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Abstract: Recent technical and jurisdictional advances, together with the availability of low-cost platforms,
have facilitated the implementation of unmanned aerial vehicles (UAVs) in individual tree detection (ITD)
applications. UAV-based photogrammetry or structure from motion is an example of such a low-cost
technique, but requires detailed pre-flight planning in order to generate the desired 3D-products needed
for ITD. In this study, we aimed to find the most optimal flight parameters (flight altitude and image
overlap) and processing options (smoothing window size) for the detection of taxus trees in Belgium. Next,
we tested the transferability of the developed marker-controlled segmentation algorithm by applying it
to the delineation of olive trees in an orchard in Greece. We found that the processing parameters had
a larger effect on the accuracy and precision of ITD than the flight parameters. In particular, a smoothing
window of 3 × 3 pixels performed best (F-scores of 0.99) compared to no smoothing (F-scores between
0.88 and 0.90) or a window size of 5 (F-scores between 0.90 and 0.94). Furthermore, the results show that
model transferability can still be a bottleneck as it does not capture management induced characteristics
such as the typical crown shape of olive trees (F-scores between 0.55 and 0.61).

Keywords: SfM; tree segmentation; drone; UAS; mission planning; 3D-point clouds

1. Introduction

Unmanned aerial vehicles (UAVs), or drones, are becoming an increasingly important
research topic in remote sensing applications [1]. Recent technical and jurisdictional advances
have facilitated the implementation of UAVs in various research domains [2,3] including forest
inventory and individual tree detection (ITD) [4–6]. Similarly, recent advancements in capacities
have brought them to the forefront of agricultural innovation, becoming a core part of the
increasingly data-driven agriculture [7]. Photogrammetry applications based on structure
from motion have been presented as low-cost, promising alternatives to active remote sensing
techniques such as Light Detection and Ranging (LiDAR) [8]. UAV photogrammetry relies on
the acquisition of a large number of images with a specified overlap to generate 3D-products
such as point clouds, digital terrain models (DTMs), digital surface models (DSMs), and canopy
height models (CHMs). As stated by [9], this approach requires detailed pre-flight planning
as varying definitions of flight parameters including flight altitude and image overlap, which
might result in different 3D-outputs and computation times. Flight altitude is related to the
spatial resolution of the collected imagery, while image overlap has an effect on the quality
and density of the resulting point cloud [10,11]. Flying direction, flying speed, and camera
pitch have also been mentioned as important flight parameters [12,13]. In addition to these
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flight parameters, the selection of the Structure from Motion software, the ITD algorithm and
processing parameterizations such as point cloud thinning and CHM smoothing intensity can
also impact the quality of the resulting inventories [13–16].

Nowadays, a host of novel and potentially low-cost observational platforms are rapidly
maturing and are becoming viable alternatives to costlier solutions that are mainly used for
research or large-scale applications. However, these tools need to be tested and evaluated in terms
of performance in diverse field conditions, along with the full chain of interconnected systems to
pave the way for the development of tailored downstream services aimed at farmers, cooperatives,
and decision makers. In this study, we tested an ITD approach on two plantations: a taxus (Taxus
baccata L.) tree nursery in Belgium, and an olive (Olea europaea L.) orchard in Greece. In the Belgian
study area, the objective was to find the most optimal flight parameter settings (i.e., flight altitude
and image overlap) for the ITD of taxus trees. The Greek study area was included with the aim
to test model transferability by applying it to a different tree species. For both sites, the effect of
different smoothing window sizes on the resulting ITD performance was evaluated.

2. Materials and Methods
2.1. Study Sites

The study sites include a nursery of taxus (Taxus baccata L.) trees in Bilzen, Belgium and an
olive (Olea europaea L.) orchard in Moudania, Greece (Figure 1). In the taxus plantation, an area
of 0.40 ha with 237 trees was selected, while the olive orchard consisted of 158 trees on an area
of 0.60 ha.
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Figure 1. The location of the two different sites in Bilzen, Belgium and Moudania, Greece. 

Table 1. The varying flight parameters implemented at the Bilzen site in Belgium. 

Mission ID Flight Altitude 
(m AGL) 

Image Overlap 
(%) Total Flight Time Total Number of 

Images (Size) 
B1 25 75 7 min 9 s 155 (1.22 GB) 
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B6 40 85 9 min 11 s 202 (1.59 GB) 

Figure 1. The location of the two different sites in Bilzen, Belgium and Moudania, Greece.
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2.2. UAV Data Collection

In the Bilzen site, UAV missions were performed in November 2021 using a multirotor
DJI Phantom 4 RTK with RGB (FC6310R_8.8_5472x3648) sensor. During the entire duration
of the flight, an RTK (Real-Time Kinematic) connection was established with the reference
station network of the Flemish Positioning Service (FLEPOS). In total, six flight missions were
conducted with varying flight parameters: two different flight altitudes (25 and 40 m above
ground level (AGL)) and three different (front and side) image overlap ratios (75–80–85%; see
Table 1 and Figure 2). During all missions, the flying speed was 2 m/s. Imagery of the Mouda-
nia site was collected in July 2018 using an RGB-SODA sensor (S.O.D.A._10.6_5472x3648)
attached to a fixed-wing eBee plus platform. Here, only one mission was carried out with
a flight altitude of 75 m AGL and a front and side image overlap of 80% and 60%, respectively.
The average flying speed during this mission was 40 km/h.

