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Nomenclature 
 

symbol  definition unit 

KGae volumetric mass transfer coefficient kmol.m-3.kPa-1.h-1 

%wt weight percentage % 
%vol volume percentage % 
nAmine total mol of amine mol 
nCO2 total mol of CO2 mol 
GI inert gas molar flux kmol.m³.kPa-1.h-1 

P total system pressure kPa 
yCO2 molar fraction of CO2 in bulk gas  
y*CO2 molar fraction of CO2 in equilibrium with liuid and bulk 

concenctration 
 

YCO2 molar ratio of CO2 in gas bulk  
h height of the absorption zone m 
z standard score  
u mean 

 

s standard deviation  
αi support vector  
b bias 

 

d degree 
 

γ scaler 
 

c regularization parameter  
ξ soft margin 

 

ε maximum error 
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Abbreviations 

symbol definition 

artificial neural network ANN 

decision tree regressor DTR 

support vector regressor SVR 

support vector machine SVM 

monoethanolamine MEA 

N-methyldiethanolamine MDEA 

2-amino-2-mehtly-1-propanol AMP 

mean squared error MSE 

mean absolute error MAE 

International Panel on Climate Change IPCC 

carbon capture and storage CCS 

artificial intelligence AI 

machine learning ML 

polynomial kernel function poly 

linear kernel function lin 

radial basis kernel function rbf 

rectified linear unit ReLU 

hyperbolic tangent function Tanh 
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Abstract 
 

CO2 capture in a spray column using amine solutions is one of the most promising techniques 
to reduce CO2 emission, which is one of the causes of global warming. However, to applicate  
them on large scale an accurate model of the CO2 capture process is needed. First-principle 
models have failed and the goal of this master’s thesis is to create an accurate model of the 
CO2 capture process using Machine Learning techniques. The trained models are: one 
artificial neural network (ANN), one decision tree regressor (DTR) and three support vector 
regressors (SVR). To train the models data points on monoethanolamine, 2-amino-2-methly-
1-propanol and N-methyldiethanolamine were collected. Th model uses as input: the process 
conditions, information about the columns and the absorbent liquid. The output of the models 
is the KGae coefficient, which indicates the performance of the mass transfer. To compare the 
models to each other the R² score, MSE and MAE were calculated for each model, using the 
experimental KGae. The ANN model could not accurately predict the KGae, but showed 
potential for further improvement. The DTR model and SVR model with the linear kernel 
function are not able to make accurate prediction, the DTR model due to a lack of output 
variance and the SVR-lin due to the non-linearity relation between input and output. The SVR 
with the polynomial and radial basis kernel function were both able to accurately predict the 
KGae and were highly flexible both on process condition, spray technology and absorbent 
solutions.  
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Abstract in het Nederlands 
 

CO2 captatie in een sproeikolom met behulp van amineoplossingen is een van de meest 
beloftevolle technieken om de uitstoot van CO2, een van de oorzaken van de opwarming van 
de aarde, te verminderen. Voor een implementatie op grote schaal is een nauwkeurig model 
van het CO2 captatieproces nodig. First-principle modellen hebben gefaald en het doel van 
deze masterproef is om een nauwkeurig model te maken van het CO2 captatieproces met 
behulp van Machine Learning technieken. De modellen zijn: een artificial neural network 
(ANN), een decision tree regressor (DTR) en drie support vector regressors (SVR). De 
modellen werden getraind met datapunten over monoethanolamine, 2-amino-2-methly-1-
propanol en N-methyldiethanolamine. De inputs van het model zijn: de 
procesomstandigheden, informatie over de kolommen en de absorberende vloeistof. De output 
is de KGae-coëfficiënt, die de prestaties van de massaoverdracht aangeeft. Om de modellen 
met elkaar te vergelijken werden de R² score, MSE en MAE berekend voor elk model. Het 
ANN model kon de KGae niet accuraat voorspellen, maar toonde potentieel voor verdere 
verbetering. Het DTR model en SVR model met de lineaire kernel functie konden de KGae 
niet accuraat voorspellen, het DTR model door een gebrek aan output variantie en het SVR-
lin door de niet-lineaire relatie tussen inputs en output. De SVR-modellen met de polynomiaal 
en radiale kernel functie voorspelde de KGae nauwkeurig en waren zeer flexibel, zowel wat 
betreft procesconditie, captatietechnologie, als absorberende oplossingen. 
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1. Introduction 

1.1. CO2 emission and global warming 

Global warming is the main challenge that humanity should face in the near future. In a recent 
summary for policymakers by the International Panel on Climate Change (IPCC) the 
necessity of the reduction of CO2 emission is discussed. The panel stated that a solution to 
this problem is extremely urgent and needed. In open literature, it is well known how the 
warming went along with an increase of emission in greenhouse gasses because of the human 
activity. The CO2 concentrations in the atmosphere have never been higher the last 2 million 
years. The rate of the warming is unprecedent over the last 2000 years. This is caused by the 
concentration of several gases in the atmosphere; among these, the CO2 is the most influent. 
As a consequence of this warming the land temperature has risen, the arctic sea ice has 
reduced, the sea level rises faster, and weather and climate phenomena have become more and 
more signifigant across the globe [1]. 

The report from IPCC also reports the prediction for the next decades regarding the global 
warming based on the CO2 emission. In Figure 1 and Figure 2 five possible scenarios for the 
future of surface temperature based on different CO2 emission scenarios are presented. From 
these scenarios it can be concluded that the sooner the emission is lowered the less the rise of 
surface temperature will be. For this reason, the humanity requires an effective solution in the 
short term to this problem. 

 

Figure 1: Future CO2 emissions and non CO2-drivers for five possible scenarios[1] 
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Figure 2: Contribution to global surface temperatures of the five different scenarios[1] 

In the paper by Yang et al. [2] three main ways to reduce CO2 emission are discussed. The 
first proposed way is to reduce the power requirement, this can be achieved by a more 
efficient use of the energy. The second approach is the reduction of the fossil fuels. This 
requires a switch to renewable energy sources and a way to stock and carry the energy, like 
hydrogen or batteries. The last proposal [2]is the carbon capture and storage (CCS). It is a 
generic term for all the technologies that focus on CO2 capture and storage of CO2 [2]. A 
report by the Benson et al. [3] discussed the potential of CCS and it concluded that CCS is a 
viable solution for the reduction of CO2 emission on the short term. However, this is hindered 
both by the socio-economic policies and the highly cost related to the CSS process. On the 
other hand, CCS is the only viable option at the moment, since the transition towards green 
energy will take decades [3]. 

Figure 3: Different possebilities of CCS [3] 
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As mentioned earlier, CCS is a generic term for different carbon capture techniques. There are 
two main groups, namely carbon fixation and carbon separation. The carbon fixation group 
consists of both natural and artificial ways to directly capture CO2. The carbon separation 
group contains techniques that rely on absorption and stripping processes. One of these 
techniques is amine absorption, this will be discussed more deeply in the next two paragraphs. 

1.2. Packed bed vs spray column 

The CO2 capture process is executed in column often utilizing amine solutions. The majority 
of the columns employed for this process are packed columns, however in recent years spray 
columns are gaining attention from studies all over the world because of their enhanced 
transfer coefficients.  

