
Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Proof of concept of a hardware/Software co-design for accelerating
decryption of 1-RTT QUIC packets

2021•2022

PROMOTOR :

dr. Robin MARX

COPROMOTOR :

dr. ing. Jo VLIEGEN

Lennert Purnal
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Gezamenlijke opleiding UHasselt en KU Leuven



Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Proof of concept of a hardware/Software co-design for accelerating
decryption of 1-RTT QUIC packets

2021•2022

PROMOTOR :

dr. Robin MARX

COPROMOTOR :

dr. ing. Jo VLIEGEN

Lennert Purnal
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT





Preface

This master’s thesis is conducted at ”Emerging technologies, systems and security” (ES&S) in

Diepenbeek and is submitted for the degree of Master of industrial engineering technology in

electronics-ICT at the KULeuven and UHasselt. ES&S is a research group of the KULeuven spe-

cialised in the design and implementation of embedded systems with a focus on secure hardware

and software. I would like to thank my promotors Dr. Robin Marx and Dr. Ing. Jo Vliegen for

guiding me in this thesis and providing me with the opportunity to work on an interesting topic

at the cutting edge of technology. Specifically, I would like to thank Dr. Marx for providing his

exceptional expertise of the QUIC protocol and Dr. Vliegen for his great amount of help in the

development of the digital hardware design. Furthermore, I would like to thank my co-students

Lowie Deferme for creating a test framework and the DCID lookup module, and Jonathan Butaye

for creating the key memory and AXI-controller with its driver. Finally, I would like to thank

everybody who helped for creating a nice and productive work environment.

Lennert Purnal





Contents

Preface 1

List of tables 5

List of figures 8

List of abbreviations and symbols 9

Abstract 11

Abstract in Dutch 13

1 Introduction 15

2 Literature study 17

2.1 Overview of the QUIC protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Packets and frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 Encryption and authentication . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.6 Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Underlying Ethernet/IP/UDP stack . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Internet protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 User datagram protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Authenticated encryption with associated data (AEAD) . . . . . . . . . . . . . . . 26

2.3.1 AEAD AES 128 GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Related work in QUIC hardware offloading . . . . . . . . . . . . . . . . . . . . . . 30

3 Design and implementation 33

3.1 Ideal design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Proof of concept design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Practical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 The pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 The parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 The DCID lookup module . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.4 The key memory module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



3.3.5 The header protection module . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.6 The payload protection module . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.7 The AEAD AES 128 GCM pipelined module . . . . . . . . . . . . . . . . 44

3.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 AXI4-lite controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 linux kernel driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Platform choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 QUIC implementation choice . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Results and discussion 51

4.1 FPGA synthesis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Timing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Resource usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.4 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Decryption speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Only 1-RTT packets (short header packets) . . . . . . . . . . . . . . . . . 54

4.3.2 Only 20 byte DCIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Incomplete parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 No packet dropping in hardware . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.5 Out-of-order packets after key update . . . . . . . . . . . . . . . . . . . . . 55

4.3.6 Single RAM block for keys and IVs . . . . . . . . . . . . . . . . . . . . . . 55

4.3.7 Fully separated modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Conclusion 57

Bibliography 60

List of appendices 61

A Python program for writing keys to hardware 63



List of Tables

2.1 Packet types with header form and explanation . . . . . . . . . . . . . . . . . . . 19

3.1 Encoding of the protocol fields in the metadata registers . . . . . . . . . . . . . . 38

3.2 Key locations in the key memory with offsets . . . . . . . . . . . . . . . . . . . . . 39

3.3 AESGCM pipelined module commands with explanation . . . . . . . . . . . . . . 45

3.4 IOCTL function of the PoC control driver . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Write states of the PoC controller driver. Determines which registers are written

upon a write to the device file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Timing results after synthesis of the total PoC for the PYNQ-Z2 board . . . . . . 51

4.2 Hardware resource usage after synthesis of the total PoC and submodules for the

PYNQ-Z2 board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Delay introduced by the pipeline registers . . . . . . . . . . . . . . . . . . . . . . 53





List of Figures

2.1 Typical HTTPS protocol stack comparison between TCP (with HTTP/2) and

QUIC (with HTTP/3). From: [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Example of connection ID exchange and usage. From: [1] . . . . . . . . . . . . . . 19

2.3 Example of a 1-RTT QUIC packet format with size ranges in bits . . . . . . . . . 20

2.4 Handshake comparison between TCP and QUIC for (a) 1-RTT and (b) 0-RTT.

From: [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 decryption flow for arriving QUIC packets with the AEAD AES 128 GCM or

AEAD AES 256 GCM suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Layer 2 Ethernet frame header format without VLAN (a) and with VLAN (b) . . 24

2.7 IPv4 packet header format, the numbering is in bits. From:[2, p. 10] . . . . . . . . 25

2.8 IPv6 packet header format, the numbering is in bits. From:[3, p. 4] . . . . . . . . 25

2.9 UDP header format, the numbering is in bits. From:[4, p. 1] . . . . . . . . . . . . 26

2.10 Block diagram depicting authenticated encryption in GCM. From:[5, p. 16] . . . . 27

2.11 Algorithm for authenticated decryption in GCM. From:[5, p. 18] . . . . . . . . . . 28

2.12 Block diagram of the GCTR function . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Block diagram of the GHASH function . . . . . . . . . . . . . . . . . . . . . . . . 29

2.14 CPU usage breakdown in % by both server(a) and client(b) for the different QUIC

implementations in a single connection scenario. From: [6, p. 22] . . . . . . . . . . 30

3.1 Ideal hardware/software co-design for decryption with hardware offload before

data copy to user space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Less performant hardware/software co-design with hardware offload between user

space processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 ideal hardware/software co-design for QUIC packet decryption offloading . . . . . 35

3.4 proof of concept hardware/software co-design for QUIC packet decryption offloading 35

3.5 Modular representation of the proof of concept hardware pipeline with interfaces . 37

3.6 Ethernet frame containing a QUIC packet in the pipeline. The location of the

sample input for AES-ECB is shown in green. . . . . . . . . . . . . . . . . . . . . 40

3.7 Hardware schematic of the header protection module (without key copy and key

passthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Flowchart for the payload protection module input stage . . . . . . . . . . . . . . 42

3.9 Input selection for the to be authenticated and decrypted data in function of the

clock cycle from the start of authentication . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Hardware schematic of the AESGCM pipelined module . . . . . . . . . . . . . . . 45

3.11 Hardware schematic of the AES round (left) and AES lastround (right) modules . 46

3.12 Hardware schematic of the AES pipelined module . . . . . . . . . . . . . . . . . . 46

3.13 Hardware schematic of the GHASH module (left) and its state machine (right) . . 46

7



3.14 Memory map of the controller registers . . . . . . . . . . . . . . . . . . . . . . . . 47

3.15 Test setup for verifying the functionality of the proof of concept hardware . . . . . 49

3.16 PYNQ-Z2 board with a ZYNQ7000 series FPGA. From: [7] . . . . . . . . . . . . . 49

4.1 Plot of the decryption time needed in function of packet size in software-only and

for the PoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



List of abbreviations and symbols

ACK Acknowledgement

AEAD Authenticated encryption with associated data

AES Advanced encryption standard

ARM Acorn RISC Machine (computer architecture)

armhf Hard float ARM computer architecture

CPU Central processing unit

DCID Destination connection ID

DMA Direct memory access

FIFO First in, first out

GCM Galois counter mode

HKDF HMAC-based key derivation function

HTTPS Hypertext transfer protocol with TLS

ID Identifier

IETF Internet engineering taskforce

IO Input/output

IP Internet protocol

LAN Local Area Network

LSB Least significant bit

LUT Lookup table

MSB Most significant bit

NAT Network address translation

NIC Network interface card

OS Operating system

PL Programmable logic

PoC Proof of concept

PS Processing system

RFC Request for comments

RISC Reduced instruction set computer

RTT Round-trip time

TCP Transport control protocol

TLS Transport layer security

UDP User datagram protocol

XOR Exclusive OR





Abstract

QUIC is a relatively new transport layer protocol that aims to improve upon TCP with TLS.

Most implementations are currently executed in user space to allow for flexibility. This makes

the protocol processor intensive and currently slower than TCP because of user/kernel space

data copy. This master’s thesis aims to reduce this CPU cost and to accelerate the decryption

of 1-RTT QUIC packets through the use of dedicated hardware.

First, opportunities for offloading QUIC are examined. A hardware/software co-design is made

for receiving packets. A proof of concept (PoC) is implemented in hardware and verified on

an FPGA. The resulting design performs packet parsing to detect QUIC packets, followed by a

connection ID lookup and key lookup to retrieve the connection secrets. The header protection

stage uses the AES 128 ECB cipher. The payload protection uses the AEAD AES 128 GCM

cryptographic suite. The decryption speed and CPU resource usage was measured for both

software decryption using the picoquic stack and hardware decryption using the proof of concept

design on a FPGA. Note, however, that these tests do not include overhead such as data copy.

Decrypting packets in hardware is 2 times than in software on consumer grade hardware. The

maximum raw network throughput of the hardware is 2.7 Gbit/s. In future work, the PoC

design should be expanded with functionality and fully integrated with a QUIC software stack

to perform more thorough measurements such as maximum QUIC data throughput, network

latency and other parameters.





Abstract in Dutch

QUIC is een relatief nieuw protocol in de transportlaag met als doel verbeteringen aan te brengen

ten opzichte van TCP met TLS. De meeste implementaties zijn in userspace gemaakt. Dit maakt

het protocol processorintensief en, op dit moment, trager dan TCP vanwege het kopiëren van

data tussen user- en kernelspace. Deze masterproef analyseert mogelijke verbeteringen hiervoor

door middel van toegewijde hardware voor de ontcijfering van 1-RTT QUIC pakketten.

Een hardware/software co-design werd ontworpen voor het ontvangen van 1-RTT pakketten

zonder extra datakopie. Een proof of concept werd praktisch gëımplementeerd op een FPGA.

Het ontwerp detecteert eerst QUIC pakketten door middel van pakket-parsing, gevolgd door een

connection ID lookup. Die opzoeking geeft een adres waarmee de sessiesleutels opgehaald worden.

Daarna wordt de header ontcijferd aan de hand van het AES 128 ECB cipher en vervolgens wordt

de payload ontcijferd en geauthenticeerd met behulp van de AEAD AES 128 GCM cipher suite.

