed the best and most consistent
convergence results paired with a competitive computation time compared to
its direct competitors. All computations are performed using the open-source
software R and the therein available implementations.

As a warming up, 400 independent datasets are generated from the first
model in Example 1 with sample size 800. Results concerning empirical bias
(empirical bias(θ̂j) = 1

400

∑400
i=1 θ̂

i
j − (θ0)j , with θ̂ij the parameter estimates

based on the i-th realised dataset), estimated variance (estimated variance(θ̂j) =
1

399

∑400
i=1(θ̂

i
j − 1

400

∑400
k=1 θ̂

k
j )

2) and asymptotic variance can be found in Table

2. Selected histograms for α̂2 and Â2,2 are shown in Figure 2. The asymptotic
variance is calculated using the expressions in Proposition 6, i.e. the asymp-
totic variance of the estimator θ̂j is n−1I(θ0)

−1
j,j . In this example the inverse

of the Fisher information matrix is given by (20). Parameter estimates behave
as expected under the developed theory. Asymptotic variance decreases at a
n−1-rate, empirical bias is approximately zero and the parameter estimates
show clear normal behavior. These are thus the results expected under the
presented asymptotic theory of Section 3.
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Table 2: First model of Example 1: empirical bias, estimated variance and
asymptotic variance of parameter estimates for sample size 800.

Sample size Parameter α1 α2 µa,1 µa,2 A1,1 A2,1 A1,2 A2,2

n = 800
Empirical bias −0.0026 0.0013 −0.2691 −0.0361 −0.1653 0.0154 −0.0292 −0.0063
Estimated variance 0.0006 0.0005 9.1021 7.6616 0.7676 0.1685 0.3514 0.1200
Asymptotic variance 0.0005 0.0005 8.4837 7.1945 0.7293 0.1657 0.3508 0.1289
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Fig. 2: First model of Example 1: histograms of selected parameter estimates for
sample size 800. The solid curve indicates the asymptotic normal distribution
of the corresponding parameter.

4.1 Simulations

To investigate the finite sample performance of the MLE, several models are
considered.
Model 1: a bivariate model consisting of a QBA-normal distribution (fZ1

)
and a QBA-Student’s t-distribution (fZ2

) with the following parameters

α =

(
0.35
0.7

)
µa =

(
0
0

)
A =

[
4 1
−3 4

]
ν2 = 6 .

A contourplot of this model is given in Figure 3 and the corresponding mea-
sures of asymmetry are listed in Table 3.
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Fig. 3: Contourplot of Model 1.

Table 3: Measures of asymmetry of Model 1.

βd(Y) s(Y) b(Y)

8.1280

[
1.7366

−2.2610

] [
0.9539

−0.0103

]
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Model 2: a six-dimensional model consisting of all components Zj having
QBA-Laplace distributions with the following parameters

α =


0.2
0.24
0.28
0.32
0.36
0.4

 µa =


1
2
3
4
5
6

 A =


10 0 5 0 1 0
0 10 1 0 −4 2

−5 −1 10 0 6 0
0 0 0 10 0 −2

−1 4 −6 0 10 0
0 −2 0 2 0 10

 . (23)

Measures of asymmetry for the second simulation model are given in Table 4.
Note that the first components of both s(Y) and b(Y) show higher values.

Table 4: Measures of asymmetry of Model 2.

βd(Y) s(Y) b(Y)

1.1011


0.5254
0.5665
0.6303
0.2338
0.2008
0.1087




1.4178
0.4940
0.9030
0.1564
0.2899
0.1067



For both models, sample sizes 100, 200, 400 and 800 are considered. In
each of these settings, 400 independent random datasets are generated from
which empirical bias and variance of the parameter estimates are computed.
The approximate variance is compared to the corresponding theoretical value
obtained from the asymptotic results presented in Section 3.

As for the optimization software, the following settings are used. The num-
ber of randomly generated starting values for the parameters is 40, the max-
imum number of iterations of the BOBYQA-algorithm is fixed at 35 000 to
ensure convergence can take place. As a convergence criterion the first to oc-
cur between a relative change of 10−6 in the norm of the parameter values or
an improvement of less than 10−9 in the log-likelihood is used. We summarize
a selection of the results. A more detailed presentation of all simulation results
can be requested from the authors.

Table 5: Model 1: empirical bias, estimated variance and asymptotic variance
of parameter estimates for sample sizes 400 and 800.

