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Abstract 
The CoDiCApp project aims to design a power converter integrated into a package with a high power 
density. It is preferred to control this converter digitally. This thesis aims to design a controller that 
can be converted into an ASIC to control this power converter. 

The challenge in designing a controller for this converter can be split into three key points. First, as 
the goal is to design a power converter as small as possible, the ASIC implementation should be 
made as compact as possible, giving a preference to use few resources. Secondly, the controller 
should function well under different loads, even though a change in load alters the behaviour of the 
converter system. Finally, the power converter needs to be controlled by a Pulse Width Modulation 
(PWM) signal with a frequency of 1 MHz while maintaining a reasonable control resolution. 

To keep the ASIC compact, a relatively simple implementation of a PID controller was chosen as the 
base design of the controller. Implementing a well-tuned PID controller also allowed for operation 
under various loads. Finally, attempts were made to use high-frequency techniques to improve the 
resolution given the available clock frequency. However, the converter's switching frequency and 
filtering capabilities proved not high enough to integrate a Σ–∆ generator or dither generator, 
resulting in a simple sawtooth comparator DPWM generator.  
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Abstract in Dutch 
Het CoDiCapp project richt zich tot het ontwerpen van een power converter geïntegreerd in een 
package met een hoge vermogensdichtheid en digitale sturing. Het doel van deze thesis is een 
controller te ontwerpen die omgevormd kan worden tot ASIC om de power converter aan te sturen. 

De uitdaging in het ontwerpen deze controller kan in drie kernpunten opgesplitst worden. Allereerst, 
aangezien het doel is een zo compact mogelijke power converter te ontwerpen is ook bij voorkeur 
de ASIC implementatie van de aansturende controller zo compact mogelijk. Ten tweede dient de 
converter correct aangestuurd te kunnen worden onder verschillende belastingen. Ten derde dient 
de power converter aangestuurd te worden door een Pulse Width Modulation (PWM) signaal met 
een frequentie van 1 MHz met een redelijke stuur-resolutie. 

Om de ASIC compact te houden is er voor een relatief simpele implementatie van het PID stuur-
algoritme geopteerd als basisontwerp voor de controller. De implementatie van een goed 
afgestemde PID controller zorgt meteen ook voor het stabiel functioneren van de controller onder 
verschillende belastingen. Ten slotte is geprobeerd om hoge frequentie technieken toe te passen om 
de aanstuur-resolutie onder gegeven frequentie beperkingen te verhogen, namelijk een Σ–∆ 
generator en dither-generator. Echter bleek de schakelsnelheid en filterend vermogen van de 
converter niet genoeg om deze technieken toe te passen. Hierdoor is er geopteerd om een simpele 
zaagtand comparator DPWM-generator te gebruiken. 
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1 Introduction 
Currently, most DC-DC power converters exist as discrete components with a separate controller. 
The control block of most DC-DC power converters is often still analogue; however digital converters 
can offer several advantages, offering better scalability and portability, and integrability with other 
digital systems [1].  

The CoDiCApp (Co-Design and Integration in power electronic Converter for high power density 
Application) project aims to design a functional power converter combining all components and 
control logic into a single package. 
This project is divided into four sections. The first is the design of the power converter with passive 
components. The second section will consider the design of the pre-driver. The third section will be 
the design and development of the controller, and finally, the fourth section will be the integration 
of all these sub-sections into one power converter in a package. This thesis will focus on the third 
section of this project: the design of the controller.  

The topology chosen for the DC-DC power converter is that of the synchronous buck converter, as 
shown in Fig. 1.1. It should be noted that this figure does not display all inputs of the controller and 
pre-driver.  

A digital feedback-control system will be designed to maintain a stable output voltage. This feedback 
control circuit will be responsible for interpreting ADC measurements of the output- voltage, 
calculating the duty cycle for the next period, and output a PWM signal with this duty cycle and 
repeating these processes.  

 

Fig. 1.1 Synchronous Buck DC-DC converter with pre-driver and controller 
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1.1 Project Goal 

This project aims to design a VHDL implementation of a digital controller for the buck converter. This 
implementation will then serve as a prototype for the ASIC integration that is considered outside this 
master thesis’s scope.  

The controller should have the following requirements:  

• Control the output voltage of the synchronous buck converter.  
	

• The design should use as few resources as necessary, eventually resulting in a compact ASIC.  
	

• The controller should generate a control directive using PWM. As a synchronous buck-
converter is the topology of choice, there should both be a high-side and low-side driving 
signal, which should never overlap. A frequency of approximately 1 MHz has been requested 
for this PWM signal. 	

 

1.2 Outline of the thesis 

Chapter 2 of this thesis introduces the scientific and theoretical backgrounds of concepts and 
techniques, which formed the basis of this thesis. Here the basic control architectures are presented 
with potential tuning methods and DPWM requirements and architectures. Chapter 3 gives an 
overview of the materials and software used during the project. In Chapter 4, the steps taken to 
obtain the actual controller are described. Chapter 5 evaluates the obtained controller performance. 
A consideration in the next steps of developing the controller ASIC is given in chapter 6, and a 
conclusion is made in chapter 7. 
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2 Literature study 
 

2.1 Control structures 

To select and design a control approach for the controller of the DC-DC Buck converter, an analysis 
of control structures that have previously been used for this kind of plant is given. The analysed 
digital control strategies can be split up into three categories. First, there are the digital PID 
controllers. Secondly, a dual control loop structure exists that controls the voltage via a current 
control loop. And finally, due to increasing on-chip processing capabilities, MPC (model process 
control) became a competitor of the techniques mentioned above.  

 

2.1.1 Voltage mode digital PID controller using multiplication 

A PID controller combines a classical P, I and D-controller, respectively applying a proportional gain, 
integration of the error signal and a derivation of the error signal. This is a feedback control loop 
mechanism. A PID controller can be implemented either in a serial or parallel design, slightly altering 
the formula of the controller. Although the serial- and parallel-controller have the same effect, the 
gain or time constants of the I- and D-terms would be slightly different. 

One way to implement a PID controller on an FPGA, or eventually on an ASIC, is by using multipliers. 
In order to obtain a formula that can be converted to an FPGA architecture the derivation from [2] 
can be used: first the time-domain formula of a serial PID controller is taken: 

𝑢(𝑡) = 𝐾# '𝑒(𝑡) +
1
𝑇$
, 𝑒(𝜏)𝑑𝜏
%

&
+ 𝑇'

𝑑𝑒(𝑡)
𝑑𝑡

/ 

In this form variable ‘u’ symbolises the output (or control) signal whilst e symbolises the error signal, 
Kp equals the proportional gain, Ti the integral time constant and Td the derivative time constant. 
This formula in continuous time can be sampled into discrete time using sampling time Ts:  

𝑢(𝑘) = 𝐾# 1𝑒(𝑘) +
𝑇(
𝑇$
2𝑒(𝑖) +

𝑇'
𝑇(
[𝑒(𝑘) − 𝑒(𝑘 − 1)]

)*+

$,&

7 

This form is not optimal for a hardware implementation as all previously recorded errors would need 
to be stored to perform the summation. This can be solved by using the recursive PID algorithm. 
First, we find the control output u(k-1):  

𝑢(𝑘 − 1) = 𝐾# 1𝑒(𝑘 − 1) +
𝑇(
𝑇$
2𝑒(𝑖) +

𝑇'
𝑇(
[𝑒(𝑘 − 1) − 𝑒(𝑘 − 2)]

)*-

$,&

7 
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The difference between u(k) and u(k-1) is: 

𝑢(𝑘) − 𝑢(𝑘 − 1) = 𝐾# 9𝑒(𝑘) − 𝑒(𝑘 − 1) +
𝑇(
𝑇$
𝑒(𝑘 − 1) +

𝑇'
𝑇(
[𝑒(𝑘) − 2𝑒(𝑘 − 1) − 𝑒(𝑘 − 2)]: 

The recursive control output u(k) can be written as: 

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝑎&𝑒(𝑘) + 𝑎+𝑒(𝑘 − 1) + 𝑎-𝑒(𝑘 − 2) 

With: 

𝑎& = 𝐾# <1 +
𝑇'
𝑇(
=			𝑎+ = −𝐾# <1 −

𝑇(
𝑇$
+ 2

𝑇'
𝑇(
=			𝑎- = 𝐾#

𝑇'
𝑇(

 

This form can be translated into an FPGA design using multipliers, adders, and registers. Fig. 2.1 
shows how this PID controller would be integrated into a closed-loop design. 
Besides a control component, there is also an input and an output interface needed to form the 
closed-loop. As an input interface, an ADC can measure the voltage over the output of the power 
converter and translate this into a digital signal as needed by the digital controller. 
A possible output interface can be seen in Fig. 2.2 consisting of an up-and-down counter 
(replaceable by a saw-tooth generator) and a comparator. This component could generate 2 PWM 
signals, one to control the high-side driver and one to control the low-side driver.  

 

Fig. 2.1  a) basic block scheme of the closed-loop system with optional autotuning b) logic design of the PID controller 
without auto-tuning [3] 

 

Fig. 2.2 Potential PWM modulator output interface [4] 
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2.1.2 Voltage mode digital PID controller using lookup tables 

It is possible to replace the multipliers from the previous architecture with lookup tables. This 
involves pre-calculating all the possible values and storing them. [5] suggests two different 
architectures for implementing this concept. 
The trade-offs between the multiplier and LUT scheme are as follows: The LUT design requires less 
logical resources and power whilst requiring more clock cycles to obtain a result and a storage 
mechanism to store the lookup tables.  
The first architecture from [5] requires only 13% of the logical resources of a comparative multiplier 
design. However, it requires 14 clock cycles to obtain a single control directive compared to 1 for the 
multiplier scheme. Furthermore, the power consumption of this architecture is 40% less than from 
the multiplier design.  
The second architecture suggested in [5] is more resource optimised, requiring only 4% of logic 
resources needed by the multiplier design whilst having similar power requirements as the first 
architecture.  

 

Fig. 2.3 Suggested PID LUT architecture 1 [5] 

 

Fig. 2.4 Suggested PID LUT architecture 2 [5] 
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2.1.3 Voltage and current mode control 

Another potential approach is described in [6]. This architecture uses a multi-loop feedback control 
structure based on two variables: the current injected into the inductor and the voltage measured 
over the output capacitor. An overview of this architecture can be seen in Fig. 2.5.  

 

Fig. 2.5 Overview of the multi-loop feedback control structure suggested in [6] 

This architecture's outer control loop (voltage control) is a PI regulator. This PI regulator generates 
the reference current signal for the current control loop. The logical implementation of the voltage 
control loop architecture can be seen in Fig. 2.6. 

 

Fig. 2.6 Logical implementation of the outer voltage control loop [6] 

The inner current control loop contains an interpolating predictive control algorithm. After 
measuring the current twice with a known time interval, the algorithm will calculate the Ton time 
required to meet the current reference. [6] also makes a side-by-side comparison of two different 
methods of compensating for current variations introduced by the measuring circuit. Fig. 2.7 shows 
the logical implementation of the inner control loop with extra switches to switch between these 
compensating slopes. The data from [6] show that the dynamic compensating slope provides the 
best performance. 
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Fig. 2.7 Logical implementation of the outer current control loop [6] 

Finally, the obtained control signal is sent to a modulator that converts this to a PWM signal. This 
modulator can be seen in Fig. 2.8. 

 

Fig. 2.8 Logical implementation of the PWM-Modulator [6] 

Unfortunately, [6] shows little comparative data concerning resources and power used on the FPGA, 
making it difficult to compare this control method to the others mentioned in this document. An 
advantage of this controller is that it can be easily altered to function as a current supply source by 
manually feeding a reference current instead of feeding the output of the outer voltage PI Loop. 

According to [7], current-mode control can improve control speed compared to voltage mode 
control but introduce some new challenges. First, the existence of two feedback loops makes the 
analysis of the circuit more difficult. Second, slope compensation is needed to prevent an unstable 
control loop. Third, the leading-edge current spike caused by the transformer winding capacitance is 
a new noise source to be dealt with. 
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2.1.4 MPC 

Model Predictive Control (MPC) offers an alternative control method. As described in [8], an MPC 
approach considers a model of the system that is being controlled. This is used to predict future 
behaviour over time. These predictions are evaluated using a cost function. A sequence with minimal 
cost is chosen. This sequence contains the future control actions. An example of such a sequence 
with predictions can be seen in Fig. 2.9.  The first control action from this sequence is applied, the 
new plant state is measured, and then the entire algorithm is calculated again; this is done every 
sampling period. 

 

Fig. 2.9 MPC prediction horizon [9] 

MPC has several advantages over PID control as it can be easier to deal with nonlinear plants and 
can function as a multiple-input and multiple-output (MIMO) system.  
Whilst MPC can result in accurate control actions, the primary disadvantage is the speed, as the 
entire predictive horizon needs to be calculated to obtain the following control action. This 
optimisation problem is often solved online using a more powerful computer. However, some 
approaches manage to integrate MPC into an FPGA implementation.  
Since power converters only have a finite number of switching states, it is possible to simplify the 
optimisation problem of the system behaviour for only those possible states. Then each prediction 
can be used to evaluate the cost or decision function. The state with minimum cost is selected. This 
approach is known as Finite Control Set MPC, or FCS-MPC.  
The prediction horizon is the next consideration for altering the MPC algorithm for use on an FPGA. 
A short horizon is often chosen with prediction horizon N varying between 1 and 3 for several FPGA-
MPC implementations to reduce the complexity. 

Due to the complexity of these systems, it is often opted to use high-level tools to design the 
architecture. For example, [10] uses the “System Generator toolbox for Simulink/MATLAB from 
Xilinx”, and [11] uses the HDL coder tool from MATLAB’s Simulink. 
In [12], an overview of FPGA-MPC implementations is given. However, it should be noted that these 
are still relatively slow and have a complicated architecture, requiring a high amount of resources. 
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2.1.5 Conclusion 

Careful analysis of the listed control strategies has resulted in a choice for the voltage mode digital 
PID approach for the following reasons. The digital PID controller is the least resource-consuming 
integration as the voltage and current mode control methods require a second loop. Although 
voltage and current mode control can be slightly faster, it is not optimal, and according to [7], for 
systems with a wide input line and load variations or applications where the complexity of a dual 
feedback loop or slope compensation should rather be avoided, voltage-mode is the better pick.  
Due to the way the prediction-based current control loop works, it is required for the DPWM to be 
operated synchronously with the control mechanism, preventing the use of multiple clock domains. 
That would make it nearly impossible to obtain the switching frequency required for this project. 
MPC requires significantly more resources and time, as for each control directive, the control 
horizon needs to be recalculated. This can, however, result in slightly higher performance. However, 
according to [13], the results of a PID controller are generally better than more complex control 
structures, like MPC, when enough effort is put into tuning the PID controller right. 

Although the PID controller using LUTs appears to use fewer resources, it limits the controller's 
flexibility, making it less easy to incorporate multiple tunings, which may be needed to control 
different buck converters. This has made the multiplier PID approach the preferred implementation. 

The decision to opt for a control logic using voltage mode control is further backed by several other 
high-frequency implementations using the same control strategy [14], [15] and several 
implementations opting for voltage mode control with PID as controller logic [4], [16], [17]. 
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2.2 Optimisation methods for PID controllers 

While PID controllers can offer very robust performance under different circumstances, some 
suggestions are made in an attempt to improve this performance.  

 

2.2.1 Nonlinear PID control 

As is suggested in [17] and [18], it is possible to change the system’s behaviour depending on the 
absolute value of the error signal. Although described differently, both methods take a similar 
approach. When the error gets very large, the controller should saturate, either outputting the 
maximum or minimum duty cycle. [17] obtains this effect by forcing the control signal to this duty-
cycle whilst [18] opts for using a significantly large gain parameter in a serial PID controller.  
The size of the error signal is also suggested to influence the gain parameter. [17] divides the total 
range into three fields: saturation, strong control and common control, whilst [18] uses five ranges: 
saturation and four different control strengths. 