De performantie van dit ontwerp werd vergeleken met software ontcijfering in de picoquic stack.

Het ontcijferen van pakketten in hardware is 2 keer sneller dan in software met consumer grade

hardware. De maximale netwerk throughput van de hardware is 2,7 Gbit/s. Die throughput

houdt echter nog geen rekening met andere factoren zoals de datakopie. In toekomstig werk zou

het proof of concept uitgebreid moeten worden en volledig gëıntegreerd worden in een QUIC

stack om een beter beeld van de performantiewinst te krijgen.





Chapter 1

Introduction

With the ever-increasing traffic on the Internet and the emergence of mobile users, improvements

to the existing infrastructure and protocols are in high demand. ’QUIC’ is one such protocol that

aims to improve upon TCP with TLS and add features to accommodate for the modern needs

of Internet users. This relatively new protocol has recently been formulated in a series of IETF

standards[8, 9]. This now enables researching optimizations to QUIC without the optimaizations

being invalidated by large updates to the protocol.

Currently, most implementations of the QUIC protocol are implemented in user space. This way,

the protocol´and its implementations can more easily be updated. TCP with TLS usually has

parts of its protocol implemented in kernel space, which means the operating systems (OS) on

which the protocols run have to be updated when changes are made. However, updating an OS

can be a cumbersome task (certainly on older machines) which leads to changes happening slowly

because not all machines on the Internet are updated at the same time. Another problem that

QUIC aims to solve is protocol ossification, which is caused by middleboxes1 that are also often

hard to replace or update[10, 11, 1]. TCP with TLS suffers from this problem as the TCP header

is transmitted in plaintext and middleboxes can freely inspect it. QUIC solves this by encrypting

as much of its header as possible in a seperate encryption stage to the payload encryption. This

removes the possibility for middleboxes to retrieve enough information from a packet to interfere

with it.

The implementation in user space in combination with the encryption by default currently makes

QUIC slower and more processor intensive than TCP with TLS. Copying the data from kernel

space to user space and vice versa is an expensive task for the processor, creating an important

bottleneck. Another bottleneck is caused by the expensive encryption that is executed in user

space. As it is favorable to keep the protocol in user space for flexibility, the second problem

(encryption) will be the focus of this research. However, both problems are interlinked, as creating

or using a hardware encryption/decryption core, that is used from software, will require the data

to be copied from user space to kernel space and back again. This adds even more data copy

overhead and possibly removes the benefit of faster decryption (or even makes it worse). This

leads to the following research topics: Can the cryptography of QUIC be offloaded to hardware?

Which parts of the cryptography are best suited for this? What is the benefit and what are the

1middleboxes are devices on a network placed between the endpoints that inspect/filter/transform passing
packets such as firewalls, NATs, load balancers, etc.



drawbacks of offloading cryptography in a specific manner?

The objective is to create a hardware/software co-design that handles packet protection. The

architecture should minimalize kernel/user space data copy. This has to be balanced with hard-

ware complexity and resource usage. Parts of the design should then be implemented as a proof

of concept (PoC) for decrypting 1 roundtrip time (1-RTT) packets, which make up the main

bulk of QUIC traffic, using the TLS AES 128 GCM SHA256 cipher suite.

Firstly, in chapter 2 the theoretical background of the QUIC protocol, as well as the encryption

suites that are used, are explained. Next, in chapter 3 an ideal design is constructed and sim-

plifications are made for a proof of concept design. Furthermore, the practical implementation

and its test setup is documented. In chapter 4 the design is characterised and a perfomance

comparison with software-only decryption is made. The limitations of the design are also dis-

cussed in chapter 4. Finally, in chapter 5 this research is concluded and ideas for future work are

proposed.
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Chapter 2

Literature study

This chapter aims to provide a general understanding of the principal components of the QUIC

protocol, as well as giving a deeper insight into those aspects that will be used for this thesis.

It is important to mention that this thesis will focus on the IETF’s standardized version of

the protocol in RFC9000[8]. Furthermore, previous works concerning the acceleration of QUIC

implementations using hardware are examined. Studies on the performance of the components

of the protocol are used to determine where optimisations in hardware could be most beneficial.

Details on the underlying protocols and cipher suites for QUIC in the context of this research

are also explained.

2.1 Overview of the QUIC protocol

QUIC is a transport layer protocol aimed at improving HTTPS traffic. It is a reliable transport

protocol built on top of the unreliable UDP transport protocol. This is done to avoid protocol

ossification1 by middleboxes[10, 11, 1] which is a problem the transport control protocol[12]

(TCP) and its derivatives (like TCP Fast Open, multipath TCP, etc.) suffer from. QUIC takes

most features from TCP, but improves upon some those, as well as adding new features that

are important in the modern state of the Internet. A comparison between the HTTP/2 protocol

stack and that of HTTP/3 is shown in Figure 2.1.

The remainder of this section gives an in-depth explanation of the most important QUIC protocol

components in the context of this thesis.

2.1.1 Connections

A QUIC connection is shared between a client and a server. Each connection starts with a

handshake in which a shared secret and the application protocol are negotiated, as well as some

parameters. This confirms both parties are willing and able to communicate[8].

1Protocol ossification is the reduction of flexibility of protocol design due to middleboxes as these are difficult
to remove or upgrade in the network.



Figure 2.1: Typical HTTPS protocol stack comparison between TCP (with HTTP/2) and
QUIC (with HTTP/3). From: [1]

Connection IDs

A connection is identified by a set of connection ID’s. This notion of a connection ID is new in

comparison to TCP. The use of an ID allows for connection migration when something changes

in the underlying UDP/IP protocols, examples are when NAT rebinding occurs or a mobile

user changes network during connection (for example from WiFi to cellular)[11]. It is worth

mentioning that zero length connection IDs are allowed and when such packet arrives, the local

address and port (4-tuple) are used to identify the connection. However, zero length connection

IDs do not allow for multiplexing connections on the same IP address and port combination

without failures.[8]

The connection IDs and their length are chosen by the endpoints themselves and are exchanged

during and after the handshake. The length of connection IDs can vary between 0 and 20

bytes. Each endpoint accepts multiple connection IDs for a single connection and these are all

sent in NEW CONNECTION ID frames in encrypted packets after handshake completion, so no

outside observer knows this list. This prevents an attacker from knowing to which connection a

connection ID belongs. When an endpoint moves and the connection migrates, it can use one of

the other connection IDs that its peer accepts in order to prevent a third party from tracking

the endpoint by looking at the connection ID. This has to be done because the used connection

ID is not encrypted in a QUIC packet. An example of the exchange of connection IDs and their

usage is shown in Figure 2.2.
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Figure 2.2: Example of connection ID exchange and usage. From: [1]

2.1.2 Streams

A stream is a byte-stream abstraction to an application. A QUIC connection can contain multiple

unidirectional or bidirectional streams and can open/close them during its entire lifespan. In the

example of loading a web-page on the Internet this can mean separate streams for HTML files,

CSS files, images, etc. This multiplexing of streams within the transport protocol itself prevents

head-of-line blocking2 (which is still present in the transport layer in streams with HTTP/2 over

TCP)[13, 1]. The stream data of a single stream is encapsulated in a stream frame.

2.1.3 Packets and frames

QUIC endpoints communicate by exchanging packets using UDP datagrams. Long packet head-

ers are used for Initial, 0-RTT, Handshake and Retry packets as well as for the version indepen-

dent Version-negotiation packet. To minimize overhead, short packet headers are used for 1-RTT

packets after a connection is established and 1-RTT keys are available. Table 2.1 lists the packet

types with a short explanation.

Table 2.1: Packet types with header form and explanation

Packet type Header form explanation

Version negotiation Long header Versionless packet for negotiating the QUIC version

Initial Long header First packets carrying CRYPTO frames

Handshake Long header Carries cryptographic handshake messages

Retry Long header Server uses this to validate the client’s address

0-RTT Long header Carries limited amount of data before handshake completion

1-RTT Short header Carries data after handshake completion

A QUIC packet payload can consist of multiple ’frames’ (for example an ACK frame, flow-control

frame and stream frame). There exists a multitude of frame types, one of which is the stream

2Head-of-line blocking occurs when a line of packets is held up by a previous packet that was not/incorrectly
received.
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frame. A QUIC packet can contain multiple stream frames (from the same or from different

streams). A detailed list and description of all packet types and frame types can be found in

RFC9000[8]. The notion of frames will not be further used in the context of this thesis as they

are part of the payload, which is encrypted in its entirety.

1-RTT packet format

As mentioned before, 1-RTT QUIC packets use a short header type. This header is made up

of 3 main segments; the QUIC flags/info, the destination connection ID (DCID) and the packet

number. The QUIC flags byte is made up of the following bits, where the LSB is at the bottom

and the MSB at the top:

• one header form bit (0 for short header, 1 for long header)

• one fixed bit (always 1)

• one spin bit

• two reserved bits (for later additions to the protocol)

• one key phase bit (indicates the key phase, see section 2.1.6)

• two packet number length bits (indicates the amount of packet number bytes minus 1)

The destination connection ID can vary in length between 0 and 20 bytes and the packet num-

ber field can vary between 1 and 4 bytes. Parts of this header are encrypted as explained in

section 2.1.5. Next, comes the payload followed by a 16-byte authentication tag. Figure 2.3

shows the format of a 1-RTT QUIC packet where the green sections are encrypted in the header

protection stage and the orange parts are encrypted in the payload protection stage.

Figure 2.3: Example of a 1-RTT QUIC packet format with size ranges in bits

2.1.4 Handshake

QUIC uses a combined cryptographic and transport handshake. The cryptographic handshake

is done with the CRYPTO frame. RFC9000’s QUIC version uses TLS from RFC9001[9] for the

cryptographic handshake, though other versions could use different handshakes. The crypto-

graphic part of the handshake negotiates the secrets that will be used to encrypt the following

QUIC packets.

TLS allows for 0-RTT and 1-RTT handshakes. 1-RTT means all cryptographic negotiation is

completed in just a single round-trip, after which encrypted application data can be exchanged.

0-RTT further speeds this up by allowing application data to be sent in conjunction with the

handshake. This is an improvement over TCP with TLS, which has seperate handshakes. A

comparison between QUIC with TLS and TCP with TLS is shown in Figure 2.4. QUIC now
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combines this 0-RTT or 1-RTT handshake with the transport handshake. It is worth mentioning

that the 0-RTT handshake with QUIC has limited benefits due to security risks like amplification

attacks and replay attacks.