Sample size Parameter α1 α2 µa,1 µa,2 A1,1 A2,1 A1,2 A2,2 ν2

n = 400
Empirical bias −0.0037 0.0016 −0.1796 0.0992 −0.0555 0.1160 −0.0688 −0.0989 1.0548
Estimated variance 0.0015 0.0023 2.0624 1.2797 0.1165 0.5236 0.4074 0.2091 14.3817
Asymptotic variance 0.0013 0.0010 1.8494 1.3707 0.1175 0.1078 0.1147 0.1194 2.9835

n = 800
Empirical bias −0.0003 −0.0001 0.0334 −0.0530 −0.0160 0.0055 −0.0072 −0.0043 0.3072
Estimated variance 0.0007 0.0006 1.0579 0.6803 0.0589 0.0534 0.0522 0.0625 2.1715
Asymptotic variance 0.0006 0.0005 0.9247 0.6853 0.0587 0.0539 0.0573 0.0597 1.4917
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Fig. 4: Model 1: boxplots of parameter estimates for sample size 100, 200, 400
and 800. The horizontal line represents the true parameter value.

For Model 1, empirical bias, asymptotic variance and estimated variance
are shown in Table 5. Boxplots of the estimates for α̂1, µ̂a,2 and Â1,2 are
shown in Figure 4. As can be seen, empirical bias is almost negligible for all
parameters except the degrees of freedom of the Student’s t-distribution. This
is a problem inherent to the Student’s t-distribution when sample sizes are
small. The transition from n = 400 to n = 800 is an indication of the validity
of the asymptotics. There is a further decrease in the empirical bias of the
parameter estimates and estimated variances are much closer to their theo-
retical counterpart. This is most noticeable for the elements of the matrix A.
Although for n = 400 the variance of Â1,1 is estimated excellent, all others are
rather poorly estimated together with the degrees of freedom for the Student’s
t-distribution. The problem of this however, is that estimating degrees of free-
dom for Student’s t-distributed random variables is hard in smaller samples.
Even in the symmetric univariate case, the degrees of freedom parameter is
often overestimated because heavy tails are hard to grasp from finite samples.
For n = 800, all empirical variances except the one for the degrees of freedom
approximate the theoretical variances well. Accuracy of variance estimates can
thus be quite bad for smaller sample sizes. However, when sufficient data points
are used, here 800, theory and reality are conform. This is nicely illustrated
by Figure 5, where a histogram of the fitted parameters is plotted against the
asymptotic distribution of the corresponding parameter.

Table 6: Model 2: empirical bias, estimated variance and asymptotic variance
of parameter estimates for sample sizes 400 and 800.

Sample size Parameter α3 α5 µa,3 µa,5 A3,3 A3,5 A5,3 A5,5

n = 400
Empirical bias 0.0040 0.0000 0.4083 0.1977 −0.0683 −0.0432 0.0954 −0.1147
Estimated variance 0.0009 0.0009 12.4362 11.3310 0.7867 0.3584 0.4238 0.4413
Asymptotic variance 0.0005 0.0006 7.2579 6.5608 0.5511 0.2805 0.3076 0.4128

n = 800
Empirical bias −0.0007 −0.0002 0.3041 0.0458 0.0055 −0.0359 0.0479 −0.0500
Estimated variance 0.0003 0.0004 4.7258 5.0027 0.3147 0.1731 0.1831 0.2400
Asymptotic variance 0.0003 0.0003 3.6289 3.2804 0.2756 0.1402 0.1538 0.2064
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Fig. 5: Model 1: histograms of parameter estimates for sample size 800. The
solid curve indicates the asymptotic normal distribution of the corresponding
parameter.

The same conclusions can be drawn for Model 2. For selected parameter
estimates, empirical bias, estimated and asymptotic variance can be found in
Table 6. Boxplots of the same parameter estimates for all considered sam-
ple sizes are shown in Figure 6. The latter gradually center around the true
parameter value as the sample size increases. The rate at which variance in
parameter estimates drops corresponds to the desired n−1-rate. Finite sample
performance largely depends on the model considered, specifically the dimen-
sionality of the model. Whereas for a bivariate model, 800 observations seem
to suffice for the asymptotics to kick in, it is not enough for a six-dimensional
model. The main reason for this is that the number of parameters, which is
at least d2 + 2d, so 48 in the six-dimensional model. It is natural that for a
similar accuracy, a lot more observations are required.