One of the first studies employing a spray column to perform carbon capture was executed by 
Kuntz et al. [4] It compared the mass transfer coefficients in spray and packed columns. The 
study concluded that the spray column has a better performances over the packed column. It 
was found that the spray column offers a much higher mass transfer per area tested than the 
packed column. The spray column needed about 75% less space to absorb the same amount of 
CO2 compared the packed column. Thus that the volumetric mass-transfer coefficients factor 
(KGae) value increases as the liquid flow is increased, this is opposite to what takes place in a 
packed column. Another side advantage of the use of spray columns is the smaller pressure 
drop over the column. These findings leaded to the conclusion that the CO2 absorption 
column can perform at a higher absorption rate than packed columns[4]. 

Despite the great potential of the spray column the implementation in a large scale is minimal. 
This is because of the absent of an accurate model of the CO2 capture process, that is 
necessary for optimisation purposes.   

1.3. Different amine solutions used as solvents 

The use of aqueous amine solutions for CO2 capture is a well-established technology and is 
extensively used for CO2 removal from gas streams. The amine solutions can be used both in 
a packed column and a spray column [4]. The most widely used aqueous amine solution is a 
monoethanolamine (MEA) solution [5]. However, several amine solutions that show 
promising potential, such as N-methyldiethanolamine (MDEA) and 2-amino-2-methyl-1-
propanol (AMP) [6]–[8].  

1.3.1. CO2 capture with monoethanolamine (MEA) 
MEA is one of the most used aqueous amine solutions for 
CO2 capture. MEA is a primary amine with just one OH-
group (Figure 4). During the absorption process, the 
carbamate formation is the main reaction given by 
equation 1 and 2. This is the preferred reaction path since 
the MEA carbamate that is formed is quite stable [4].  

𝐶𝑂ଶ(𝐼) + 𝐻ଶ𝑁𝐶𝐻ଶ𝐶𝐻ଶ𝑂𝐻 ↔ 𝐻𝑂𝐶𝐻ଶ𝐶𝐻ଶ𝑁𝐻ଶ
ା𝐶𝑂𝑂ି (1) 

𝐻𝑂𝐶𝐻2𝐶𝐻2𝑁𝐻2
+

𝐶𝑂𝑂
−

+ 𝐻2𝑁𝐶𝐻2𝐶𝐻2𝑂𝐻 ↔  𝐻𝑂𝐶𝐻2𝐶𝐻2𝑁𝐻2
+

+  𝐻𝑂𝐶𝐻2𝐶𝐻2𝑁𝐻𝐶𝑂𝑂
− (2) 

Figure 4: Structural formula of MEA  
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1.3.2. CO2 capture with 2-amino-2-mehtyl-1-propanol (AMP) 
AMP is a primary amine with one OH-group and one methyl-
group (Figure 5). In the case of the AMP-CO2 system, the 
carbamate formation is the main reaction. This is the same as in 
the MEA-CO2 system and leads to the following reactions of 
equation 3 and 4: 

 

𝐶𝑂ଶ(𝐼) + 𝐻ଶ𝑁𝐶𝐻ଶ𝑂𝐻 ↔ 𝐻𝑂𝐶𝐻ଶ𝐶(𝐶𝐻ଷ)ଶ𝑁𝐻ଶ
ା𝐶𝑂𝑂ି (3) 

𝐻𝑂𝐶𝐻ଶ𝐶(𝐶𝐻ଷ)ଶ𝑁𝐻ଶ
ା𝐶𝑂𝑂ି + 𝐻ଶ𝑁𝐶(𝐶𝐻ଷ)ଶ𝐶𝐻ଶ𝑂𝐻 ↔  𝐻𝑂𝐶𝐻ଶ𝐶(𝐶𝐻ଷ)ଶ𝑁𝐻ଶ

ା +
 𝐻𝑂𝐶𝐻ଶ𝐶(𝐶𝐻ଷ)ଶ𝑁𝐻𝐶𝑂𝑂ି (4) 

The carbamate that is formed will start to form a hard soluble salt, unlike the carbamate that is 
formed in the MEA-CO2 system. 

1.3.3. CO2 capture with N-methyldiethanolamine (MDEA) 
MDEA is a tertiary alkanol amine. In Figure 6 the 
structural formula of MDEA is shown. Because 
MDEA is a tertiary amine it has a higher 
stoichiometric CO2 loading than MEA and AMP, but 

the reaction speed is slower. This is related to the 
different reaction mechanism for the absorption of 
CO2 compared to the primary and secondary amines. The tertiary amine does not react 
directly with the CO2, but it acts as a base, and so catalyzing the hydration of CO2 [7]. This 
leads to the following reaction given by equation 5: 

𝐶𝑂ଶ + 𝑅ଵ𝑅ଶ𝑅ଷ𝑁 +  𝐻ଶ𝑂 ↔ 𝑅ଵ𝑅ଶ𝑅ଷ𝑁𝐻 
ା + 𝐻𝐶𝑂ଷ

ି(5) 

1.4. State of the art first-principle models 

First-principle models use thermodynamic laws, reaction kinetics and balances to model a 
chemical process. These models rely heavily on theoretical evaluations and the previous 
knowledge about the studied process [9]. They are currently used to predict the behavior of 
the CO2 absorption in columns. In a study by Q. Zang et al. [10] a rigorous rate-based model 
employing Murphree efficiencies in the column and rigorous pressure drop calculation 
methods provided a steady-state model. This model gave accurate results, but it is very 
complicated and requires long modelling times. A simpler rate-based model was created by 
Razi N. et al. [11] and the modelling times were shorter, but the model could not predict all 
the uncertainties of the process and was therefore not representative.  

These first-principle models were all used to predict the CO2 absorption in a packed column, 
however they fail when applied to a spray column. This is because a spray column has higher 
intercorrelations of variables, which makes it difficult to isolate the various effects. A first-
principle model created by Yin Xu et al. [12] was able to predict the CO2 absorption in a 
spray column, however it had a deviation of 15%. This shows that despite the high number of 
intercorrelations between variables that were included the model could still not accurately 
predict the CO2 absorption. 

Figure 6: Structural formula of MDEA 

Figure 5: Structural formula of AMP 
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It can be concluded that the first principle models come with a tradeoff between accuracy and 
computational times. However, this tradeoff is not the only weakness of a first-principle 
model. In order to model the CO2 capture both the phenomena taking place and a model of 
these phenomena needs to be known. This is not the case for CO2 capture in spray; therefore 
to increase the accuracy of the model a machine learning (ML) solution is needed.  

1.5. Machine learning applications in chemical industry 

Machine learning is branch of computational algorithms that is designed to emulate human 
intelligence by learning from a surrounding environment.  The algorithm learns from the input 
data to produce a desired output, this without any programmed logic behind it [13]. Machine 
learning has many applications: computer vision, prediction, semantic analysis, natural 
language processing and information retrieval [14]. In this thesis the prediction application 
will be used. 

In chemical industry machine learning is an established technique since the 1980’s, however 
due to the lack of computational power the applications were limited. In the last decades the 
computational capabilities increased. This let the machine learning techniques be more and 
more used in chemical industry. Machine learning is one of many artificial intelligence (AI) 
techniques and it is defined by Dobbelaere M. et al. as a subset of AI including all techniques 
that enable computers to learn from experience [15]. A machine learning model can be 
divided in three main components: data, representation of the data and the model itself. The 
data is important because it is used to train and validate the created the model. The quality of 
the data is a crucial factor, because if the data do not accurately represent the physical world 
the model will learn a false trend. The quantity however is equally important, since the model 
is than able to distinguish outliers from the dataset. The representation of the data is second 
important component, it is crucial to select the most significant features of the dataset to keep 
the number of features low. This will reduce the computational time required for the training 
of the model while increasing its the accuracy. The model itself is the last important 
component of machine learning, there are many different kinds of machine learning models, 
all of which can be divided into two main classes: unsupervised learning and supervised 
learning [15]. In Figure 7 the two main classes are shown with examples of machine learning 
models. 
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In the unsupervised learning the training is not executed on the classical input-output relation 
but it is used to detect the underlying structure of the data. In the supervised learning the 
training is executed on a dataset containing both the input and the output of the observed 
system. This creates a model that correlates these two values. This approach is often used to 
model chemical processes or to monitor the online quality of a process. 