(a) (b)

Figure 2.4: Handshake comparison between TCP and QUIC for (a) 1-RTT and (b) 0-RTT.
From: [1]

2.1.5 Encryption and authentication

TLS over TCP uses TLS records to exchange TLS messages, providing a strict layering of both

protocols. In contrast, QUIC with TLS is less layered and both protocols interact more. In

TLS over TCP, packets are protected by sending the payload in TLS application data records.

Contrary to that, QUIC itself provides the packet protection and authentication. Here the keys

and secrets are provided by TLS in the handshake but encryption and authentication is done by

QUIC.

Different QUIC packets have different levels of encryption applied to them as mentioned in

Section 2.1.3. Concretely, 4 types of packets with differing encryption can be separated:

• Version negotiation packets lack any cryptographic protection

• Retry packets use AEAD AES 128 GCM

• Initial packets use AEAD AES 128 GCM with keys derived from the Destination Connec-

tion ID field of the first Initial packet sent by the client.

• All other packets have strong cryptographic protections using keys and algorithms negoti-

ated in the handshake as explained in section 2.1.4

QUIC packets are encrypted in 2 stages: packet protection and header protection. In the packet

protection stage, the payload is encrypted and authenticated using the AEAD function as ex-

plained in section 2.3. When packets are formed, the AEAD protection happens before header

protection. When processing packets, the AEAD function can only happen after removing the

header protection. This is because the plaintext header serves as additional authenticated data

to the AEAD function. An example of this flow for decryption is shown in Figure 2.5.
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Figure 2.5: decryption flow for arriving QUIC packets with the AEAD AES 128 GCM or
AEAD AES 256 GCM suite

Payload protection

The inputs and outputs for the AEAD function in QUIC packet protection are the following:

• Nonce N is the XOR of the IV and the padded packet number (described in section 2.1.6)

• Associated data A is the plaintext packet header starting from the first byte up to and

including the plaintext packet number

• Plaintext P is the entire payload of the packet (excluding the header)

• Ciphertext C is the encrypted version of the plaintext which replaced P

• Tag T is the authentication tag which is concatenated to C

When protecting the packet, the new payload of the packet is thus the original header, followed

by the ciphertext C and authentication tag T. When removing the packet protection, the output

tag T’ is compared to the tag in the packet to check the packet’s integrity. When using the

AEAD AES 128 GCM suite with IETF’s QUIC version 1, the tag is always 128 bits long.

Header protection

The application of header protection is a key difference between TCP (which lacks it) and QUIC,

and is applied to all packet types except retry or version negotiation packets. The header is

protected using the ’hp key’ as described in section 2.1.6 and remains the same for the duration

of the connection. Header protection is applied to the 4 least significant bits of the first byte

in case of a long header, the 5 least significant bits of the short header and in both cases the

packet number is also protected. The protected bits of the first byte include the reserved bits,

the packet number length and also the key phase bit in case of the short header.

The header protection makes use of a cryptographic algorithm that depends on the negotiated
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AEAD suite in the handshake. In this research, that algorithm is AES, which is used in Electronic

codebook mode (ECB). The ciphertext from the protected payload (see section 2.1.5) is sampled

and serves as the input to the encryption algorithm. The 5 least significant bytes of the AES-

ECB output are the mask. The masking operation is a bitwise XOR and is applied in the

following manner for a short header:

• The 5 least significant bits of the first header byte are masked with the 5 least significant

bits of first byte in the mask

• The Packet number is masked with the equivalent amount of remaining bytes in the mask

For AEAD AES 128 GCM suite with short header packets, the input of the AES-ECB block is

the 16 bytes of the payload starting from 4 bytes after the DCID. Because that input is the

encrypted cyphertext, the entropy is high and same goes for the hp key which is generated with

a HKDF-function. The output of the AES-ECB block can be seen as a one-time pad. However,

the hp key is only pseudorandom, so perfect secrecy is not guaranteed. Nevertheless, the amount

of bits that are XORed with this pseudorandom one-time pad is small enough for AES-ECB to

be acceptable to use.

2.1.6 Keys

The secrets described in the following sections are all derived by TLS through the use of a

HMAC-based key derivation function (HKDF)[14] with the negotiated hash function.

Header protection key

The header protection key ’hp key’ is the secret used in the cipher to protect the header and is

derived separately from the payload protection secrets. This key doesn’t change for the entire

duration of a connection, allowing the key phase bit to be encrypted and always decrypted by

both peers.

Payload protection keys

The payload protection secrets are used in the AEAD function for authenticating and encrypt-

ing/decrypting the payload. These secrets are the AEAD key and IV, which can change during

a connection to avoid reaching the usage limits of the secrets for a specific AEAD suite. A key

update is issued by toggling the ’key phase bit’ in the header and using the new key and IV,

allowing for two phases: 0 and 1. The receiver thus has to decrypt the packet header first to

check the ’key phase bit’ and packet number. If such a packet arrives with a newer packet number

than the last received packet, and the key phase has changed, the receiver knows it has to use

an updated key and IV to decrypt the payload. When decrypting a packet, the input for the

nonce/IV of the AEAD function is not directly the IV but the XOR of the IV and the left padded

packet number.

To calculate a new key or IV, the following function has to be used:

new secret = HKDF (current secret, ”quicku”, ””, Hash length) (2.1)

The only variable in this function is the current secret, which allows a peer to calculate the next

key before a key update is initiated. The next key should always be calculated beforehand, as
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it is otherwise possible to detect if a key update was issued. It is also advised to remember the

previous key after a key update for at least one RTT in order to decrypt out-of-order packets

with that older key.

2.2 Underlying Ethernet/IP/UDP stack

In the context of this research, QUIC packets are sent in UDP datagrams, which are in turn

encapsulated in IP packets. The LAN is Ethernet based, so the IP/UDP/QUIC stack is put

inside Ethernet frames. The fields of those protocols that will be important for the hardware

design are outlined in this section.

2.2.1 Ethernet

Ethernet is a datalink layer protocol that uses frames for sending packets between nodes in a

Local Area Network (LAN). Most modern machines use ’Ethernet II’ or version 2 of this protocol,

Figure 2.6 shows the header format. Note that the bytes in an Ethernet frame arrive from most

significant byte to least significant byte (left to right in Figure 2.6, while the bits within

each byte arrive from least significant bit to most significant bit [15].

Figure 2.6: Layer 2 Ethernet frame header format without VLAN (a) and with VLAN (b)

The Preamble and start frame delimiter (SFD) are 8 bytes long and are part of the physical layer

Ethernet to signal the start of a frame. In the datalink layer version of Ethernet these bytes are

not present. The maximum payload length is 1500 bytes and thus the maximum frame length is

for Layer 2 Ethernet is 1518 bytes.

In layer 2 Ethernet; bytes 13 and 14 indicate the EtherType, essentially meaning which protocol

is carried in the payload. If these bytes equal 0x8100, then the frame is VLAN tagged and the

actual EtherType bytes are at postion 17 and 18. For the Internet protocol the EtherType is:

• 0x0800 for IPv4

• 0x86DD for IPv6

2.2.2 Internet protocol

The Internet protocol (IP) is a network layer protocol that uses fixed length IP addresses to

deliver packets from one node on the Internet to another. IP is currently mainly deployed in two

versions: version 4 (IPv4) and version 6 (IPv6).
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IPv4

The header for an IPv4 packet is shown in Figure 2.7. Following is a list of the most important

fields[2]:

• Version - IP version (4 in this case)

• IHL - Internet header length in 32-bit words

• Total Length - entire packet size in bytes, this includes header and payload

• Protocol - identifies the protocol used in the payload. For UDP this is 0x11

Figure 2.7: IPv4 packet header format, the numbering is in bits. From:[2, p. 10]

IPv6

The header for an IPv6 packet is shown in Figure 2.8. Following is a list of the most important

fields[3]:

• Version - IP version (6 in this case)

• Payload length - length of the payload (excuding IP header) in bytes

• Next header - identifies the protocol used in the payload (same as the protocol field in

IPv4). For UDP this is 0x11

Figure 2.8: IPv6 packet header format, the numbering is in bits. From:[3, p. 4]
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2.2.3 User datagram protocol

User datagram protocol (UDP) is an unreliable transport layer protocol for delivering datagrams

from one endpoint to the other. The source and destination ports respectively signify the origin

and destination process sending the data. It has a minimal header of only 8 bytes as shown

in Figure 2.9. The length field is the length in bytes of the UDP-header and UDP-payload

combined.

Figure 2.9: UDP header format, the numbering is in bits. From:[4, p. 1]

2.3 Authenticated encryption with associated data (AEAD)

AEAD is an interface for providing confidentiality and integrity of a plaintext and is described in

RFC5116[16]. It defines confidentiality for parts of data and also provides integrity protection for

parts of data (called ’associated data’). Note that not all associated data has to be encrypted. The

interface also defines the opposite operation of authenticated decryption. In case of encryption

the inputs are a secret key K, a nonce N (which may be zero length), associated data A and the

plaintext P and the output is the ciphertext C, with the same length as P. For decryption the

inputs are K, N, A and C; and the output is P.

The confidentiality protection means that the plaintext P that needs to be protected is trans-

formed into a seemingly random blob of data (ciphertext C) that is not readable to outsiders by

using a key K. The ciphertext can only be transformed back to the plaintext using the same key,

which only those who are allowed to read the plaintext should have.

The integrity protection provides a means to check if all data (plaintext P and associated data A)

has not been tampered with. With the use of the key, all data is transformed into a fixed length

tag T, through the use of a hash function. The tag is concatenated to the message. modifying

only a single bit in the data generates an entirely different tag. This allows a holder of the key

to perform the same operation on the data (without the tag) to produce their own tag. If the

tag exactly matches the tag on the end of the message, the data is successfully authenticated.

If the tag is different, an authentication FAIL will be returned, signalling that the data was not

original.

2.3.1 AEAD AES 128 GCM

For this research, the AEAD AES 128 GCM suite will be used. This is explained here in the

context of usage with QUIC. Following lengths apply to this algrorithm:

• length of K is 16 bytes (128 bits)

• length of T is 16 bytes (128 bits)
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• length of N 12 bytes

• length of C is 16 bytes longer than plaintext P (length of P + length of T)

The cipher is AES and when used with key K, it is denoted as CIPHK and is used in Galois

Counter Mode (GCM)[5]. In the following sections encryption and decryption in GCM using

AES as the block cipher is explained.

