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A B S T R A C T   

Many aspects of our life are related to our mobility patterns and individuals can exhibit strong tendencies to-
wards routine in their daily lives. Intrapersonal day-to-day variability in mobility patterns has been associated 
with mental health outcomes. The study aims were: (a) calculate intrapersonal day-to-day variability in mobility 
metrics for three cities; (b) explore interpersonal variability in mobility metrics by sex, season and city, and (c) 
describe intrapersonal variability in mobility and their association with perceived stress. 

Data came from the Physical Activity through Sustainable Transport Approaches (PASTA) project, 122 eligible 
adults wore location measurement devices over 7-consecutive days, on three occasions during 2015 (Antwerp: 
41, Barcelona: 41, London: 40). Participants completed the Short Form Perceived Stress Scale (PSS-4). Day-to- 
day variability in mobility was explored via six mobility metrics using distance of GPS point from home (me-
ters:m), distance travelled between consecutive GPS points (m) and energy expenditure (metabolic equivalents: 
METs) of each GPS point collected (n = 3,372,919). A Kruskal-Wallis H test determined whether the median 
daily mobility metrics differed by city, sex and season. Variance in correlation quantified day-to-day intraper-
sonal variability in mobility. Levene’s tests or Kruskal-Wallis tests were applied to assess intrapersonal variability 
in mobility and perceived stress. 

There were differences in daily distance travelled, maximum distance from home and METS between in-
dividuals by sex, season and, for proportion of time at home also, by city. Intrapersonal variability across all 
mobility metrics were highly correlated; individuals had daily routines and largely stuck to them. We did not 
observe any association between stress and mobility. 

Individuals are habitual in their daily mobility patterns. This is useful for estimating environmental exposures 
and in fuelling simulation studies.   
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1. Introduction 

Almost half of daily behaviours can be classed as being habitual 
(McCloskey & Johnson, 2021); individual habits and routines may be 
deliberately constructed within specific time-periods where individuals 
can exhibit strong tendencies towards routine in their daily lives (Ersche 
et al., 2017; Ramakrishnan et al., 2021). Habituality of human mobility, 
referred to as day-to-day or intrapersonal variability, has been well 
studied within the transportation literature, including description of 
transportation/travel patterns (Pas & Koppelman, 1986; Zhang et al., 
2021), active travel patterns (Joh et al., 2002; Raux et al., 2016), 
physical activity levels (Aarts et al., 1997; Abel et al., 2019) and to 
evaluate transport interventions (Fan et al., 2020), for example. Less is 
known about the association of day-to-day variability in human mobility 
with mental health. Understanding human mobility, where people go 
and when (Montanari, 2005), is significant for public health to maximise 
the impact of health interventions (Oliver et al., 2015). If people are in 
the same places day-to-day it helps us understand exposure and how to 
target them for intervention. There is a need for future research to un-
derstand the geographies of mobility that take into account the effects of 
people’s mobility on their health and well-being (Kwan & Schwanen, 
2016). 

Urban form, characterised by the density, size, shape and configu-
ration of settlements, can influence human mobility behaviour. In-
dividuals living in large or less compact cities travel greater daily 
distances (Kang et al., 2012) to the extent that travel patterns of resi-
dents can be used to predict the population densities of cities (Lee & 
Holme, 2015). Urban form can also influence people’s energy expendi-
ture. For example, those living in mixed use neighbourhoods are more 
likely to have greater levels of physical activity that may benefit health 
(Oliveira, 2016). Additional factors can influence mobility patterns; for 
example active transportation can exhibit seasonal trends, which is 
higher during summer months compared to winter (Yang et al., 2011). 
There are gender differences in mobility behaviour; females have been 
shown to both travel less and have a lower cycling prevalence than 
males (Shaw et al., 2020). We may expect both intrapersonal variation 
across seasons and interpersonal variation by gender. Further explora-
tion of variability in mobility patterns within individuals and between 
individuals residing in different cities by season and sex is required. 

Aggregated daily distance travelled and energy expenditure mea-
sures provide useful representation of mobility patterns. Home is a 
significant location where adults spend most of their time (Siła-Nowicka 
et al., 2016) and individual travel behaviours are very frequently 
anchored to this location. For example, if an individual makes the same 
journey from home to work every weekday, we expect their daily dis-
tance travelled to be similar. A second key measure is daily energy 
expenditure. The number, distance and mode of trips contribute to an 
individual’s total daily energy expenditure (Chaix et al., 2014). The 
pattern and similarity of daily energy expenditure tells us what kind of 
mobility a person has and how their choices vary from day-to-day. 
Aggregated day-to-day variation in distances travelled has shown to 
be important for measuring mental health outcomes in pilot studies 
(Depp et al., 2019; Raugh et al., 2020) but further investigation for the 
energy expenditure measure is required. That is why it was included as 
an outcome in this study. 

In contrast to group-level measures of mobility, individual-level day- 
to-day variability and between-individual variability in behaviours are 
often described as intrapersonal and interpersonal variability respec-
tively (Dharmowijoyo et al., 2014). Intrapersonal variability describes 
the variability of mobility within an individual over specific time-frames, 
such as day-to-day, and interpersonal variability describes the vari-
ability between individuals across socioeconomic or built environment 
attributes (Zhang et al., 2021). Quantifying day-to-day variability in 
mobility patterns enables it to be explored, compared and associated 
with other characteristics including, for example, health (Barlacchi 
et al., 2017; Yang et al., 2021). 

