The effects of printer settings and infill on the dosimetry of three-dimensional printed phantoms with tissue and bone equivalent filaments

Jeroen Camerotto

Master of Nuclear Engineering Technology

Problem and objective

Patient specific quality assurance is difficult to assure when the only available phantoms are for the average human. This is why NuTeC, the Nuclear Technology Centre, associated with UHasselt, is looking into ways to 3D print patient specific phantoms with tissue equivalent filaments for both soft tissue and bone. This thesis aims to study the influence of printer settings and infill types on the dosimetry of these 3D printed phantom.

Conclusions

Based on the statistical analysis and the profiles drawn through the samples, the cubic infill type was chosen to produce the most consistent 3D printed phantoms for one particular tissue. By making use of 3D slicer the generation of a 3D model based on a patient's CT data is possible. Further research in printer settings and tissue to filament equivalence is recommended.