Encryption

The algorithm for authenticated encryption in GCM is shown in figure 2.10. The inputs are the

Nonce/IV, the plaintext P, additional authenticated data A and the key K. The output is the

ciphertext C and the authentication tag T. The following steps are executed:

1. The hash subkey H is calculated using the cipher block function (AES) with its input being

a 128 bits long string of 0’s

2. The Pre-counter block J0 is formed by adding the a 32-bit counter initialized with value 1

to the back of the 96 bits of IV (Nonce)

3. The plaintext P is encrypted by performing the GCTR function with the J0 after a single

increment of the counter. The output of this encryption is the ciphertext C.

4. The input for the GHASH function is formed by concatenating A (padded with 0 to a

multiple of 128 bits) with P (padded with 0 to a multiple of 128 bits) and also with the

64-bit representation of the length of A followed by the length of C, also described in 64

bits

5. The GHASH function is executed using the input from step 4 and H from step 1

6. The output of the GHASH function is provided as input to the GCTR function with the

original value for J0 from step 2

7. The output of the GCTR function from step 6 is truncated to 128 bits and this is the tag T

Figure 2.10: Block diagram depicting authenticated encryption in GCM. From:[5, p. 16]
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Decryption

The algorithm for authenticated decryption in GCM is shown in figure 2.11. The inputs are the

Nonce/IV, the ciphertext C, additional authenticated data A and the key K. The output is the

plaintext P or an indication that the authentication failed. The following steps are executed:

1. The hash subkey H is calculated using the cipher block function (AES) with its input being

a 128 bits long string of 0’s

2. The Pre-counter block J0 is formed by adding the a 32-bit counter initialized with value 1

to the back of the 96 bits of IV (Nonce)

3. The ciphertext C is decrypted by performing the GCTR function with the J0 after a single

increment of the counter. The output of this operation is the decrypted plaintext.

4. The input for the GHASH function is formed by concatenating A (padded with 0 to a

multiple of 128 bits) with C (excluding the Tag T and padded with 0 to a multiple of 128

bits) and also with the 64 bit representation of the length of A followed by the length of

C, also described in 64 bits

5. The GHASH function is executed using the input from step 4 and H from step 1

6. The output of the GHASH function is provided as input to the GCTR function with the

original value for J0 from step 2

7. The output of the GCTR function from step 6 is truncated to 128 bits and this is the tag T’

8. Compare the T’ with T and, if they are equal, the authentication is successful. Otherwise

the authentication failed

Figure 2.11: Algorithm for authenticated decryption in GCM. From:[5, p. 18]
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GCTR function

The GCTR function is used to encrypt the plaintext or decrypt the ciphertext and also to produce

the tag from the output of the GHASH function. This is done by splitting the input in blocks

of 128 bits. The initial counter block ICB (= IV∥0x00000002) is encrypted with the chosen

encryption algorithm (for example AES) with the provided key and is XORed with the first

input block. The result of this is also the first block of output data. The 32 least significant

bits of the ICB are modular incremented by 1 and encrypted again. The result is XORed with

the second block of input data. This continues up to and including the last block of input data.

Figure 2.12 shows this process.

Figure 2.12: Block diagram of the GCTR function

GHASH function

The GHASH function is used to create a state that is dependant on all the input data. This is

done by splitting the input (associated data, cipher/plaintext and concatenation of lengths) in

blocks of 128 bits. Starting from the first block, a modular multiplication is done with the value

of H (GCTRk of 128 zeros). The output of this is XORed with the next block and the result is

again multiplied with H. This continues until the last block is XORed and multiplied. The result

of the final multiplication is the result of the GHASH function. Figure 2.13 shows this process.

Figure 2.13: Block diagram of the GHASH function
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2.4 Related work in QUIC hardware offloading

A closely related work to QUIC offloading on hardware was proposed by Yang et al. [6]. Here,

the researchers did extensive performance tests on 4 C/C++ implementations (Quant, Quicly,

Picoquic and Facebook’s Mvfst). In these tests: CPU time for cryptography, connection setup

and teardown, ACK and packet ordering, packet IO and header formatting were measured. The

results for a single connection are shown in Figure 2.14.

Figure 2.14: CPU usage breakdown in % by both server(a) and client(b) for the different QUIC
implementations in a single connection scenario. From: [6, p. 22]

These results show that CPU time is mostly spent on packet IO, followed by crypto operations

and ACK + packet ordering (with an exception for quant which uses a different IO engine). The

packet reordering is dependant on the amount of packets that arrive out-of-order. As such, the

paper lists the effect of packet reordering at different out-of-order packet rates, where Quant,

quickly and mvfst showed significant throughput drop-off at increasing reordering rate. Picoquic

was able to keep its throughput constant even at a reordering rate up to 10%. The reason the

researchers give for this is; when the implementation does not handle the reordering fast enough,

the packet loss timeout may expire and the packet is seen as ’lost’. This shrinks the congestion

window and decreases throughput.

Another factor in packet reordering is the algorithm that is used to do so. The researchers tested

this on the picoquic implementation with a linear and a splay algorithm at different packet loss

rates. The linear algorithm has a higher throughput at low packet loss rates but drops of more

quickly, making the splay algorithm more efficient with high packet loss rates and the linear

algorithm at low loss rates.
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In the multiple connections scenario, picoquic and mvfst show an increase in throughput when

the number of connections increases (up to a certain point). In case of out-of-order packet arrival

or packet loss the results are similar to the single connection scenario (e.g. picoquic’s throughput

remains constant, the throuhgput of mvfst and quickly drops).

The three main takeaways from [6] are:

• packet-IO uses the most CPU resources (around 50%)

• crypto uses the second most CPU resources

• the timely handling of packet reordering increases throughput.

A practical implementation of hardware offloading was done at Intel, where researchers offloaded

segmentation of the packets and also the cryptography for payload protection[17]. The offloading

was done on server grade hardware (Intel Ethernet Controller XL710 40Gbe backplane Adapter,

connected to an Intel Arria 10 FPGA). The offloaded cryptographic algorithm was AES-GCM

(AEAD AES 128 GCM, AEAD AES 128 CCM, AEAD AES 256 GCM, AEAD AES 256 CCM).

This offloading was compared with a software implementation that was already accelerated

through dedicated hardware instructions. The offloads were only done on short header pack-

ets as they are most commonly used for the actual application data transfer. Furthermore, the

used implementation was based on draft 11 of the IETF standard[18], which means no packet

header encryption was done and the offloading is only used for payload protection.

A number of tests were conducted in which a number of clients send requests to a QUIC server.

The number of requests and size of data served by the request were kept constant between ex-

periments. The amount of CPU cycles for completing the task as well as the time to complete

all the requests and the average and maximum throughput achieved were measured. On aver-

age, the segmentation offloading showed a 10% reduction in CPU utilization and 12% higher

throughput. Similarly, crypto-offloads showed a 13% reduction in CPU utilization and a 13%

increase in throughput. Combining both segmentation and crypto-offloading resulted in a 16%

CPU utilization improvement and throughput increased by 32% on average.

The researchers from [17] also propose an interface for the passing of cryptographic parameters

and segmentation information from user-space to the offloading hardware.
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Chapter 3

Design and implementation

In this chapter a hardware/software co-design for decrypting QUIC packets is constructed using a

top-down design approach. First an ideal design is imagined with near unlimited design resources

and time available. Next, a proof of concept design is discussed where parts of the ideal design

are left out or simplified in exchange for hardware resources and development time.

3.1 Ideal design

In this section an ideal design for offloading the decryption of QUIC packets is outlined and

analysed. The main goal of this ’ideal’ design is to decrypt QUIC packets immediately after

their arrival on the hardware Ethernet interface. The reason for this is because the QUIC stack

is situated in user space and the data copy between user space and kernel space is expensive. A

drawback of this ideal design is that all processing steps that happen before the offloading task

when receiving a packet (or after sending) have to be done in hardware as well. Figure 3.1 shows

this ideal workflow for decryption.

Figure 3.1: Ideal hardware/software co-design for decryption with hardware offload before data
copy to user space

A less efficient solution would thus be; sending the encrypted packet to the QUIC stack on arrival

and then checking in software which connection it belongs to and what the session keys are, etc.

The message, keys and nonce would then be sent through a device driver to the offloading

hardware, which decrypts the payload and sends the plaintext back to user space. Now there is

the added overhead of not only copying the entire payload from user to kernel space and back,

but also the sending of data to and from the offloading hardware, over a bus interface. This

way, most of the benefits from the hardware decryption are cancelled out by the data copy. A

graphical representation of this workflow is shown in Figure 3.2.



Figure 3.2: Less performant hardware/software co-design with hardware offload between user
space processing

The ideal design comes with some added complexity in hardware. Before any offloading can be

done, the incoming Ethernet frame has to be parsed to check if it contains a QUIC packet. If so,

a check has to be done if the packet is from an existing connection for which keys are available.

This can be done by parsing the destination connection ID and doing a lookup in a connection

table for this ID. If the lookup has a match, an address is returned, with which all the keys can

be retrieved from memory. Once the keys are retrieved, the header protection can be removed.

When the plaintext header is available, the key phase can be determined and the correct key/IV

combination can be selected for removing the payload protection. In the payload protection

removal stage the packet is decrypted and it is here that the data flowing in the pipeline has

to be replaced with the decrypted bytes. At the end of the payload protection removal, a tag

will be returned from the hardware AEAD function, which will be compared to the last 128 bits

of the QUIC payload. The message is now decrypted and authenticated. If the authentication

failed, the packet is discarded before it reaches the software, saving it from needless processing

and data copy. Ideally, a counter of failed authentications should be kept so the software can use

it to identify possible problems or attacks. If no QUIC packet was detected, the packet simply

passes through the pipeline without any replacement of bytes.

Finally, an important detail still has to be mentioned: How does the QUIC stack know if the

incoming message has already been decrypted? An option would be to explicitly add a bit/byte

as a flag in front of the Ethernet frame and notify the the kernel drivers of what this flag is, so

it can be propagated up to the QUIC stack to indicate if the packet was decrypted. However,

this is a cumbersome task as it requires modification of the underlying protocol stacks like

Ethernet, IP and UDP. Adding this byte in front of the QUIC packet payload (so within the

UDP/IP/Ethernet payload) also adds complexity because this would falsify the checksums in the

underlying protocols and invalidate their length fields, requiring logic to update them.