Both papers report a decreased settling time on the step response and after a load change. Based on 
this data, this control method could help increase the controller's performance in design. 
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2.2.2 Adding a low pass filter to the derivative component 

The transfer function of a PID controller can be augmented with a first-order low pass filter in series 
with the derivative component as done in [19]. The transfer function of such a controller is as 
follows: 

𝑈(𝑠)
𝑒(𝑠)

= 𝐾# A1 +
1

𝑠 ∙ 𝑇$
+ 𝑠 ∙

𝑠 ∙ 𝑇'

1 + 𝑠 ∙ 𝑇'𝑁
D 

The effect of this low pass filter is a limited overshoot of the regulator response and limited 
amplification of noise at the controller’s input. 

 

Fig. 2.10 Suggested logical implementation of the filtered transfer function [19] 

Fig. 2.10 shows the suggested implementation for an FPGA  [19]. This indicates that this design is not 
much more complex when compared to that of Fig. 2.1, only requiring two more multipliers, an 
additional register, and an additional adder.  
The relatively low complexity increase with promising results for potential performance increase 
makes this a promising possible improvement. 
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2.2.3 Setpoint filter 

Another method to potentially decrease or prevent overshoot on the step response is to avoid rapid 
changes to the setpoint. The idea is that the largest error signal is most likely to occur during the 
power converter’s start-up. A more aggressive tuning can be used by slowly ramping up the setpoint 
whilst limiting the total overshoot.  

[20] suggests two different setpoint filters for PID control. The simplest, seen in Fig. 2.11a, functions 
as a rate limiter, which will increase the effective setpoint linearly until the target setpoint is 
obtained. The maximum value of the saturator will determine the speed of the ramp.  
Fig. 2.11b shows a setpoint jump and rate limiter. The output follows the input for a small change in 
the input signal. The output will follow the input with a limited rate for large setpoint changes. 
Both filters have a low-pass character and cause delays. 

The advantage of the jump and rate filter in a system with varying setpoint would be that the 
setpoint is better followed for small changes in setpoint and only use the rate limiter for larger 
changes in setpoint. As the implementation of the controller will be expected to function at a fixed 
setpoint, the jump and rate limiters offer no advantage over the rate limiter whilst requiring more 
resources 

 

Fig. 2.11 a)  Setpoint rate limiter filter  b) setpoint jump and rate limiter [20] 
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2.3 Methods of tuning PID Controllers 

PID controllers are often used in industry, and whilst there are many different approaches to tuning 
the control parameters (Kp, Ki and Kd), poorly tuned PID controllers are often still found in industry 
[21], [22]. 

2.3.1 SIMC- and K-SIMC tuning method   

The SIMC tuning method, introduced and clarified in [13], [22], offers an analytic tuning method to 
systematically find the PID tuning parameters. According to [22], the SIMC method aims to improve 
upon the classic method by Ziegler and Nichols [23], the IMC PID method by Rivera et al. [24] and 
the related direct synthesis tuning rules by Smith and Corripio [25]. 

The SIMC methods suggest a two-step procedure to obtain a potential tuning. First, the plant that 
should be controlled is approximated by either a first- or second-order plus delay model. A half-rule 
is proposed to determine the effective delay used in this approximation. Second, the tuning 
parameters can be derived. This will be a PI tuning when a first-order plus delay model is used or a 
PID tuning when a second-order plus delay model is used. 
The SIMC tuning method works well for integrating and time delay processes, for both setpoint 
changes and load disturbances [22].  

 

First-order approximation 

To obtain the first order plus delay approximation of the plant, the original model should be written 
in the following form [22]: 

∏ F−𝑇.&$/0 + 1G.

∏ 𝜏$&𝑠 + 1$
𝑒*1!( 

In this form the time constants 𝜏$& are ordered according to magnitude. From this form, the first 
order magnitudes can be derived using the following formulas [22]: 

𝜏+ = 𝜏+,& +
𝜏-,&
2
	; 	𝜃 = 	𝜃& +

𝜏-,&
2
+	2𝜏$,&

$34

+2𝑇.&$/0

.

+
ℎ
2

 

In the case of digital implementations of the PID controller, let h be equal to the sampling frequency.  
These parameters are to be filled in into the following equation to obtain the first-order model [13]: 

𝐺(𝑠) = 	𝑘
𝑒*1(

𝜏+𝑠 + 1
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Second-order approximation 

To obtain the plant’s second-order plus delay approximation, the original model should be written in 
the same form as for the first-order approximation. The following formulas can then be used to 
obtain the parameters for the second-order approximation [22]: 

𝜏+ = 𝜏+,&	; 	𝜏- = 𝜏-,& +
𝜏4,&
2
	; 	𝜃 = 	𝜃& +

𝜏4,&
2
+	2𝜏$,&

$35

+2𝑇.&$/0

.

+
ℎ
2
	 

From these parameters, the following second-order plus delay can be derived [22]: 

𝐺(𝑠) =
𝑘

(𝜏+𝑠 + 1)(𝜏-𝑠 + 1)
𝑒*1( 

 

Calculation of the PI parameters from the first order plus delay approximation 

When the first order plus delay approximation of the model is obtained, the parameters for the PI 
tuning can be achieved using simple formulas [22]: 

𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
	;	𝜏$ = min	(𝜏+, 4(𝜏6 + 𝜃)) 

A tuning parameter 𝜏6  is introduced. This tuning parameter should uphold −𝜃 < 𝜏6 < ∞ to get a 
positive and non-zero gain. 𝜏6  is essentially a trade-off between response time (favoured by small	𝜏6  
) and stability (favoured by large 𝜏6). A recommendation for fast response with good robustness of 
𝜏6 = 𝜃 is suggested in [22]. 

 

Calculation of the PID parameters from the second-order plus delay approximation 

When the second-order plus delay approximation of the model is obtained, the parameters for the 
PID tuning can be achieved using similar formulas [22]: 

 

𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
	;	𝜏$ = minF𝜏+, 4(𝜏6 + 𝜃)G ; 𝜏7 = 𝜏- 

The influence of tuning parameter 𝜏6  is the same as on the PI parameters used with the first-order 
approximation. 
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Supposed Improvements in K-SIMC over SIMC 

The SIMC method has been adapted in [21]. A change to the model reduction technique and tuning 
rules have been proposed to permit the SIMC method to be applied more confidently to a wider 
variety of systems.  

The formulas for determining the first order plus delay approximation parameters are as follows 
[21]:  

𝜏+ = 𝜏+,& +
1
2
𝜏-,&-

𝜏+,&
		 ; 	𝜃 = 	𝜃& +	𝜏-,& 	S1 −

1
2
	
𝜏-,&
𝜏+,&

T +	2𝜏$,&
$34

+2𝑇.&$/0

.

+
ℎ
2
			 

The formula for the first-order plus delay approximation remains the same [21]: 

𝐺(𝑠) = 𝑘
𝑒*1(

𝜏+𝑠 + 1
 

The formula for determining the second-order plus delay approximation are as follows [21]: 

𝜏+ = 𝜏+,&		; 		𝜏- = 𝜏-,& +
1
2
𝜏4,&-

𝜏-,&
		 ; 	𝜃 = 	𝜃& +	𝜏4,& 	S1 −

1
2
	
𝜏4,&
𝜏-,&

T +	2𝜏$,&
$35

+2𝑇.&$/0

.

+
ℎ
2
	 

The formula for the second-order plus delay approximation, again, remains the same as using the 
SIMC method [21]:  

𝐺(𝑠) =
𝑘

(𝜏+𝑠 + 1)(𝜏-𝑠 + 1)
𝑒*1( 

[21] also proposes altered formulas for determining the PI and PID parameters. The PI parameters 
can be derived from the first-order approximation as follows: 

𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
		; 				𝜏$ = minF𝜏+, 5(𝜏6)G		 ; 	𝐹8(𝑠) =

2.5𝜏6 	X1 + 5
𝜏6
𝜏+
Y 𝑠 + 1

5𝜏6𝑠 + 1
		𝑖𝑓	𝜏+ > 5𝜏6  

A setpoint filter 𝐹8(𝑠) is introduced to reduce overshoot should the resulting time constant  𝜏+ 
become larger than five times the tuning time constant 𝜏6. 
Using the formulas proposed in [21], it is also possible to derive PID parameters from a first-order 
approximation: 

𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
		; 	𝜏$ = minF𝜏+, 5(𝜏6)G		 ; 	𝜏7 = max <

𝜃 − 𝜏6
2

, 0=	 

For the PID controller following from the first-order approximation, the same setpoint filter as with 
the PI controller is recommended when the criterion 𝜏+ > 5𝜏6  is true. 

Finally, [21] proposes a set of formulas to obtain a PID controller from the second-order 
approximation using the listed formulas: 
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𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
		; 	𝜏$ = minF𝜏+, 5(𝜏6)G		 ; 	𝜏7 = 𝜏- +max <

𝜃 − 𝜏6
2

, 0=		 

Again, the setpoint filter as mentioned above is recommended when 𝜏+ > 5𝜏6  

 

Overview 

An overview of the (k-)SIMC formulas used for the model reduction can be found in Table 2.1. An 
overview of the formulas used to tune a PID controller given the first (FO) or second-order (SO) plus 
delay approximation can be seen in Table 2.2.  

Table 2.1 Overview of (K-)SIMC formulas for first- and second-order plus delay approximation [13], [21], [22] 

  𝜏+ 𝜏- 𝜃 
SIMC FO 𝜏+,& +

𝜏-,&
2

 - 𝜃& +
𝜏-,&
2
+	2𝜏$,&

$34

+2𝑇.&$/0

.

+
ℎ
2

 

SO 𝜏+,& 𝜏-,& +
𝜏4,&
2

 𝜃& +
𝜏4,&
2
+	2𝜏$,&

$35

+2𝑇.&$/0

.

+
ℎ
2

 

K-SIMC FO 
𝜏+,& +

1
2
𝜏-,&-

𝜏+,&
 

- 𝜃! +	𝜏",! 	41 −
1
2	
𝜏",!
𝜏$,!

7 +	8𝜏%,!
%&'

+8𝑇(!%)*
(

+
ℎ
2 

SO 𝜏+,& 
𝜏-,& +

1
2
𝜏4,&-

𝜏-,&
 𝜃! +	𝜏',! 	41 −

1
2	
𝜏',!
𝜏",!

7 +	8𝜏%,!
%&+

+8𝑇(!%)*
(

+
ℎ
2 

Table 2.2 Overview of (K-)SIMC PI(D) tuning formulas [13], [21], [22] 

  𝐾6  𝜏$  𝜏7 𝐹8(𝑠) 
SIMC FO 1

𝑘
	
𝜏+

𝜏6 + 𝜃
	 min	(𝜏+, 4(𝜏6 + 𝜃)) 

 

- - 

SO 1
𝑘
	
𝜏+

𝜏6 + 𝜃
 minF𝜏+, 4(𝜏6 + 𝜃)G 𝜏- - 

K-SIMC FO 1
𝑘
	
𝜏+

𝜏6 + 𝜃
		 minF𝜏+, 5(𝜏6)G		 max <

𝜃 − 𝜏6
2

, 0=  𝑖𝑓	𝜏+ > 5𝜏6  

SO 1
𝑘
	
𝜏+

𝜏6 + 𝜃
 minF𝜏+, 5(𝜏6)G 𝜏- +max <

𝜃 − 𝜏6
2

, 0=		 𝑖𝑓	𝜏+ > 5𝜏6  
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2.3.2 Frequency loop shaping 

Another approach to tuning a system is to use control system theory to derive what the open-loop 
behaviour of the system should be. This method, known as Frequency Loop Shaping (FLS), is 
explained in [26] and applied in [27], [28].  

 

Concept 

To derive what the open-loop behaviour of the system should be like, a base model is given in Fig. 
2.12, inspired from lecture [29]. 

 

Fig. 2.12 Base model for deriving closed-loop behaviour 

From the model in Fig. 2.11, the following parameters exist: 

• r: The reference or set point 
• e: The error signal 
• u: The control signal 
• d: Disturbance 
• y: The effective output of the plant 
• n: measurement noise 
• ym: The value of the plant after measurement noise occurs 

And the following systems exist: 

• K(s): The controller we aim to tune 
• G(s): The plant under control, in this case, the DC-DC Buck controller 
• Gd(S): optional transfer function of a disturbance, according to [29], this transfer function 

can be similar to the transfer function of the system 

For this system, it can be written that: 

𝑦 = 𝐺' ∙ 𝑑 + 𝐺 ∙ 𝐾(𝑟 − 𝑦 − 𝑛) 

By bringing the y-term over to the left-hand side and rewriting the right-hand side: 

(1 + 𝐺𝐾)𝑦 = 𝐺𝐾𝑟 + 𝑃'𝑑 − 𝑃𝐾𝑛 
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Calculating for y: 

𝑦 = (1 + 𝐺𝐾)*+𝐺𝐾𝑟 + (1 + 𝐺𝐾)*+𝐺'𝑑 − (1 + 𝐺𝐾)*+𝐺𝐾𝑛	 

The sensitivity S and complementary sensitivity T can now be defined as follows: 

𝑆 = (1 + 𝐺𝐾)*+ = (1 + 𝐿)*+ 

𝑇 = (1 + 𝐺𝐾)*+𝐺𝐾 = (1 + 𝐿)*+𝐿 

By substituting these equations in the equation for y, the meaning of the term sensitivity and 
complementary sensitivity can be derived: 

𝑦 = 𝑇 ∙ 𝑟 + 𝑆 ∙ 𝐺'𝑑 − 𝑇 ∙ 𝑛 

It can be seen now that sensitivity S describes how sensitive the total system is to disturbances. The 
complementary sensitivity describes how sensitive the complete system is to noise and following the 
reference. 

The feedback controller should be tuned to obtain the following qualities [29]: 

• Stability 
• Uncertainty compensation 
• Disturbance rejection 
• Noise attenuation 

To provide stability and uncertainty compensation, the error function should always be as low as 
possible: 

𝑒 = 𝑆𝑟 − 𝑆𝐺' + 𝑇𝑛 

For error function e to be low, the absolute value of S is preferred to be low for low frequencies. This 
allows for tracking the reference accurately and rejecting disturbances at low frequencies. As noise 
occurs on higher frequencies, it is preferred for T to be low for high frequencies. From the formulas 
defining the sensitivity and complementary sensitivity, it can be concluded that the sum of T and S is 
always 1. This means a trade-off needs to be made for keeping S small at low frequencies and 
keeping T small at high frequencies. This trade-off can be seen in Fig. 2.13, the point where the 
values of S and T cross is the cut-off frequency ωc. The controller and plant should act upon signals 
with a frequency lower than the cut-off frequency to track the reference and reject disturbances. 
Signals with a frequency higher than the cut-off frequency should be attenuated to reduce the effect 
of noise. The transfer function of an integrator (ωc/s) provides this trade-off. Therefore [26] suggests 
using the transfer function of an integrator as a target transfer function for the control loop (L). 
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Fig. 2.13 Sensitivity S vs complementary sensitivity T for an integrator with 𝜔"	= 102 rad/s 

 

Choosing the transfer function 

The choice of the target transfer function is crucial as it determines the frequency response of the 
open-loop system as a whole (L). A target transfer function of an integrator has already been 
suggested for having desirable sensitivity and complementary sensitivity functions: 

𝐿&(𝑆) =
𝜔6
𝑠

 

Besides the integrator [26], the following transfer function is suggested to be used when the plant 
under control has a slow pole with a time constant larger than that of the desired closed-loop 
system as using the integrator would result in a PD-like compensator: 

𝐿&(𝑆) =
𝜔((𝑆 + 𝑎)
𝑠(𝑠 + 𝑒)

 

In the above equation, ‘e’ represents the small pole of the plant, and a is a tuning parameter 
balancing settling-time and overshoot properties, a default value of 0.25𝜔( is suggested. 
In both suggested transfer functions, 𝜔( should be chosen to keep in mind two limitations. First, 
stability requirements and expected noise frequency provide an upper bound constraint. Second, 
maximum settling time to step response and disturbances can form a lower bound constraint.    
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Calculating control function 

When a target transfer function is obtained, the tuning of the controller can be derived. [27] suggest 
writing the transfer function of the PID controller with a low pass filter in the derivative in the 
following form: 

𝐶(𝑠) =
𝐾+𝑠- + 𝑘-𝑠 + 𝑘4

𝑠(𝜏𝑠 + 1)
 

In this formula, 𝜏 is the prior selected time-constant of the low pass filter whilst the k parameters 
relate to the PID controller parameters in the following fashion: 

𝐾# = 𝐾- − 𝐾4𝜏		; 		𝐾$ = 𝐾4		; 		𝐾' = 𝐾+ − 𝐾-𝜏 + 𝐾4𝜏- 

Now using this control formula, the following optimisation formula can be proposed 

min
)+,)-,)4

‖𝑊+ ∙ 𝑆& ∙ (𝐺𝐶 − 𝐿)‖ℒ: 

This formula introduces a weighing parameter W1 that can be used to emphasise the approximation 
around the crossover frequency [26] suggests the following formula for this weighing parameter: 

𝑊+ =
𝑠

𝑠 + 𝜔(;
 

[26] Suggests using 𝜔(; = 0.1𝜔(	to define the weighing function. 
This optimisation problem can be further defined by adding the PID parameters’ positivity as a 
constraint. 
When the minimum of the optimisation problem results in a value close to zero, the resulting loop is 
close to the selected target loop and thus inherits its robustness properties. [26] suggest a minimum 
objective value of < 0.2 should mean the properties are approximately preserved whilst larger values 
(higher than 0.5) allow for unacceptable performance deterioration and recommends retrying with a 
smaller cut-off frequency.  
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2.3.3 MATLAB PID tuning applications 

MATLAB’s control system toolbox [30] offers two tools that can be used to tune a PID controller. 
Unfortunately, the algorithms used in this process are proprietary to MATLAB, and little information 
about this is made publicly available. 