Studies have examined day-to-day variability in mobility patterns 
and mental health outcomes, referred to as digital phenotyping 
(Jacobson et al., 2019; Kleiman et al., 2018), however these are largely 
limited by selective sample biases or have focused on specific mental 
health conditions (Birk & Samuel, 2020). Studies have shown that 
decreased day-to-day mobility is associated with increasing depressive 
symptoms (Faurholt-Jepsen et al., 2014) and individuals with greater 
day-to-day variability in their behaviours also reported lower levels of 
depression and loneliness (Müller et al., 2020). It has recently been 
proposed that Global Positioning System (GPS) mobility information 
could act as a digital biomarker of negative mental health outcomes 
(Depp et al., 2019), suggesting that when an individual suffers from any 
kind of health condition this will be expressed in digital traces recorded 
in data (Birk & Samuel, 2020). Two studies examined day-to-day vari-
ability of aggregated GPS-derived metrics for adults with schizophrenia, 
both finding that people with schizophrenia travelled shorter daily 
distances compared to healthy comparators (Depp et al., 2019; Raugh 
et al., 2020). A smaller study in the United Kingdom (UK) recorded 
mobility data using a smart-phone based app for 28 adults and observed 
a significant correlation between mobility patterns and depressive mood 
(Canzian & Musolesi, 2015). Larger studies have shown that mobility 
patterns provided good predictions of mental health issues within small 
homogeneous student samples, but these predictions are only slighter 
higher than chance within a nationally representative sample (Müller 
et al., 2021). Suggesting further investigation between different popu-
lation groups is required. 

Few studies have explored both intrapersonal and interpersonal 
variability in mobility patterns for different geographical contexts 
linked to mental health outcomes, and these have focused mainly on 
intrapersonal day-to-day variability (Birk & Samuel, 2020; Depp et al., 
2019; Faurholt-Jepsen et al., 2014; Mueller et al., 2018; Raugh et al., 
2020). The specific objectives of this study were therefore to:  

a. Calculate intrapersonal day-to-day variability in mobility metrics for 
Antwerp, Barcelona and London.  

b. Describe individuals’ patterns of mobility using detailed data, 
collected using GPS data from Antwerp, Barcelona and London.  

c. Explore interpersonal variability in mobility metrics by sex, season 
and city.  

d. Describe day-to-day intrapersonal variability in mobility and their 
association with mental health outcomes. 

2. Material and methods 

2.1. Study setting 

This study obtained data from the FP7 PASTA project (Physical Ac-
tivity through Sustainable Transport Approaches), which has been 
described previously (Dons et al., 2015, 2017). GPS data were collected 
for three cities: Antwerp, Barcelona and London. There is variation in 
the urban form of the cities in terms of size (Antwerp: 204 km2; Barce-
lona: 99 km2; London: 1594 km2) and population density (Antwerp: 
2567 per km2; Barcelona: 37027 per km2; London: 5562 per km2) (Eu-
ropean Commission, 2020). The proportion of land cover within each 
city varied for green urban areas (Antwerp: 5%; Barcelona: 6%; London: 
10%); industrial, public or commercial (Antwerp: 8%; Barcelona: 19%; 
London: 11%); and railways or fast transit roads (Antwerp: 8%; Barce-
lona: 2%; London: 1%) (Copernicus, 2018). There is variation in the age 
dependency ratio (population aged 0–19 and 65 and more to population 
aged 20–64) between cities (Antwerp: 69; Barcelona: 62; London: 57), 
further city characteristics are provided in Supplementary Table 1. 

The three cities were chosen due to diversity in built environments, 
travel habits of their residents and for pragmatic reasons of the leading 
research institutions responsible for administering and running the 
surveys being located in these cities, further detail is provided in the 
study protocol paper (Gerike et al., 2016). 
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2.2. Dataset 

From the PASTA sample, 122 eligible and willing respondents were 
selected in three cities to wear GPS (I-GOTU GT-600) and SenseWear 
(model MF-SW, BodyMedia, Pittsburgh, PA) devices for location and 
physical activity measurement over 7 consecutive days, on three occa-
sions during 2015 (Antwerp: 41 participants, Barcelona: 41 participants, 
London: 40 participants) to represent 3 seasons: winter, summer and 
mid-season (autumn or spring). All real-time sensor data were aggre-
gated to a 1 min time resolution (Dons et al., 2017). The GPS data were 
run through the Physical Activity Location Measurement System 
(PALMS) algorithm, a web-accessible system enabling the development 
of travel behaviour and physical activity variables from GPS device data 
(Kang et al., 2018), for cleaning and detecting locations (Bekö et al., 
2015; Tandon et al., 2013), described in more detail by OrjuelaMendoza 
(2018). The SenseWear (software version 8.0) armband is a multi-sensor 
body monitor that measures heat flux, galvanic skin response, skin 
temperature and 3-axis accelerometry. Age, sex, body weight and height 
of the participants are provided manually to the SenseWear professional 
software (version 8.0). 