In this master thesis the supervised learning models will be used, namely a support vector 
regressor, artificial neural network and a decision tree regressor. 

As the use of machine learning in chemical industry will increase in the future, different 
challenges and opportunities will arise. Both Dobbelaere et al. [15] and Schweidtmann et al. 
[16] identified the following six challenges and opportunities. Optimal decision making, 
introducing and enforcing physics in ML, information and knowledge representation, 
heterogeneity of data, safety and trust in ML applications, and creativity. 

1.6. Different kinds of supervised machine learning algorithms 

As mentioned in paragraph 1.4 a first principle model is not able to accurately describe the 
process of carbon capture in a spray column. However, machine learning algorithms can 
provide a solution [9], [17]. Machine learning algorithms create a model utilizing the data to 
develop its internal structure. The model approximates the functional relationships between 
the input and the output of the observed system. These relationships obtained from the 
experimental data will be represented in the model during the training phase. Therefore, a 
machine learning algorithm approximates only on the relationships between input and output 
data without relying on thermodynamic principles, reaction kinetics and first-principle 
information. On the other hand, this can represent a weakness for the machine learning 
applications when the dataset contains noisy or wrong data or does not cover the entire 
experimental space. For this reason, the quantity and the quality of the data are a crucial 
parameter to model this process. It is important to feed only a selection of features of the 
dataset to the model. To determine which input parameters are the most important least-
squares-based algorithms are often used [17]. The different kinds of machine learning 
algorithms used in this master thesis will be discussed next.  

 

Figure 7: Overview of different types of machine learning  
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1.6.1. Artificial neural network (ANN) 
One of the machine learning algorithms used to create a model in this work is an artificial 
neural network (ANN). The base element of a neural network is the artificial neuron. Its 
structure is shown in Figure 8. Each neuron takes a certain amount of input (xi) and returns 
one output (y). It is divided in two parts: the linear part and the activation function. In the 
linear correlation step each input of the neuron is multiplied by a weight (wi), these factors are 
then summed (∑xiwi), and a bias is given. Then the result of the linear operation is utilized as 
input of an activation function f(∑xiwi), that add non-linearity to output of the neuron. The 
tunable parameters of the artificial neurons are the weights and the bias in the linear 
correlation. 

 

Figure 8: Structure of an artificial neural network 

In a neural network, the neurons are organized by layers. Each layer takes input from the layer 
behind him and give its output to the next layer. An example of an ANN structure with one 
hidden layer is shown in Figure 9. 

The information fed to the input nodes are the input values of the model, each neuron 
represents one input parameter. The neurons in the hidden layer and the output layer get their 
input information from each neuron of the previous layer. The result coming from the output 
layer consists of the modelled output variable. This type of network architecture is called a 
multilayer perceptron. 

During the training phase of the network, the obtained information from the dataset is stored 
in the weights and the bias of each neuron. This learning algorithm is based on a cost or error 
function, this function measures the difference between the modelled output and the actual 
output [9].  

Figure 9: Structure of an artificial neural network 
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The mean squared error function (MSE) is often used as a cost function and is given by 
equation 6 [9]: 

𝑀𝑆𝐸 =
ଵ

ே
∗ ∑ (𝑦௜ − 𝑦పෝ)ଶே

௜ୀଵ  (6) 

where 𝑛 is the number of samples used for the evaluation, 𝑦௜ is the experimental value of the 
i-th sample of the dataset and yనෝ  is the predicted value for the i-th sample of the dataset. The 
goal of the training and the cost function is to minimize the MSE and thus finding the optimal 
configuration for the network. 

The main advantage of an ANN is the possibility to accurately model complex problems with 
a highly modular structure. It is also able to handle many input parameters and, once it is 
trained, it is easy to use and require low computational time [18]. All these benefits are 
because of four basic characteristics of an ANN. It is non-linear, the artificial neurons mimic 
this behavior in the mathematical performance of a non-linear relationship. It is non-limited, 
because the neural network consists of multiple neurons not only the neurons themselves 
determine the behavior of the network but also the relationships between the different 
neurons. It is non-qualitative, this means that it has self-adaptive, self-organizing, and self-
learning ability. The fourth characteristic is the non-convexity, which means that the function 
has multiple extrema, thus the system has multiple stable equilibrium states.[19].  

Despite all these promising characteristics of an ANN it also has some significant drawbacks 
that cannot be denied. The first problem is the robustness of the ANN models because the 
capability of an ANN model depends on the general trend of the training dataset. In other 
words, the accuracy of the ANN model highly depends on the accuracy of the dataset. A 
second limitation of an ANN model is it transparency and the lack of knowledge extraction 
from it. It is quite hard to interpret the relations between the input and output used by the 
ANN. Furthermore, an ANN also has a poor extrapolation capability, the model accuracy is 
poor outward the range of the training dataset. The final problem of an ANN is its limitation 
in including uncertainties in its predictions. This makes it difficult to judge the quality of an 
ANN prediction [18].  

Despite these problems the use of ANN models over the past decades increased. In 
engineering and industry applications ANN models are mostly used for making predictions 
and for pattern recognition in data [18]. The same is true for CO2 capture, multiple ANN 
models have been developed to predict different CO2 capture processes [9], [20]–[25]. The 
same modelling is also successfully applied in the SOx absorption. All these studies concluded 
that an ANN model has great potential to model CO2 processes and the ANN models were 
more accurate compared to the first principle models.  

The objective of the ANN created in this research is to predict the KGae value of the CO2 
capture in the spray columns. 
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1.6.2. Support vector machine (SVM) 
A support vector machine (SVM) is a supervised learning modelling technique. Often it is 
used for classification tasks, but it can also be used for regression tasks. In this thesis the 
SVM is used for regression purposes and therefore it is called a support vector regressor 
(SVR). 

In Figure 10 the four main parts of a SVR are shown: the kernel function, the regressor, the 
maximum error and the soft margin. First the kernel function maps the input dataset into a 
higher dimension space. Once all the input data is mapped the regressor fits the mapped data 
points. In contrary to ordinary regression models the goal of the training of the SVR is not to 
minimize its errors. Instead, the aim is to minimize the loss function, the l2 norm of the 
coefficient vector. The error of the SVR is handled a different way, namely it is constraint 
where the absolute error is given by a margin being the maximum error (ε). By tuning ε the 
desired accuracy can be gained. However, it is possible that a datapoint is not constraint by 
the maximum error. This is done using a slack variable, namely the soft margin (ξ) which is 
the deviation between the maximum error and the value of the data point. This soft margin is 
also included in the loss function, because it is desirable to minimize it.  

 

Figure 10: Working principle of a support vector machine 

A SVR is much more robust than an ANN, this is due to the difference in training ways, 
which means that a SVR has a better generalization and training efficiency. Because a SVR 
uses a kernel function to map the input data it is easier and more efficient to analyze the input 
data, in comparison to an ANN. The last strength of a SVR is its error-complexity, unlike a 
ANN, which uses mean squared errors to suppress outliers in the dataset, a SVR uses a soft 
margin and maximum hyperplane. Because both parameters are tunable, a SVR is more 
robust to the outliers than an ANN. However, this directly leads to one of the main 
weaknesses of an SVR. In order to have an accurate training of the SVR, the hyperparameters 
selection (i.e. soft margin dimensions and kernel functions) is a crucial operation.  