4.2 Impact of sample size and dimensionality

For practitioners, fitting a model should be possible within a reasonable time-
frame. Of course, computing time is influenced by both the dimensionality of
the problem and the sample size. To get a grasp at how these two factors im-
pact computation time, two separate simulation cases have been studied. The
first is aimed at exploring the impact of the sample size on the computation
time. To this extent, a six-dimensional model consisting of only QBA-Laplace
distributed univariate components with parameters given in (23) is used. For
this model, 100 independent samples of size 2 000, 4 000, 6 000, 8 000 and 10 000
are generated. For each dataset 20 random starting points for the parameters
are used. Boxplots of the resulting computation time (in seconds) are shown
in Figure 7. The median computing time for sample size 2 000 is 410s whereas
for sample size 10 000 it is 1793s. It thus seems that sample size has a linear
impact on computation time, as could be expected. All simulations are run on
a Dell Latitude 5590 with an Intel i5-8350U CPU clocked at 1.70GHz.

To assess the impact of the dimensionality d of the problem, a similar
strategy is employed for 100 independent replicates with sample size 10 000
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Fig. 6: Model 2: boxplots of parameter estimates for sample size 100, 200, 400
and 800. The horizontal line represents the true parameter value.

for models with dimensions 2, 4, 6, 8 and 10. As for the model on the impact of
the sample size, for these models solely QBA-Laplace univariate components
are used. For the skewing parameters α, d equally spaced values in the interval
[0.2, 0.4] are taken. The other parameter values are given by (24), with lower
dimensional models as indicated by the dashed lines:

µa =



1
2
3
4
5
6
7
8
9
10


A =



20 0 5 0 1 0 2 0 −3 0
0 20 1 0 −4 2 0 1 −2 3

−5 −1 20 3 5 0 4 1 0 −4
0 0 −3 20 0 −2 −3 2 −1 0

−1 4 −5 0 20 0 0 0 0 2
0 −2 0 2 0 20 1 −3 2 0

−2 0 −4 3 0 −1 20 0 0 5
0 −1 −1 −2 0 3 0 20 5 −3
3 2 0 1 0 −2 0 −5 20 0
0 −3 4 0 −2 0 −5 3 0 20


(24)

Each time, 20 random sets of starting values are used and the number of
iterations is capped at 35 000 for dimensions 2, 4 and 6 and for dimensions 8
and 10 capped at 75 000 to make sure the algorithm can converge. Boxplots
of the computation time can be found in Figure 8.

As expected, sample size impacts the computation time linearly. This is
due to the log-likelihood being evaluated in more points, which doesn’t change
the complexity of the optimization. Dimensionality is a different story. As re-
ported in Powell (2009), the BOBYQA-algorithm has a theoretical complexity
of O(m2), with m being the number of parameters. Since the number of pa-
rameters (d2 +2d) of our model increases quadratically with the dimension d,
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the complexity is expected to be of order O(d4). The numerical results of this
limited setting however, show a more quadratic behavior. It is also important
to keep in mind that 20 different sets of starting values for the parameters are
used.

5 Data applications

We present two data applications. As a benchmark, we use the current norm
in multivariate asymmetric distributions: the skew-elliptical distributions (2),
in particular the skew-normal and skew-t distribution. The comparison be-
tween our proposed distributions and the skew-elliptical ones is based on some
goodness-of-fit criteria. For univariate goodness-of-fit, many test criteria are
available. However, multivariate extensions of these goodness-of-fit tests are
scarce. So in order to assess the goodness-of-fit, we rely on the Akaike’s in-
formation criterion (AIC, Akaike (1974)) and a graphical goodness-of-fit diag-
nosis based on the depth-depth plot (DD-plot). The former criterion can be
used to compare non-nested models which are fit using maximum likelihood
estimation. Formally, the AIC is defined as

AICn = −2ℓ
(
θ̂
ML

n ;x(n)
)
+ 2k,

in which ℓ
(
θ̂
ML

n ;x(n)
)
is the log-likelihood evaluated in the MLE and k the

number of model parameters. When fitting multiple models using MLE, the
model with the lowest AIC is considered to be the better model among the
different candidate models.

The DD-plot as proposed in Liu et al. (1999), can be seen as a multivariate
analogue of the well known quantile-quantile plot. As there is no unique way of
defining quantiles in higher dimensions, instead statistical depth as defined in
Zuo and Serfling (2000) is used. This provides an outward ordering of the data
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based on some measure of centrality with respect to a distribution. In a way,
statistical depth is thus an intuitive multivariate extension of quantiles. A DD-
plot then compares the statistical depth of the data in the fitted distribution to
that in its empirical distribution function. As an analytical expression for the
depth of data in a certain distribution is in general not available, a numerical
approximation is used. This approximation consists of calculating the depth of
the data in a sufficiently large sample (here 10 000 observations are generated)
from the fitted distribution. We then plot the depth of the data in itself against
the depth of the data in the random sample to create the DD-plot. As a depth
function, the halfspace depth (also called Tukey depth, Tukey (1975)) is used.
This is defined in Zuo and Serfling (2000) as

DH(X|P ) = inf {P (H) : H a closed halfspace, X ∈ H} ,

so the halfspace with the least probability mass containing X. The sample
version of the halfspace depthDH(z,x(n)) of a point z with respect to a sample
x(n) of size n with empirical distribution function Pn is given by (Struyf and
Rousseeuw (1999))

DH(z,x(n), Pn) = min
u∈Rd,∥u∥=1

1

n
#{i : uTxi ≤ uT z}.