Whilst the PASTA participants are skewed towards higher socio- 
economic positions (Laeremans et al., 2017) and there are 40 partici-
pants per city, the international nature of the data (giving variety in 
urban form and infrastructure) offer great potential for exploring 
intrapersonal and interpersonal variability in mobility. Additional 
strengths were: one study design applied across all sites, a large number 
of GPS locations recorded (n = 3,372,919), length of wear-time achieved 
and accompanying extensive individual-level data capturing partici-
pants’ characteristics (such as sex, age, and income). 

There was an even distribution of GPS data collection by city (Ant-
werp: 1,089,596 (32% of total); Barcelona: 1,151,244 (34%); London: 
1,132,079 (34%)), sex (Male: 1,476,202 (56%); Female: 1,896,717 
(44%)) and season (Winter: 1,074,907 (29.6%); Spring: 731,182 
(20.1%); Summer: 934,247 (25.7%); Autumn: 896,061 (24.6%)). Fig. 1 
presents the geographical distribution and density of GPS points by city. 

2.3. Mobility metrics 

Day-to-day variability was explored for six mobility metrics: radius 
of gyration (ROG); hourly displacement; percentage of time at home; 
time outside the home neighbourhood; maximum distance from home; 
and energy expenditure. The mobility metrics were selected as they are 
commonly applied to calculate unique elements of human mobility 
(Heiler et al., 2020; Long & Ren, 2022; Müller et al., 2021; Zhao et al., 
2019) and are described in more detail within Fig. 2, including a visual 
explanation. A 50 m buffer around the home location was used to define 
whether a GPS point was at the home location to account for the home 
footprint and GPS scatter (Crist et al., 2021). A 800 m buffer surrounding 
the home was used to define the home neighbourhood based on a 
10-min walk from home, commonly applied to represent a 20-min 
neighbourhood (Olsen, Nicholls, et al., 2022). 

Three key mobility measures were calculated to create the mobility 
metrics: 

Straight line distance from home: The straight-line distance from all 
GPS point locations (longitude and latitude) to each individuals’ home 
location in meters (m) was measured using the geosphere package in R 
version 3.5.1 (Hijmans et al., 2017). Home locations were provided by 
participants and geocoded. 

Displacement between locations: The straight-line distances between 
consecutive GPS point locations were measured (m) and the total dis-
tance travelled summarised per hour and daily for each individual. 

Energy expenditure (Metabolic equivalent of task (METs)): The Sense-
Wear calculates METs (the ratio of the energy cost during a specific 
activity to the energy cost at rest) on a 1-min basis using proprietary 
algorithms based on pattern recognition and these were temporally 
linked to each GPS point (Laeremans et al., 2017). 

2.3.1. Mental health outcome (perceived stress scale (PSS-4)) 
The mental health outcome used was the four-item Short Form 

Perceived Stress Scale (PSS-4). PSS-4 score was collected once for each 
user from an online questionnaire administered during the final mea-
surement week (Avila-Palencia et al., 2018). The PSS-4 is a global 
measure of stress that is simple to use and has been validated in a variety 
of settings and in multiple languages (Warttig et al., 2013). The PSS-4 
has also been shown to be a useful instrument for assessing stress 
perception levels in different European countries (Vallejo et al., 2018). 
Scores can range from 0 to 16, with higher scores indicating higher 
perceived stress. 

2.4. Statistical analysis 

2.4.1. Summary statistics of mobility variables 
We summarised and described the six mobility variables (ROG, dis-

tance travelled (cumulative between GPS points), percentage time at 
home, percentage time outside the home neighbourhood, maximum 
distance from home and METs) daily for individuals by age, sex, season 
and city. Due to nonnormal distribution of daily values, medians values 
were used and meteorological season (Summer, Autumn, Winter and 
Spring) was classed from the date GPS information was recorded. A 
Kruskal-Wallis H test was conducted to determine if the mobility out-
comes differed by city, sex and season. 

2.4.2. Intrapersonal and interpersonal day-to-day variability in mobility 
Fig. 2 provides a visual description outlining how daily outcome 

measures were computed for six mobility metrics. We provide additional 
detail here of how we computed the ROG and measures between hours 

Fig. 1. Geographical distribution and density of GPS points by city.  

J.R. Olsen et al.                                                                                                                                                                                                                                 



SSM - Population Health 19 (2022) 101172

4

across days (energy expenditure and hourly displacement), the ROG 
here is given by: 

̅̅̅̅̅̅̅̅̅̅̅∑
d2

n

√

where d is maximum distance from home each hour and n is the number 
of maximum distances recorded per day (24 h were not always 
recorded). 

For energy expenditure and displacement within each hour (hourly 
displacement), first the level of predictability across each hour between 

Fig. 2. Description and visual explanation of mobility metrics.  
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days was calculated. Hour by hour mean values for METs and 
displacement were created for each individual, for each day. We then 
computed the correlation between the values for a specific hour, across 
days. For example, the correlation was calculated between MET values 
for every 9am–10 am h recorded for that individual, in that season. 
These coefficients captured, at an individual-level, the between-day 
variability in METS and displacement for each hour. Matrices were 
then produced for each individual to assess hour-by-hour variation in 
correlations across all days of measurement. 