 

Transfer function tuner (PID tuner app) 

The PID tuner app from MATLAB allows tuning controllers via two parameters: the response time (in 
seconds) and the transient behaviour on a scale from aggressive to robust. 
The PID tuner allows for several plots to see the controller’s influence on the plant. These include 
but are not limited to the step response for reference tracking, the step response for disturbance 
rejection and bode plots. The PID tuner application can be seen in Fig. 2.14. 

 

Fig. 2.14 PID tuner application from MATLAB 
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Frequency-response based tuner 

The frequency response-based tuner from MATLAB allows tuning a PID controller by setting a target 
bandwidth and target phase margin. According to [31], the tuner performs the following steps: 

• It breaks the feedback loop at the controller output and simulates the model. A sinusoidal 
perturbation signal is applied to the plant. 

• The response of the perturbation signal is measured at the input of the PID controller. 
• The data obtained from this experiment is used to estimate the plant frequency response. 

For stable plants, the tuner will also use the results to estimate the DC gain of the plant. 
• The estimated frequency response is used to compute PID gains that should balance 

performance and robustness 

The frequency response-based PID tuner can be seen in Fig. 2.15. 

 

 

Fig. 2.15 MATLAB Frequency-response based PID tuner [31] 
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2.4 Limit cycle oscillations 

As [32] explains, LCO (Limit Cycle Oscillation) is a problem associated with digitally controlled 
converters due to the quantisation effects of the ADC and the PWM modulator. 

 

Fig. 2.16 Simulated example of LCO due to too coarse DPWM [32] 

Fig. 2.16 shows LCO as a result of too coarse DPWM. The controller will, in this case, continuously 
switch between two control states. Yet, due to the quantisation of the DPWM, the state needed to 
measure no error can never be obtained, resulting in oscillation. 
According to [33], LCO can become significant when the integrator gain is set to high or when the 
quantisation step of the DPWM model is too coarse. An inequality that must be true to prevent LCO 
is suggested as follows: 

∆𝑑<=>	𝑉?@ < ∆𝑉AB%_<=> 

This equation states that the value of the least significant bit (LSB) of the duty cycle multiplied with 
the input voltage should be lower than the LSB value of the ADC signal measuring the output 
voltage. However, it should be noted that complying with this inequation can result in a very high 
DPWM resolution. Using a high DPWM resolution with a traditional DPWM module will require very 
high clock frequencies that might not be attainable. Careful consideration between LCO and clock 
speed will need to be made during this project. 
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2.5 High-frequency DPWM 

To prevent LCO, the resolution of the digital pulse width modulator should be higher than the 
measuring resolution of the ADC. This section will consider several digital pulse width modulator 
designs and evaluate the best fit for this project. 

 

2.5.1 Sawtooth comparator DPWM 

 
A sawtooth comparator DPWM, shown in Fig. 2.17, works by implementing a counter and a 
comparator.  

 

Fig. 2.17 Sawtooth comparator digital pulse width modulator 

This implementation requires little hardware but requires a high clock frequency when a large 
resolution is needed.  
The clock frequency (𝑓6D)) required to generate a PWM signal with a set switching frequency 
(𝑓(E$%6F) can be calculated with the following formula: 

𝑓6D) = 𝑓(E$%6F ∙ 2GH(IDB%$I/(7) 

For example, a duty-cycle resolution of 8 (fractional) bits, making for a control resolution of 390mV, 
would result in a clock frequency of 256 MHz. This example shows that a relatively high clock 
frequency is required for a relatively low control resolution of 390 mV. This method can quickly 
result in required clock frequencies into the GHz range making this output stage a potential 
bottleneck for control accuracy.  This effect can be seen in Fig. 2.18. 

 

Fig. 2.18 Required clock speed in function of the control resolution in bits  
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2.5.2 Multibit Σ–∆ generator 

An attempt to solve the need for extreme clock frequencies is made by the multibit Σ–∆ generator 
suggested for use in switching power converters [16].  
 

Principle of operation 

The concept of the Σ–∆ generator is explained by using a first-order Σ–∆ generator, as seen in Fig. 
2.19.  

 

 

Fig. 2.19 First order multibit Σ–∆ generator [16] 

The first order Σ–∆ generator needs to be paired with another method of DPWM generation, 
assuming the sawtooth generator is used. The Σ–∆ modulator takes a higher resolution duty-cycle 
input and outputs a lower resolution duty-cycle output called the effective resolution. This effective 
resolution output is forwarded to the traditional sawtooth-comparator DPWM. However, as the duty 
cycle resolution of the signal fed into the DPWM is lower, the clock cycle can be lower. 
The Σ–∆ modulator varies the least significant bit of the effective resolution over several switching 
cycles to obtain an average value equal to the higher resolution input signal. 
For example, assume a Σ–∆ generator that translates a 3-bit input resolution into a 2-bit effective 
resolution: a binary input signal of 0.101 is translated into a continuous variation between 0.10 and 
0.11, ensuring the average output equals the input signal. This is done by recursively feeding the 
difference until the sum of the differences is as large as 1 LSB of the effective resolution. 
According to [16], no additional hardware is required to average the output signal as the filtering 
components in the power stage will have this effect. 
The hardware cost of integrating a first-order multibit Σ–∆  generator is relatively low as the 
modulator only consists of two adders and a register. 

The first order multibit Σ–∆ generator can be modelled as a control loop as seen in Fig. 2.20. 

 

Fig. 2.20 multibit Σ–∆ generator equivalent model [16] 
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The control loop consists of a transfer function from the generator added together with truncation 
noise etr. The difference between the target duty cycle d(n) and the effective resolution duty cycle 
dLR(n) is noted as ed(n). 
The transfer function of the generator is as follows [16]: 

𝐻(𝑧) =
𝑋(𝑧)
𝐸'(𝑍)

=
𝑍*+

1 − 𝑍*+
 

The integrating effect of the inner loop can be noted from the transfer function, forcing the value of 
ed(n) to 0. 

The first order Σ–∆ generator allows increasing the resolution of the controller but still requires a 
core DPWM module with a relatively high effective resolution. Moreover it suffers from low-
frequency noise at the converter output and has slow convergence towards the target average [16], 
[34]. The slow convergence of the first order Σ–∆ generator limits the update frequency of the target 
duty-cycle, resulting in a significant limitation for the bandwidth.   
 
 

Second-order multibit Σ–∆ generator  

To limit the negative effects of the first order Σ–∆  generator, a second-order multibit Σ–∆ generator 
is suggested in [16]. It shows that a second order Σ–∆ strongly suppresses the low-frequency tones 
caused in a first-order Σ–∆ generator and offers faster convergence. The schematic for a second-
order Σ–∆ generator can be seen in Fig. 2.21. This generator consists of two registers, three adders, 
and a multiplication by two (which can be realised as a bit shift). 

 

Fig. 2.21 Second-order multibit Σ–∆ generator 

The second-order multibit Σ–∆ can also be modelled as a transfer function [16]: 

𝐻(𝑧) =
𝑧*+

(1 − 𝑧*+)-
 

Although the second-order multibit Σ–∆ generator converges much faster than the first order Σ–∆ 
generator, there is still some delay for the controller to reach the correct averaged output. The 
following formula, derived from noise-shaping analysis, allows calculating the frequency the PID 
controller should function at for proper averaging to take place [16]: 

𝑁7LMN ≈ 𝑁6IGH + 2.5 log- S
𝑓(E

𝑓B#'O%H
T	

In this formula NDPWM represents the total input resolution, Ncore the effective resolution, fsw the clock 
frequency of the PID controller and fsw the switching frequency. Although the second-order 
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generator allows for much higher control frequencies than the first order generator, it would still 
have a significant negative impact on the dynamic performance of the controller. 

 

Dual-mode compensator 

To prevent the negative impact on the dynamic performance, introduced by a limited updating 
frequency, [16] suggests using a dual-mode compensator to solve this issue. A steady-state mode 
with clock speed calculated by the above formula will cause very accurate control using the Σ–∆ 
generator. However, when the absolute value of the error signal exceeds a threshold, the converter 
switches to dynamic mode with a clock frequency equal to the switching frequency, allowing for a 
better transient response. [16] also suggest only changing back to steady-state when the absolute 
value of the error has been lower than the threshold for a set duration of time as switching 
immediately to steady-state when the error value is within a specific error band was found to cause 
stability issues. A finite state machine implementing this can be seen in Fig. 2.22. 

 

Fig. 2.22 Finite State Machine representation of dual-mode compensator [16] 

2.5.3 LUT Dither generator 

An LUT Dither generator achieves the same effect as the Σ–∆ generator: it modulates the least 
significant bit to create a virtually higher resolution. 
However, instead of mathematically determining the modulation, a LUT, fed by the virtual resolution 
bits and a clock, is used to determine the modulation needed to become an average signal equal to 
the virtual resolution [32]. 
This method yields the same requirements and limitations as the Σ–∆ generator. Some cycles are 
needed to obtain a correct average signal, reducing the bandwidth. The converter also needs to be 
capable of averaging the signal sufficiently to compensate for the variations created by the dither 
generator. 

When the virtual resolution is relatively low (e.g. one or two bits), the LUT generator could prove a 
more efficient implementation to increase the total resolution. However, as the Σ–∆ generator can 
be used with a broader range of virtual resolutions, this implementation proves more versatile for 
testing modulating PWM generators and evaluating the averaging capabilities of the system.  
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2.6 Clock domain crossing 

The PWM generator will need to function at a significantly higher clock resolution than the PID logic 
to obtain the required switching frequency. The controller under design will most likely need to use 
two clock domains to realise the controller. 

When transmitting data from one clock domain to another, metastability or data loss could occur.  
Take for example, two flip flops clocked in a different clock domain, as shown in Fig. 2.23a. 
When the rising edge of clock 2 occurs closely after the rising edge of clock 1, the output of the first 
flip flop (Q1) could still be in the process of transferring to its next state whilst the second flip flop 
attempts to sample this signal. This would make it unpredictable what the output of the second flip 
flop (Q2) would be. It could either settle to the new or the old value. This state of uncertainty is 
called metastability. The described procedure can be seen in Fig. 2.23b. 

 

Fig. 2.23 Example of metastability (a) Example system (b) Metastability on Q2 [35] 

 

This metastable state can be prevented by using a synchroniser in the destination clock domain. The 
second synchroniser samples Q2 after it has been stabilised, allowing a stable output out of the 
synchroniser. An implementation of such a synchroniser can be seen in Fig. 2.24. 

 

Fig. 2.24 Clock-domain-crossing synchroniser [36] 
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3  Materials and methods 
 

3.1 MATLAB Simulink 

MATLAB is a programming and numeric computing platform from MathWorks. It enables the user to 
calculate and automate calculations using various built-in functions. 
Simulink is another tool from MathWorks that is integrated into MATLAB. Simulink functions as a 
platform for model-based design, allowing simulation of control logic and other components without 
the need for programming. An example block schematic from a Simulink project can be seen in Fig. 
3.1. 

 

Fig. 3.1 Simulink example schematic [37] 

During the development of the controller, Simulink was used to simulate the DC-DC buck-converter 
and to validate potential control strategies. Simulink allows for analysing the resulting system using 
virtual scopes with measurement tools to measure a variety of benchmarks (e.g., rise-time, settling 
time, etc.). 
Simulink can also be used to verify the functionality of HDL blocks by either FPGA-in-the-loop (FIL 
[38] or by co-simulating the VHDL program in a simulator like ModelSim [39].  
In the first setup, Simulink feeds data to an FPGA that processes it and sends it back to Simulink. The 
FPGA component can then be incorporated within a Simulink schematic. This could test the 
controller on a simulated buck converter as the physical converter was still being designed. In this 
setup, Simulink parses the output voltage signals to the FPGA, calculating a control directive and 
modulating a PWM signal that is sent back to Simulink. 
In the second setup, MATLAB’s Simulink will connect to an HDL simulator and then function in a 
similar method as described above: the output voltage is transmitted to the HDL simulator, which 
processes this, generates a PWM signal which is then sent back to the Simulink simulation. 

  



Luke Geelen  Master Thesis 

46 

3.2 Xilinx Vivado 

Vivado Design Suite is a software suite from Xilinx that synthesises HDL (Hardware Description 
Language) designs, implement the design for a specific FPGA and allows downloading a bitstream to 
the FPGA. Vivado also allows behavioural verification of designed HDL components by designing a 
testbench and simulating the designs with specified input/stimulations as Field [40] described. An 
example of such a simulation can be seen in Fig. 3.2. 

 

Fig. 3.2 Xilinx Vivado Simulation [40] 

Vivado was used to develop the HDL-code for the controller and subsequently to analyse if this 
implementation behaved as expected on a signal level. 

 

3.3 Mentor Graphics ModelSim 

ModelSim is a software program from Mentor Graphics that allows for the simulation of hardware 
description designs like VHDL. 
ModelSim was used in this thesis for co-simulation with MATLAB Simulink, allowing for verifying the 
controller’s VHDL design. 

It is important to use a version of ModelSim that is compatible with the HDL-verifier toolbox from 
MATLAB [41]. The version of ModelSim used in this thesis is ModelSim SE-64 2020.4. 
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4 Experimental and results 
This chapter will provide insight into how the design of the controller was tested and optimised. As 
the DC-DC buck converter is still under development, provisional parameters will be used during this 
project. The provisional parameters are obtained from [42] and are listed in Table 4.1. 

Table 4.1 DC-DC buck converters parameters 

 L (μH) C (μC) Target power (W) 
100V to 48V 32.8 0.39 ~ 100 W 
100V to 24V 22 0.47 ~ 100 W 

Although these parameters might still be subject to change, the design of the controller will be made 
based on these parameters. Should a significant change occur, then the methodology of this thesis 
can be used to re-design the controller accordingly. A detailed description of what steps need to be 
repeated when a parameter should change can be found in chapter 6: future work.  