Another option is the implicit option. Here, the QUIC stack saves a shadow copy’ of the DCID’s

for which it has passed the keys to the hardware. This way it knows that all incoming packets

from a DCID that is present in the hardware LUT have already been decrypted on arrival. Figure

3.3 shows a general design flowchart for this decryption offload

3.2 Proof of concept design

To test the viability of the ideal design with limited resources and time, a proof of concept (PoC)

is made that aims to follow the general design flow of the ideal design, while making compromises
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Figure 3.3: ideal hardware/software co-design for QUIC packet decryption offloading

in the completeness. This is possible because for tests, certain parameters can be chosen, like

which combination of network stacks are used for sending the data. Figure 3.4 shows the design

flow of the proof of concept for decryption of 1-RTT QUIC packets.

Figure 3.4: proof of concept hardware/software co-design for QUIC packet decryption offloading

Firstly, the parser for the proof of concept will only detect possible 1-RTT QUIC packets in an

Ethernet/IPv4/UDP stack. All downstream modules will use metadata which is generated by

this parser. The parser works independent of the stacks underneath UDP. A commercial design

would only need to add support for the other possible underlying stacks.

Next, the DCID lookup stage only takes into account DCID’s of length 20. This is because the

lookup in hardware is always done for a certain length. A solution would be to have 20 lookup

tables for all the possible DCID lengths, because a shorter DCID could be a prefix of a longer

one. If this happens, the longest match should be taken. These lookups would be done in parallel

so the result is found in fixed time. Another option would be do the lookup repetitively for the
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different lengths. However, this way the lookup is not fixed time which is in conflict with that

design principle.

The next step is to retrieve the keys of a connection when a DCID match was found. The DCID

lookup returns an address with which the keys can be retrieved. In this manner, multiple DCID’s

belonging to the same connection can point to the same keys. For every connection, the keys

for the current key phase are saved in memory as well as the keys for the next key phase (which

are calculated in advance). Ideally, when a key update occurs, the previous key phase should

be remembered for one round-trip-time to accommodate for out-of-order packets. This would

also require additional logic to check if the packet is older than the packet that initiated the key

update (by checking the packet numbers). This ”previous key memory” is not supported in the

proof of concept design. Consequently, authentication will fail (and the packet will be dropped) if

an out-of-order packet arrives that was encrypted with a key that was replaced with a newer one.

Nevertheless, if the key updates do not happen too frequently, the amount of packets dropped

for this reason will be negligible.

The fastest way to retrieve the keys would be to have 5 different memories for: the header pro-

tection key, payload protection keys for both key phases and IV’s for both key phases. However,

for the proof of concept a single memory is used that is accessed in 5 consecutive clock cycles

(one for each of the keys), where every cycle the address is increased by one, starting from the

base address. The advantage of the latter approach is that the individual address can be used

to change a single key, while in the former approach all keys would have to be rewritten simul-

taneously or extra logic would be needed to select which single key would need to be changed.

The changing of single keys is needed because the header protection key never changes and with

a key phase update, only one pair of the secrets changes.

Once the keys are available, the header protection can be removed. For the proof of concept, the

AES-ECB cryptographic function is supported. Once the header protection is removed, the key

phase can be determined. The correct key and IV pair can be passed to the payload protection

stage. In the payload protection stage, the AES 128 GCM AEAD function is supported. In the

proof of concept design, the discarding of a packet does not happen in hardware. The reason

for this is that the tag is located at the end of the packet, so long packets might already be

largely in the output FIFO or even in the PS by the time the tag is compared. Subsequently,

those bytes can not be dropped anymore. The solution is to replace the tag with all zeros if the

authentication failed. In software, the QUIC stack has to check the tag first. If the tag is all

zeros, the packet can be dropped, otherwise processing can continue and no further decryption

has to be done. This approach has the possibility of dropping a correct packet if the packets

actual tag is all zeros. However, the chance of that happening is 1 in 2128, which is negligible.

Furthermore, the packet would be retransmitted with a different packet number which changes

the tag.

3.3 Practical implementation

3.3.1 The pipeline

The system is designed to be placed between the hardware Ethernet interface and the networking

device on the PS side. For arriving packets, the data flows from the Ethernet interface to the
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networking device. The networking device is for example a FIFO or DMA device that is read by

the PS. On the Ethernet interface side, there has to be a module that converts the signals from

the Ethernet PHY to the used internal interface. The chosen interface for data transfer between

those devices is the AMBA AXI4-Stream interface. This is mainly because of it is a ubiquitous

protocol and the Ethernet PHY to AXI4-Stream conversion intellectual property (IP) blocks are

available from Xilinx.

The AXI4-Stream interface is 4 bytes (32 bits) wide. The signals that are used in the decryption

system are TVALID, TSTROBE, TLAST and TREADY, where TREADY is driven by the slave

(PS side FIFO) and the others are driven by the master (Ethernet interface side). TVALID

indicates that the 4 bytes of data (TDATA) contains valid data. TSTROBE is 4 bits wide and

indicates which bytes of TDATA are valid. TLAST indicates the last byte of a packet. TREADY

indicates if the slave can take data.

Figure 3.5: Modular representation of the proof of concept hardware pipeline with interfaces

The decryption pipeline consists of two side-by-side lines of parallel in parallel out shift registers

between the input and output; the data path and the metadata path. The data path is 32 bits

wide and always contains byte aligned data. The metadata path starts at 6 bits wide (TVALID,

TSTROBE and TLAST) but expands with new metadata after the parser.

The pipeline is split up in to 5 different modules:

• the parser module

• the DCID lookup module

• the key memory module

• the header protection module

• the payload protection module

This compartmentalisation allows for the modules to be exchanged with other versions or more

efficient implementations in the future, without affecting the other stages. For example, if the

in- and outputs of the pipeline use a different protocol than AXI4-stream, only the parser has

to be replaced with one that generates the correct metadata based on that other protocol. An-

other benefit is that the modules can be implemented in parallel by the researchers. To control
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the modules and update the keys, an AXI4-Lite control module also supervises the pipeline.

Figure 3.5 shows the system with these modules and their interfaces.

3.3.2 The parser

The parsing module provides metadata on a per byte basis so the following modules can determine

of which protocol each byte is. In the case of a 1-RTT QUIC packet, the possible DCID bytes

are also flagged as such. The parser has to do this using the TVALID, TSTROBE and TLAST

metadata signals and the data. It detects the start of an Ethernet frame when TVALID first

goes high or if TVALID is high and TLAST has toggled from high to low. The locations of the

fields and header lengths are fixed for an Ethernet/IPv4/UDP stack as explained in section 2.2.

This allows the parser to count the byte offset to flag the bytes with their protocol. By checking

the protocol field in the Ethernet frame the next header can be determined. If the next protocol

is IP, the next header field can be checked to determine if the included payload is UDP. If so,

the UDP bytes can be flagged as such and the payload could possibly be a QUIC packet.

In the metadata, the protocol field is 3 bits wide and is present for every byte of data. The DCID

field is 1 bit per byte. The encoding of the protocols are shown in table 3.1.

Table 3.1: Encoding of the protocol fields in the metadata registers

protocol encoding

Ethernet ”000”

IPv4 ”001”

UDP ”010”

1-RTT QUIC ”011”

Unknown ”100”

Padding ”101”

3.3.3 The DCID lookup module

In the DCID lookup module the passing packet is checked if it is part of an active connection

for which keys are available. The potential DCID from the packet is copied on the basis of the

metadata from the parser module. Those 20 bytes, that are flagged as DCID bytes, are the input

of a content addressable memory (CAM). The CAM works by running the DCID through a hash

function (Xoodoo)[19] which results in an address. That address is the address from which a

memory is read or written in the CAM. The value inside the memory at that location is another

address which serves as the base address where the keys of the connection belonging to that

DCID are located in the key memory module.

When performing a lookup, the DCID could possibly not be from a valid connection. Neverthe-

less, the hash function always has an output and thus an address. To indicate that the lookup

does not belong to a connection, the value zero is returned from the memory in the CAM. Be-

cause the memory is initialized to all zeros, there are no valid connections at the start. The

DCIDs can be assigned to a connection. The address at which the corresponding keys will be

stored in the key memory module, will be written to the memory of the CAM at the location of

the DCID. The resulting address is thus valid, provided that this address is not zero.
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If a DCID is valid, the address valid signal at the output goes high for one clock cycle while the

value for the address is also set at the output. No changes to the metadata happen if the DCID

is valid. If there was no DCID match, the protocol fields in the metadata are changed from

”1-RTT QUIC” to ”unknown”. This way the downstream modules do not perform any tasks

with the packet. A more in depth explanation of how this module works can be found in [20].

3.3.4 The key memory module

When the address valid signal from the DCID lookup module goes high, the key memory module

starts collecting the keys. This is done by copying the 10-bit address value into a register. This

address register is the input to a memory block. The output of the memory block is a connection

secret. When fetching the keys, the key at the presented address is first copied into a 128-bit

register. Next, the address register is incremented by 1 and the output is again copied to another

register. This copying is repeated 3 more times to retrieve all the keys. The location and offsets

of the keys in memory are shown in table 3.2. A more detailed explanation of this module can

be found in [21].

Table 3.2: Key locations in the key memory with offsets

address secret

Base address + 0 header protection key (hp key)

Base address + 1 payload protection key for key phase 0 (pp key0)

Base address + 2 initialization vector for key phase 0 (iv0)

Base address + 3 payload protection key for key phase 1 (pp key1)

Base address + 4 initialization vector for key phase 1 (iv1)

Once all these secrets are copied into their respective registers, the keys valid signal is driven

high to signal the header protection module that the keys are available.

3.3.5 The header protection module

The header protection module does the decryption of the masked header fields as described in

section 2.1.5.

Copying the keys

Firstly, if the keys valid signal at the input is high, the header protection secrets as well as the

payload protection secrets for both key phases are copied into registers. The previous modules

are built in a way that this always occurs on the same clock cycle as when the first QUIC byte

enters the header protection module. These keys stay in their registers as long as the QUIC

packet, to which they belong, is in the hardware.