This can be a hard task which requires some experience and time. In addition, for large 
training datasets it can take a lot of time to find the most optimal value for the main four parts 
of a SVR [27]. 
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SVR are used for multiple implementations in chemical industry, it is used to design drugs in 
the pharmaceutical industry [28] or to estimate performance of chemical plants [29] or as a 
risk assessment [30]. But in comparison to ANNs, SVR are less used for modelling CO2 
capture. However not much research is done on this application, which means that its true 
potential is still unknown. In this master’s thesis the goal of the SVR model is the same as for 
the ANN model.  

1.6.3. Decision tree regressor (DTR) 
 The decision tree regressor (DTR) is a model which learn from datasets to preform regression 
problems. The DTR consists of three main parts: root, discission nodes and leaf nodes (Figure 
11). 

Figure 11: Structure of a decision tree 

The first important part of the decision tree is the root hub, here the dataset is split into two 
based on whether a certain condition was met. Afterwards the two sides are split again into 
two sides based on another condition. This splitting goes until the datasets can no longer be 
split into two or when the maximum splitting amount is met or when the splitting does not 
influence anymore the overall error prediction. When one side is no longer split in two a leaf 
hub is created. This represents the output of the model.  

To create the optimal structure for the decision tree, the root hub and condition hubs have to 
be determined. First each input feature is plotted versus the output feature, and for each input 
feature all the possible splits are made. For each side of the split the average output value is 
calculated. Then the sum of squared residuals between the output of each data point and the 
average of the split is made. The sum of squared residuals is given by equation 7: 

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  ∑(𝑦௔௩௚ − 𝑦௜)
ଶ(7) 

Then for each input feature the split with the lowest sum of squared residuals is chosen as the 
condition hub for that input feature. Following, the decision tree is built from the top down, 
with the root hub being the condition hub with lowest sum of squared residuals and the 
following condition hub being the one with the second lowest sum of squared residuals. The 
number of condition hubs is determined by the max depth of the tree or by the minimum split 
condition. The max depth of the DTR gives the maximum number of layers the DTR and the 
minimum split condition gives the minimum number of data points that a branch must have in 
order to have a condition hub.  

Once a branch can no longer be split it becomes a leaf hub, which means that all the data 
point that fulfil to the condition of this leaf hub will get the average output of the train dataset 
that fulfil this condition. 
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Like the ANN and the SVR, the DTR modelling technique has some strength and weaknesses 
in its application. The first main strength of the DTR is the higher possibility to explain the 
decision path to generate the output compared to an ANN network. This is allowed by the 
“what-if” structure that the DTR develops that can be easily read and understood. This makes 
it ideal for data exploration because it is a fast way to generate relations in your data. The 
second main strength of the DTR is its training time since it has less tunable parameters 
compared to the ANN and SVR. The only tunable parameters of the DTR are the maximum 
depth that the tree can reach and the split condition, this takes less time to tune than the 
parameters of an SVM. However, these strength also lead to the main weakness, namely 
overfitting. A DTR has a sensitivity for overfitting, especially for large datasets with a lot of 
features, which can lead to higher error prediction compared to the ANN and SVR. 

The DTR has multiple implementations in chemical industry, it is used to model the solubility 
of CO2-N2 gas mixtures [31] or to model data from soft sensing parameters [16] or to predict 
the material removal rate for chemical mechanical planarization [32]. The DTR has also been 
used for modelling CO2 absorption in amines [33], [34]. 
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2. Materials and methods 
 

In this chapter the materials and methods used in this master’s thesis are discussed. The thesis 
focuses on modelling the CO2 capture using amine solutions. To train the models a dataset is 
needed, however there is not enough literature data available on AMP solutions. For this 
reason, an experimental work was added to the thesis. It focused on the collection of data 
about the performance of AMP solution in CO2 capture process. Following, the data collected 
in the experimental work of this thesis were integrated with data from literature and five 
different models were trained to predict the KGae coefficient of the column. 

2.1. Experimental data collection 

In this paragraph is explained the experimental set-up utilized to collected part of the training 
data. 

2.1.1. Solution preparation 
For the experiments two different amines were used, namely monoethanolamine (MEA) and 
2-amino-2-methyl-1-propanol (AMP). The MEA had a purity of higher than 98% and the 
AMP had a purity of 90%, both were purchased from Sigma-Aldrich. The aim of the 
experimental part is to investigate how these two amines behave when utilized for the carbon 
capture. In Table 1 the compositions of the five prepared amine solutions are shown. 

Table 1: Composition of amine solutions 

%wt AMP %wt MEA Name 
100 0 100AMP0MEA 
70 30 70AMP30MEA 
50 50 50AMP50MEA 
30 70 30AMP70MEA 
0 100 0AMP100MEA 

Then to further investigate the system water was added to each of these mixture to create 
solutions with the 30, 50, 70, 90 and 100 amine %wt in water.  

The solutions were prepared using a semi-automatic balance and demineralised water was 
used to dilute to the right amine %wt.  To ensure the homogeneity of the prepared solutions, a 
magnetic stirrer was used for 10-15 minutes before the solution was used in the experimental 
set-up. 
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2.1.2. Experimental set-up 
The experimental set-up that was used in this master’s thesis is a spray reactor for carbon 
capture, the set-up is shown in Figure 12. 

 

Figure 12: Experimental set-up for carbon capture 

The set-up has two main gas supplies, namely a N2 gas supply (1) with a separate pressure 
regulator (2) and a CO2 tank with a pressure regulator (3). For the low gas flow rates a 
Bronkhorst EL-FLOW Select MFC (4) is used, which goes up to 2 L/min for CO2 and 3 
L/min for N2. For the higher gas flow rates a Bronkhorst EL-FLOW Prestige MFC (5) is used, 
which goes up to 80 L/min for CO2 and 100 L/min for N2. All mass flow controllers are 
calibrated at a temperature of 21°C and at an inlet pressure of the gas at 3 bar, except for the 
low N2 mass flow controller which is calibrated at 5 bar. The use of 4 different flow 
controllers allows a fixed inlet CO2 %vol for every gas flow rate within the range of the flow 
controllers. After the CO2 and N2 leave the flow controllers they are mixed in a T-junction 
and then send to the reactor (11). 