 

4.1 MATLAB Simulink setup 

To be able to test different designs, a simulation environment was created. This environment must 
simulate the behaviour of the buck converter as the converter was still being designed at the 
moment of writing the thesis. First, two methods of simulating the buck converter are provided, 
then three methods of simulating the controller design are described.  

 

4.1.1 DC-DC converter simulation 

SimScape electrical 

The SimScape electrical plugin for Simulink models the DC-DC buck converter as an electrical 
schematic. The schematic used can be seen in Fig. 4.1. 

 

Fig. 4.1 Simulink SimScape electrical schematic for simulating the DC-DC buck converter 

This setup allows for accurate simulation of the behaviour of the buck converter. The inputs this 
model expects are a PWM signal and an inverted PWM signal. The inputs expected are either a 
logical high or a logical low. This model outputs the resulting voltage to be used by the controller. 
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The advantages of this model are that it allows for accurate simulation and that it expects an actual 
PWM signal as input. The drawbacks of this method are that this model allows for little 
mathematical analysis and has as a side effect that some of MATLAB’s automated tools cannot be 
used. Another minor issue is that simulating this schematic with a high switching frequency makes 
the simulation relatively slow.  

 

Transfer function 

It is also possible to reduce the electrical schematic to a transfer function using a time averaging 
model, as described in [43]. The result of such derivation can be found in [44] and gives the following 
transfer function as a system that outputs a voltage when a duty cycle is applied: 

∆𝑉IB%
∆𝐷

=
𝑉$/

𝐿𝐶𝑠- + 𝐿
𝑅 𝑠 + 1

 

When filling in the 48V parameters from Table 4.1, the following transfer function is obtained: 

∆𝑉IB%
∆𝐷

=
100

32.8 ∙ 10*P ∙ 0.39 ∙ 10*P𝑠- + 32.8 ∙ 10
*P

𝑅 𝑠 + 1
=

100

1.2792 ∙ 10*++𝑠- + 32.8 ∙ 10
*P

𝑅 𝑠 + 1
 

This approximation can be verified by simulating the step response of the transfer function and 
comparing it to the schematic's step response. A schematic with which this can be achieved is shown 
in Fig. 4.2. 

 

Fig. 4.2 MATLAB Simulink schematic used for verifying TF-approximation 

In Fig. 4.2, a unit step with an amplitude of 0.48 is applied to both systems with a load resistance of 
23.04 Ohm (P=100W). In Fig. 4.3, the step response of both systems is shown. 
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Fig. 4.3 Step response of DC-DC Buck converter compared to step response of TF-approximation 

From Fig. 4.3, we can conclude that there are slight differences between the step response of the 
DC-DC buck converter and the transfer function approximation. These differences can be attributed 
to simplifications in the mathematical model. For example, TF-approximation does not account for 
the inductor’s serial resistance or the capacitor's resistance.  
 

It should also be noted that the transfer function does not consider the physical limitations of the 
buck converter, meaning that if an input higher than one (translating to a duty cycle higher than 
100%, which is physically impossible) is applied, then the output (translating to the output voltage of 
the converter) would be higher than the input voltage. 
To prevent this, a saturation module is applied before the transfer function, as shown in Fig. 4.4. 

 

Fig. 4.4 Saturation module in series with the TF of the buck converter 

A buck converter cannot function at a 100% duty cycle as this would mean the output voltage of the 
buck converter would equal the input voltage. As some switching losses occur, this is impossible. The 
maximum duty cycle of the DC-DC buck converter can be calculated with the following formula from 
[45]: 

𝐷QOR =
𝑉AST,QOR
𝑉?@

	𝑎𝑛𝑑	𝑉AST,QOR = 𝑉$/,QOR ∙ 𝜂 

However, as the efficiency (η) is not known at the moment of writing this thesis, [45] suggests using 
90%. This would result in a duty-cycle range of [0; 0.9]. Hence this is the range the saturation block in 
Fig. 4.4 is configured to use. 

 

Buck converter 48V

PID(z)
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4.1.2  PID controller simulation 

PID control block 

The most obvious way of simulating the PID controller is using the MATLAB Simulink discrete PID 
block. The sampling frequency of this block can be manually set, and using this block allows the use 
of the PID tuning applications. This implementation can be seen in Fig. 4.5 

 

Fig. 4.5 MATLAB Simulink schematics with PID control block a) using buck converter TF (above) b) using buck converter 
SimScape schematic (below) 

This theoretical discrete PID block allows for testing tuning parameters at fixed sampling 
frequencies, functioning as a reference for comparing the VHDL PID. 

 

MATLAB SIMULINK function block 

A MATLAB function block was written to test the implementation of a PID controller that will 
eventually be converted into a VHDL implementation. The code contained in this function block can 
be found in appendix A. A schematic using this control block in a control loop can be seen in Fig. 4.6. 
It should be noted that the parameters are not yet adequately tuned. 

 

Fig. 4.6 MATLAB Simulink schematic control loop using the MATLAB function block 

The MATLAB function block allows the verification of the PID implementation described in section 
2.1.1. When plotting the system's closed-loop response in Fig. 4.6 compared to the system in Fig. 
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4.5a using the same tuning parameters and a resistance R = 23.04 Ohm, the graph shown in Fig. 4.7 
is obtained. 

 

Fig. 4.7 Closed-loop step response of Simulink PID block compared to MATLAB function block 

Fig. 4.7 shows that the step response of the function block and the PID block are practically the 
same. The minor difference can be assigned to accuracy limits in calculating the parameters. This 
confirms that the model discussed in section 2.1.1 is a usable and correct implementation of the PID 
model. 
Besides verifying the implementation, the MATLAB function block can be used to easily test 
potential improvements to the controller by altering the MATLAB code in the function block.  

 

Separate component model 

The final model used to simulate the PID controller in this thesis is the separate component model. 
This model describes the entire functioning of the PID controller as basic Simulink blocks. The 
implementation of this can be seen in Fig. 4.8.  

 

Fig. 4.8 MATLAB Simulink PID control loop using the separate component model 

This setup, as shown in Fig. 4.8, makes it easy to analyse the minima and maxima of each of the 
signal lines and helps to analyse the effects of quantisation on the controller.  
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4.2 Controller tuning 

Next, the controller should have optimised tuning parameters, as tuning can improve the controller’s 
behaviour without requiring additional resources. The three methods from the literature study     
([K-]SIMC, Frequency loop shaping, and MATLAB autotune) are implemented and compared to select 
a tuning that yields optimal results. When analysing the tuning methods, some trade-offs between 
reference following and noise attenuation have to be made. [28] suggests opting for a relatively high 
bandwidth when tuning a controller for a DC-DC Buck converter to give an advantage for reference 
following over noise attenuation. The tuning methods are explored using the parameters of the 48V 
DC-DC buck converter as described in Table 4.1. A viable tuning must be found to control the 
converter stably under various load resistances. For this analysis, we consider the load resistance for 
a total power range of 100W (the maximum target wattage of the controller) down to 1nW.  
Then, when an optimal tuning method is found, this method will also be applied for the 24V DC-DC 
buck converter. 
    

4.2.1  (K)-SIMC Controller tuning 

First, the SIMC and K-SIMC methods are considered for tuning the controller using the process 
described in section 2.2.1. First, a first- or second-order plus delay approximation of the plant will be 
determined. Next, the PID gain parameters will be derived from this model approximation. 
For all the SIMC sub-methods, the plant system needs to be written into the following form: 

𝐺(𝑠) =
∏ F−𝑇.&$/0 + 1G.

∏ 𝜏$&𝑠 + 1$
𝑒*1!( 

The maximum resistance for our plant to be rewritten to this form is 4.585 Ω as when the resistance 
increases, there are no longer real zeros to factor in the denominator. Using this resistance, the 
following transfer function is obtained for the plant:  

𝐺(𝑠) =
𝑉$/

𝐿 ∙ 𝐶 ∙ 𝑠- + 𝐿
𝑅 𝑠 + 1

=
100

32.8 ∙ 10*P ∙ 0.39 ∙ 10*P ∙ 𝑠- + 32.8 ∙ 10
*P

4.585 𝑠 + 1
 

After factoring the denominator, the following transfer function is obtained: 

𝐺(𝑠) =
100

1.2792 ∙ 10*++(𝑠 + 276054.3487)(𝑠 + 283182.7176)

=
100

X 1
276054.3487 𝑠 + 1Y (

1
283182.7176 𝑠 + 1)

 

From this form, the following time constants are derived: 

𝜏+,& =
1

276054.3487
 

𝜏-,& =
1

283182.7176
 

 



Luke Geelen  Master Thesis 

53 

A) SIMC 

First-order 

Using the time-constants that are derived above, the first order plus delay approximation of the 
SIMC method can be obtained using the formulas from Table 2.1: 

𝜏+ = 𝜏+,& +
𝜏-,&
2
=

1
276054.3487

+
1

2 ∙ 283182.7176
= 5.3881 ∙ 10*P 

𝜃 = 𝜃& +
𝜏-,&
2
+	2𝜏$,&

$34

+2𝑇.&$/0

.

+
ℎ
2
=

1
2 ∙ 283182.7176

= 1.7656 ∙ 10*P 

This forms the first order plus delay approximation: 

𝐺O(𝑠) = 	𝑘
𝑒*1(

𝜏+𝑠 + 1
= 100

𝑒*+.VPWP∙+&#$(

5.3881 ∙ 10*P𝑠 + 1
 

This approximated transfer function can be verified by comparing the open-loop step response of 
the approximation and the original plant, as shown in Fig. 4.9. 

 

 

Fig. 4.9 Comparison of open-loop step response of the original plant vs the first order plus delay approximation 

Fig. 4.9 shows that the open-loop step responses of the first order plus delay approximation is 
similar to that of the original plant. This confirms that the approximation has been made correctly. 
 
Using the SIMC method, only a PI controller can be derived from a first-order approximation. This 
can be done using the formulas from Table 2.2: 

𝐾Y =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
=

1
100

	
5.3881 ∙ 10*P

𝜏6 + 𝜃
 

𝜏$ = minF𝜏+, 4(𝜏6 + 𝜃)G = (5.3881 ∙ 10*P, 4(𝜏6 + 1.7656 ∙ 10*P) 
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[22] suggested using 𝜏6 = 	𝜃. However, this resulted in significant overshoot, 𝜏6 = 	𝜃 ∗ 2.5	provided 
a more viable alternative. The step response of the closed-loop control system using  𝜏6 = 	𝜃 and  
𝜏6 = 	𝜃 ∗ 2.5 are shown in Fig. 4.10. 

 

Fig. 4.10 closed-loop step response of PI controller using 𝜏" = 	𝜃 and	𝜏" = 	𝜃 ∗ 2.5 

The closed-loop step response shown in Fig. 4.10 shows that using a larger tuning-time constant 
results in significantly less overshoot, a slightly lower settling time but a somewhat higher rise time. 
The exact benchmarks of the closed-loop step responses can be found in Table 4.2 

Table 4.2 Closed-loop benchmarks of SIMC FO PI controller 

 𝜏6 = 	𝜃 𝜏6 = 	𝜃 ∗ 2.5 
Rise time (s) 5.1418e-06 9.0600e-06 
Settling time (s) 1.5469e-05 1.4303e-05 
Overshoot (%) 9.43 0 

The information from Fig. 4.10 and Table 4.2 makes the PI controller with 𝜏6 = 	𝜃 ∗ 2.5 a more 
interesting choice due to the lack of overshoot and a faster settling time. 

When the system’s resistance is altered so that the power consumption of the DC-DC converter 
equals 1W (R = 2304W), the system behaves as can be seen in Fig. 4.11. 
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Fig. 4.11 Closed-loop step response of PI controller when a larger resistance is applied (𝜏" = 	𝜃 ∗ 2.5, 𝑅 = 2304	𝑂ℎ𝑚) 

Fig. 4.11 shows that the closed-loop step response of the PI controller is unstable. This makes the 
obtained tuning unfavourable for the design. 

 

Second-order 

Using the time-constants that are derived above the second order plus delay approximation of the 
SIMC method can be obtained using the formula’s form Table 2.1: 

𝜏+ = 𝜏+,& =
1

276054.3487
= 3.6225 ∙ 10*P 

𝜏- = 𝜏-,& +
𝜏4,&
2
=

1
283182.7176

+
0
2
= 3.5313 ∙ 10*P 

𝜃 = 𝜃& +
𝜏4,&
2
+	2𝜏$,&

$35

+2𝑇.&$/0

.

+
ℎ
2
=
0
2
= 0 +

1 ∙ 10*P

2
= 0.5 ∙ 10*P 

By filling in the obtained parameters in the formula of the second-order approximation, the 
following transfer function is found, which is essentially the same as the original: 

𝐺(𝑠) =
𝑘

(𝜏+𝑠 + 1)(𝜏-𝑠 + 1)
𝑒*1( =

100
(3.6225 ∙ 10*P𝑠 + 1)(3.5313 ∙ 10*P + 1)

𝑒*&.W∙+&#$( 

The only difference between this transfer function and that of the original plant is that the 
approximation allows for adding the sampling time of the controller as a dead time to provide more 
accurate digital control. 
The approximation can be verified by comparing the open-loop step response with the original 
plant. This comparison can be seen in Fig. 4.12.  
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Fig. 4.12 comparison of the original plant, first- and second-order plus delay approximation 

Fig. 4.12 shows that nearly no distinction between the second-order plus delay approximation and 
the original plant can be made, making it a more accurate approximation than the first order.  
Now that the second-order plus delay approximation of the plant is obtained, the PID control 
parameters can be derived from the model using the formulas from Table 2.2: 

𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
=

1
100

3.6225 ∙ 10*P

𝜏6 + 0.5 ∙ 10*P
 

𝜏$ = minF𝜏+, 4(𝜏6 + 𝜃)G = min	(3.6225 ∙ 10*P, 4(0.5 ∙ 10*P + 𝜏6) 

𝜏'	 =	𝜏- = 3.5313 ∙ 10*P 

The continuous-time step response shows promising results, as shown in Fig. 4.13. The system is 
stable for both the resistance the system is tuned to and the reference resistance of 2304 Ohm, 
equal to 1 W.  𝜏6 = 𝜃 yielded the most balanced results and was therefore used. 

 

Fig. 4.13 continuous-time closed-loop step response of SIMC PID controller at different loads 
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The performance benchmark of this tuning method can be found in Table 4.3. It shows that for the 
controller's usable range, the response time is approximately 15 µS, with an overshoot varying 
between 5% and 11%. An attempt to reduce the overshoot by increasing the tuning parameter 𝜏6  as 
suggested by [22] was made. Unfortunately, this yielded larger overshoot for larger loads whilst 
decreasing 𝜏6  had a similar effect. 

Table 4.3 Performance benchmarks of the SIMC PID tuning under different loads 

 R = 4.585 W R = 23.04 W (100W) R=2304 W (1W) R=2304MW 
(1nW) 

Rise time (s) 4.0605e-06 1.6216e-06 1.4135e-06 1.4117e-06 
Settling time (s) 1.8682e-05 1.5108e-05 1.5351e-05 1.5349e-05 
Overshoot (%) 6.075 4.9917 10.948 11.0148 

 

B) K-SIMC 

First-order 

Using the K-SIMC formulas from Table 2.1, the following first-order plus delay approximation can be 
obtained: 

𝜏+ = 𝜏+,& +
1
2
𝜏-,&-

𝜏+,&
=

1
276054.3487

+
1
2
X 1
283182.7176Y

-

1
276054.3487

= 5.3437 ∙ 10*P 

𝜃 = 	 𝜏-,& 	S1 −
1
2
	
𝜏-,&
𝜏+,&

T +	2𝜏$,&
$34

+2𝑇.&$/0

.