Table 1. The varying flight parameters implemented at the Bilzen site in Belgium.

Mission ID Flight Altitude (m AGL) Image Overlap (%) Total Flight Time Total Number of Images (Size)

B1 25 75 7 min 9 s 155 (1.22 GB)
B2 25 80 8 min 32 s 200 (1.59 GB)
B3 25 85 10 min 55 s 277 (2.21 GB)
B4 40 75 6 min 56 s 97 (767 MB)
B5 40 80 7 min 20 s 124 (994 MB)
B6 40 85 9 min 11 s 202 (1.59 GB)
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Figure 2. A graphical overview of the different flight parameters (flight altitude (m AGL) and image
overlap) applied in the Bilzen site.

2.3. Image Processing

All collected images were pre-processed using Pix4Dmapper-software (Pix4D S.A.,
Lausanne, Switzerland). Processing involved image calibration, point cloud generation and
densification, and raster mosaicking and was in line with the ‘3D Maps’ processing template.
The generated point cloud was used in further analyses to delineate individual treetops and
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crowns (Figure 3). During this procedure, first, the generated point cloud was classified
using the classify_ground function of the lidR-package in R-software [17]. Segmentation of
ground points was based on a progressive morphological filter, in line with [8]. Next, the
DTM was created using the grid_terrain function. In line with [8], a cell size of 0.25 m was
defined, and the function normalize_height was used to normalize the point cloud elevation
values. The canopy height model (CHM) was generated based on the upper returns of the
point cloud and the generated DTM, as implemented in the grid_canopy function.
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Figure 3. An overview of the procedure consisting of three steps: image collection, point cloud
analyses, and individual tree detection.

The generated CHMs are typically smoothened to improve the effectiveness of treetop
detection algorithms by filtering out spread-out tree branches and obtain only one local maxi-
mum in each crown [18]. Here, we implemented three different smoothing window sizes: no
smoothing, a 3 × 3 pixel window size, and a 5 × 5 pixel window size. Smoothing the CHM was
carried out by using the CHMsmoothing function of the rLiDAR package [19]. Treetops were
detected using a variable window filter with the vwf function of the ForestTools package [20].
This algorithm applies a moving window to the CHM in order to classify treetops as the pixels
with the highest height in a certain radius. Since this radius itself depends on the height of the
tree, first, a (linear) model was fitted between the crown radius and the tree height (Equations
(1) and (2)). For the Bilzen site, tree height measurements were available for 50 trees. Since no
field measurements were available for the olive plantation, tree heights were derived from the
computed CHM. The crown radii of 50 trees at each of the sites were computed through manual
delineation in QGIS 3.16 software.

Taxus crown radius (m) = 0.41844 + 0.07912∗Tree height (m) (1)

Olive crown radius (m) = 0.6690 + 0.3624∗Tree height (m) (2)

Finally, the computed treetops were used to outline the tree crowns using the mcws
function. This function implements a watershed algorithm in combination with marker-
controlled segmentation (using the treetops). Spatial statistics of the detected trees were
generated using the sp_summarize function.

2.4. ITD Accuracy Assessment

The performance of the tree delineation approaches was tested by computing the
number of trees that were detected correctly (true positive, TP), omitted (false negative,
FN), and committed (false positive, FP). Based on these metrics, the recall (r, [3]), precision
(p, [4]), and F-score (F, [5]) values were computed using the equations below. Recall or



Drones 2022, 6, 197 5 of 10

sensitivity is a measure of the tree detection rate, while precision indicates the correctness
of the detected trees. The F-score is an overall summary of the ITD performance, taking
both recall and precision into account, and ranges between 0 (none of the trees detected)
and 1 (all trees detected without FPs).

r =
TP

TP + FN
(3)

p =
TP

TP + FP
(4)

F =
2∗r ∗ p
r + p

(5)

3. Results
3.1. Data Collection

The varying flight parameters implemented at the Bilzen site resulted in differences in
the effective flight time and the number of collected images (Table 1). The flight carried
out at 40 m AGL with an image overlap of 75% collected 97 images, which was 35% of the
images collected during the flight at 25 m AGL and 85% overlap.