Header protection sample

The input to the AES 128 ECB module is the 128 bits sample after the packet number, under

the assumption that the packet number length (PNR len) is 4 bytes. With the constraint of 20

byte DCIDs, the offset of the first sample byte is at 1 + 20 + 4 = 25 bytes from the start of the
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QUIC packet. The start of the QUIC packet is always at the third byte in a 32-bit shift register

in a Ethernet/IPv4/UDP stack, which means the last DCID byte is always in the fourth byte in

a register. Figure 3.6 shows the location of the sample in an Ethernet frame in the pipeline in

green. The skipped bytes are shown in orange.

Figure 3.6: Ethernet frame containing a QUIC packet in the pipeline. The location of the
sample input for AES-ECB is shown in green.

Calculating the mask

The mask is calculated using an iterative AES module for FPGAs. This means only a single AES

round is implemented in hardware with an input register that is filled with the round-output on

consecutive rounds. This results in relatively low FPGA resource usage. The implementation of

this module was provided by ES&S.

A simple check can be done for the last DCID byte by inspecting if the DCID metadata changes

from high to low. At this point, the 4 bytes after the last DCID byte are skipped and the 16

bytes after that serve as the input to the AES 128 ECB module. Furthermore, when this occurs,

the AES-ECB goes to the RUNNING state. In this state, the AES 128 ECB module is enabled

and the mask is being generated. The AES 128 ECB module takes 10 cycles to complete. This

is also the amount of registers that are used as delay, to guarantee synchronization. When the

AES module is done, the AES done signal resets the state to INIT and indicates that the output

of the AES 128 ECB module is valid. This output is the mask and can now be used to decrypt

the header.
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Applying the mask

When the AES done signal is high, the 5 least significant bits of the QUIC info byte (first QUIC

byte) are XORed with the 5 least significant bits of the least significant byte in the mask. The

PNR len is now decrypted (2 least significant bits of QUIC info byte) and determines how many

bytes after the last DCID are XORed with the mask. All bits that were XORed are replaced

with their respective output of the XOR.

Figure 3.7: Hardware schematic of the header protection module (without key copy and key
passthrough

Passing keys to the payload protection module

After applying the mask, the key phase is now the third least significant bit of the plain QUIC

info byte. The pp key and IV for that key phase are passed to the output. Next, a keys valid

signal goes high to notify the payload protection module that the correct secrets are available.

3.3.6 The payload protection module

The payload protection module decrypts the payload and authenticates the QUIC packet. If it

receives a 1-RTT QUIC packet, the header is already decrypted by the header decryption (see

section 3.3.5).

Copying the keys

This step is done analogous to section 3.3.5, with the exception that only the pp key and IV

belonging to the detected key phase are copied.

Note that the IV is not directly the input to the nonce/IV of the AES-GCM module but rather

the XOR of the IV and the packet number. The packet number is parsed from the incoming

packet by saving the packet number length in a register when it arrives in the module and copying

that amount of bytes after the last DCID bit when it arrives.
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Input stage

The input stage is built as a state machine to keep track of which type of data is being fed to the

AES-GCM module. A flowchart for this state machine is shown in figure 3.8. Count4 denotes the

value of a 2-bit counter that keeps track of the clock cycle the state machine is in (as a multiple

of 4) since the START state was entered. As long as no QUIC packet is detected, the input is in

the WAIT state. When the first QUIC byte arrives, the input enters the START state where the

Start (S) command is sent to the AES-GCM module. After 4 clock cycles, the AUTHENTICATE

state is entered where the additional authenticated data (QUIC header bytes) is sent to the AES-

GCM module in blocks of 128 bits. When all header bytes were added as input, the DECRYPT

state is entered. The payload is now fed to the AES-GCM module in blocks of 128 bits until the

first QUIC tag byte arrives. After that, the FINISHED state is entered and the concatenation

of the header length and payload length is the input of the AES-GCM module. These lengths

are parsed from the UDP header length field in combination with the fixed DCID length and the

parsed packet number length (PNR len). Equations 3.1 and 3.2 are used to calculate the length

of associated data (A) and ciphertext (C) respectively in bits.

len(A) = (21 << 3) + (PNR len << 3) (3.1)

len(C) = (UDP length << 3)− (21 << 3)− (PNR len << 3)− (16 << 3) (3.2)

Figure 3.8: Flowchart for the payload protection module input stage

The input to the AEAD AES 128 GCM function is 128 bits (16 bytes) wide. This is the amount

of bits that have to be available in the module at a minimum. This means it takes 4 clock cycles

to shift in enough data with 32 bit registers. The fastest speed at which the AES-GCM module

can take this input is once every 4 clock cycles. With this in mind, and the fact that the QUIC

header for 1-RTT packets with 20 byte DCIDs varies between 22 and 25 bytes in length, the

header can be added as additional authenticated data in 2 blocks. However, the second block

will only be between 6 and 9 bytes, so the input mask is used to indicate that the remaining
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bytes are padding. As a consequence of the 6 to 9 byte input and maximum input rate of the

AES-GCM module, the first payload input for decryption will have shifted two registers further.

Finally, when the QUIC tag arrives, the last input bytes of the payload are sent to the AES-

GCM module. However, because the last payload input can be 1 to 16 bytes, the remaining bytes

(which are tag bytes) are again masked with zeros. The input selection is shown in figure 3.9.

Figure 3.9: Input selection for the to be authenticated and decrypted data in function of the
clock cycle from the start of authentication

Decryption stage

Contrary to the header protection module, the payload protection uses a pipelined AES imple-

mentation for the AES 128 GCM function. This was necessary to achieve the same speed as

the pipeline, at the cost of FPGA resources. If the AES 128 GCM module was made with an

iterative AES module, the fastest rate at which data could be processed is 128 bits every 10

clock cycles. With the pipelined AES-GCM, the maximum data rate is 128 bits every 4 clock

cycles. This is the same data rate as the rest of the pipeline, which avoids the need to stop the
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pipeline while decrypting. The pipelined AES 128 GCM module is described in section 3.3.7. In

total, the delay of the AES-GCM module is 13 clock cycles. The data and metadata pipelines

are delayed with the same amount of clock cycles using registers.

Output stage

The output stage uses a copy of the state machine of the input stage to determine which type

of data is passing. The decryption stage is used to replace the encrypted payload data with the

decrypted data at the output of the AES-GCM module, using some control logic in combination

with a multitude of multiplexers. The finished state is finally used to compare the last 16 bytes of

the QUIC packet with the output of the AES-GCM module at that point (which is the calculated

tag). If both tags are equal, no further action is taken. If the tags are not the same, a failed

authentication counter is increased by 1. The failed authentication counter is also accessible for

reading by the AXI4-stream interface.

3.3.7 The AEAD AES 128 GCM pipelined module

The pipelined AES 128 GCM module is made up of two main stages: the encryption stage and

the authentication stage. A pipelined AES module is the workhorse of the encryption stage

which takes 9 clock cycles to complete. Parallel to the AES pipelined module are 9 registers of

128 bits wide to delay the input with that same amount of cycles. Similarly, the command that

was given at the input is delayed by 9 cycles using registers. The authentication stage performs

the GHASH function which takes 4 cycles to complete. Again, the input data and command, as

well as the AES output, are delayed for 4 cycles using registers.

At the start of an AEAD operation, 128 zeroes are encrypted using the AES module with the key

to calculate the value for H that will be used by the GHASH module. Next, additional associated

data can be fed to the module in blocks of 128 bits using the input and inputmask1. When feeding

associated data, the AES pipelined module is not used, the input is delayed for 9 cycles after

which it is sent unmodified to the GHASH function. In this case, the output is the unmodified

associated data. Following this, the ciphertext can be decypted in blocks of 128 bits, again

by using the input and inputmask signals. When decrypting, the 96-bit nonce is concatenated

with the value of a 32-bit counter that is initiated with the value ’1’. The counter (CTR) is

increased by 1 with every authenticated decrypt (AD) command. The input ciphertext is again

propagated up to the GHASH, where it is fed to the GHASH function for authentication. When

decrypting (or encrypting), the output is the XOR of the output of AES pipelined module and

the input data. Finally, when all data has been decrypted/encrypted, the tag can be calculated

by encrypting the concatenation of the nonce and 32 zeroes with the AES pipelined module and

feeding the concatenation of the 64-bit representation of the length of associated data and the

length of the ciphertext/plaintext in bits to the input. In that case, the output is the XOR of

the outputs of the AES pipelined and GHASH modules.

The module is controlled using commands. These commands are eplained in Table 3.3. The

fastest speed a which commands can be fed to the module is once every 4 clock cycles, with the

exception of the first authenticated data (A) which can be fed immediately after the start (S)

command. This is due to the GHASH module needing 4 cycles to authenticate a block of data.

1The inputmask is used to add padding to an input block when the associated or decrypted data is not a
multiple of 128 bits and does this by doing a bitwise AND with the input.
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Thus, the speed of the AES 128 GCM module is limited by the GHASH module. If a single cycle

implementation of the GHASH function would be available, the data rate can by 128 bits per

clock cycle.

Table 3.3: AESGCM pipelined module commands with explanation

Command explanation

S start command (calculates H for the GHASH block)

A Authenticate additional data (add 128 bits of associated data)

AD Authenticated decrypt (add 128 bits of data to be decrypted and authenticated)

AE Authenticated encrypt (add 128 bits of data to be encrypted and authenticated)

F Finish (add length data and produce the authentication tag)

Figure 3.10: Hardware schematic of the AESGCM pipelined module

AES pipelined

The pipelined AES module unrolls the AES algorithm into its 10 rounds with registers between

each round for the data and roundkeys. More precisely, first the unmodified key is added followed

by 9 normal rounds of subsitute bytes, shift rows, mix columns and add roundkey followed by a

final round without mix columns. In each round, the roundkey is calculated using the previous

key in a keyGenerator step. In hardware, the subBytes, shiftRows and mixColumns modules

were provided by ES&S. The normal AES round modules calculate their roundkey using a round

constant, which is hard coded into the modules based on which round they are. A representation

of an AES round module and the final AES lastround module are shown in Figure 3.11. The

hardware schematic of the AES pipelined module is shown in Figure 3.12.
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Figure 3.11: Hardware schematic of the AES round (left) and AES lastround (right) modules

Figure 3.12: Hardware schematic of the AES pipelined module

GHASH

The GHASH module uses a state machine to identify in which stage of authentication the module

is. The state machine starts in the INIT state, where the data at the input is loaded into the input

register for the MALU (which performs the modular multiplication with H). When a data valid

signal2 goes high and the chip enable (ce)3 is high, the CALCULATE state is entered. The

MALU takes two cycles to complete its calculation, where the second cycle the input data has to

be shifted 64 bits to the left. When the MALU has finished calculating, it pulses a MALU done

signal after which the state machine enters the WAITING state, where it holds the output of

the MALU in a register. In the WAITING state, the next input to the input register is the XOR

of the output and input. Thus, after the first block of authenticated data, the state switches

between calculating and waiting for as long as there is data to authenticate, and goes to the

INIT state after data valid goes low.