Halfspace depth is thus given by the minimal fraction of points of X(n) con-
tained in a halfspace that contains z. Following this definition, it is clear that
DH(z,x(n)) can only take on values in [0, 0.5] and larger values imply that z
lays closer to the center of the sample x(n). If the fitted distribution provides
a good fit, the point cloud of the DD-plot should be close to the 1:1 line.

As candidate models from the proposed family of distributions, we use all
combinations of QBA-Laplace, QBA-normal, QBA-logistic and QBA-Student’s
t univariate components. As the ordering of these components is of no impor-
tance due to the relabeling problem explained in Section 3 and univariate
components are allowed to be of the same type of distribution (e.g. two QBA-
Laplace distributions). This is a combination with repetition but without or-
dering. Hence, for a d-dimensional dataset with m different options for the
univariate components (in our setting m = 4), this leaves a total of (m+d−1

d )
possible models to fit. These are then compared to the benchmark using the
above two criteria.

5.1 AIS-dataset

The first data example is often encountered in papers on multivariate asym-
metric distributions, the AIS-dataset. The data, as depicted in Figure 9 con-
cerns the body mass index (bmi) calculated as height (in cm) divided by
squared mass (in kg) and lean body mass (lbm, expressed in kg), which is the
body mass without fat mass, of 202 Australian athletes. The data is freely
available in the DAAG-package in R and originates from Cook and Weisberg
(1994).
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normal-normal.
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logistic-normal.
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Fig. 9: AIS-data with contour plots of some fitted models.

Table 7: AIS-data. Fitted parameters for considered models. Standard devia-
tions, based on the asymptotic normal distribution (Theorem 1) and the ex-
pression for the Fisher information matrix (Proposition 6), are between brack-
ets.

Quantile-based Azzalini’s bivariate
normal - normal Student’s t - normal logistic - normal skew-normal skew-t

AIC 2432.1280 2429.0070 2426.718 2440.5220 2442.2150

α̂1 0.2178 (0.0423) 0.2262 (0.0416) 0.2246 (0.0403) λ̂1 5.5153 5.2424

α̂2 0.3020 (0.0480) 0.3002 (0.0479) 0.3005 (0.0479) λ̂2 −2.3022 −2.2349

µ̂a,1 20.0532 (0.4256) 20.1088 (0.3789) 20.1003 (0.3737) β̂1 20.1355 20.1979

µ̂a,2 54.6272 (2.2599) 54.4946 (2.1948) 54.5137 (2.1986) β̂2 61.7612 61.9651

Â1,1 0.7490 (0.1214) 0.6667 (0.1083) 0.4262 (0.0638) Ω̂1,1 16.116 14.8864

Â2,1 0.6493 (0.0978) 0.6274 (0.0927) 0.6305 (0.0929) Ω̂2,1 35.3676 32.6333

Â1,2 0.9029 (0.3755) 0.8514 (0.3107) 0.5402 (0.1974) Ω̂1,2 35.3676 32.6333

Â2,2 5.2251 (0.5445) 5.1827 (0.5445) 5.1894 (0.5443) Ω̂2,2 179.6722 171.7735
ν̂ 7.3017 (3.5005) ν̂ 51.0020

To this data the proposed distributions as well as a bivariate skew-normal
and skew-t distributions are fitted. Fitted parameters for a bivariate QBA
normal–normal, a QBA Student’s t–normal, a QBA logistic–normal distribu-
tion, the bivariate skew-normal and the bivariate skew-t distribution are given
in Table 7. The estimated standard errors between brackets are obtained from
the asymptotic normality result established in Theorem 1, the expression for
the elements in the Fisher information matrix provided in Proposition 6, and
by substituting the parameters by their estimates.

DD-plots of three of the five fitted distributions are shown in Figure 10.
The plots for the skew-t distribution are similar to these for the skew-normal
and therefore not included. See also the estimated high value for the degrees of
freedom ν in Table 7. A direct comparison, both visual from the DD-plots and
based on AIC, between the quantile-based and skew-elliptical models reveals
that they perform very similar. With only small differences in AIC and almost
identical DD-plots, both types of distributions provide a good fit to the AIS-
data. It terms of distribution itself, there are subtle differences between the
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(a) Quantile-based
normal-normal.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4
0.