3.2. Taxus Tree Delineation

In total, 237 trees were present in the field. Even though no algorithm was able to
detect all trees correctly, for each combination of flight parameters, a smoothing window
size of 3 resulted in the best ITD, as reflected by the higher recall, precision, and F-score
values (Table 2, Figure 4). In addition, the results indicate that the effects of smoothing
application were more pronounced than the effects of varying flight parameters. Not
applying smoothing resulted in a higher number of trees that were falsely detected (and
thus higher FP and lower precision scores), whereas applying a larger window size of
5 resulted in more trees that were omitted (and thus higher FN and lower recall scores).
Average tree heights were generally lower when applying the largest smoothing window
of 5 (2.98–3.08 m) compared to no smoothing (3.37–3.48 m) or a smoothing window of
3 (3.42–3.43 m). On the other hand, the average crown areas were lower when no smoothing
was applied (1.46–1.52 m2) compared to a smoothing window of 3 or 5 (1.71–1.83 m2 and
1.87–2.07 m2, respectively).

Table 2. An overview of the results of the ITD approach in the taxus plantation, using different flight
parameters and smoothing window size.

No Smoothing Window Smoothing Window Size 3 Smoothing Window Size 5
B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6 B1 B2 B3 B4 B5 B6

TTC 281 285 292 280 296 283 236 233 235 231 237 236 203 211 209 195 209 209
TP 231 233 235 230 234 235 234 233 233 231 235 234 201 210 208 194 208 208
FN 6 4 2 7 3 2 3 4 4 6 2 3 36 27 29 43 29 29
FP 50 52 57 50 62 48 2 0 2 0 2 2 2 1 1 1 1 1
r 0.97 0.98 0.99 0.97 0.99 0.99 0.99 0.98 0.98 0.97 0.99 0.99 0.85 0.89 0.88 0.82 0.88 0.88
p 0.82 0.82 0.80 0.82 0.79 0.83 0.99 1.00 0.99 1.00 0.99 0.99 0.99 1.00 1.00 0.99 1.00 1.00
F 0.89 0.89 0.89 0.89 0.88 0.90 0.99 0.99 0.99 0.99 0.99 0.99 0.91 0.94 0.93 0.90 0.93 0.93

TH (m, mean ± SD)
3.37
±

1.05

3.39
±

1.01

3.37
±

1.05

3.47
±

1.03

3.40
±

1.17

3.48
±

1.10

3.42
±

0.89

3.42
±

0.86

3.43
±
0.8

3.42
±

0.90

3.43
±

0.95

3.42
±

0.92

3.01
±

0.91

2.98
±

0.90

3.04
±

0.93

3.08
±

0.93

3.03
±

0.95

3.00
±

0.91

CA (m2, mean ± SD)
1.47
±

0.90

1.46
±

0.87

1.49
±

0.92

1.52
±

0.91

1.47
±

0.91

1.50
±

0.83

1.71
±

0.95

1.76
±

0.95

1.83
±

1.01

1.82
±

1.08

1.79
±

1.01

1.73
±

0.97

1.91
±

1.22

1.87
±

1.18

2.01
±

1.25

2.07
±

1.34

1.96
±

1.24

1.89
±

1.20

TTC: total tree count, TP: true positive, FN: false negative, FP: false positive, r: recall, p: precision, F: F-score,
TH: tree height, CA: crown area.
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Figure 4. The results of the ITD approaches with different smoothing window sizes using the imagery
collected at a flight altitude of 40 m AGL and an image overlap of 80%.

3.3. Olive Tree Delineation

All modeling approaches overestimated the total number of trees (Table 3). This
overestimation was higher when no smoothing was applied (FP = 231 trees), compared to
a smoothing window of 3 (FP = 198 trees) and 5 (FP = 139 trees). This resulted in an overall
low precision, ranging between 0.39 (no smoothing) and 0.48 (smoothing window of 5). Due
to the specific habitus of olive trees—lacking a distinct treetop—the delineation algorithm
detected multiple trees in one olive tree (Figure 5). The application of a smoothing window
decreased the mean tree heights (2.55–2.29–2.12 m) and increased the mean crown area
(6.83–8.70–11.13 m2).

Table 3. The results of the ITD application in the olive orchard using different smoothing window sizes.

No Smoothing Smoothing Window Size 3 Smoothing Window Size 5

TTC 389 356 297
TP 147 152 130
FN 11 6 28
FP 231 198 139
r 0.93 0.96 0.82
p 0.39 0.43 0.48
F 0.55 0.60 0.61

TH (m, mean ± SD) 2.55 ± 1.14 2.29 ± 0.98 2.12 ± 0.85
CA (m2, mean ± SD) 6.83 ± 6.32 8.70 ± 5.99 11.13 ± 6.57

TTC: total tree count, TP: true positive, FN: false negative, FP: false positive, r: recall, p: precision, F: F-score,
TH: tree height, CA: crown area.
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Figure 5. The results of the ITD approach applied to olive trees. Due to the specific canopy shape of
the olive trees, individual branches were falsely identified as individual trees.