+
ℎ
2
=

1
283182.7176A

1 −
1
2

1
283182.7176

1
276054.3487

D +
10*P

2

= 1.8101 ∙ 10*P 

𝐺(𝑠) =
1

𝜏+𝑠 + 1
𝑒*𝜃𝑠 =

1
5.3437 ∙ 10*P𝑠 + 1

𝑒*+.Z+&+∙+&#$𝑠 

From this approximation, the PID parameters can be derived in the following fashion, using formulas 
from Table 2.2: 

𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
=

1
100

5.3437 ∙ 10*P

𝜏6 + 1.8101 ∙ 10*P
 

𝜏$ = minF𝜏+, 5(𝜏6)G = min	(5.3437 ∙ 10*P, 5 ∙ 𝜏6) 

𝜏7 = max <
𝜃 − 𝜏6
2

, 0= = maxS
1.8101 ∙ 10*P − 𝜏6

2
, 0T 

Fig. 4.14 shows the closed-loop step response for a load of 4.858 Ohm and 2304 Ohm (= 1W) using 
𝜏6 = 𝜃. Unfortunately, this system becomes unstable when the resistance increases, making this not 
a viable tuning method. 
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Fig. 4.14 Closed-loop step response of K-SIMC FO PID tuning a) for R=4.858 Ohm B) for R=2304 Ohm 

 

Second-order 

Again, using formulas from Table 2.1 allows the derivation of the K-SIMC second-order plus delay 
approximation: 

𝜏+ = 𝜏+,& =
1

276054.3487
= 3.6225 ∙ 10*P 

𝜏- = 𝜏-,& +
1
2
𝜏4,&-

𝜏-,&
=

1
283182.7176

+
1
2

0-
1

283182.7176
= 3.5313 ∙ 10*P 

𝜃 = 𝜃& +	𝜏4,& 	S1 −
1
2
	
𝜏4,&
𝜏-,&

T +	2𝜏$,&
$35

+2𝑇.&$/0

.

+
ℎ
2
= 0 +

1 ∙ 10*P

2
= 0.5 ∙ 10*P 

𝐺(𝑠) =
100

(3.6225 ∙ 10*P𝑠 + 1)(3.5313 ∙ 10*P𝑠 + 1)
𝑒*0.5∙10−6( 

From this approximation, the PID parameters can be derived using the formulas from Table 2.2: 

𝐾6 =
1
𝑘
	
𝜏+

𝜏6 + 𝜃
=

1
100

3.6225 ∙ 10*P

𝜏6 + 0.5 ∙ 10*P
 

𝜏$ = minF𝜏+, 5(𝜏6)G = minF3.6225 ∙ 10*P, 5(𝜏6)G 

𝜏7 = 𝜏- +max <
𝜃 − 𝜏6
2

, 0= = 3.5313 ∙ 10*P +max	(
0.5 ∙ 10*P − 𝜏6

2
, 0) 

Fig. 4.15 shows the step response from the obtained tuning parameters. This system is stable for a 
variety of load resistances. This tuning, like the second-order SIMC tuning, has some overshoot. 
Increasing the tuning parameter 𝜏6  reduces the overshoot slightly. However, it results in more 
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undershoot when the resistance tends to be higher. A value of 𝜏6 = 1.5	𝜃 was selected to balance 
the effect.  

 

Fig. 4.15 Closed-loop step response of PID control tuned by SO SIMC with a) resistance of 4.858 Ohm b) resistance of 2304 
Ohm 

A detailed overview of the step-performance benchmarks can be found in Table 4.4. 

Table 4.4 Performance benchmarks of the second-order K-SIMC PID tuning under different loads 

 R = 4.585 W R = 23.04 W (100W) R=2304 W (1W) R=2304MW 
(1nW) 

Rise time (s) 4.8657e-06 1.9598e-06 1.6804e-06 1.6780e-06 
Settling time (s) 2.0005e-05 1.5932e-05 1.5761e-05 1.5755e-05 
Overshoot (%) 7.1397 4.8864 11.6948 11.7711 

 

Conclusion 

The controllers obtained from the (K-)SIMC methods can be split up into two categories: first, the PI 
and PID controller from the first order SIMC and K-SIMC methods, respectively. Both controllers 
showed an unstable response when the load-resistance of the converter model was increased, 
making these methods unviable. Next, the two PID controllers resulting from the second-order SIMC 
and K-SIMC tuning methods. When comparing the results in Table 4.3 and Table 4.4, it can be 
concluded that the SIMC-method results in a slightly better tuning as the settling time is smaller in 
all four cases whilst the overshoot is marginally smaller in 3 of 4 cases (with the plant of 23.04 Ohm 
being the exception). 
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4.2.2  Frequency loop shaping 

The frequency loop shaping technique allows tuning a controller based on a desired cut-off 
frequency. [28] suggests using a high value for the cut-off frequency, using a frequency in the order 
of MHz. It is important to analyse if this magnitude of cut-off frequency is realistic as the 
minimisation objective should preferably be smaller than 0.2 and no larger than 0.5 to keep a similar 
behaviour to the target open-loop transfer function. This open-loop target TF is described as L(s).  

 

Integrator open-loop transfer function 

The first tuning attempt uses the transfer function of an integrator as open-loop target transfer 
function: 

𝐿&(𝑆) =
𝜔6
𝑠

 

The tuning method requires a time constant for the low pass filter to be set before the tuning 
process can begin. This low pass filter prevents the derivative term of the PID controller from 
responding strongly to noise. Decreasing the constant reduces the maximum cut-off frequency for 
which an objective lower than 0.5 or 0.2 can be obtained. 

Using the MATLAB function as shown in appendix B, the minimisation function can be computed, 
constrained by the positivity of the PID gain parameters. 

Using an LPF time constant of 10*- resulted in a maximum usable cut-off angular velocity of 2.86	 ∙
104	𝑟𝑎𝑑/𝑠 or 445.18	𝐻𝑧. Comparing these results to the results of [28] it can be noted that the 
achieved maximum obtained cut-off angular velocity of 2.86	 ∙ 104	𝑟𝑎𝑑/𝑠 is significantly lower than  
[28]’s 1.19 ∙ 10P	𝑟𝑎𝑑/𝑠. The use of different parameters for the electrical components and a 
different theoretical model for the converter can be attributed to these differences. 
Using the minimisation solution, the following closed-loop step response is obtained. A slight 
difference between the ideal target transfer function and the result of the minimisation is found, 
resulting from a limited degree of freedom from the transfer function of the PID controller, as can be 
seen in Fig. 4.16. 

 

Fig. 4.16 closed-loop step response of target transfer function versus obtained control loop from minimisation 
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The performance benchmarks of this tuning method can be found in Table 4.5. It can be seen that 
the settling time is a lot higher than the most optimised SIMC method (factor ~120) but offers no 
overshoot. 

Table 4.5 Performance benchmarks of FLS Method using integrator as target 

 R = 23.04 W (100W) R=2304 W (1W) R=2304MW 
(1nW) 

Rise time (s) 9.8768e-04 9.9037e-04 9.8768e-04 
Settling time (s) 0.0018 0.0018 0.0018 
Overshoot (%) 0 0 0 

 
 
Second-degree open-loop transfer function 

Besides targeting a transfer function of an integrator [26], suggest targeting the following transfer 
function: 

𝐿(𝑠) =
𝜔6(𝑠 + 𝑎)
𝑠(𝑠 + 𝑒)

 

From which parameters “a” and “e” are introduced as discussed in chapter 2 of the thesis. “a” was a 
tuning parameter making a trade-off between settling time and overshoot, whilst “e” compensated 
for a slow pole in the system. The goal of this transfer function is to compensate for one slow pole, 
as the slowest pole in the system is from the LPF (the buck converter does not have a slow pole). 
This function would compensate for the effect of the low pass filter. This fact makes this transfer 
function not compatible for use on the plant. 
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4.2.3 MATLAB autotune software 

Since MATLAB’s tune software can directly tune digital controllers, these two subsections will use a 
digital PID control block with a sampling frequency of 1 MHz as the duty cycle command can only be 
altered once per switching period. The saturation of the plant control can also already be 
considered, limiting the duty cycle between 0 and 90%, as discussed in chapter 2. Tuning is 
performed using the largest resistance, 2306 MOhm, as this resulted in the highest overshoot. 

 

Transfer function tuner 

The MATLAB PID tune application allows tuning a controller given a plant. The following method was 
used for obtaining a tuning. Two tunings were derived: one with no overshoot and one with some 
overshoot (<5%). For these tunings, the transient behaviour was set to 0.8, and the response time 
was tuned to obtain the desired overshoot. The results for tuning towards no overshoot can be 
found in Table 4.6, and the results for tuning towards some overshoot can be found in Table 4.7 

Table 4.6 Performance benchmarks of MATLAB TF tuned towards no overshoot 

 R = 23.04 W (100W) R=2304 W (1W) R=2304MW 
(1nW) 

Rise time (s) 1.7421e-05 4.6563e-06 4.6257e-06 
Settling time (s) 5.3891e-05 6.4726e-05 6.4845e-05 
Overshoot (%) 0 0 0 

 

Table 4.7 Performance benchmarks of MATLAB Frequency response tuner tuned towards some overshoot 

 R = 23.04 W (100W) R=2304 W (1W) R=2304MW 
(1nW) 

Rise time (s) 8.1879e-06 3.6924e-06 3.6805e-06 
Settling time (s) 1.7146e-05 4.1139e-05 4.1204e-05 
Overshoot (%) 0.4860 2.5624 2.9046 

It can be concluded from Table 4.6 and Table 4.7 that tuning for some overshoot has a significant 
positive effect on settling time compared to tuning towards no overshoot. Although overshoot 
would rather be prevented, it is worth considering testing with overshoot-reducing improvements 
that will be analysed in the next section. 
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Frequency response tuner 

The final method for tuning the PID controller is the MATLAB frequency response tuner. The 
frequency response tuner allows tuning a target bandwidth up to the sampling frequency of the 
digital PID block divided by 0.3. When tuning for high bandwidth, as suggested in [28] (The maximum 
possible using a sampling frequency of 1 MHz), the results obtained can be seen in Fig. 4.17. 

 

Fig. 4.17 Step response of MATLAB frequency tuner tuned controller (R=23.04 Ohm) 

Fig. 4.17 shows the step response using the frequency response tuning method. For this step 
response, a load resistance of 23.04 Ohm was used. A significant overshoot and oscillation can be 
observed. The performance benchmarks from this tuning can be found in Table 4.8, showing that 
this method is stable for various loads and offers a reasonable settling time. 

Table 4.8 performance benchmarks of MATLAB frequency response tuned controller 

 R = 23.04 W (100W) R=2304 W (1W) R=2304MW 
(1nW) 

Rise time (s) 1.4544e-05 1.4126e-05 1.4122e-05 
Settling time (s) 1.5159e-04 1.4723e-04 1.4718e-04 
Overshoot (%) 39.3231 39.7766 39.7807 

As observed from Table 4.8 and Fig. 4.17, this method yields a large overshoot. The overshoot as is, 
is considered unacceptable. However, several potential improvements will be discussed further in 
this thesis. When comparing this data to the transfer function tune method data in Table 4.7 and 
4.6, the transfer tune method results in tunings with a lower settling and rise time whilst producing 
less overshoot. This makes the frequency response tune method less favourable. 
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4.2.4 Conclusion 

We can compare the step response data from previous experiments and conclude that the SIMC 
method appears to offer a more favourable step-response based on rise time, settling time, and 
overshoot. However, converting the design to a digital PID controller with a sample rate of 1 MHz 
shows the design becomes unstable. Simulation shows that for sampling frequencies up to 1 GHz, 
the system does not return to a stable state for realistic values of 𝜏6, making an implementation of 
this tuning near impossible. 
Comparing the result tables of the FLS and MATLAB autotune methods shows that MATLAB’s 
transfer-function tuner gives the best results. The tuning with no overshoot will be considered as 
base-tuning. However, the improvements in the next section may allow the implementation of the 
tuning designed for some overshoot. 

The obtained base-tuning can be verified against the SimScape model to ensure the behaviour is 
similar, as shown in Fig. 4.18. It can be concluded from this image that the behaviour is similar. 

 

Fig. 4.18 Compare PID controller with base tuning to transfer function as plant and SimScape simulation as plant 
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4.2.5 100V to 24V Converter 

Previous calculations were done using the 100V to 48V controller, as the 100V to 24V uses a 
different capacitance and inductance value, the transfer function differs from that of the 48V model. 
The same procedure can be followed for tuning the 24V controller. Using MATLAB transfer function 
tuner to tune for no overshoot, the results from Table 4.9 are obtained. 

Table 4.9 Benchmarks of tuning 24V controller using the MATLAB Transfer function tuner for no overshoot 

 R = 5.76 W (100W) R=576 W (1W) R=576MW (1nW) 
Rise time (s) 4.6731e-05 4.0111e-06 3.9459e-06 
Settling time (s) 8.7268e-05 9.4894e-05 9.4941e-05 
Overshoot (%) 0 0 0 

When comparing the data from Table 4.6 to Table 4.9, the tuned system for the 24V controller 
behaves similar to that of the 48V controller when the same tuning method is applied. A method 
with overshoot can also be found. It should be stated that as the final duty cycle is a lot smaller 
(~0.24 under nominal conditions), higher overshoot occurs due to the proportional response of the 
PID controller, but the next section will consider a solution to reduce this. The result of a controller 
tuned ignoring the overshoot on the step response can be seen in Table 4.10. 

Table 4.10 Benchmarks of tuning 24V controller using the MATLAB Transfer function tuner for overshoot 

 R = 5.76 W (100W) R=576 W (1W) R=576MW (1nW) 
Rise time (s) 1.2307e-06 1.0403e-06 1.0388e-06 
Settling time (s) 6.4252e-05 6.8881e-05 6.8864e-05 
Overshoot (%) 31.35 70.47 70.96 
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4.3 Potential control improvements 

In chapter 2, several potential improvements to PID control were suggested. In this section, these 
methods will be tested and evaluated whether the improvement these changes offer can justify the 
increase in complexity and resources used. 

 

4.3.1 Nonlinear PID control 

A new MATLAB function block was designed to test the suggested nonlinear PID control method. The 
code for this function block can be found in appendix C. The schematic used to test this setup can be 
seen in Fig. 4.19 

 

Fig. 4.19 Simulink schematic for testing Non-Linear PID 

Similar results are obtained when testing for several different error-band thresholds, as can be seen 
in Fig. 4.20.  

 

Fig. 4.20 Step response of 48V Converter controlled by PID vs Non-Linear PID 

Fig. 4.20 shows the step response of the 48V buck-converter controlled by a regular PID controller vs 
controlled by the proposed nonlinear PID. Even when using different thresholds, the following 
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symptoms are observed. First, the system rises at a rate equal to the rise rate of the regular PID 
block. Next, the Nonlinear block either overshoots or undershoots depending on the thresholds, 
creating an irregular signal. The settling time of the nonlinear circuit tends to be longer due to 
recovering from this irregular period. 

 
The lack of performance increase whilst applying this schematic can be explained. The goal of the 
circuit is to push the controller in saturation during the start-up period. However, the obtained 
tuning already puts the controller into saturation. Further increasing the gain has no positive effect 
and introduces irregularities when changing between tuning parameters due to changing between 
error bands. 
 

As there is no gain in performance, this circuit is not recommended for use in the control circuit of 
this specific DC-DC Converter. 

 

4.3.2 Low pass filter derivative component 

Using MATLAB’s Simulink Filtered PID block with a transfer function similar to that described in 
section 2.2.2 with various values for filter coefficient N (attempts ranging from N=10*P to N=10P) 
makes the closed-loop system unstable.  
An attempt to retune the controller for this setup was made using MATLAB’s transfer function PID 
tuner and frequency response tune. However, neither obtained a stable tuning. 
Due to a lack of stable tuning, this optimisation method was dismissed.  

 

4.3.3 Setpoint filter 

The setpoint filter aims to reduce overshoot in the step response. As the opted base tuning does not 
result in overshoot, an attempt was made to reduce the overshoot in the MATLAB transfer function 
tuning with some overshoot (Table 4.7).  
The design of the filter can be made in Simulink and can be seen in Fig. 4.21. 