0
0.

1
0.

2
0.

3
0.

4
Theoretical depth

D
ep

th
 in

 s
am

pl
e

(b) Quantile based
Student’s t-normal.
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(c) Skew-normal.

Fig. 10: AIS-data. DD-plots for some fitted models.

quantile-based and the skew-elliptical distributions as can be seen in Figure
9. The skew-normal model shows more elongated contours towards the lower
left direction compared to the other two. It is also slightly more rounded at
the top right of the data. Yet, despite the differences the quality of the fit is
surprisingly similar.

As a brief mention, the best fitting QBA-distribution to the AIS-data is a
QBA-logistic - QBA-normal one. In terms of DD-plot this gives similar results
to the ones shown in Figure 10, but it has an AIC of 2426.718. The AIC of
the other seven models not mentioned here are given in Table 8.

Table 8: AIS-data. AIC of seven fitted quantile-based models (not discussed).

AIC

Quantile-based:

logistic - logistic 2434.9500
normal - Laplace 2437.7540
logistic - Laplace 2445.4860
Laplace - Laplace 2458.8400
Student’s t - logistic 2429.1910
Student’s t - Laplace 2440.0490
Student’s t - Student’s t 2431.4830

In this paper the focus is on a frequentist approach, allowing to establish
statistical inference for the entire family. Of course any model in this context
of linear combinations of QBA-distributions can also be fit using Bayesian
estimation. To illustrate this we simply fit the QBA-logistic - QBA-normal
model to the AIS data using Bayesian techniques. As the sample size is rather
low, 4 MCMC chains are run, each consisting of a burn-in period of 20 000
iterations and a sampling period of 20 000 iterations. The final sample is then
obtained by taking each fifth set of parameters from the sampling period. For
this, the rstan-software package Stan Development Team (2021) is used.

Following Rubio and Steel (2015) priors are chosen to be vague priors,
more specifically independent uniform priors. The range is based on the MLE
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and the imposed restrictions on the parameter space. Taking these factors
into account, the priors are U [0.05; 0.95] for both αj , j = 1, 2; U [15; 35] for
µa,1; U [20; 110] for µa,2; U [0; 10] for both A1,1 and A2,2; and finally U [−10; 10]
for A1,2 and A2,1. As final estimate, the mean (with s.d.) and mode of the
posterior distribution are reported.

A second set of priors is used based on the MLE reported in Table 7. This
set consists of independent normal priors with mean the MLE rounded to
two decimals and standard deviation twice that of the MLE, rounded to one
decimal.

The resulting posterior distributions are depicted in Figures S.1 and S.2 in
the Supplementary Material, for respectively the uniform and normal priors
and the parameter estimates in Table 9. The prior distributions have an impact
on the estimates and their precision. In particular the impact on the precision
is very noticable from Figures S.1 and S.2. The Bayesian parameter estimates
are of the same magnitude, but there are some striking differences between
these and the MLE, mainly in the estimate for A2,2, which is almost half as
small as the MLE. This translates in a decent, but sub-optimal AIC-value,
which is still on par with skew-normal and skew-t models, nevertheless, even
though accurate MLE priors are used, the MCMC-algorithm still converges to
a different optimum.

Table 9: AIS-data: Fitted parameters by a Bayesian approach using the previ-
ously mentioned sets of priors. For the mean estimator, the standard deviation
is mentioned in brackets.

Uniform priors Normal priors
Parameter Mode estimator Mean estimator Mode estimator Mean estimator
α̂1 0.2402 0.2392 (0.0383) 0.1833 0.1870 (0.0248)
α̂2 0.2916 0.3012 (0.0475) 0.3129 0.3161 (0.0377)
µ̂a,1 20.1332 20.2139 (0.3929) 19.9272 19.9316 (0.2831)
µ̂a,2 54.7715 55.1628 (2.2670) 55.4273 55.5103 (1.5965)

Â1,1 0.7557 0.7802 (0.1108) 0.6314 0.6256 (0.0590)

Â2,1 0.3911 0.3921 (0.0658) 0.4142 0.4195 (0.0496)

Â1,2 0.7280 0.7711 (0.4443) 0.5593 0.5484 (0.1659)

Â2,2 3.0055 3.0635 (0.3422) 3.2461 3.2271 (0.2875)
AIC 2440.939 2440.703 2442.359 2442.099

5.2 Pokémon data

In this data example, the base stats of 800 existing Pokémon up to gener-
ation 7 are used. The dataset is freely available from https://www.kaggle.