The amine solution (6), is pumped from its container by a KNF SIMDOS 10 FEM 1.10S (7). 
After passing through the pump the amine solutions go through a pulsation damper (8), to 
ensure a constant flow rate through the ultrasonic nebulizer. This ultrasonic nebulizer is an 
UP200St ultrasonic processor (9) and a S26d18S sonotrode (10) (Hielscher Ultrasonic 
GmbH) made of titanium. The ultrasonic nebulizer uses ultrasound to create a spray of 
nebulised amine-solution. The ultrasonic nebulizer tip is placed within the reactor. For this 
reason, the amine solution enters into the reactor as nebulized spray. 
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Inside the reactor the carbon capture process takes place. The reactor is in glass, and it has 
two different rooms. The inner room, where the carbon capture takes place, has a volume of 
56 ml. The outer room serves as a cooling jacket and has one inlet and one outlet for the 
cooling water, for which tap water is used. The cooling is needed to remove the heat of the 
reaction and keep the reactor a constant temperature of around 24°C.  The temperature inside 
the inner room of the reactor is measured by a DS18B20 Digital temperature sensor connected 
to an Arduino. The gas mixture and the amine-solution leaves the reactor and enters into a 
liquid-gas separator (12). The liquid phase, represented by the amine solution, leaves the set-
up through a tap at the bottom of the separator. The gas mixture leaves at the top right of the 
separator and passes first trough a safety valve which opens at 0.5 bar. After the safety valve 
the gas mixture passes through a glass silica dryer (13) to filter out the water and the amine 
left in the gas. The silica dryer is filled with silica gel granulates with a diameter of 1-3 mm 
from Merck. The silica dryer protects the O2 and CO2 sensors which are placed after it. The 
O2 sensor is connected to the Arduino and is used to measure the O2 concentration, because 
spraying amine-solutions in the presence of oxygen can lead to an explosion. The CO2 sensor 
(14) is a ExplorIR®‐M-100 from Angst+Pfister Sensors and Power, Germany. The CO2 
sensor measures the outlet CO2 %vol, hence the gas mixture is passed through the CO2 sensor 
it is released into the fume hood.  

2.1.3. Experimental procedure 
At first, both gas tanks are opened and both pressure regulators are set to their correct 
pressure according to which flow rate is to be used. Then the PC is started and connected to 
the right flow controller. On the PC the programs FlowDDE and FlowView are opened and 
the desired flow rates for CO2 and N2 are set. Afterwards the set-up needs to be purged with 
CO2 and N2, this to ensure there is no O2 left in the set-up. As mentioned earlier spraying 
amine-solutions in the presence of O2 can lead to dangerous scenarios. The amount of O2 can 
be read from the serial monitor of the Arduino, which is connected to the O2 sensor. While the 
O2 is purged out, the set-up can be checked for gas leaks using foam.  

Once all the set-up is purged and leak-proof the set-up can be used. First the inlet %vol of 
CO2 is read by using the GSS program on the PC. Once the CO2 %vol is stable on the desired 
level it is recorded using the GSS program. After one minute of recording the ultrasonic 
nozzle and the pump of the amine-solution are started. After a while the CO2 %vol will reach 
a stable level again and it can be concluded that the carbon capture process is complete. The 
recording is now stopped, and the pump and ultrasonic nozzle are both turned off.  

When the amine-solution is changed or at the end of each day, the set-up is thoroughly rinsed 
with water to remove all the residues of amine solutions into the reactor. 

2.1.4. Experimental plan 
The first part of experiments consisted of screening experiments, because AMP was never 
tested on this set-up before the optimal operating conditions were not known.  

The screening experiments had two different goals: 1) determining which AMP-solution 
preformed best and 2) investigate the best range of operating conditions. The operating 
conditions that were changed are: liquid flow rate, gas flow rate, CO2 %vol and 
nAmine/nCO2. Four different AMP solutions were used: pure AMP, AMP-water, AMP-MEA 
and AMP-MEA-water. All these solutions were tested for different AMP %wt.  
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From the screening experiments it was concluded that the AMP-MEA-water solution was the 
most promising out of the four tested solutions. An experimental plan was drawn to research 
the influence of AMP/MEA ratio, the water %wt, nAmine/nCO2 and CO2 %vol. In total 70 
experiments were executed and the operating conditions and results of the screening 
experiments can be find in the appendix A.1.  

2.1.5. KGae coefficient 
In order to evaluate the performances of the CO2 capture process, the KGae coefficient for 
each experiment is calculated. The KGae coefficient includes three aspects of mass transfer in 
a CO2 absorption system. These are the thermodynamics of the system, the kinetics of the 
system and the hydrodynamic nature of the absorption equipment [4]. The KGae can be 
calculated using the equation 8: 

𝐾ீ𝑎௘ = ቆ
ீ಺

௉ቀ௬಴ೀమି௬಴ೀమ
∗ ቁ

ቇ ∗ ቀ
ௗ௬಴ೀమ

ௗ௛
ቁ (8) 

Where KGae is the overall mass transfer coefficient (kmol.m-3.kPa-1.h-1), GI is the inert gas 
molar flux (kmol.m3.h-1), P is the total system pressure (kPa), yCO2 is the molar fraction of 
CO2 in gas bulk, y*

CO2 is the molar fraction of CO2 in equilibrium with liquid and bulk 
concentration and h is the height of the absorption zone (m). The KGae coefficient can be used 
to compare the performance of different amines and different operating conditions. In this 
research, the KGae coefficient is the parameter that will be modelled. 

2.2. Modelling approaches description 

2.2.1. Data collection 
The data used to train all the models in this work were obtained from four different sources. 
The first set of data are the points collected during the experimental part of this thesis. As 
mentioned in paragraph 2.1.1., six different AMP-MEA mixtures were used in a spray column 
set-up. A second set of data were obtained utilizing pure MEA and MEA-water to run the 
absorption test. These were collected by A. Van den Bogaert [35] on the same set-up as the 
one used in this thesis. The data set was than further enriched by 2 datasets from literature. 
One dataset consisted of MDEA, MEA and MDEA mixtures, that were tested pure and 
diluted with water, the points were all collected in a packed column with Sulzer DX packing 
[36].  The other literature dataset consisted of AMP-MEA data, that was diluted with water, 
the points were all collected in a packed column with Sulzer DW packing [37]. In Figure 13 
the distribution of the dataset is shown. 
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2.2.2. Feature extraction and preprocessing 
The input features of the ML models were the same among the various models and can be 
divided in three categories. Namely, the input parameters of the set-up, composition of the 
amine solutions and chemical properties of the amines. The input parameters of the set-up are: 
CO2 %vol, total gas flow rate, liquid flow rate, nAmine/nCO2 and the interfacial area of the 
column. The interfacial area between the gas and the liquid was included, in this way the 
model can be used both in spray and packed columns. The composition of the amine solution 
is reported as the weight percentages of all the amines. The chemical properties utilized as 
input of the model are the density, the dynamic viscosity, kinematic viscosity, surface tension 
and the diffusion coefficient. Further information about these properties can be found in 
appendix A.2. 

To facilitate the model training, the data are processed, namely a normalization in the range 
[0,1] or a standardization are applied depending to the utilized model. This operation is 
executed utilizing the function MinMaxScaler and StandardScaler implemented in the library 
scikit-learn 0.23.2 [38]. In addition, to evaluate the generalization performances of the model, 
the validation dataset was divided into train and validation set. The train set was the only one 
utilized during the training phase, while the validation set was used to assess the 
generalization capabilities of the model. 

The MinMaxScaler is used to scale the input features for the artificial neural network. The 
MinMaxScaler scales all the input data to a value between 0 and 1 and uses equation 9  [38]: 

𝑥௦௧ௗ =
(௫ି௫೘೔೙)

(௫೘ೌೣି௫೘೔೙)
 (9) 

Where xstd is the normalized value of the input, xmin is the minimum of the feature input, xmax 
the maximum of the feature input, x is the value of the data point. 

The standard scaler is used to scale the input features of both the support vector regressors 
and the decision tree regressor. The standard scaler standardizes each feature by removing the 
mean and scale to unit variance. This allows for a more sufficient training of the SVR and 
DTR model. Equation 10 is used to standardize each feature: 
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𝑧 =
௫ି௨

௦
 (10) 

Where z is the standardized input value, x is the non-standardized value of the input point, u 
is the mean of the feature samples and s is the standard deviation of the feature sample. This 
means that the mean of the standardized values is 0 and the standard deviation is 1, which 
leads to a normally distributed dataset.  