 

 

 

Fig. 4.21 Simulink schematic for testing setpoint filter 
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The maximum setpoint rate change value was determined experimentally to reduce the overshoot 
to 0%. This led to a maximum setpoint rate of 4V/µs. Using the filter with this rate limitation led to 
the results shown in Table 4.11. 

Table 4.11 Results using setpoint filter at 4V/µs with PID tuning from Table 4.7 

 R = 23.04 W (100W) R=2304 W (1W) R=2304MW 
(1nW) 

Rise time (s) 1.0551e-05 1.0144e-05 1.0125e-05 
Settling time (s) 5.9976e-05 6.1525e-05 6.1534e-05 
Overshoot (%) 0 0 0 

 

The results from Table 4.11 show that the setpoint filter successfully reduces or removes overshoot. 
However, comparing the settling times from this method to the settling times of the MATLAB 
transfer-function tuned without overshoot shows that the two systems behave similarly.  

The tuning of the controller does not only affect the step response, but It also affects its ability to 
reject disturbances. Both responses can be seen in Fig. 4.22. 

 

 

Fig. 4.22 a) step response b) 5V voltage drop disturbance response of PID control using setpoint filter vs base tuning 

Fig. 4.22 shows that the more aggressively tuned controller with a setpoint filter responded slightly 
faster to a disturbance. In this case, a voltage drop of 5V applied to the input. The more aggressively 
tuned controller with setpoint filter needed 52µs to return to 47.95V, whilst the controller tuned for 
no overshoot needed 76µs. Another notable difference is that the more aggressive tuned controller 
results in a lower undershoot in case of a voltage drop, dropping the output to 47.55V rather than 
47.42V. 
 
Similar effects can be obtained using the 24V controller. Starting from a tuning that normally results 
in overshoot and removing the overshoot by using a setpoint filter positively affects the disturbance 
rejection rate. A setpoint rate limit of 5V/µs was used in this test.  The results can be seen in Fig. 
4.23, having a similar effect but in a larger order of magnitude compared to the impact on the 48V 
controller. In this case, the filter also significantly improved the step response, showing much fewer 
oscillations. 
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Fig. 4.23 a) step response b) 5V voltage drop disturbance response of PID control using setpoint filter vs base tuning on 24V 
controller 

 

Even though this method does not improve the step response of the 48V converter significantly, 
using this filter in combination with a slightly more aggressive tuning does allow for significantly 
improved disturbance response, allowing the converter to recover from voltage drops or load 
changes more quickly with less hard drops on the output voltage. It also contributes significantly to 
improving the step response of the 24V controller. This contributes considerably to a better 
performing controller and hence is worth the relatively low addition of complexity. 

 
It should be noted that using this filter has an effect should variable setpoints be introduced. 
However, as the DC-DC converter is designed to function at a fixed target voltage, the impact of this 
filter is not considered for this scenario.  
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4.4 Design of DPWM output stage 

The DPWM is critical in the controller design as it is responsible for controlling the converter directly. 
Its resolution will impact the control resolution of the entire controller and could be accountable for 
causing limit cycle oscillations (LCO), as described in chapter 2. This section describes the design 
process of the output stage, comparing a setup with a Σ–∆ generator to a setup with only a sawtooth 
comparator DPWM generator. 

 

4.4.1 Σ–∆ Generator 

MATLAB Simulink model and verification 

The first step in the design process was to obtain a functioning MATLAB model of a second-order Σ–
∆ generator. During this step, the Σ–∆ generator presented in [16] with a 4-bit effective core 
resolution and 10-bit input resolution was recreated. 
Recreating the Σ–∆ generator in MATLAB required separating a fixed set of MSBs and a fixed set of 
LSBs. Due to the method of notation, it was easiest to convert the fractional notation of the duty 
cycle to an entire integer notation by shifting left the duty-cycle word at the input of the Σ–∆ 
generator and shifting the word back to the fractional domain at the end of the Σ–∆ generator.  This 
implementation of the second-order Σ–∆ generator can be seen in Fig. 4.24. Besides extra bit shifts, 
several data-conversion blocks are added. These blocks force MATLAB to use the correct fixed-point 
notation types as would happen on an FPGA, or eventually an ASIC, making it possible to simulate 
quantisation effects. The registers, simulated as discrete delay, are clocked at the target switching 
frequency of 1 MHz. 

 

Fig. 4.24 MATLAB Simulink implementation of multibit second-order Σ–∆ generator 

The implementation can be verified by analysing the output of the simulation and comparing the 
average signal to the setpoint. 

 
The Simulink simulation takes a moving average of the output of the Σ–∆ generator with a window 
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length of 8 slots. This averaging will eventually be done by the filtering effect of the power stage of 
the buck-converter. The result of this simulation can be seen in Fig. 4.25. 

 

Fig. 4.25 MATLAB Simulink verification of second-order multibit Σ–∆ generator implementation 

The graph from Fig. 4.25 shows that, although only a limited control resolution of 4 bits, a control 
accuracy of 0.0625 (2-4), an average of the supplied signal of 0.48 can be attained by continuously 
switching in steps of two LSBs. This graph confirms the correct function of the Simulink 
implementation presented in Fig. 4.24. 

 

Design 

To design an output stage with a Σ–∆ generator, some design choices will have to be made first: 
control accuracy and measurement resolution. From [42] can be concluded that the ripple size of the 
controller equals approximately 0.2V. The following formula is suggested for choosing the minimal 
measurement resolution: 

∆𝑉<=> <
𝑉8$##DH
4

 

Choosing a measurement resolution finer than the ripple might seem like a waste of resources at 
first. However, the voltage measurement always happens at the same time-point in the switching 
period (in this MATLAB simulation). This will result in a steady-state error with a maximum size of 
the ripple voltage. Choosing a control resolution finer than the ripple voltage allows for an offset in 
the target voltage smaller than the ripple voltage to compensate for this effect. 
Using this logic, a minimum resolution of 0.05V is found. Combining this with the knowledge that the 
output voltage can never exceed the input voltage of 100V, the measured output voltage can be 
represented as a fixed-point number with 7 integral bits and 5 fractional bits (2-5 = 0.03125 < 0.05).  

 
Knowing the measurement resolution, the minimal control resolution required to prevent LCO can 
be determined: 

∆𝑑<=>	𝑉?@ < ∆𝑉AB%_<=> 
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∆𝑑<=>	100 < 0.03125 

The smallest binary notation of the duty-cycle word ‘d’ for which this inequality would be true is a 
fixed-point notation with 12 fractional bits, as: 

2*+- ∗ 100	 = 	0.02441	 < 	0.0312 

A 9-bit Core DPWM generator was used as it was considered the highest accuracy attainable given 
the switching frequency. Later analysis concluded that the available clock frequency would be too 
low for a 9-bit DPWM. However, the 9-bit DPWM will still function well for testing the averaging 
capabilities of the converter.  

When using an input resolution of 12 bits with an effective resolution of 9 bits requires the Σ–∆ 
generator to add a virtual resolution of 3 bits. As both the effective resolution and input resolution 
of the Σ–∆ generator is known, the sampling frequency of the steady-state PID controller can be 
determined:	

𝑁7LMN ≈ 𝑁6IGH + 2.5 log- S
𝑓(E

𝑓B#'O%H
T	

12 ≈ 9 + 2.5 log- S
1	𝑀𝐻𝑧
𝑓B#'O%H

T 

𝑓B#'O%H,QOR ≈ 435275	𝐻𝑧 = 0.435275	𝑀𝐻𝑧 

A PID update frequency will be chosen as a factor of the switching frequency, allowing the clock 
signal for steady-state PID control to be created using a prescaler. A factor of ¼ allows for an update 
frequency of 0.25 MHz as some margin is recommended in [16]. 

 
A practical implementation of a Σ–∆ generator with the aforementioned effective and input 
resolution can be seen in Fig. 4.26. 

 

Fig. 4.26 Practical implementation of the second-order multibit Σ–∆ generator	
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Testing averaging capability of the system 

The Σ–∆ generator varies the output to the core DPWM by 1*LSB or 2*LSB to obtain an average 
value equal to the input of the Σ–∆ generator. As the design of the output stage has been 
determined, the averaging capabilities of the system can be tested by feeding a fixed duty cycle 
through the Σ–∆ generator and analysing the variations measured in the (simulated) buck converter. 
To filter out the ripple of the buck converter, the scope sampling time was set equal to a switching 
period of the DPWM signal. This way, the signal is sampled at the same time point in each switching 
period. Although this measurement might introduce some steady-state error, this works well to 
analyse variations in the signal whilst filtering out the ripple of the buck converter. This test was 
performed using a duty-cycle word of 0.48. 

 

Fig. 4.27 Steady-state variation caused by second-order multibit Σ–∆ generator on 48V Buck converter 

The variations caused by the designed second-order multibit Σ–∆ generator are displayed in Fig. 
4.27. From this graph, it can be read that the Σ–∆ generator introduces a relatively large variation of 
approximately 0.4V peak to peak.  
Comparing this to the LCO effect of using the same measurement resolution as with the multibit Σ–∆ 
generator and using the same 9-bit core DPWM generator, shown in Fig. 4.28. 
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Fig. 4.28 Steady-state variation caused by limit cycle oscillation 

Analysing the variation from Fig. 4.28 shows that the peak-to-peak variation is 0.068V. Comparing 
the variation of using the Σ–∆ generator or suffering the effects of LCO shows that the impact of LCO 
causes less variation than the implementation of the Σ–∆ generator, which was implemented with 
reducing the effects of LCO. The variation caused by the Σ–∆ generator indicates that the converter 
design at the switching frequency of 1 MHz cannot average/filter the small variations the Σ–∆ 
generator causes.  
The amplitude of the variations occurring with the Σ–∆ generator can be confirmed as the second-
order Σ–∆ generator varies the control signal by a maximum of 2*LSB. Translating this to terms of 
voltage would result in variations of 2-9 *100*2, which equals 0.39V. 
This difference in findings between [16] and the above experiment can be attributed to a significant 
lower switching frequency. The designed controller has a switching frequency of 1 MHz, whilst the 
controller from [16] has a switching frequency of 10 MHz. Besides this, a difference can occur by 
using different inductance and capacitance for the components of the buck converter. 
This analysis makes the Σ–∆ generator unfeasible for integration in the control circuit of the DC-DC 
Buck converter as either accepting the effects of LCO or lowering the control resolution yields better 
results with less hardware. It should also be noted that the dither generator, which has a similar 
effect on the input of the core DPWM, would be infeasible too for the same reasons the Σ–∆ 
generator is.  
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4.4.2 Sawtooth comparator DPWM output 

The variations from dither-based solutions cause the system to oscillate more than the effects of 
LCO, which it was supposed to prevent, due to the lack of averaging capabilities of the buck 
converter. A trade-off should be made between steady-state oscillation, measurement-resolution 
and setpoint-resolution. It is still possible to design a controller that should show no signs of LCO by 
maintaining the following inequation with the known maximum control resolution of 9 bits: 

∆𝑑<=>	𝑉?@ < ∆𝑉AB%%&'  

2*[ ∙ 100 < Δ𝑉AB%%&' 				𝑜𝑟	0.195313 < Δ𝑉AB%%&' 	 

A measured voltage representation of 7 bits integer and 2 bits fractional can be derived, resulting in 
a measurement and setpoint resolution of 0.25V. 
Although this resolution does not allow for compensating the offset of measuring at the same 
moment of time in the switching period, some control of this offset can be obtained by managing 
the time point ADC takes its measurement. However, this is considered outside the scope of this 
thesis. 
The steady-state response is obtained using the above-calculated resolution, as shown in Fig. 4.29. 
The variations in this setup have a peak-to-peak amplitude of 0.01V, significantly smaller than 
previous attempts and negligible compared to the ripple voltage of the buck converter. 

 

 

Fig. 4.29 Steady-state variation using sawtooth comparator DPWM 

 

Further analysis turned out that the maximum clock frequency for the DPWM generator using the 
180nm BCD technique from the TSMC foundry is 444.44 MHz or 2.25ns. This makes counting to 512 
(the value required for a 9-bit DPWM generator) with a frequency of 1 MHz (switching frequency) 
impossible. However, instead of resorting to an 8 bit DPWM generator and having to decrease the 
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measurement voltage as a result. A counter that counts to 444 could be implemented. The input 
signal should still be 9 bits but it should be scaled down to a factor of 444/512 as otherwise the 
controller’s gain would be increased.  
Instead of multiplying the duty-cycle with this factor, the following changes could be made to obtain 
the same result without requiring extra hardware: 

• Multiply the tuning parameters by 444/512 before calculating the parameters a0, a1, and a2, 
lowering the controller’s gain back to the original gain. 

• Decrease the duty-cycle saturator maximum by a factor of 444/512, preventing a duty cycle 
higher than the efficiency of the buck converter. 

Verification can be made to determine if the measurement voltage resolution of 2 bits can be 
maintained: 

1
𝑁(%H#(

	𝑉?@ < ∆𝑉AB%%&'  

1
444

∗ 100 = 0.225	𝑉 < 0.25	𝑉 

This implementation yields a measurement resolution of 0.25V and a control resolution of 0.225V. 

A logical implementation using this strategy can be seen in Fig. 4.30. This implementation also uses 
two shift registers to allow the negative PWM signal to have a dead time before and after each 
switch of the positive PWM signal. Should it be requested to alter the dead-time of the converter, 
then this can be arranged in steps of 2.25ns by installing a prescaler and clocking the registers with 
this slower clock. 

 

Fig. 4.30 Implementation of DPWM generator 
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4.5 Converting to fixed-point representation 

To implement the obtained control logic in VHDL, a representation method for the numeric values in 
the calculation process needs to be chosen. It was opted to go with fixed-point representation rather 
than floating-point implementation as it can be implemented easier on FPGA and ASIC, needing 
fewer resources. 
To convert the existing system to fixed-point representation, a bit size for the integral and fractional 
parts must be chosen. 

 

4.5.1 Integral lengths 

To determine the size of the integral length, an analysis can be made to determine the maximum 
and minimum value each signal must be able to represent. The input limits are listed in Table 4.12. 

Table 4.12 Input maxima & minima with fitting integral representation 

 Min Max Representation Required integer 
bits 

Ref 0 90 Unsigned 7 
V 0 105 Unsigned 7 
A0 0.13 0.19 Unsigned 0 
A1 -0.34 -0.23 Signed 1 sign + 0 
A2 0.10 0.15 Unsigned 0 

The limits listed in Table 4.12 can be derived as follows. The maximum reference voltage cannot be 
higher than the efficiency of the DC-DC buck converter multiplied by the input voltage. As the 
controller’s efficiency is not yet known, a suggested value of 90% is taken. Obtaining a negative 
reference is impossible using a switching converter making the minimum reference 0. 
The measured voltage of the controller cannot exceed the input voltage of the controller, allowing 
an additional 5% ensures stable operation in case of a higher input voltage under maximum duty 
cycle. The measured voltage cannot be negative using a switching converter. 
The maxima and minima from the PID parameters A0, A1 and A2 are derived from Appendix D, 
specifically, the two tunings using overshoot for the 48V and 24V controller scaled by 444/512. 