com/mlomuscio/pokemon. The variables are: Hitpoints (HP), Attack, Defence,
Special Attack, Special Defence and Speed. We thus have a six-dimensional
dataset to which the proposed quantile-based distributions and both the skew-
normal and skew-t distribution are fitted. For the quantile-based models, all
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84 possibilities are fitted. In Table 10 the best 5 models, among the considered
84 models, according to AIC are presented and compared to the skew-normal
and skew-t model. All 5 best quantile-based models have a lower AIC value
than the skew-elliptical models. In fact, when we only take AIC into consid-
eration, there are only 4 out of 84 quantile-based models that perform worse
than the skew-t model and none that performs worse than the skew-normal
model. A visual check of the fits is also provided in the form of DD-plots.
These are only provided for the best fitting (based on AIC) quantile-based
model (the quantile-based Laplace-Laplace-logistic-logistic-logistic-Student’s
t-model) and the skew-t model. The DD-plots can be found in Figure 11.
Again, the quantile-based model provides a good fit to the data and clearly
outperforms the skew-t model.

Table 10: Pokémon data. AIC for the 5 best performing quantile-based models,
the skew-normal and the skew-t model.

Distribution AIC

Quantile-based Laplace-Laplace-logistic-logistic-logistic-t 43867.86
Quantile-based Laplace-t-t-t-t-t 43875.64
Quantile-based t-t-t-t-t-t 43884.05
Quantile-based Laplace-logistic-t-t-t-t 43903.21
Quantile-based Laplace-Laplace-Laplace-logistic-logistic-t 43903.93

Skew-normal 44758.60
Skew-t 44397.44
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(a) Best quantile-based model.
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(b) Skew-t model.

Fig. 11: Pokémon data. DD-plots for the best quantile-based and skew-elliptical
distributions.

Interesting to note is that Table 10 shows that the best performing quantile-
based models all contain at least one or more Student’s t-distributed compo-
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nents. In all these models, the degrees of freedom are low for one compo-
nent (or two when there are multiple components). The majority of the other
components are light tailed distributions (or Student’s t with high degrees
of freedom). This provides an explanation for the better performance of our
models as some, but not all variables in the data have heavy tails. The skew-
elliptical distributions are less capable of capturing this different tail behavior
and therefore perform worse.
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0.00

0.05

0.10

0.15

0.20

0.25

HP Atk Def Sp. Atk Sp. Def Spd

H
P

A
tk

D
ef

S
p.

 A
tk

S
p.

 D
ef

S
pd

(b) Skew-t.

Fig. 12: Pokémon data. Difference of the estimated correlation structure from
the model and the empirical correlation structure.

Another point of interest is the estimated dependence structure. For the
quantile-based models the correlation is based on the covariance given in (7)
using the estimated parameters. Figure 12 shows the heatmaps of the difference
between the estimated and empirical correlation matrix for the best fitting
quantile-based model and the skew-t model. For most variables correlation is
estimated accurately. For the best fitting quantile-based model the correlation
between defence and the other variables is less accurate whereas for the skew-t
model, this is mainly the case for HP, but also in lesser extent for defence and
special defence. In an attempt to represent Figure 12 with a single number that
can be used to compare performances of models, one can consider the sum of
squared differences between the estimated and the empirical correlation matrix

6∑
i,j=1

(
Ĉorfitted(i, j)− Coremp(i, j)

)2

.

For the best fitting quantile-based model, this results in a value of 0.1047
whereas for the skew-t model it is 0.4209. This confirms that, overall, the
correlation structure estimated by the quantile-based model deviates less from
the empirical correlation than the estimated correlation structure from the
skew-t model.
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6 Conclusion and discussion

In this work, we study a family of asymmetric multivariate distributions based
on an affine transformation of members of the quantile-based asymmetric fam-
ily of distributions. The proposed family has an advantage over competing dis-
tributions in the form of added flexibility. This flexibility lies in the allowance
of all types of distributions in the affine combination. This is contrary to
other popular asymmetric multivariate distributions which rely on the skew-
ing of a single elliptical multivariate distribution. We also show that under
mild conditions, a maximum likelihood estimator is consistent and asymptot-
ically normally distributed. A simulation study investigates the finite-sample
performance of the MLE.

Asymptotic results for the maximum likelihood estimator for affine com-
binations of univariate random variables are, as far as we are aware, not pub-
lished before. The results presented here, albeit restricted to the quantile-based
asymmetric family of distributions, can readily be extended to incorporate
other families of asymmetric univariate distributions. In doing this, a broad,
general family of distributions is obtained. This is provided that statistical
inference results for the univariate distributions exist. Other skewed distri-
butions, like univariate skew-symmetric distributions can also be included as
components for the linear combination. There is however, a trade-off to be
made. The affine combination has great flexibility, but remains an affine com-
bination. The dependency structure thereby imposed might be too simple to
capture the dependency of the data in its full extent. Linear approximations
generally provide decent results, but if the data is too complex, they might not
suffice. So even though a good fit can be obtained, one has to reflect whether
dependencies are modelled well enough.