The similarity in behaviour based on proportions of time spent at 
home/outside and correlations in energy expenditure/displacement 
within an hour are described by variances, as given by: 
∑

(x − x)2

n − 1  

where n is the number of days and x depends on the metric and can be 
correlation in average METS per hour between each day; correlation in 
distance travelled per hour between each day; proportion of time spent 
in the “at home” location; and proportion of time spent outside the home 
neighbourhood. 

For all variance-based metrics, a small value indicated little day-to- 
day difference between the mobility patterns. Variance was calculated 
as an overall weekly value and for weekdays (Monday to Friday) only to 
allow for the fact that many people work weekdays and may follow a 
specific routine during this period (Mehrotra & Musolesi, 2017). Due to 
limited data collection (data for one weekend period collected) we could 
not compare differences between weekends separately. The variances 
were determined for each season separately, as well as combined. ROG 
and maximum distance from home are described by medians, as there 
are no upper bounds for these metrics and can take any positive value 
and zero, with all individuals on different scales. An outlier or where an 
individual simply travelled double the distance of another can skew the 
variance to be large when in fact the behavioural patterns are not 
irregular. Variance is appropriate within an individual but cannot be 
computed or summarised between individuals and therefore was not 
summarised in Table 3 or Fig. 3. 

Intrapersonal variation in mobility was compared by sex, season and 

city. The day-to-day variance across all individuals for hourly 
displacement, proportion of time at home, time outside the home 
neighbourhood and energy expenditure (mets) are summarised by box 
plots presenting the median and interquartile range by season, sex and 
city. 

2.4.3. Intrapersonal day-to-day variability in mobility and perceived stress 
The PSS-4 score does not have a clinically determined cut-off point to 

denote mental ill-health. In the absence of cut off points, groups were 
created based on tertiles of the available scores. Data were available for 
94 of the 122 individuals, and tertiles categorised the scores as follows: 
low stress (PSS-4: 0–3), middle (PSS-4: 4 to 5) and high stress (PSS-4: 6 
and over). 

The intrapersonal variances in mobility were then described for each 
PSS-4 tertile. As the PSS-4 scores were collected at one time point 
(survey end), the overall intrapersonal variation score was used. 

Levene’s test (Levene, 1960) is one of several that can be used to 
ensure that the equality in group variances assumption is met for 
ANOVA, before comparing groups means. Given this, it was considered 
that it could be used to test whether the variances between the PSS4 
groups were indeed different. However, Levene’s test requires that the 
observations themselves are independent, which was not the case for our 
data, so for the variances of the correlations and proportions of time, the 
generalised Levene’s Scale test was used (Soave & Sun, 2017) which 
allows for correlation between the observations, with participant spec-
ified as the grouping element. The Kruskal-Wallis test (Kruskal & Wallis, 
1952) is suitable for comparing medians between groups, and thus was 
used to compare median ROG and maximum distance travelled from 
home between the PSS4 groups. 

Analysis was run in Stata version 16.1 (StataCorp., 2019), and R 
version 4.0.5, using packages lubridate, data.table, gJLS and Hmisc. 
(Dowle & Srinivasan, 2021; Grolemund & Wickham, 2011; Jr, 2021; R 
Core Team, 2021). 

Fig. 3. Day-to-day variance across all individuals in daily correlation coefficient by season, sex and city: hourly displacement, proportion of time at home, time 
outside the home neighbourhood and energy expenditure (mets), overall (includes both weekdays and weekends). 

J.R. Olsen et al.                                                                                                                                                                                                                                 



SSM - Population Health 19 (2022) 101172

6

3. Results 

3.1. Participant characteristics and mobility patterns 

A total of 122 individuals wore GPS devices for 7 consecutive days 
over 3 periods in one calendar year (2015–2016). The participants were 
from Antwerp (n = 41), Barcelona (n = 41) and London (n = 40). 54.9% 
(n = 67) of participants were male, the median age was 33 years, and 
93.4% (n = 114) reported they were in good, very good or excellent 
health (Table 1). 72% (n = 88) of participants were in full-time 
employment, 16% (n = 20) students and half (53%, n = 65) had no 
children aged 17 years or under living at home. Further information of 
participants by city is provided in Table 1. 

The median daily distance travelled of all GPS points for all users was 
12392.5 m (Table 2). Kruskal-Wallis H tests showed that there were 
differences in ROG, daily distance travelled, maximum distance from 
home and METS between individuals by sex, season and, for proportion 
of time at home also, by city. For example, among individuals living in 
London the median daily distance travelled was 14106.4 m, whereas it 
was 12956.8 m in Antwerp, and 9976.8 m in Barcelona. Daily distance 
travelled for males (14835.8 m) were greater than for females (10679.3 
m). The median daily mean METS across cities was 1.57, the equivalent 
of the lower level of light physical activity (Jetté et al., 1990), and there 
was variation by season of measurement, with the highest energy 
expenditure occurring in spring (1.62) and lowest in winter and autumn 
(1.55). 