2.2.3. Artificial neural network 
The ANN used in this thesis is a multilayer feed-forward network, which employs a back-
propagating learning process. The ANN was implemented using the Pytorch 1.11.0 [39]. The 
optimized structure was obtained by tuning all the hyperparameters of the ANN with an 
empirical trial and error method. The most optimal network was determined by the MSE of 
the test dataset. The structure of the finale model is shown in Table 2. 

Table 2: Structure of the ANN model 

Layer Number of nodes 
Input layer 17 

Hidden layer 1 30 
Hidden layer 2 15 
Hidden layer 3 30 
Hidden layer 4 15 
Hidden layer 5 30 
Hidden layer 6 15 
Output layer 1 

Likewise, also the optimal activation functions were also obtained using a trial and error 
method, which used the MSE of the test dataset as score. For the input layer and the hidden 
layers a Rectified Linear Unit (ReLU) activation function was used. The ReLU activation 
function is given by equation 11. 

𝑦 = 𝑚𝑎𝑥 (0, 𝑥)(11) 

Where y is the output, x is the input given to the ReLU function. 

The output layer has a different activation function than the internal layers, namely a 
hyperbolic tangent (Tanh) activation function. The Tanh activation function is shown in 
equation 12. 

𝑦 =  
௘ೣି௘షೣ

௘ೣା௘షೣ
 (102) 

Where y is the output and x is the input data point.  

Because of the size of the network, it was observed that the back-propagation algorithm 
results is highly influenced by the initial guess of the weight. It was observed that the Xavier 
Uniform distribution gave the lowest MSE and the most repeatable results among the various 
training [40]. 

[40]The optimization algorithm utilized for the training of the network was the AdamW. The 
goal of the optimizer and training is to minimize the loss function, in this thesis the MSE is 
used as loss function and is given by equation 6. The MSE is calculated between the modelled 
KGae and the experimental KGae on the validation dataset. The training follows a 
backpropagation, it starts by tuning the weights and biases of the neurons between the output 
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layer and the last hidden layer. Afterwards it moves to the next layer of neurons until all 
neurons are tuned. This training sequence is repeated a specific number of times, which is 
specified by the number of epochs. In this thesis 450 number epochs were used.  

2.2.4. Support vector regressor 
In total three different support vector regressors (SVR) were trained in this thesis. Each SVR 
had a different kernel function. The general estimation function of the SVR is given by 
equation 13.  

𝑦 =  ∑ 𝛼௜ ∗ 𝐾൫𝑥௜ , 𝑥௝൯ + 𝑏௡
௜ୀଵ  (13) 

Where y is the output of the model, αi are the support vectors, K(xi,xj)  is the kernel function, 
b is the bias. 

As mentioned above, three different kernel functions were used in this thesis: polynomial 
function (equation 14), linear function (equation 15) and radial basis function (equation 16). 

Polynomial kernel function: 

𝐾൫𝑥௜, 𝑥௝൯ = (𝑥௜ ∗ 𝑥௝ + 𝑟)ௗ(14) 

Where xi and xj are the values of different data points, r is a constant and d is the degree of the 
polynomial. 

Linear kernel function: 

𝐾൫𝑥௜ , 𝑥௝൯ = ൫𝑥௜ − 𝑥௝ + 𝑟൯(15) 

Where xi and xj are the values of different data points and r is a constant. 

Radial basis kernel function: 

𝐾൫𝑥௜, 𝑥௝൯ = 𝑒ିఊ(௫೔ି௫ೕ)మ
(16) 

Where xi and xj are the values of different data point and γ is the scaler. 

The goal of the training phase of the SVR to minimize the loss function expressed in equation 
17, by tuning the values of αi, c and ξi. 

𝑚𝑖𝑛(
ଵ

ଶ
(|𝛼௜|)

ଶ + 𝑐 ∑ |𝜉௜|
௡
௜ୀଵ ) (17) 

Where αi is the support vector, c the regularization parameter and ξ is the soft margin. The 
regularization parameter determines how tolerant the soft margin is and is a tunable 
parameter.  

However the training, is constrained, this means that the values of αi, c and ξi must comply 
with the constrain given by equation 18 and cannot have any value that give the minimum of 
equation 17. 

ห𝑥௝ − 𝛼௜𝑥௜ห ≤ 𝜀 + |𝜉௜|(18) 

Where ε is the maximum allowed error. 

To find the most optimal SVR model the hyperparameters are tuned using a gridsearch. The 
gridsearch contained the following hyperparameters: regularization parameter (c), degree (d) 
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and maximum error (ε). During the gridsearch of the model a cross-validation was used in 
order to ensure the robustness of the model on unseen data [41]. In this thesis the training 
dataset was split into 10 for the cross-validation. The cross validation means that the dataset is 
split into 10 equal pieces. In turn, each piece is chosen as validation set of the network and the 
rest is selected to compose the training set. In this way the accuracy of the model on the 
validation set can be estimated and the hyperparameter selection is more effective. But it also 
means that the model will be trained 10 times using the same set of hyperparameters. The 
score of the training is based on the R² score of the modelled results from the validation 
dataset. The goal of the training is to tune the support vectors (αi) and the bias (b) to minimize 
equation 17. In Table 3 the best hyperparameters of the three SVR models created in this 
thesis are shown. 

Table 3: Hyperparameters of the SVR models 

Model name C Degree Epsilon Kernel function 
SVR-poly 50 3 0.05 Polynomial 
SVR-lin 40 1 0.3 Linear 
SVR-rbf 50 1 0.01 Radial based 

function 

2.2.5. Decision tree regressor 
In this thesis one model using a decision tree regressor was created. The hyperparameters of 
the model are the max depth of the decision tree and the min sample split condition. The 
hyperparameter of the model were tuned by using a gridsearch with a 10-fold cross validation. 
The most optimal parameters are shown in Table 4. 

Table 4: Hyperparameters of the DTR model 

Max depth 7 
Min sample split 0.1 
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3. Results and discussion 
 

In this chapter, the results from this master’s thesis are discussed. The thesis includes an 
experimental part, where the training data for the models is collected. The results of these 
experiments will be discussed first, afterwards the performance of the different models will be 
discussed. 

3.1. Experimental results 

3.1.1. Screening results 
The first set of experiments executed in this work aimed to screen the experimental space. 
The aim of this initial screening phase was to perform a physical based design of experiments. 
The results were used as training data for the models and can be found in the appendix A.1. of 
this work. Since these were screening experiments, the results will not be discussed in detail, 
but two main conclusions can be drawn:  

1)  At higher CO2 loadings and high AMP concentration, there is a salt formation that let 
the viscosity of the liquid increase. This salt was observed to be soluble in the water. 
Because the salt formation caused the set-up to clog, it is desirable to keep the 
AMP/water ratio below 7. These findings are based on visual observations and are in 
line with what F. Barzagli et al. [42] reported. The salt formation was not further 
investigated in this work, because this falls outside the research topic of this master’s 
thesis.  

2) AMP/MEA solutions had a higher overall KGae than the AMP/water solutions. For the 
DOE an AMP/MEA/water was used, although the KGae of AMP/MEA was the highest 
water was added to make sure the set-up did not clog. 