It might be worthwhile to consider the QBA-family as margins together
with a copula structure. Copulas provide a particular appealing flexible tool
for constructing multivariate distributions, as they allow to combine, possibly
in a dependent manner, marginals of a lower dimension (such as univariate
ones). Rubio and Steel (2013), for example, use a Gaussian copula to model
the dependence between two random variables. It is important however to
go beyond Gaussian copulas, or more generally elliptical copulas, and general
dimensions. There are ample of areas where such constructions are used. An
example of this is in the construction of graphs, see for example Pircalabelu
et al. (2017). The main challenge in such an approach in the context of asym-
metric multivariate distributions lies again in providing theoretical support for
statistical inference, in a unified manner, irrespectively of the specific lower di-
mensional asymmetric marginals and/or copula used. This is a topic of current
research.
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Appendix: Proofs of Propositions 2, 3 and 4, and
of Theorem 1

Proof of Proposition 2

Suppose that f(x;θ) = f(x;θ∗) and that we know Z up to its parameters
(e.g. Z1 is of a QBA-logistic type etc.). We first prove that µa is identifiable.
By construction, fZj

, j = 1, . . . , d is unimodal with mode 0. Together with (5)
this implies

∀A,A∗ ∈ Rd×d, non-singular : arg max
x∈Rd

f(x;θ) = arg max
x∈Rd

f(x;θ∗) = µa.

Thus, µa = µ∗
a and |det(A)| = |det(A∗)|. Hence µa is identifiable. Without

loss of generality, we can assume that for the remainder of the proof, µa = 0.

The identifiability result we are aiming at is commonly referred to as
uniqueness in the ICA-literature. In Eriksson and Koivunen (2004) necessary
and sufficient conditions are provided for a noiseless ICA model (X = AZ) to
be unique. These are

– There are no Gaussian sources. Or,
– If A has full column rank, there is at most one Gaussian source.

SinceA ∈ Rd×d is non-singular, it has full column rank. If condition (I1 ) holds,
the mixing matrix A is unique, i.e. identifiable up to a possible permutation
and rescaling together with the accompanying permutation and rescaling of Z.
A location difference is not possible as Z does not contain a location parameter.

For, the scale ambiguity note that by (3)

∃j = 1, . . . , d : α∗
j = 1− αj and (A∗)−1

·,j = −(A−1)·,j ⇒ f(x;θ) = f(x;θ∗).

By restricting the sign of a single element of (A−1)·,j as in (I2 ), this problem
can no longer occur. By

(̃IjA)−1 = A−1(̃Ij)
−1 = A−1Ĩj ,

with Ĩj ∈ Rd×d the identity matrix with −1 at (Ĩj)j,j , fixing the signs of the
diagonal elements of A also suffices.

Since each of the Zj ’s lacks a scaling parameter and none of the other
parameters of Zj affects the scaling in a linear way (otherwise it is considered
a scaling parameter), any rescaling of A cannot be compensated by rescaling
the parameters of Z. Hence, A is identifiable up to a permutation. By the
identifiability of each of the Zj , also its parameters are uniquely determined up
to the same possible permutation. Thus, θ = θ∗ up to a possible permutation
of Z and A. Therefore the model is identifiable.
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Proof of Proposition 3

We employ a proof by induction on the dimension of the matrix. For d = 2
this is trivial as A is invertible and thus has a non-zero determinant. Suppose
the statement holds for any invertible (d − 1) × (d − 1)-matrix. Consider the
matrix

A =

[
B C
D E

]
∈ Rd×d,

with B ∈ R
(d−1)×(d−1), C,DT ∈ R

d−1 and E ∈ R. Since A is invertible, it
must hold that

det(A) = det(B)E +

d−1∑
j=1

(−1)d+jCjdet((B
∗)j) ̸= 0, (25)

where (B∗)j =

[
(B)−j,.

D

]
, so the (d − 1) × (d − 1)-matrix where the j-th row

of B is omitted and D is added. Now consider the following two cases.