3.2. Day-to-day variation in mobility measures 

Table 3 summarises the variance in intrapersonal day-to-day corre-
lation coefficients for all participants, overall and for weekdays only, for 
four mobility metrics: hourly displacement, proportion of time at home, 
time outside the home neighbourhood and energy expenditure (METS). 
A variance of 0 indicated no variability identified across the daily cor-
relation coefficients; a person with a variance of 0.2 has twice the 
amount of variation in behaviour as someone with variance of 0.1. 
Overall, variance in day-to-day hourly displacement (0.076) was 1.7 
times higher than variance in METs (0.042) (i.e., day-to-day hourly 
displacement was slightly more variable than energy expenditure: 
Table 3). However, all figures are relatively close to zero, suggesting that 
the sample followed similar daily patterns of mobility, even in different 
weeks (seasons) of the study. 

3.3. Interpersonal variability in mobility measures by sex, season and city 

Fig. 3 presents the variance in intrapersonal day-to-day correlation 
coefficients by sex, season and city (weekday data presented in Sup-
plementary Fig. 1). There was some variation in the four mobility 
measures, however, examination of the interquartile ranges does not 
indicate substantial differences between sex, season and city. 

For example, there was a 17% difference in the variance figures 
between men and women; but during weekdays males showed 22% 
more variation in METS correlation coefficients (0.025) than females 
(0.020) (Full table: Supplementary Table 2 and 3). 

By season, the variance in METS remained low but there were some 
differences in this, with a 40% higher median variability in activity 
during the Spring (0.035) compared to Autumn (0.025), and 45% 
greater variability in hourly displacement overall during the Winter 
season (0.087) compared to Autumn (0.006). 

Similarly to sex and season, there was a low variance in METS be-
tween cities; a 6% difference in day-to-day variability of activity be-
tween Barcelona (0.216) and London (0.204). When examining 
weekdays only, there was a higher variation between proportion of time 
at home (81%) and METS (36%), suggesting increased variability in day- 
to-day mobility patterns during weekdays between cities. 

3.4. Intrapersonal day-to-day variability in mobility and perceived stress 
(PSS-4) 

The results show there was no association between day-to-day 
variability in mobility, using six mobility metrics, and stress scores 
(Table 4). These results were similar when assessing variability for all 
days and Monday to Friday only. 

4. Discussion 

4.1. Key findings 

The first two aims of this study were to calculate describe in-
dividuals’ patterns of mobility using detailed GPS data, collected from 
Antwerp, Barcelona and London. The third aim was to explore inter-
personal variability in aggregated mobility metrics by sex, season and 
city. The final aim was to describe day-to-day intrapersonal variability 
in mobility and their association with perceived stress. 

The median daily distance travelled was 12392.5 m (m), and the 
median METS expended was 1.57. There was significant variation in 
daily distance travelled, ROG, maximum distance from home and METS 
between individuals by sex, season and, for proportion of time at home 
also, by city. Males travelled further distances daily, had a larger 
maximum distance from home and greater energy expenditure than 
females, supporting previous research highlighting gender differences in 
urban mobility (Shaw et al., 2020). Daily energy expenditure was 
greatest during the Spring period compared to Winter/Autumn; which 

Table 1 
Sample description.   

Antwerp Barcelona London Total 

n (%) n (%) n (%) n (%) 

Sex 
Male 18 (43.9) 25 (61.0) 24 

(60.0) 
67 (54.9) 

Female 23 (56.1) 16 (39.0) 16 
(40.0) 

55 (45.1) 

Age (years) 
Median 36 33 31 33 
Range 19 to 59 19 to 59 18 to 60 18 to 60 
Self-rated health 
Excellent/V good/good (%) 39 (95.1) 35 (85.4) 40 (100) 114 

(93.4) 
Number of children living at home 
0 aged less than 17 years of 

age 
17 (41.5) 20 (48.8) 28 

(70.0) 
65 (53.3) 

1 or more aged less than 6 
years of age 

11 (26.8) 12 (29.3) 5 (12.5) 28 (23.0) 

1 or more aged 6–17 years of 
age 

13 (31.7) 9 (22.0) 7 (17.5) 29 (23.8) 

Employment status 
Full-time employment 33 

(80.49) 
32 
(78.05) 

23 
(57.5) 

88 
(72.13) 

Part-time employment 4 (9.76) 2 (4.88) 3 (7.5) 9 (7.38) 
Student 4 (9.76) 5 (12.2) 11 

(27.5) 
20 
(16.39) 

Unemployed/Retired/ 
Parental leave 

0 (0) 2 (4.88) 3 (7.5) 5 (4.1) 

Household income (after tax (£0,000))* 
Less than 24 7 (18.4) 8 (25.8) 4 (11.5) 19 (18.3) 
25 to 49 19 (50.0) 14 (45.2) 8 (22.9) 41 (39.4) 
More than 50 12 (31.6) 9 (29) 22 

(62.9) 
43 (41.4) 

Prefer not to answer 0 (0) 0 (0) 1 (2.9) 1 (1.0) 
Total 41 (100) 41 (100) 40 (100) 122 

(100) 

Note: *Household income groups <10 and 10 to 24 combined due to small 
numbers in these groups. Missing household income data for Antwerp (3), 
Barcelona (10) and London (5). 
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was expected as prevalence of active transport is lower during this 
period, which contributes to daily METs (Yang et al., 2011). Individuals 
living in London travelled further distances daily than those living in 
Antwerp and Barcelona, which may be due to the variation in city size 
and links to other research that suggests urban form is associated with 
daily mobility patterns (Kang et al., 2012). 