4. Discussion
4.1. Tree Delineation Performance

In this study, we trained an ITD algorithm to detect the taxus trees and assessed its
transferability on olive trees. The results showed varying accuracy and precision values,
depending on the tree species and its structural characteristics. For the taxus trees, the
delineation algorithm performed better, as reflected by F-scores ranging between 0.88 and
0.99. For olive trees, on the other hand, the delineation approach was less accurate and
precise, resulting in F-scores between 0.55 and 0.61. Earlier studies, focusing on ITD in
conifer-dominated forest stands, obtained F-scores between 0.71 and 0.87, and even below
0.60 in high-density stands or understory trees (see overview in [13]). The authors of [14]
reported ITD accuracies of 97% for dominant overstory, and 67% for suppressed understory
trees. Similarly, [21] found higher F-scores for low-density stands (0.94) compared to the
medium- (0.8) and high-density (0.44) stands. Since this study focused on tree plantations,
which are typically less complex than forest systems since individual trees do not overlap,
the higher F-scores for the taxus trees were to be expected. In the olive orchard, however,
the trees were also planted at relatively fixed distances from each other and the tree crowns
did not overlap. Caution is required when comparing the two sites, since UAV-imagery
was collected using different UAV-platforms and flight planning parameters. However,
the lower precision and F-scores are likely to be explained by the specific architecture of
the tree crown, characterized by a multiplex [22] or top-open spherical canopy [23]. Since
the ITD algorithm looks for local maxima and uses the maxima in a marker-controlled
watershed segmentation, the absence of a clear treetop can lead to the division of a sole
tree into multiple trees. To avoid such inaccuracies, smoothing can be applied [8,18]. In
this study, smoothing did indeed improve the delineation results, but a smoothing window
of 5 × 5 pixels did not suffice. A larger smoothing window could result in improved
detection results but might lead to the underestimation of tree heights as maximum values
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tend to be filtered out. In such cases, the adoption of a more smoothed CHM to delineate
the trees, in combination with an less smoothed CHM to compute the tree, heights might
be a solution. The availability of quantitative information about the trade-off between
smoothing application and ITD performance will be useful for individual end users to select
the most appropriate settings. Another possible approach to overcome the inaccuracies
above-mentioned is the inclusion of multispectral imagery in ITD approaches [24–26].

4.2. Flight Parameterization

For the Bilzen site, we were able to test the effect of different flight parameters (flight
altitude and image overlap) on the delineation of taxus trees. From these results, we can
conclude that these parameters (as expected) have a large effect on the total flight time
and total number of images collected. Whereas the total number of images and required
storage space ranged between 97 images/767 MB (40 m–75% overlap) and 277/2.21 GB
(25 m AGL–85% overlap), only minor differences in the recall, precision, and F-score were
noted. The availability of such information on the trade-off between ITD performance
and battery/computational capacity is important when setting up a flight plan. To this
end, suboptimal flight parameters resulting in minor losses of accuracy could be preferable
when flying over large areas because of the limitations associated with flight time, storage
capacity, and computational capacity. These findings are in line with the results of [9],
who recommends higher flight altitudes (100 m instead of 50 m) with sufficient overlap
above olive orchards, as these missions reduce the processing time without causing losses
in accuracy. Young et al. (2022) [13] found that a flight altitude of 120 m performed better
than lower altitude flights (90 m) when the image overlaps were lower (below 90% front
and side overlap) and similar when the overlaps were larger than 90%. In addition, de
Lima et al. (2021) [27] tested the varying front and side overlaps and found that a flight at
120 m with 90% lateral and 70% longitudinal overlap was the most optimal combination
for ITD in a pine forest.

5. Conclusions

The maintenance and management of tree nurseries and orchards can benefit from
efficient and low-cost inventory techniques such as structure from motion based on UAV
imagery. In this study, we showed that the availability of 3D-point clouds is useful to
delineate individual trees, but that model transferability across sites can be a bottleneck.
We found that a marker-controlled watershed segmentation algorithm worked well for
taxus trees (F-scores between 0.88 and 0.99), but was not able to accurately delineate olive
trees (F-scores between 0.55 and 0.61) due to their specific habitus lacking a clear treetop. In
addition, we found that processing parameters such as the smoothing window had a larger
effect on the accuracy and precision of ITD than flight parameters such as flight altitude
and image overlap. The availability of such quantitative information about the trade-off
between ITD performance and collection/processing capacity can support more efficient
pre-flight planning. The fusion of the applied 3D-segmentation with multispectral imagery
can further improve the ITD algorithms.
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