Simple calculations can be used to derive the integral size constraints from these input values. In 
these calculations, the signals will be named as shown in Fig. 4.31. 
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Fig. 4.31 Control schematic naming the signals of the PID controller 

Using the input limitations, the value range of all signals up to S1 can be calculated. S1 uses a 
feedback signal formed from the result, meaning no mathematical limit based on the input signals 
can be used to determine the maximum range U and hence for S1. This can be solved by saturating 
the U(k) signals into Us(k). The saturation value should be high enough not to be met during regular 
operation yet low enough to prevent too many resources from being wasted. 
Adding this saturation brings a secondary advantage: should (due to some error) the input voltage 
be lower than the setpoint voltage, an uncorrectable error is introduced. The PID circuit without 
saturation will keep integrating the mistake, causing a very large value of U(K). Running in an 
unconstrained environment would result in a long recovery time when the input voltage is restored 
as the overshoot beyond the maximum duty cycle would need to be “integrated”-away by the new 
error signal. Running in a constrained environment would eventually result in an overflow. 
Saturation on the return path will prevent both: the size of the accumulated error is limited, as is the 
time to recover after the input voltage recovers, and the use of saturation prevents overflow. 
By simulating the step and disturbance response in MATLAB, we can find the maximum value of U(k) 
by logging the signal. A maximum of 7.99 is found for the 48V controller and a maximum of 0.68 is 
found using the 24V controller. 
A safety factor of 2 is applied for this calculation, allowing for some margin should the physical 
system experience a more significant value (due to slower step response or other 
disturbances/noise), making the maximum for the saturated value 15.98 or rounded up to 16. The 
value of U can become negative, using the same method of logging a minimum of -0.8 was found 
using the 48V controller, using the same safety factor of 2 results in a minimum of -1.6. 
Using these values for maxima and minima of Us and performing a maxima and minima analysis on 
the circuit using the input constraints, the maxima and minima with integral representation can be 
obtained, as shown in Table 4.13. 
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Table 4.13 Calculated maxima & minima with fitting integral representation 

 Min Max Representation Required integer 
bits 

E -105 90 Signed 1 sign + 7 
P0 -19.95 17.1 Signed 1 sign + 5 
P1 -30.6 35.7 Signed 1 sign + 6 
P2 -15.75 13.5 Signed 1 sign + 4 
S0 -50.55 52.8 Signed 1 sign + 6 
Us -1.6 16 Signed 1 sign + 4 
S1 -17.35 29.5 Signed 1 sign + 5 
U -67.9 82.3 Signed 1 sign + 7 
d 0 0.9  Unsigned 0 

 

Tables 4.12 and 4.13 show that some values can be represented unsigned. It would require 
conversion to signed notation to perform mathematical operations with other signed values. 
Therefore, all values will be noted as signed in the VHDL implementation. 

 

4.5.2 Fractional lengths 

To complete the conversion to fixed-point representation, a length for the fractional bits needs to be 
chosen as well. [3] suggests using MATLAB’s fixed point tool to determine what the minimal 
fractional length is for which the behaviour of the PID controller remains within a certain error-
bound of floating-point representation, giving extra care not to create a steady-state error. 
The fixed-point notation of the reference voltage and voltage measurement has already been 
determined in section 4.4.2. 
A notation for the implementations PID parameters (A0, A1 and A2) can be determined using 
MATLAB’s fixed point tool. When these representations are determined, the representation of the 
data lines resulting from calculations with known representations can be calculated using the rules 
of the IEEE fixed point package explained in [46]. 

First, the representation of the parameters is determined using the fixed-point tool. An error band of 
5% is accepted for dynamic response and a steady-state error of 0.01V. For this test, the setup of 
using both the setpoint filter with the PID controller is used. The measured voltage signal is not 
represented in fixed-point notation to prevent cumulative quantisation errors during this test. A 
stricter tolerance for the steady-state fault is chosen as it is more important that the controller 
reaches a correct steady-state than following the exact dynamic behaviour as the ideal, non-
quantised PID controller. These tests were performed using both the 48V and 24V controller with a 
5V voltage drop to analyse the effect of quantisation on the step response and the disturbance 
response. 
 
Using the 48V controller, it was concluded that an 11-bit fractional representation for the parameter 
suffices to reach less than 5% deviation from the non-quantised form. For the 24V controller, it was 
concluded that at least a 10-bit fractional representation is needed to obtain the same result. The 
graph showing the deviation caused by fixed point representation using the 48V controller with 11-
fractional bit parameters to floating-point parameter representation can be seen in Fig. 4.32, clearly 
showing it remaining in the 5% error bound and having no significant steady-state error. Although it 
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would be possible to design a different control ASIC for the 24V converter and the 48V converter, it 
would make more sense to design a single controller with different input parameters to keep 
complexity low and only manufacture a single ASIC. Keeping this in mind, the representation needed 
to meet the 5% target on both converters is the 11-bit fractional representation.  

 

 

Fig. 4.32 Difference signal of 48V controller step and disturbance response with parameters represented as floating-point 
with 11 fractional bits 

The following sizing rules from [46] can be used to determine the fractional representation as a 
result of calculations with the parameters and error signals: 

• A + B 
Integral bits : Max(A’Integral, B’Integral) 
Fractional bits : Min(A’fractional, B’fractional) 
 

• A * B 
Integral bits : A’Integral + B’Integral 
Fractional bits : A’fractional + B’fractional 

Applying these rules to all signals that form as a result from calculations with either the parameters, 
with a 15-bit fractional notation and the reference and voltage signal with a 2-bit fractional notation, 
the notation of all signals can be derived.  

Table 4.14 Fixed point fractional notation of signals in PID controller 

Signal Result of Nr of fractional bits 
Ref - 2 
V - 2 
E Ref-V 2 
P0 A0*E(k) 13 
P1 A1*E(k-1) 13 
P2 A2*E(k-1) 13 
S0 P0 + P1 13 
Us S0 + S1 13 
S1 P2 + Us 13 
U S0+S1 13 
d Limit(U) 9 
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4.5.3 Overview 

Combining the information from Table 4.13 and 4.14, the following fixed-point notations for all 
signals can be found in Table 4.15. 

Table 4.15 Overview of fixed-point notations in the PID controller 

Signal Sign bit Integral bits Fractional bits 
Ref 1 7 2 
V 1 7 2 
A0 1 0 11 
A1 1 0 11 
A2 1 0 11 
E 1 7 2 
P0 1 5 13 
P1 1 6 13 
P2 1 4 13 
S0 1 6 13 
Us 1 4 13 
S1 1 5 13 
U 1 7 13 
d 0 0 9 
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4.6 Implementing and verifying VHDL design 

 

4.6.1 Implementation 

Now that the controller's design, tuning, and fixed-point representation are known, this design can 
be converted to VHDL. To make a successful conversion, a functional diagram is created first. A 
diagram of the control loop can be seen in Fig. 4.33, an enlarged version of the functional diagrams 
of the control loop and all subcomponents can be found in appendix E.  
This shows the introduction of multiplexers, allowing for selecting the control mode. A logical zero is 
applied to make the controller function in 24V mode with appropriate tuning, rate limit and 
reference. A logical one is applied to make the controller function in 48V with proper tuning, rate 
limit and 48V reference signal. 
 
 

 

Fig. 4.33 Functional implementation of the control loop 

 
Besides the introduction of the multiplexers, Fig. 4.33 shows another new component: The 
stabilisation analysis. This module analyses the duty-cycle word fed into the DPWM generator and 
signals when the controller has fully stabilised, in other words, when the duty cycle no longer 
changes. The logical implementation of the module can be seen in Fig. 4.34. 
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Fig. 4.34 Functional implementation of the stabilisation indicator 

 
This module works by taking the binary bitwise differences, or XOR, of two subsequent duty-cycle 
commands and taking the reduced or form of these. If all bits are zero, meaning the two duty cycles 
are equal, a zero is shifted into a 15-step shift register. Finally, the “or”-form of all the different steps 
in the shift register is taken and inverted. If this signal is high, then the duty-cycle word had been the 
same for 15-cycles, indicating that the controller is fully stable. An example of this signal in action 
can be seen in Fig. 4.35, where the controller stabilises from its start-up sequence and is then 
destabilised twice by a voltage drop and a voltage jump at approximately 0.70 ms and 1.22 ms.  
 

 

Fig. 4.35 Output of the stabilisation indicator compared to the duty-cycle 

 
 
This design was implemented in VHDL. Initial testing of the VHDL design occurred by designing a 
testbench in Vivado and stimulating it with the voltage values recorded from the step response of 
the quantised MATLAB Simulink model. The design was corrected until no significant differences 
between the control signals generated from MATLAB Simulink and the testbench were found. 
Although working well to verify the basic operation of the control loop, this test method only 
provided data for very limited time intervals and did not form an actual control loop, meaning that 
small compounding errors would not be noted. 
 
To thoroughly test the designed control loop, it needs to be paired with the simulation of the buck 
converter. This was done by pairing the ModelSim VHDL simulator to the MATLAB Simulink 
simulation using the co-simulation feature of the MATLAB’s HDL-verifier toolbox.  
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The schematic to perform this simulation can be seen in Fig. 4.36. It can also be noted that the VHDL 
control-loop block has two additional outputs: “Ud” and “V”. These were temporarily placed for 
debug purposes and allowed measuring the generator duty-cycle and measured voltage. 
 

 
 

Fig. 4.36 MATLAB Simulink schematic for VHDL Co-simulation 

During initial testing, some overshoot was found due to the simulated converter responding slightly 
differently than the transfer function. The rate limit of the setpoint filter was reduced experimentally 
to 3.75V/µs for the 48V controller and 2.5V/µs for the 24V controller to minimise the overshoot to 
zero. 
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4.6.2 Verification 

Using the described testing method, the proper functioning of the VHDL descriptions can be verified. 
The results for simulating with this method are shown in Fig. 4.37. 

 

 

Fig. 4.37 Step response of 48V Buck converter controlled by VHDL-simulated controller 

From Fig. 4.37 it can be concluded that the VHDL controller appears to function reasonably well. 
However, some steady-state oscillations occur. A close-up of these oscillations can be found in Fig. 
4.38. 

 

Fig. 4.38 Oscillation close-up of 48V buck converter controlled by VHDL-simulated controller 

The oscillations shown in Fig. 4.38 introduce a new issue: previously, the clock of the PWM 
generator was perfectly in sync with the clock of the PID controller and thus the sampling occurred 
at the same moment in a switching period. Due to ModelSim Simulator resolution, these clocks are 
not perfectly in sync, meaning that the voltage measurement will not always occur at the same 
moment in a switching cycle. As a result, sometimes a higher value is measured (when measuring 
near the end of the charging period), or a lower value is measured (when measuring near the end of 
the discharge period). 
The controller compensating for these measurements is precisely what causes these oscillations. 
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The problem is that the sampling frequency is 1 MHz, whilst the highest frequency occurring in the 
system is also 1 MHz. This is not conforming to the Nyquist–Shannon sampling theorem, which 
states that the sampling frequency should be at least twice as high as the highest frequency 
occurring in the observed system. 

The solution to this problem is to increase the sampling frequency. However, the frequency of the 
PID controller should not be raised as a control value should be offered to the PWM-module for one 
switching period. By measuring the voltage four times per switching period and averaging these four 
measurements, the PID controller can still function at 1 MHz without the aliasing effects that 
occurred before. Taking four samples effectively samples the output voltage at a frequency of 4 
MHz. this was opted over sampling at 2 MHz to make sure the Nyquist–Shannon sampling theorem 
is still met should the clock frequency of the PWM module be slightly higher than expected or the 
clock frequency of the PID module slightly lower then expected. 
The implementation of the new sampling block can be seen in Fig. 4.39. This does change the 
required PID clock speed from 1 MHz to 4 MHz. The sample block generates an enable signal once 
every four clock cycles to ensure the PID logic is still functioning at 1 MHz. A verification to whether 
the clock speed was attainable has been made and showed that using the 180nm BCD technique 
from the TSMC foundry, the minimum clock period was 21ns, resulting in a maximum frequency of 
approximately 47.6 MHz, a factor 10 larger than the clock frequency needed by this new 
implementation. 
The new complete control loop with sample averaging can be seen in Fig. 4.40. This shows that due 
to this change, the resolution of the input voltage has increased from 2 bit fractional to 4 bit 
fractional. This prevents compounding quantisation noise from significantly affecting the average 
value measured. However, it is very important that the output signal of the average module only has 
2 fractional bits to uphold the equation to prevent LCO. 

 

 

Fig. 4.39 Functional implementation of the sample averaging module 
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Fig. 4.40 Functional implementation of the control loop with sample averaging 

 

The steady-state response shown in Fig. 4.41 is obtained using this method, showing none of the 
variations seen in Fig. 4.38. 

 

Fig. 4.41 Oscillation close-up of 48V buck converter controlled by VHDL-simulated controller with 4-sample averaging 
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4.7 Conclusions 

This section will give a short overview of all options attempted in chapter 4 and clarify why these 
were or were not integrated into the project. 

 

4.7.1 Tuning 

Three tuning methods were considered to determine the PID controller's gain parameters. The 
tuning obtained from the SIMC method did not allow to be converted into a digital controller with a 
realistic sampling frequency. The Frequency loop shaping method did not result in a good tuning, 
being considerably slower than both MATLAB’s transfer function tuner and frequency response 
tuner’s results. 
The MATLAB transfer function tuner did outperform the frequency response tuner and is, therefore, 
the method of choice for this thesis. 

 

4.7.2 Controller improvements 

Three potential improvements were considered: a nonlinear PID controller, the implementation of a 
low pass filter in the controller's derivative component, and a setpoint filter. 

The nonlinear PID controller did not improve performance over the regular PID controller whilst 
requiring extra resources and is therefore not used. 
Implementing a low pass filter required retuning the controller. However, no stable tuning was 
found. This caused experiments with this alteration to be aborted. 
The setpoint filter allowed to reduce the overshoot on a slightly faster tuning making this tuning 
viable. Using this other tuning allowed for better disturbance rejection on both converters and a 
better step response on the 24V controller. These advantages, bundled with the fact that this 
implementation required little resources, caused the setpoint filter to be implemented in this 
project. 

 

4.7.3 DPWM output stage 

A comparison between two DPWM output stages has been made: A sawtooth comparator with Σ–∆ 
generator and a standalone sawtooth comparator. 
Testing a simulated Σ–∆ generator in Simulink led to the conclusion that the power converter does 
not have enough averaging capabilities to function with such a generator. This causes more 
variations than the effect of LCO would have. Therefore, it was opted to use the standalone 
sawtooth comparator. The output stage must be altered to the maximum clock frequency of 444 
MHz. This involves adjusting the controller’s gain and verifying that no LCO occurs. 
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4.7.4 Fixed point representation 

By carefully selecting both the integral and fractional representations of the controller make it 
possible to obtain a fixed-point implementation of the PID control algorithm that behaves very 
similar to a more accurate floating-point implementation whilst using significantly fewer resources. 

 

4.7.5 Sampling theorem 

The initial design of the controller relied on the fact that the clock controlling the PID-module was 
perfectly in sync with the clock controlling the PWM-module. When this turned out not to be the 
case in co-simulation, issues arose due to not meeting the sampling theorem. 
The sampling frequency of the controller was increased to 4 MHz instead of 1 MHz to prevent this 
issue. A new sampling module will take 4 samples, calculate the average and feed this to a PID 
controller that still functions at 1 MHz, as each duty cycle control word need to be offered to the 
PWM module for one switching period. 

 

4.7.6 Overview 

A short overview of the design decisions listed above is made in Table 4.16, together with the 
primary reason for integrating or not integrating the listed technology. 

Table 4.16 Overview of design decisions 

 Tuning Improvements Output stage 
 SIMC FLS MATLAB 

Transfer 
function 
tuner 

MATLAB 
Frequency 
response 
tuner 

NL-PID Low 
pass 
filter 

Setpoint 
filter 

Σ–∆ 
generator 
+ counter 

Counter 

Im
pl

em
en

te
d 

 

 

 

 Best 
perfor-
mance 

   Perfor-
mance 
gain at 
low 
resource 
cost 

 Stable  

N
ot

 im
pl

em
en

te
d  

Not 
convertible 
to discrete 
time 
domain 

Bad 
perfor-
mance 

 Out-
performed 

No 
perfor-
mance 
gain 

No 
stable 
tuning 
found 

 

 

 

 

Causes 
variations 
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5 Evaluation 
The design of the controller and its VHDL implementation according to the schematics in appendix E 
has been tested by co-simulation of MATLAB Simulink and ModelSim using the schematic previously 
seen in Fig. 4.36. During these tests, the following benchmarks will be used: 

Rise time The time required for the system to rise from 10% of the final value to 90% 
of the final value. 