Within individuals, we found day-to-day hourly displacement, 

proportion of time at home, time outside the home neighbourhood and 
METS to be moderately to highly correlated between consecutive days, 
particularly on weekdays. This suggests that individuals’ day-to-day 
mobility tends to be similar. That is useful information for those esti-
mating environmental exposures, because it suggests that individuals 
are creatures of habit. The growth in simulation studies, for example, 
offers the potential for exploring both our understanding of, and 

Table 2 
Individual daily mobility summaries by season, city and sex.  

Daily summaries (number of 
individuals; number of daily 
observations) 

Radius of gyration 
(ROG) 

Distance travelled (m) Proportion of time 
at home (%) 

Time outside the 
home 
neighbourhood 
(%) 

Maximum distance 
from home (m) 

Energy expenditure 
(METs) 

Median Range Median Range Median Range Median Range Median Range Median Range 

Total 
All (n = 122; obs = 2279) 3482.3 2.0 to 

222096.2 
12392.5 0 to 

2071840 
30.6 0 to 

100 
40.0 0 to 

100 
6535.4 2 to 

260632 
1.57 0.88 to 

5.89 
City 
Antwerp (n = 41; obs = 732) 3484.2 2.0 to 

70552.3 
12956.8 0 to 

799132 
33.9 0 to 

100 
38.8 0 to 

100 
6489.2 2 to 

133649 
1.63 0.88 to 

3.79 
Barcelona (n = 41; obs = 764) 2609.8 7.2 to 

167967.1 
9976.8 0 to 

639167 
28.4 0 to 

100 
39.0 0 to 

100 
4748.9 7 to 

181975 
1.51 0.93 to 

4.75 
London (n = 40; obs 783) 4726.6 7.2 to 

222096.2 
14106.4 0 to 

2071840 
26.2 0 to 

100 
41.4 0 to 

100 
8482.5 7 to 

260632 
1.60 0.92 to 

5.89 
Kruskal-Wallis H test χ2(2) = 16.350, p =

0.0003 
χ2(2) = 16.988, p =
0.0002 

χ2(2) = 17.548, p 
= 0.0002 

χ2(2) = 3.796, p 
= 0.1499 

χ2(2) = 18.843, p =
0.0001 

χ2(2) = 66.279, p 
= 0.0001 

Sex 
Male (n = 67; obs = 985) 4718.3 7.2 to 

167967.1 
14835.8 0 to 

1614717 
28.9 0 to 

100 
40.1 0 to 

100 
8541.6 7 to 

181975 
1.69 0.93 to 

5.89 
Female (n = 55; obs = 1294) 2674.3 2.0 to 

222096.2 
10679.3 0 to 

2071840 
31.1 0 to 

100 
39.4 0 to 

100 
5173.8 2 to 

260632 
1.50 0.88 to 

4.17 
Kruskal-Wallis H test χ2(1) = 22.088, p =

0.0001 
χ2(1) = 22.088, p =
0.0001 

χ2(1) = 0.136, p 
= 0.7123 

χ2(1) = 1.344, p 
= 0.2464 

χ2(1) = 29.611, p =
0.0001 

χ2(1) = 197.387, p 
= 0.0001 

Season 
Winter (obs = 724) 3358.3 15.2 to 

222096.2 
11310.1 0 to 

344333.9 
28.3 0 to 

100 
40.1 0 to 

100 
6359.6 15 to 

260632 
1.55 0.88 to 

4.17 
Spring (obs = 466) 3512.3 2.0 to 

109703.8 
11652.8 0 to 

407592.1 
28.6 0 to 

100 
41.8 0 to 

100 
6060.3 2 to 

129271 
1.62 0.93 to 

4.75 
Summer (obs = 593) 3385.9 7.2 to 

111248.3 
11140.4 0 to 

222840.4 
35.4 0 to 

100 
38.1 0 to 

100 
6575.4 7 to 

137575 
1.58 0.97 to 

5.89 
Autumn (obs = 496) 3917.8 15.8 to 

167967.1 
15759.2 0 to 

2071840 
27.9 0 to 

100 
40.7 0 to 

100 
7730.5 15 to 

208033 
1.55 0.92 to 

3.79 
Kruskal-Wallis H test χ2(3) = 10.590, p =

0.0142 
χ2(3) = 38.307, p =
0.0001 

χ2(3) = 7.424, p 
= 0.0595 

χ2(3) = 6.549, p 
= 0.866 

χ2(3) = 11.812, p =
0.0081 

χ2(3) = 18.459, p 
= 0.0004  

Table 3 
Day-to-day variance across all individuals in daily correlation coefficient: day-to-day hourly displacement (m), proportion of time at home, time outside the home 
neighbourhood and energy expenditure (mets), overall and weekdays only.  