Figure 3.13: Hardware schematic of the GHASH module (left) and its state machine (right)

2data valid in the GHASH module has to stay high as long as there is data to be authenticated, otherwise the
authentication state is discarded

3chip enable (ce) in the GHASH module is a pulse that indicates a new block of data to be authenticated has
arrived
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3.4 Control

3.4.1 AXI4-lite controller

The decryption hardware can only perform its task if the key memory has keys for a connection

and the DCID lookup module has the corresponding addresses. Consequently, a memory-mapped

controller is made with a accessory linux device driver. The AXI4-lite protocol is used for writing

to the controller’s registers. The PS is connected through a AXI interconnect to the controller.

The memory-map of the controller registers is shown in Figure 3.14.

Figure 3.14: Memory map of the controller registers

Usage

When writing connection secrets, the value of the secret is written to key memory value 0 to 3,

totalling 128 bits. Next, the address in memory, to which the secret has to be written, is set in

key memory address. Now, to write the secret to the given address, the third least significant bit

of the control register CR has to be set by writing 0x4 to the CR.

When writing a connection ID, the value of the DCID has to be written to DCID register 0 to 4,

totalling 160 bits. Next, the base address for the connection secrets corresponding to that DCID

are written to DCID address. Now, to complete the transaction, the least significant bit of the

CR has to be set by writing 0x1 to the CR.

To invalidate/discard a connection ID, the DCID has to be loaded into the DCID registers and

the second bit of the CR has to be set (by writing 0x2 to the CR).

3.4.2 linux kernel driver

The accessory driver is a linux character device driver. Firstly, the physical hardware addresses

(see Figure 3.14) are remapped to virtual addresses. IOCTL functions are used to set the write
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state and perform control operations. The IOCTL functions are shown in Table 3.4. Some of

the IOCTL functions are used to set the drivers write state. The write state determines which

physical registers are written to, when a write to the device file is performed. The write states

are explained in Table 3.5.

Table 3.4: IOCTL function of the PoC control driver

IOCTL name explanation

IOCTL CLEAR DCID Discards the DCID written to the registers (CR=0x2)

IOCTL WRITE DCID Writes the DCID written to the registers (CR=0x1)

IOCTL WRITE KEY Writes the secret written to the registers (CR=0x4)

IOCTL RESET CONTROLLER Resets the controller

IOCTL SET DCID Sets the write state to DCID VALUE WRITE

IOCTL SET DCID ADDRESS Sets the write state to DCID ADDRESS WRITE

IOCTL SET KEY Sets the write state to KEY VALUE WRITE

IOCTL SET KEY ADDRESS Sets the write state to KEY ADDRESS WRITE

Table 3.5: Write states of the PoC controller driver. Determines which registers are written
upon a write to the device file

Write state explanation

DCID VALUE WRITE Write to DCID registers

DCID ADDRESS WRITE Write to DCID address registers

KEY VALUE WRITE Write to key memory value registers

KEY ADDRESS WRITE Write to key memory address register

Usage

An example python program that writes keys to the PoC with the kernel driver from this section

is shown in appendix A.

3.5 Test setup

To verify the design, a test setup uses input and output FIFOs serving as the in- and outputs of

the decryption system. A FIFO at the input is filled with packet data and metadata to simulate

the AXI4-stream protocol using a test setup linux device driver. The DCIDs and keys are written

to their respective modules using the AXI4-stream control block and the proof of concept device

driver. Using an enable signal, the packet is passed through the PoC system and the output

FIFO is filled with the decrypted packets. In software, the output FIFO is read and the packets

are compared with verification packets. A semi-automated test program compares the packets

and gives info of where differences are detected. The input packets and verification packets are

generated using a python program that makes files with both the plain and encrypted versions

of the packets in a binary format. Figure 3.15 shows a block diagram of this test setup.

To measure the performance benefit of the POC design, the decryption speed and CPU resource

usage were measured for both the software decryption using the picoquic stack with openSSL,
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and the hardware decryption using the POC design. The packet size was varied to determine its

influence on decryption speed in both cases.

Figure 3.15: Test setup for verifying the functionality of the proof of concept hardware

3.5.1 Platform choice

The hardware from section 3.3 is designed to be used on an FPGA platform. The QUIC stack,

with which the hardware should be combined, is run on a processor with an operating system

(OS). Thus, the chosen hardware platform must have a processor capable of running a (preferably

linux) OS and be able to communicate with hardware on an FPGA. A ZYNQ7000 series FPGA

with a dual-core ARM cortex-A9 processor on a PYNQ-Z2 board was chosen based on this

requirement and availability.

Figure 3.16: PYNQ-Z2 board with a ZYNQ7000 series FPGA. From: [7]
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3.5.2 QUIC implementation choice

The choice for a QUIC implementation in the context of this research is guided by the following

requirements:

• compliance with the IETF standard

• minimal overhead induced by programming language abstractions

• readability and comprehensibility of the code

• ease of use

An actively updated list of QUIC implementations can be found at [22]. To comply with the

requirements, only the section ’IETF QUIC Transport’ from the list is taken into account. Min-

imal programming language induced overhead is achieved by narrowing the list down to the

C/C++ implementations. An argument could be made for implementations in the ’Rust’ pro-

gramming language as it is ’low level’ as well. However, lack of experience with that language

makes it a less suited candidate for this Master’s thesis. Picoquic[23] was then chosen for its

relative simplicity in comparison to implementations like mvfst[24] by Facebook, Chromium[25]

by Google and Quant[26]. Moreover, Picoquic has good integration with picoTLS. PicoTLS is

a cryptographic library that is also required to get the implementation running. PicoTLS has

already been proven usable on ARM-based systems[27] in combination with Quant.
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Chapter 4

Results and discussion

This chapter aims to characterise the PoC design and give some initial performance comparison

with software decryption. Section 3.5 explains how the performance tests were performed. Firstly,

the timing constraints of the design after synthesis are given. Next, the resource usage is analysed

and the raw throughput is calculated. The decryption speed measurements for both hardware

and software decryption are listed and compared. Finally, the limitations and possible solutions

for them are explained.

4.1 FPGA synthesis results

4.1.1 Timing results

Table 4.1 shows the timing results after synthesizing the total PoC system for the PYNQ-Z2

board with the Vivado design suite. The maximum clock frequency is the frequency at which the

PL can run without exceeding the critical path’s delay in the PoC design. The ARM processor

has a separate clock that runs at a frequency much higher than that but communication can

take place due to the AXI4-Lite adapter. The maximum frequency for the PoC is found by

iteratively increasing the clock frequency until the worst negative slack (WNS) is as small as

possible without becoming negative. This was found at 83.33 MHz.

Table 4.1: Timing results after synthesis of the total PoC for the PYNQ-Z2 board

Frequency worst negative slack (WNS)

76,923080 MHz 0.136 ns

83.333336 MHz 0.054 ns

90.909088 MHz -0.220 ns

After analysing the timing summary in Vivado it was found that the critical delay path was

located in the MALU hardware (in the GHASH module). This was expected as a the calculation

involves a very wide (order of 1000’s of lines) XOR is performed. Improving this implementation

is the first step to increasing the maximum clock frequency of the PoC.



4.1.2 Resource usage

Table 4.2 shows the resource usage of the total PoC and its submodules for the PYNQ-Z2 board.

The slice LUT and register usage is the value after running ’optimize design’. The percentage

value for the slice LUTs and registers denotes the used fraction of their respective total available

resources on the FPGA. Note that all results are platform specific and might be better with more

performant hardware.

Table 4.2: Hardware resource usage after synthesis of the total PoC and submodules for the
PYNQ-Z2 board

Module Slice LUTs Slice registers

Parser 20 (0.04%) 10 (<0.01%)

DCID lookup 1147 (2.16%) 427 (0.40%)

Key memory 3375 (6.34%) 871 (0.82%)

Header protection 1548 (2.91%) 1622 (1.52%)

Payload protection 17146 (32.23%) 4959 (4.66%)

Total 23315 (43.83%) 7995 (7.51%)

The Payload protection module is clearly the largest module. This is a result of the pipelined

AES 128 GCM module, which has the pipelined AES module with 10 AES rounds and the two

cycle MALU.

4.1.3 Throughput

The raw throughput of the PoC hardware can be calculated by multiplying the maximum clock

frequency with the amount of bits that are processed every clock cycle:

Throughputraw = fmax · data width = 83.33 MHz · 32 bits = 2.67 Gbit/s

Note that this the maximum raw throughput, which includes headers and does not take into

account the speed at which the software can handle the incoming data.

4.1.4 Latency

The latency of the PoC denotes the amount of time a byte takes between the input of the PoC

and the output. This can be found by multiplying the amount of cycles it takes to propagate from

input to output with the clock period (from the maximum frequency) as shown in equation 4.1.

Table 4.3 shows the amount of register stage and their resulting delay.

tdelay = #cycles · Tclock (4.1)

where:

• tdelay is the delay in seconds

• #registers is the amount of cycles of delay a module introduces

• Tclock is the clock period
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Table 4.3: Delay introduced by the pipeline registers

Module #registers tdelay(ns)

DCID lookup 11 132

Key memory 6 72

Header protection 14 168

Payload protection 32 384

Total 63 756

4.2 Decryption speed

Figure 4.1 shows a the results for the decryption time in function of QUIC packet size for

software-only decryption with picoquic and for decryption in hardware with the PoC design.

The decryption in hardware can be calculated in nanoseconds with equation 4.2. The software

version runs on a OS and the decryption time is thus variable. The software decryption was

measured on a HP elitebook.

tdecrypt(sQUIC) = tlatency + ⌈soverhead + sQUIC

4
⌉ · Tclock (4.2)

Where:

• tdecrypt is the time needed to decrypt a QUIC packet in ns

• tlatency is the latency of the proof of concept design in ns (see section 4.1.4)

• soverhead is the amount of non-QUIC bytes in the packet (Ethernet, IP and UDP headers)

• sQUIC is the amount of QUIC bytes (header and payload)

• Tclock is the clock period in ns

Figure 4.1: Plot of the decryption time needed in function of packet size in software-only and
for the PoC
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After performing linear regression, the following relation was found between decryption time and

QUIC packet size for software-only decryption. Note that tdecrypt is in µs:

tdecrypt(sQUIC) = 0.006 µs · sQUIC + 3.2 µs

From equation 4.2 the slope of the decryption time of the PoC hardware can be found as 0.003.