For the 24V system, this means the time between reaching 2.4V to 21.6V. 
For the 48V system, this means the time between reaching 4.8V to 43.2V. 

 
Settling time The time required for the system to reach and maintain within an error 

band of 2% of the final value. 

For the 24V system, this means the time until the system remains within 
an error band of [23.52V ; 24.48V]. 
For the 24V system, this means the time until the system remains within 
an error band of [47.04V ; 48.96V]. 

 
Overshoot The amount of overshoot occurred as a result of the PID controller steering 

the controller toward the setpoint during the step response. Expressed as 
a percentage of the setpoint value. 

 
Maximum variation The maximum deviation from the setpoint after settling, during the 

stabilising phase. Expressed as voltage. 

 
Stabilisation time The time needed for the controller to fully stabilise 

 

These tests will be performed on various loads to prove the correct functioning under different load 
conditions. The load will be determined by power, making measurements for 100 W, 10 W, 1 W and 
1 nW. 
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5.1 48V DC-DC converter 

Testing the 48V DC-DC buck converter, controlled by a VHDL simulation of the controller over the 
power values mentioned above, requires testing with the load values shown in Table 5.1. 

Table 5.1 Resistances used for testing the 48V buck converter 

Load (W) Required resistance (Ω) 
100 23.04 
10  230.4 
1 2304 
1 * 10-9 2304 * 106 

5.1.1 Step and disturbance response 

Testing under the loads from Table 5.1 results in the step-responses as shown in Fig. 5.1. 

 

Fig. 5.1 Step-responses of 48V buck converter controlled by VHDL-simulated controller under various loads 

Fig. 5.1 shows that the step responses for different loads are very similar, showing that the effect of 
load on the closed-loop response is limited when using a well-tuned controller. It also indicates that 
the controller successfully obtains the target value of 48V in a relatively short time frame. The 
process the controlled systems go through can be split into three stages: first, the controlled system 
rises to the setpoint value of 48V. Then the controller slightly oscillates around the setpoint in a 
similar fashion to LCO. This oscillation results from the control resolution being very close to the 
measurement resolution and could be reduced by increasing the control resolution. However, the 
switching frequency and maximum clock frequency limit the control resolution for the chosen 
implementation. After the oscillation in the second phase, the controller reaches a third, fully stable 
phase. The exact benchmarks of the controller can be found in Table 5.2. 
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Table 5.2 Performance benchmark of the 48V buck converter controlled by VHDL-simulated controller 

 23.04Ω (100W) 230.4Ω (10W) 2304Ω (1W) 2304MΩ (1nW) 

Rise time                (μS) 11.060 10.331 10.200 10.264 
Settling time          (μS) 55.323 54.373 58.314 68.315 
Overshoot                (%)    0 0 0 0 
Max variation          (V) 0.5986 0.4737 1.2100 0.9514 
Stabilization time (μS) 216.3 189.3 628.2 255.1 

The controller's performance, as described in Table 5.2, shows similar performance to that of 
MATLAB’s simulation of the control architecture.  
It also shows how the stabilisation time takes longer than for others. This is related to how close the 
measurement of the stable state is to the subsequent measurement resolution step. Should this be 
close, then the inertia of oscillation of the buck converter itself could “push” the measurement to 
the next value and have the controller respond to this. If multiple control options within one 
measurement window were available, this effect would be much less pronounced. This confirms that 
increasing the control resolution would decrease this problem. 

Fig. 5.2 shows the system’s oscillations after the controller has successfully stabilised. 

 

Fig. 5.2 Steady-state oscillation of 48V buck converter controlled by VHDL-simulated controller under various loads 

The fast oscillations seen in Fig. 5.2 are the ripple of the buck converter with a frequency of 
approximately 1 MHz.  

Besides a good start procedure, the controller also needs to recover from a disturbance. Fig. 5.3 
shows the effect of the controller’s response when the input voltage drops suddenly by 5V. The 
maximum output-voltage drop is less than 1V, and the controller quickly brings the voltage back into 
the 48V range but needs a little more time to recover completely. The time required to re-attain 48V 
is approximately 30 μs, whilst the time required to fully re-stabilise is approximately 140μs. 
A similar effect can be found when analysing the recovery of a sudden increase of input voltage by 
5V, shown in Fig. 5.4. The maximum output-voltage rise is again less than 1V, and the controller 
requires approximately 120 μs to recover and re-stabilise fully. 
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Fig. 5.3 Recovery after 5V drop of 48V buck converter controlled by VHDL-simulated controller 

 

 

Fig. 5.4 Recovery after 5V jump of 48V buck converter controlled by VHDL-simulated controller 
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5.1.2 Limitations on input voltage 

The effect of input voltage can also be analysed for the obtained controller design.  
The minimum input voltage can be determined based on the controller’s efficiency, as the maximum 
duty cycle equals the efficiency. These calculations are done using a provisional efficiency of 90%, as 
the converter’s efficiency was not known at the moment of writing this thesis. 

𝑉$/ ∙ 𝐷𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒 = 𝑉IB% 

𝑉$/,Q$/ ∙ 𝜂 ≥ 𝑉IB% 

𝑉$/,Q$/ ∙ 0.90 ≥ 48 

The smallest input voltage for this inequality to be true is 53.33V. 
This minimum results from the physical limitation of the buck-converter being controlled and cannot 
be improved upon by changing the controller design. 

The maximum voltage is limited by both the gain margin of the PID controller with converter and the 
equation to inhibit LCO.  
Using the currently used resolutions, LCO was a larger inhibitor than the amplitude margin. 
The maximum voltage can be calculated as follows: 

𝑉$/ ∗
1

𝑁#EQ	(%H#(
< ∆𝑉<=> 

𝑉$/ ∙
1
444

< 2*- 

The largest value of input voltage for this inequality to be true is 111V. It should be noted that as the 
voltage gets closer to this 111V limitation, the controller will have more trouble stabilising fully, 
requiring more time to do so. 
This maximum could be increased by either decreasing the measurement resolution (which will have 
as a side effect that the potential steady-state error increases) or increasing the control resolution. 

The confirmation of the converter’s stable behaviour in this voltage range can be verified, as shown 
in Fig. 5.5. It also shows that the converter’s step response is slightly slower for lower voltages as the 
control loop gain is lower. It also indicates that the controller needs longer to stabilise for voltages 
approaching the maximum voltage. 
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Fig. 5.5 Influence of input voltage within the operating range on the 48V buck converter 

It can also be confirmed that the controller does not function properly when the voltages are outside 
this operating range, as shown in Fig. 5.6. This Fig. shows that for voltages lower than the minimum, 
the controller doesn’t obtain the correct value, the output voltage remains significantly lower. When 
the output voltage is higher than the calculated maximum, the controller will never stabilise due to 
the effect of LCO. 

 

Fig. 5.6 Influence of input voltage outside the operating range on the 48V buck converter 
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5.2 24V DC-DC converter 

Testing the 48V DC-DC buck converter, controlled by a VHDL simulation of the controller over the 
power values mentioned above, requires testing with the load values shown in Table 5.3. 

Table 5.3 Resistances used for testing the 24V buck converter 

Load (W) Required resistance (Ω) 
100 5.76 
10  57.6 
1 576 
1 * 10-9 576 * 106 

 

5.2.1 Step and disturbance response 

Testing under the loads from Table 5.3 loads results in the step-responses as shown in Fig. 5.5. 

 

Fig. 5.7 Step-responses of 24V buck converter controlled by VHDL-simulated controller under various loads 

The step responses from Fig. 5.7, show again that the effect of load on the buck converter is 
minimal, obtaining a steady-state of 24V for each of the loads. A stabilisation period can be seen 
again. The exact benchmarks of the controller can be found in Table 5.4. 

Table 5.4 Performance benchmark of the 24V buck converter controlled by VHDL-simulated controller 

 5.76Ω 
(100W) 

57.6Ω (10W) 576Ω (1W) 576MΩ (1nW) 

Rise time                   (μS) 9.3814 8.7952 8.5827 8.7545 
Settling time             (μS) 95.077 111.31 168.07 203.24 
Overshoot                   (%)    0 0 0 0 
Max variation              (V) 0.4240 0.7020 0.5511 0.9243 
Stabilization time    (μS) 179.0 261.1 237.1 282.0 
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Once the controller has fully stabilised, no further oscillations, besides the ripple of the buck 
converter, can be seen as displayed in Fig. 5.8. 

 

Fig. 5.8 Steady-state oscillation of 48V buck converter controlled by VHDL-simulated controller under various loads 

Analysing the recovery from a 5V drop and 5V jump, as shown in Fig. 5.9 and Fig. 5.10, respectively. 
The maximum deviation that occurs from the 5V drop is approximately 0.5V, and the total re-
stabilisation takes approximately 70 μs. The maximum deviation that occurs from the 5V jump is 
0.55V, and the time needed for complete stabilisation is approximately 80 μs showing similar results 
as the 48V buck converter. 

 

Fig. 5.9 Recovery after 5V drop of 48V buck converter controlled by VHDL-simulated controller 
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Fig. 5.10 Recovery after 5V jump of 48V buck converter controlled by VHDL-simulated controller 

 

5.2.2 Limitations on input voltage 

A similar analysis on input voltage can be made as done in section 1.1.2. 

First, the minimum voltage can be determined based on the controller’s efficiency. Again, these 
calculations will be made using a provisional efficiency of 90% as the converter’s efficiency has not 
yet been determined. 

𝑉$/,Q$/ ∙ 𝜂 ≥ 𝑉IB% 

𝑉$/,Q$/ ∙ 0.90 ≥ 24 

The minimum value for the equation to uphold is 26.67V. 

The calculation of maximum voltage remains the same as the resolutions are the same for the 24V 
and 48V controller, meaning the maximum input voltage is 111V. 

The stable operation for voltages inside the operating parameters is verified, as shown in Fig. 5.11. 
Indication a similar influence of input voltage on the control loop. For lower values, the controller 
takes longer to obtain a value of 24 V, whilst for values close to the maximum voltage, the controller 
needs longer to stabilise. 
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Fig. 5.11 Influence of input voltage within the operating range on the 24V buck converter 

Faulty behaviour of the controller can be confirmed for voltages outside the operating range, as 
seen in Fig. 5.12. Again, this shows that the controller cannot reach the correct voltage value for 
values lower than the input voltage minimum and suffers from LCO for input voltage values higher 
than the maximum. 

 

Fig. 5.12 Influence of input voltage outside the operating range on the 24V buck converter 
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5.3 Area and resources 

The VHDL files based on the designs in appendix E can be converted to an ASIC implementation. 
Doing this synthesis for the 180nm BCD technique from the TSMC foundry results in an 
implementation requiring 1012 cells and needing a total area of 74,727.402 µm2. This area was 
determined using a 4 MHz frequency for the PID clock and a 435 MHz frequency for the PWM clock. 
For reference, the smallest NAND-gate in this technology requires a surface of 18.816 µm2. 
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6 Future work 
This thesis provided the first step in designing the controller needed for the power converter in a 
package. A short consideration into improvements that could still be integrated and the next steps in 
the development process are given. 

 

6.1 Potential improvements 

As discussed in chapter 5, the controller's performance evaluation shows that the controller 
successfully stabilises, both the 48V and 24V variants, to the respective setpoints and manages to do 
so relatively quickly. One of the more unfortunate side effects from both the step and disturbance 
response is that, although the controller quickly reasserts the converter to a value near the setpoint, 
some LCO-like oscillations occur. These oscillations result from the measurement resolution being 
almost as high as the control resolution. Decreasing the measurement resolution would be one 
potential solution to this problem but would increase the amplitude of the oscillations, nonetheless 
it would shorten the duration. A better solution to this problem would be to increase the control 
resolution. Tests using a 512 MHz DPWM rather than a 444 MHz DPWM yields faster stabilisation. 
However, this would require the DPWM generator to be redesigned to meet a minimum clock period 
of 1.95 ns rather than the current limitation of 2.25 ns. 
When increasing the resolution of the controller it might also be worthwhile to analyse the effect of 
decreasing the gain of the controller. The full potential of more accurate control might get wasted 
when the control-action over the minimal measurable error is much larger than the controller’s new 
resolution. 
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6.2 Further development 

 

6.2.1 Converter parameter change 

Should the parameters of the 48V or 24V buck converter change or an additional converter be 
introduced, the design of the controller should be adapted accordingly. The following steps should 
be repeated, as described in chapter 4 of this thesis, to obtain an altered controller design: 

• The PID controller should be re-tuned 
• The maximum rate of the setpoint filter should be redetermined to have no overshoot 
• The maximum value of the saturator should be determined 

o For the feedback signal internally in the PID controller by simulating in MATLAB, 
determining the maximum value, and applying a safety margin 

o For the duty-cycle output by taking the efficiency of the controller and multiplying 
this by the DPWM correction rate (444/512) 

• The bit widths should be redetermined  
• The obtained design should be verified by co-simulation 

Should the parameters of the converter change significantly, it might be feasible to re-analyse if the 
implementation of a Σ–∆ generator in the output stage could be used to improve the control 
resolution of the controller.  

 

6.2.2 Testing and implementation 

Should the performance of the controller be deemed sufficient for integrating into the CoDiCApp 
project, the next step would be to test the design of the controller in the real world, rather than 
simulation, by implementing the design on an FPGA and connecting this to a buck-converter with 
same capacitance and inductance as the buck converter’s final design. 

The obtained design can be converted into an ASIC should these tests yield positive results. Once 
this has been thoroughly tested, this ASIC could be integrated into the power converter in a package.  
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7 Conclusion 
This thesis aimed to design a VHDL implementation of a controller that could control the 24V and 
48V buck converter developed parallel in time with this project. 
A VHDL implementation of a PID controller was developed and verified. 
Although the final testing method was done through co-simulation rather than real-world testing 
using an FPGA and a physical buck converter due to lack of time and access to a similar buck 
converter, this still proved a suitable method of validating the obtained VHDL design. 

Several tuning methods were tried and tested to analyse what method would yield the best 
methodology in designing a digital PID controller for a DC-DC buck converter. After analysing the    
(K-)SIMC, Frequency loop shaping, and both MATLAB’s transfer function and frequency response 
based tuning methods, the MATLAB’s transfer function tuner yielded the best results. 
 
Three improvements to a traditional PID controller were considered and tested. Firstly, varying the 
PID parameters based on the magnitude of the error (nonlinear PID) did not improve the controller’s 
response. Secondly, no stable tuning was found to test a PID controller with LPF in the derivative 
term. Finally, tests using a rate limiter as a setpoint filter allow for a slightly more aggressive tuning, 
improving the disturbance rejection whilst improving the step-response for the 24V controller. 

Two DPWM output stages were designed in MATLAB and analysed: a Σ–∆ generator with a PWM 
counter and a sole PWM counter. Although a Σ–∆ generator aims to reduce variations by allowing a 
higher measurement resolution without causing LCO, it showed that the buck converter did not have 
sufficient averaging capabilities and introduced a larger variation than what LCO would have. Due to 
this, it was opted to use the sole counter DPWM generator. This counter counts to 444 to fully utilise 
the available clock speed of 444 MHz whilst maintaining a switching frequency of 1 Mhz. 

The above results were combined into a VHDL implementation and tested using MATLAB Simulink 
and ModelSim co-simulation. These results showed that the closed-loop step response with 
quantisation noise can be split into three phases: first, the controller follows the PID logic to obtain 
the setpoint value. Secondly, the controller oscillates slightly around the setpoint in a fashion similar 
to LCO. Finally, the controller reaches a stable state, and the only oscillation measured is the ripple 
of the buck-converter.  
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Appendix A: MATLAB Function block PID 
controller 
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Appendix B: MATLAB program calculate FLS 
targeting integrator TF 
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Appendix C: MATLAB function block nonlinear PID  
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Appendix D: PID tuning parameters 
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Appendix E: Functional diagrams 
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