Measure Hourly displacement Proportion of time at home (%) Time outside the home neighbourhood (%) Energy Expenditure (METs) 

Median Range Median Range Median Range Median Range 

All 0.076 0.03 to 0.26 0.05 0 to 0.146 0.052 0 to 0.186 0.042 0.01 to 0.28 
Weekday only 0.067 0.025 to 0.206 0.036 0 to 0.192 0.042 0 to .205 0.021 0.00 to 0.39 

Note: 0 variance indicates no variability identified across individuals’ daily correlation coefficients, the closer to zero, the more regular the daily mobility. Variances 
are absolute to compare, a person with a variance of 0.2 has twice the amount of variability in behaviour as someone with variance of 0.1. Variance of ROG and 
maximum distance from home are not bound between absolute 0 and 1 and can take any positive values, therefore we cannot determine whether increased variance is 
due to differences in different distances travelled or differences in habituality making the measure unsuitable to compare between individuals and is therefore not 
presented here. 

Table 4 
Day-to-day variability in mobility behaviours (as measured using 6 mobility metrics) and mental health (PSS-4) (n = 94).  

PSS-4 and mobility measures ROC* Hourly 
displacement^ 

Proportion of time at 
home^ 

Time outside the home 
neighbourhood^ 

Maximum distance from 
home* 

Energy 
Expenditure^ 

x2 p F p F p F p x2 p F p 

Overall (7 days) 1.08 0.58 2.35 0.10 0.97 0.38 1.08 0.34 1.19 0.55 1.19 0.30 
Weekday (Monday to Friday) 0.29 0.86 1.89 0.15 0.48 0.62 1.01 0.37 0.56 0.76 1.97 0.14 

*Kruskal-Wallis chi-squared; ^ generalised Levene’s. 
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potential interventions in, complex dynamic systems in public health. 
Approaches such as Agent Based Modelling (ABMs) require behavioural 
rules for their subjects and a sense of habituality. Mobility data have 
been used to validate ABMs testing congestion easing policies on public 
transport in North America (He et al., 2021). 

Finally, we did not observe any association between stress and 
mobility measured using six commonly applied metrics. 

4.2. Comparison with other literature 

We found that participants’ mobility was highly correlated from day 
to day, particularly during the working week, and this largely echoes the 
modest existing literature. Research in London found that public trans-
port use for individuals was similarly patterned in the short term (Zhao 
et al., 2018). The authors used smartcard information from 3210 users 
with at least 50 weeks of data. They were also able to detect changes in 
individual travel patterns and found these were largely attributed to life 
events, such as moving house. An Australian study, also focused on 
public transport, found a correlation between spatial and temporal 
similarity matrices calculated using Pearson coefficient (Faroqi et al., 
2017), a similar method to ours. They observed that passengers with 
comparable trip lengths were most likely to have similarity in travel 
patterns. Similarly, observations of North American vehicle trip patterns 
found that intrapersonal variability in daily activity sequences was 
narrow compared to interpersonal variability (Shou & Di, 2018). 

Other measures that cannot be computed using mobility data may be 
more useful to highlight day-to-day variability in behaviours. For 
example, day-to-day variation for a number of social interaction mea-
sures and a greater number of quality daily social contacts have been 
associated with lower subjective stress (Stoffel et al., 2021). Suggesting 
further research and studies designs are required that combine mobility 
metrics and social interaction measures. 

We did observe some differences between cities, albeit in a sample 
that was not designed to provide city-to-city comparisons. Travel be-
haviours have been shown to be influenced by built environment 
characteristics and urban design, decreased for example by compact, 
public transport-oriented and pedestrian-friendly environments (Liu 
et al., 2021). Exploring the relationship between urban form, built 
environment characteristics and a range of mobility indicators is 
important. Although we included three major metropolitan cities in our 
sample, they do have different sizes, urban designs and climates. Size, in 
particular, might to affect distances travelled from home. Recent GPS 
studies have shown that the built environment can influence physical 
activity positively and negatively (Boakye et al., 2021) and there is so-
cioeconomic variation in access to green spaces around the home that 
are associated with its use (Olsen, Caryl, et al., 2022). Future research 
should also considering apply weighting to mobility measures as dis-
tances travelled are influence by age (Mizen et al., 2020) and travel 
mode (Hosford et al., 2022). 

Similar to studies of heterogeneous populations, we found no asso-
ciation between mobility and stress (Müller et al., 2021), although our 
ability to assess this was constrained by a small sample size. Müller et al. 
(2021) found that mobility patterns provide good prediction of mental 
health outcomes within homogeneous populations whereas the pre-
dictions were only marginally more accurate than chance for nationally 
representative cohorts (Müller et al., 2021). A systematic review found 
consistent evidence for association between features of mobility such as 
home stay, location variance and distance moved, and depressive mood 
symptoms (Rohani et al., 2018). The review by Rohani et al. (2018) 
highlighted mobility patterns and mental health outcomes as a relatively 
new field of investigation but one with evidence currently limited by 
methodological issues in data collation, mood assessment and statistical 
methods. 