From this, we can find that the decryption time in hardware is at least 2 times faster than with

picoquic on a hp elitebook laptop over the entire range of packet sizes. However, this is not the

main benefit of the hardware decryption. The advantage is that none of the decryption time

spent in hardware is performed on the CPU. Essentially, the total amount of CPU resources

and time that would normally be spent on decrypting a 1-RTT QUIC packet when it arrives is

freed up. These resources can than be spent on other tasks or on increased throughput. Note

that the increase in throughput is still dependant on a large amount of other factors such as the

user/kernel space data copy.

4.3 Limitations

This section will discuss some of the limitation of the PoC. These are limitations in the design

as well as the practical implementation. Where possible, potential solutions are proposed.

4.3.1 Only 1-RTT packets (short header packets)

The PoC is made for 1-RTT packets only. Offloading decryption of this packet type should give

the largest benefit as after completion of the handshake, all data is exchanged with this packet

type. In most cases this will means that most of the packets will be 1-RTT. However, for smaller

requests, the proportion of other packet types will become higher. In that case, also offloading

other packet types might become beneficial. However, doing so would require more hardware

resources which is a trade-off that has to be considered.

For example, supporting hardware decryption of initial packets upon arrival would require the

secrets to be calculated in hardware as well (because the DCID is used in the HKDF function).

Thus, the HKDF function and its hashing algorithm would also need to be implemented in

hardware. The question remains if the performance gain of doing this is worth the extra hardware

resources.

4.3.2 Only 20 byte DCIDs

The PoC only supports 20 byte long DCIDs and uses this as a fixed offset for detecting where

the QUIC header stops, etc. However, in a future design it would be desirable to support all

DCID lengths and even zero length DCIDs in combination with the 4-tuple. This would require

a substantial rework of the design.

4.3.3 Incomplete parser

The parser in the practical implementation of the PoC is currently highly oversimplified. It

marks all packets as a Ethernet/IP/UDP/1-RTT-QUIC packet. It is the DCID lookup module
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that eventually detects if it actually is a valid 1-RTT QUIC packet. Granted, there is a very low

probability that a DCID match is found if a packet is not actually of the 1-RTT type.

4.3.4 No packet dropping in hardware

In the PoC, packets are signalled to have failed authentication by replacing the tag at the end

of the packet with all zeros. This means the entire packet is still copied to software, where the

check for a null tag is done and subsequently, the packet is dropped. This still creates some

unnecessary overhead that could even be exploited by an attacker to perform a denial of service

attack. Consequently, dropping the packets in hardware would prevent these needless steps in

software.

A possible way to do this practically would be to pass the packets to DRAM instead of a simple

FIFO at the processing system side. Upon failed authentication, the hardware could then ’fail’

to notify the PS that a packet has arrived, preventing the packet to ever reach the software.

The authentication failure counter can be used to detect an attack by measuring how fast it is

increasing.

4.3.5 Out-of-order packets after key update

As explained in section 3.2, out-of-order packets that arrive with an older key than is available

in the lookup table are dropped because their authentication will fail. This will have an impact

on the performance of the protocol because retransmissions have to be done. How large of an

impact this has will be dependant on how frequent key updates occur in combination with how

high the rate of out-of-order packet arrivals is.

A possible solution to this is to save the previous key and IV in hardware for about 1 round

trip time and also save the last highest acknowledged packet number for that connection. The

hardware can then use the packet number of the arriving packet to check if it has arrived out-

of-order and subsequently if it has to use the older key and IV.

4.3.6 Single RAM block for keys and IVs

By using a single 128-bit wide RAM block for the all the secrets, some space is wasted because

the IV is just 96 bits wide and the remaining 32 bits are filled with zeros. A better solution

would be to implement 5 different RAM block for each secret (hp key, pp key0, iv 0, pp key1,

iv 1).

4.3.7 Fully separated modules

As explained in section 3.3, the practical design was split up into sections for easier develop-

ment. This is at the cost of hardware resources and latency because there is no overlap in the

modules. For example, the header protection module has 5 register stages before the AES-ECB

module to gather the input for the AES-ECB module. These 5 registers could be taken from the

previous module (key lookup). This could be done similarly in the payload protection module.

Subsequently, less registers would be used and the latency would be reduced.
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Chapter 5

Conclusion

The proof of concept design shows it is possible to decrypt QUIC packets in hardware without

needing extra data copy between user space and kernel space. This is done by placing the

decryption system directly after the Ethernet interface and decrypting the packet before it is

accessed by the CPU. A linux kernel driver was created to write connection information, such as

secrets, to the PoC using an AXI4 interface.

The PoC hardware decryption frees up CPU time and resources which can be used on other

task or increasing throughput. The maximum raw data throughput of the PoC is 2.67 Gbit/s.

The initial design makes a number of simplifications such as; only decrypting 1-RTT QUIC

packets, only allowing 20-byte DCIDs and only supporting the AEAD AES 128 GCM cipher

suite. Moreover, there is no integration with a QUIC implementation yet. Instead, an artificial

test setup was used.

The decryption speed of the PoC hardware was measured and compared with software-only de-

cryption (picoquic) on a HP elitebook laptop. This was done for a multitude of QUIC packet

sizes ranging from 23 bytes to 1126 bytes. Over the entire range of packet sizes, the hardware

decryption is at least 2 times faster than software decryption. However, this number is heavily

dependant on the other tasks running on the OS. Furthermore, the used CPU as well as FPGA

have an effect on the performance of both software decryption and hardware decryption respec-

tively. Furthermore, a number of improvements could be made to increase the performance of

the hardware decryption such as decreasing the critical delay path which increases the maximum

clock frequency.

In future work, a comparison should be made with server grade hardware to give a more realistic

view of the performance characteristics. Furthermore, the hardware should be fully integrated

with a QUIC software stack and the functionality should be expanded to perform more thorough

measurements such as maximum QUIC data throughput, network latency and other parameters,

while including overheads such as data copy.
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Appendix A

Python program for writing keys to

hardware

from sys import argv

from os import path

from f c n t l import i o c t l

# convers ion o f C i o c t l ’ s to python i o c t l ’ s

IOCTL SET DCID = 101 << (4∗2) | 0x0

IOCTL SET DCID ADDRESS = 101 << (4∗2) | 0x1

IOCTL SET KEY = 101 << (4∗2) | 0x2

IOCTL SET KEY ADDRESS = 101 << (4∗2) | 0x3

IOCTL CLEAR DCID = 101 << (4∗2) | 0x4

IOCTL WRITE DCID = 101 << (4∗2) | 0x5

IOCTL WRITE KEY = 101 << (4∗2) | 0x6

IOCTL RESET CONTROLLER = 101 << (4∗2) | 0x7

try :

f i l e n ame dc i d s = argv [ 1 ]

f i l ename key s = argv [ 2 ]

f i l ename out = argv [ 3 ]

except ( IndexError , ValueError ) :

qu i t ( )

#read dc id ’ s

with open( f i l e n ame dc i d s ) as f d d c i d s :

d c i d i n l i n e s = fd d c i d s . r e a d l i n e s ( )

d c i d i n l i n e s = [ l i n e . r s t r i p ( ’ \n ’ ) for l i n e in d c i d i n l i n e s ]

#read keys

with open( f i l ename key s ) as fd key s :

k e y i n l i n e s = fd key s . r e a d l i n e s ( )

k e y i n l i n e s = [ l i n e . r s t r i p ( ’ \n ’ ) for l i n e in k e y i n l i n e s ]

for x in range ( len ( d c i d i n l i n e s ) ) :

d c i d l i n e = d c i d i n l i n e s [ x ]
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dc id addr e s s = [ [ ] for i in range (4 ) ]

d c id addr e s s [ 0 ] = 0

dc id addr e s s [ 1 ] = 0

dc id addr e s s [ 2 ] = int ( d c i d l i n e [ : 2 ] , 2)

dc id addr e s s [ 3 ] = int ( d c i d l i n e [ 2 : 1 0 ] , 2)

dc id = [ [ ] for i in range (20) ]

for i in range (20) :

dc id [ i ] = int ( d c i d l i n e [10+ i ∗8:18+ i ∗8 ] , 2)

d r i v e r f d = open( f i l ename out , ’wb ’ )

i o c t l ( d r i v e r f d , IOCTL SET DCID)

d r i v e r f d . wr i t e (bytearray ( dc id [ : : − 1 ] ) )

i o c t l ( d r i v e r f d , IOCTL SET DCID ADDRESS)

d r i v e r f d . wr i t e (bytearray ( dc id addre s s [ : : − 1 ] ) )

i o c t l ( d r i v e r f d , IOCTL WRITE DCID)

d r i v e r f d . c l o s e ( )

for y in range ( len ( k e y i n l i n e s ) ) :

k e y l i n e = k e y i n l i n e s [ y ]

key addres s = [ [ ] for i in range (4 ) ]

key addres s [ 0 ] = 0

key addres s [ 1 ] = 0

key addres s [ 2 ] = int ( k e y l i n e [ : 2 ] , 2)

key addres s [ 3 ] = int ( k e y l i n e [ 2 : 1 0 ] , 2)

key = [ [ ] for i in range (16) ]

for i in range (16) :

key [ i ] = int ( k e y l i n e [10+ i ∗8:18+ i ∗8 ] , 2)

d r i v e r f d = open( f i l ename out , ’wb ’ )

i o c t l ( d r i v e r f d , IOCTL SET KEY ADDRESS)

d r i v e r f d . wr i t e (bytearray ( key addres s [ : : − 1 ] ) )

i o c t l ( d r i v e r f d , IOCTL SET KEY)

d r i v e r f d . wr i t e (bytearray ( key [ : : − 1 ] ) )

i o c t l ( d r i v e r f d , IOCTL WRITE KEY)

d r i v e r f d . c l o s e ( )

Listing A.1: Example python program for writing keys and DCIDs to hardware from an input

file in a test setup
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