3.1.2. Effect of water concentration and AMP/MEA ratio for nAmine/nCO2 = 2 
The effect of water concentration and AMP/MEA ratio for nAmine/nCO2 = 2 the KGae value 
and the  absorption efficiency are shown in Figure 14 and Figure 15. The nAmine/nCO2 was 
set at the stoichiometric value of 2 and CO2 concentration was set at 10%vol. 
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Figure 14: Effect of water %wt and AMP/MEA ratio on KGae for nAmine/nCO2 = 2 

For the datasets where MEA is the prominent amine (i.e. AMP30MEA70 and 
AMP50MEA50) the KGae value decreases with the amount of MEA. This is expected because 
the overall reaction speed of MEA is higher than those of AMP and water. Since KGae is a 
coefficient to express the mass transfer, it is logical that pure MEA has the highest KGae, 

because of the higher overall reaction rate [43]. The same trend however does not occur in the 
AMP70MEA30 dataset, here AMP is the prominent amine. In this case the KGae value at first 
decreases then rises again when the water concentration goes from 50%wt to 70%wt. This is 
most probably the effect of the salt formation which occurs during the reaction of AMP with 
CO2. The formed salt is soluble in water and thus the higher is the water concentration in the 
solution the higher is the solubility of the salt. Therefore, the equilibrium of the reaction is 
changed, this results in more captured CO2. 

 

Figure 15: Effect of water %wt and AMP/MEA ratio on absorption efficiency for nAmine/nCO2 = 2 

The trend of the absorption efficiency with the water concentration in Figure 15 differs 
depending on the AMP concentration in the absorbent solution. In all the datasets the 
absorption efficiency decreases when the water concentration increases from 10%wt to 
30%wt. However, the decrease is steeper when the concentration of the MEA in the absorbent 
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solution increases. This trend is related to the fact that the absorption is mainly driven by the 
MEA molecules. Therefore, when the water concentration increases the MEA concentration 
decreases. However the total amount of MEA decreases more at a higher concentration of 
MEA. 

In Figure 15 when the water concentration increases from 30%wt to 70%wt the absorption 
efficiency increases again. This is because here the absorption efficiency is determined by the 
AMP. As mentioned before during the reaction of AMP with CO2 there was salt formation, 
which is soluble in water. Thus, by adding more water, more salt will dissolve. Therefore, the 
equilibrium of the AMP reaction with the CO2 will change.  

3.1.3. Effect of water concentration and AMP/MEA ratio for nAmine/nCO2 = 4 
The effect of water concentration and AMP/MEA for nAmine/nCO2 = 4 ratio on the KGae and 
the absorption efficiency are shown in Figure 16 and Figure 17. The nAmine/nCO2 was set at 
the stochiometric value of 4 and CO2 concentration was set at 10%vol. 

 

Figure 16: Effect of water %wt and AMP/MEA ratio on KGae for nAmine/nCO2 = 4 

In Figure 16 the same trends as in Figure 14 are visible. This is expected because only the gas 
flow rate halved, therefore the ratio nAmine/nCO2 doubled. All the other input parameters 
were unchanged. The results of both experiments could not be directly compared because of a 
difference in gas flow rate and thus a difference in residence time. 
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Figure 17: Effect of water %wt and AMP/MEA ratio on absorption efficiency for nAmine/nCO2 = 4 

From Figure 17 the same conclusions as in Figure 15 can be drawn. However, the decrease of 
the absorption efficiency between the water concentrations 10%wt and 30%wt is less 
pronounced. This is because nAmine/nCO2 has doubled. Therefore, there is a double number 
of moles of MEA per mole of CO2. This means that if the water concentration is increased the 
total amount of MEA is less sensible. In Figure 17 the increase of absorption efficiency, when 
the water concentration is increased from 30%wt to 70%wt, is also observed. This is for the 
same reason as explained in paragraph 3.1.2Figure 15.  

3.1.4. Effect of inlet CO2 %vol 
The effect of inlet CO2 concentration on the KGae value and the absorption efficiency are 
shown in Figure 18 and Figure 19. The experiments were performed at 50 %wt AMP and 50 
%wt MEA solutions with 10 %wt water and the nAmine/nCO2 was set a value of 2. 

 

Figure 18: Effect of CO2 %vol on KGae 
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From Figure 18 it can be concluded that the KGae value decreases when the CO2 %vol is 
increased. This is because the molar ratio of the CO2 is a part of the KGae equation (equation 
8). The curve also flattens when the CO2 concentration reaches 20 %vol, this could be related 
to the fact that the amine solutions is already saturated, thus increasing the CO2 %vol does not 
affect the KGae value.  

 

Figure 19: Effect of CO2 %vol on absorption efficiency 

From Figure 19 it can be concluded that the absorption efficiency increases as the CO2 

concentration increases. This due to the salt formation of AMP, when the salt is formed it is 
diluted in the water, which causes the reaction equilibrium to move and causes a high 
maximum CO2 loading. Therefore, when the CO2 concentration in the gas increases the 
absorbant liquid does not become saturated, which allows the absorption efficiency to 
increase.  

3.2. Machine Learning modelling KGae coefficient for CO2 capture 

The ML models predict the KGae of the CO2 capture process. The prediction accuracy of the 
trained ML models will be evaluated against the experimental KGae values contained in the 
validation set. For each model the R² score, MSE and mean absolute error (MAE) will be 
evaluated. In this way the models can be compared to each other. The R² score is calculated 
by Equation 19 and the closer the R² score of a model is to 1, the higher the accuracy of the 
model of the model is [44]. 

𝑅ଶ(𝑦௜, 𝑦ො௜) = 1 −
∑ (௬೔ି௬ො೔)మ೙

೔సభ

∑ (௬೔ି௬ത೔)మ೙
೔సభ

 (19) 

The MAE is calculated by Equation 20 and the lower the MEA, the better the performance of 
the model [45]. 

𝑀𝐴𝐸(𝑦௜, 𝑦ො௜) =
ଵ

௡ೞೌ೘೛೗೐ೞ
∗ ∑ |𝑦௜ − 𝑦ො௜|

௡ೞೌ೘೛೗೐ೞ

௜ୀଵ
( 20) 

The MSE is calculated by Equation 6 and the lower the MSE, the better the performance of 
the model. 
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3.2.1. Performance of the ANN model 
The performances scores of the trained ANN model are shown in Table 5. The modelled KGae 
values of the ANN model and the experimental KGae are shown in Figure 20 for the validation 
dataset. The diagonal that is plotted gives the ideal line of predictions.  

Table 5: Performance scores of the ANN model 

 R² score MSE MAE 
Train 0.933 0.384 0.428 

Validation 0.867 0.697 0.523 

From Figure 20 it can be concluded that the ANN model is able to capture the trend of the of 
the experimental KGae. However, the model is not accurate, at the range of 0-4 experimental 
KGae the predictions of the model have a significant deviation compared to the ideal line, 
which is confirmed by the low R² score and the MSE. This can be explained by the deviation 
in the input dataset, namely not all type of amines have the same amount of data. This causes 
the model to overfit on certain specific amines solutions. From Table 5 it can be seen that the 
R² score of the training dataset is much higher than the one of the validation dataset and the 
MSE of the training dataset has even halved in comparison to the validation dataset. In order 
to further improve the model, the dataset has to be further enriched with new data obtained 
from the under-represented amine solutions, so that the deviation in amount of data is less. 
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3.2.2. Performance of the SVR models 
The performance scores of the SVR-poly are shown in Table 6. The modelled KGae values of 
the SVR-poly and the experimental KGae are shown in Figure 21 for the validation dataset. 
The diagonal line of this figure gives the ideal line of predictions. 