We found that our sample followed similar daily patterns of mobility, 
even in different weeks (seasons) of the study. Specific personality traits 
might explain more or less habitual behaviours, for example compulsive 

personalities are associated with an increase in aspects of habitual ten-
dency and those seeking or avoiding situations of novelty or excitement 
may be more or less likely apply routines to their daily lives (Ersche 
et al., 2017, 2019). An individual’s mobility and their mental health is 
complex and may provide both positive and negative feedback loops, 
having depressive symptoms can affect the ability to travel and/or travel 
could induce stress that aggravates mental health (Mackett, 2021). 
Travel requires a number of skills that having a mental health condition 
can affect, such as confidence to take decisions, social interaction, 
concentration, and information processing, that may subsequently affect 
the ability to travel (Mackett, 2017). The direction of causation remains 
uncertain whether active travel makes people happy or happier people 
are more likely to actively travel (Kroesen & De Vos, 2020). Real-time 
mobility data from wearable or smart phone devices offer great poten-
tial for predicting mental health outcomes or changes in these, future 
research should ensure a large and representative sample to overcome 
many of these methodological shortcomings, including their effective-
ness for these populations for modelling mental health outcomes. 

4.3. Strengths and limitations 

Our study had several strengths. It provided an international 
perspective on intra- and inter-personal variation in mobility stemmed 
from three cities with varying urban design policies and transport cul-
tures. The use of GPS meant robust and consistent measurements of 
mobility over longer time periods than might be achieved by travel di-
aries. We were also able to draw on different mobility metrics and 
explore differences by sex and season. We applied six metrics commonly 
used within the literature for describing mobility patterns, our data 
holding many advantages to those using mobility data from telephone 
network masts by accurately detecting the home location and allowing 
linkage to sociodemographic information. This allowed us to calculate 
the distance between each GPS points and a home location, as well as 
distances between consecutive GPS points. Many existing studies have 
been based on one location, and/or been focused on one mode or sector 
of transportation. Whilst this was a small study, one design applied 
across all sites, the length of wear-time achieved and the accompanying 
extensive individual-level data capturing participants’ characteristics 
(such as sex, age, and income) were all assets which enabled novel an-
alyses and insights. 

However, our study also had several limitations. We did not formally 
include measures of the urban form and design, although this may in-
fluence travel behaviours it is possibly less likely to impact the vari-
ability in daily patterns of behaviour. Future studies should explore 
various urban designs and how it may influence behavioural patterns. 
Our study was not designed to provide city-to-city comparisons and had 
a limited sample in each location, meaning our findings are useful but 
not definitive given the non-random/representative nature of our sam-
ple. Our sample was biased towards both a high income and educated 
population, both of these factors have been found to affect travel be-
haviours (Chudyk et al., 2015) and future research should include a 
more representative sample to explore inequalities in urban mobility. 
The small and skewed sample did not allow us to explore socioeconomic 
inequalities in our main outcomes or to fully explore the relationship 
with mental health outcomes. Due to the invasive nature of inviting 
participants to complete multiple questionnaires and wear GPS devises, 
studies of this design often struggle to recruit representative samples. 
Future studies could explore extracting mobility data from devices in a 
non-invasive nature, such as mobile phone traces (Calabrese et al., 
2013), to improve sample representation biases. 

5. Conclusions 

Using international, objectively measured data we were able to 
describe and explore individuals’ patterns of mobility, assessing 
between-group differences and intrapersonal day-to-day variance in six 
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mobility metrics. We found that intrapersonal mobility was highly 
similar day-to-day, although there was variation between individuals by 
sex, season and city. Our results suggest that individuals are habitual in 
their daily mobility patterns and provides important data for those 
estimating environmental exposures. We did not observe any association 
between stress and mobility, measured using six commonly applied 
mobility metrics. 

Funding statement 

JO, RM, NN and FC are employed by the MRC/CSO Social and Public 
Health Sciences Unit, University of Glasgow, and supported by the 
Medical Research Council [grant number MC_UU_00022/4] and Chief 
Scientist Office [grant number SPHSU19]. FC is supported by an MRC 
Skills Development Fellowship [MR/T027789/1]. The authors declare 
that there are no conflicts of interest. ED was supported by a post-
doctoral scholarship from FWO – Research Foundation Flanders. ML 
held a joint PASTA/VITO PhD scholarship. 

This work was supported by the European project Physical Activity 
through Sustainable Transportation Approaches (PASTA). PASTA 
(http://www.pastaproject.eu/) was a four-year project funded by the 
European Union’s Seventh Framework Program (EU FP7) under Euro-
pean Commission - Grant Agreement No. 602624. 

Ethics approval 

Ethics approval was obtained for all aspects of the study by the local 
ethics committees in the countries where the work was conducted, and 
sent to the European Commission before the start of the survey/study. 

The following committees approved the study:  

• Ethics board of the University Hospital of Antwerp (Belgium) on 
October 20, 2014  

• Clinical Research Ethics Committee of the Municipal Health Care 
(Barcelona – Spain) on October 1, 2014  

• Imperial College Research Ethics Committee (London – UK) on 
November 20, 2014  

• Regional ethical board, situated at the University of Lund (Oerebro – 
Sweden) on April 9, 2015  

• RSM - Roma Servizi per la Mobilità and the Air quality Commission 
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