1. det(B) ̸= 0 and E ̸= 0. By induction, the statement holds for A.
2. {det(B) ̸= 0 and E = 0} or det(B) = 0. In this case, by (25), ∃j ∈

{1, . . . , d − 1} such that det((B∗)j) ̸= 0 and Cj ̸= 0 . By swapping the
j-th row of A with (D, E), the resulting matrix falls into case 1. This
holds because the element replacing E is non-zero and the new matrix
that takes the place of B is invertible as it is a row permutation of (B∗)j ,
thus conserving the non-zero determinant. Hence, the statement holds.

This concludes the proof as the above two cases contain all possible configu-
rations of A.

Proof of Proposition 4

The proof is largely based on similar arguments concerning the consistency
of the maximum likelihood estimator for the univariate quantile-based asym-
metric family of distributions: Theorem 3.3 in Gijbels et al. (2019), which in
term uses Theorem 2.5 of Newey and McFadden (1994). The latter theorem
states that under the following conditions (i) to (iv) the maximum likelihood

estimator is weakly consistent, i.e. θ̂
ML

n
P→ θ0 for n → ∞.

(i) If θ ̸= θ0 then fX(x;θ) ̸= fX(x;θ0).
(ii) The true parameter θ0 ∈ Θ, with Θ a parameter space which is compact.
(iii) The log-likelihood function ℓ (θ;x) is continuous at each θ ∈ Θ.
(iv) It holds that E[ sup

θ∈Θ
∥ℓ (θ;X)∥] < ∞, where ∥.∥ is the Euclidean norm.

Condition (i) is fulfilled by Proposition 2, in which the identifiability of the
parameters is guaranteed by assumption (C1 ). Conditions (ii) and (iii) follow
from respectively Assumption (C2 ) and the continuity of both the natural
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logarithm and fZj . So only condition (iv) remains to be checked. From (5)
and (12), we have that

E [∥ℓ (θ;X)∥] = E

∣∣∣∣∣∣− ln |det(A)|+
d∑

j=1

ln fZj
((X− µa)

T (A−1)·,j ;ηj)

∣∣∣∣∣∣


≤ E

|ln |det(A)||+
d∑

j=1

∣∣fZj
((X− µa)

T (A−1)·,j ;ηj)
∣∣

= |ln |det(A)||+
d∑

j=1

E
[∣∣fZj

((X− µa)
T (A−1)·,j ;ηj)

∣∣]
< ∞,

where boundedness follows from the invertibility of A and Assumption (C3 ),
as proven in Theorem 3.3 of Gijbels et al. (2019). Since the inequality holds
for all θ ∈ ΘR, condition (iv) is satisfied and consistency of the maximum
likelihood estimator holds.

Proof of Theorem 1

The proof is largely based on Theorem 3 in Huber (1967), which handles
asymptotic normality of maximum likelihood estimators for non-differentiable
likelihood functions when consistency has been established.

Since consistency is shown in Proposition 4, only the following four condi-
tions from Huber (1967) need to be fulfilled for the theorem to hold

I) For each fixed θ ∈ Θ, Ψ(x;θ) is Ω-measurable and Ψ(x;θ) is separable.
(See Assumptions A-1 p222 of Huber (1967).)

II) There exists a θ0 ∈ Θ for which λ(θ0) = 0.
III) There are strictly positive numbers a, b, c, r0 such that

i) ∥λ(θ)∥ ≥ a ∥θ − θ0∥ for ∥θ − θ0∥ ≤ r0.
ii) E[u(X;θ, r)] ≤ br for ∥θ − θ0∥+ r ≤ r0 , r ≥ 0.
iii) E[(u(X;θ, r))2] ≤ cr for ∥θ − θ0∥+ r ≤ r0 , r ≥ 0.

IV) The expectation E[∥Ψ(X;θ)∥2] is finite.

These conditions are checked in a similar way as in the proof of Theorem 3.4
in Gijbels et al. (2019), which is already quite general. We start with condition
I). By Lemma 2 Ψ(x;θ) is measurable. That Ψ(x;θ) is separable holds under
the stated assumptions. Indeed, each of the component functions Ψ j(x;θ), for
j = 1, . . . , d2 + 2d, is separable, and this is a finite number of functions. That
each component function is separable follows from its continuity, except on
a set with probability measure zero. Condition II) is met by Proposition 5,
whereas for condition IV) we have by the definition of the Euclidean norm

E
[
∥Ψ(X;θ)∥2

]
= E

[
trace

(
Ψ(X;θ)Ψ(X;θ)T

)]
= trace (I(θ0)) < ∞,



Flexible asymmetric multivariate distributions 35

where the finiteness follows from Proposition 6.

Remains to look into condition III). The key property in this is continuity
of λ(θ) in a neighborhood of θ0, which holds by Lemma 3. The proof can
be completed similarly as in Gijbels et al. (2019). For details, the reader is
referred to that paper.
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