Table 6: Performance scores of the SVR-poly model 

Figure 21: Modelled KGae validation dataset for SVR-poly model 

Figure 21 shows the capabilities of the SVR-poly model in predicting the KGae. In the range 
0-4 experimental KGae, the model predicts some points that have a much higher or much 
lower value than the ideal line. This causes the MSE to increases and the R² score to decrease. 
This again can be explained by the uneven distribution of the dataset, where the number of 
data points for some amine solutions are low. This is confirmed by the performance scores of  
Table 6. The R² score of the model is close to 1 and both the MSE and MAE are low in 
comparison to the order of magnitude than the KGae values. Thus, it can be concluded that the 
SVR-poly is able to accurately model the CO2 capture process. 
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The performance scores of the SVR-lin are shown in Table 7. The modelled KGae values of 
the SVR-lin and the experimental KGae are shown in Error! Reference source not found. for 
the validation dataset. The diagonal that is plotted gives the ideal line of prediction. 

Table 7: Performance scores of the SVR lin-model 

Figure 22: Modelled KGae validation dataset for SVR lin-model 

In Figure 22, within the range of 0-4 experimental KGae, the modelled values show an high 
deviation from the ideal prediction line. In the range of 2-8 the predicted values are in general 
above the ideal prediction line. In the range of 8-12 experimental KGae, the modelled values 
are always below the ideal line values. This causes the high MSE for this modelling technique 
and it can be concluded that the SVR-lin is not able to accurately predict the KGae. The poor 
prediction accuracies are related to the fact that the model heavily relies on linear kernel 
transformation that, in this case, drastically reduce the accuracy because of the strongly non-
linear behavior of the system.  
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The performance scores of the SVR-rbf are shown in Table 8. The modelled KGae values of 
the SVR-rbf and the experimental KGae are shown in Figure 23 for the validation dataset. The 
diagonal that is plotted gives the ideal line of prediction. 

Table 8: Performance scores of the SVR-rbf model 

 R² score MSE MAE 
Train 0.941 0.339 0.493 

Validation 0.837 0.794 0.330 
 

 

Figure 23: Modelled KGae validation dataset for SVR-rbf model 

From Figure 23 it can be concluded that the trained SVR-rbf model accurately predicts the 
KGae. In the range of 0-4 experimental KGae the modelled values are higher than the ideal line, 
this causes the higher MSE. There are also a few outliers, from which the modelled values are 
lower than the ideal line. This can be explained by the uneven distribution of the dataset and 
the model is unable to catch this deviation in input parameters. This accuracy is confirmed by 
the performance scores of Table 8. The R² score is close to 1 and the MSE and MAE are both 
one order of magnitude lower than the KGae. Based on these metrics and on Figure 23 Table 9 
it can be concluded that the SVR-rbf can accurately model the CO2 capture process. 
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In Table 9 the performance scores of the three SVR models are compared for the validation 
dataset. 

Table 9: Performance scores of the SVR models for validation dataset 

 Validation set 
Model 
name R² score MSE MAE 

SVR-poly 0.850 0.730 0.291 
SVR-lin 0.644 1.737 0.881 
SVR-rbf 0.837 0.794 0.330 

 

Table 9 reports a lower MSE and MAE for the SVR-poly and SVR-rbf model, however the 
SVR-lin has a much higher MSE and MAE than the other two models. The same can be 
detected for the R² score, where the score of the SVR-poly and SVR-rbf is closer to 1 than the 
score of the SVR-lin model. Therefore, it can be concluded that the SVR-poly and the SVR-
rbf are both accurate models of the CO2 capture. 

3.2.3. Performance of the DTR model 
The performance scores of the DTR model is shown in Table 10 and the modelled KGae for 
the validation dataset is shown in Figure 24. 

Table 10:  Performance scores of the DTR model  

 R² score MSE MAE 
Train 0.838 0.925 0.618 
Validation 0.809 1.00 0.648 
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The performance scores of the DTR are comparable to the performance scores of the SVR-
poly and the SVR-rbf. However, from Figure 24 the DTR model cannot accurately predict the 
KGae coefficient. The DTR has a limit amount of output values, due to the limited number of 
leaf nodes. This is because a 10-fold cross validation was used for the hyperparameter tuning 
and by increasing the number of leaves the model would overfit on the training dataset. 
Therefore, different levels of modelled KGae can be seen on Figure 24. It can be concluded 
that the DTR model is not usable for modelling the KGae of the CO2 capture process. 

3.2.4. Comparison of performance of different models 
The SVR-poly is the most accurate model out of the five models tested in this thesis work. 
The SVR-rbf is also accurate but the prediction performances are inferior to the SVR-poly. 
This conformed by the lower R² score of the SVR-rbf model and the higher MSE. The ANN 
model shows potential in the performance scores of the training dataset but is not accurate 
when applied on the validation dataset. The SVR-lin is not accurate, because of the non-linear 
relationship in the training dataset. Finally, the DTR is model is not accurate, this is because 
of its limit amount of output values.  

The SVR-poly and the SVR-rbf kernel function both have a high R² score and a low MSE and 
thus they are both accurate and robust models. The validation dataset, just as the training 
dataset, consists of three different types of amines and seven different mixtures of these 
amines. These datapoints were collected on both a spray column and a packed column and 
had a wide variety of different input features, such as CO2 %vol, gas flow rate and liquid flow 
rate. Beside the various input features and capture technologies, the model was trained with 
different solutions of amines both in concentration and components. This means that the 
model trained in this work is highly flexible both on process condition, capture technology 
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Figure 24: Modelled KGae over the validation dataset for DTR model 
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and absorbent solutions. Despite this wide variety in the utilized datasets, SVR-poly and 
SVR-rbf models can accurately predict the KGae coefficient.  
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4. Conclusion and future work 
 

The aim of this thesis is to model the CO2 absorption performance of packed and spray 
columns utilizing Machine Learning techniques. The models utilizes as input: the process 
conditions, information about the columns and information about the absorbent liquid. The 
Machine Learning technique models require data to be developed. In this work the data were 
collected both from literature data and lab experiments.  

The lab experiment focused on the absorbent mixture AMP-MEA-water. From the lab 
experiments was found that when the water concentration is low, namely in the range from 
10%wt to 50%wt, the KGae and the absorption efficiency are mainly influenced by the MEA 
and both the values decreased by increasing the water concentration. In the range of water 
concentration from 50%wt to 70%wt the KGae and the absorption efficiency are mainly 
influenced by the AMP concentration and both values increases with the water concentration. 
This trend is caused by a salt formation between CO2 and AMP, which is soluble in water. 
When the CO2 concentration in the gas increases, the KGae decreases but the absorption 
efficiency increases. 

The Machine Learning techniques used in this thesis were ANN, SVR and DTR. With these 
techniques, five different models were trained in this thesis, using training data that consisted 
of different MEA, AMP, MDEA and Water mixtures. The most accurate model detected in 
this thesis employs SVR regressor with polynomial kernel function (i.e. SVR-poly) with the 
highest R² score and lowest MSE and MAE for the validation dataset observed in this work. 
The SVR-lin model is not accurate, this is because it cannot capture the non-linear 
relationships between the input features and the output. The SVR-rbf model is also an 
accurate model with a high R² score and a low MSE and MAE for the validation dataset. The 
ANN model shows a lot of potential based on the training dataset, namely the R² score is high 
and the MSE is low. However, when the validation dataset is applied on the ANN model the 
performance is not good and the R² score is low and the MSE is high. This leads to the 
conclusion that the ANN model is not accurate and suffers from over-fitting problems over 
the training set. The last model is the DTR model, this model was not able to accurately 
predict the KGae values, because DTR has a limited amount of output values.  

Finally, it can be concluded that a ML model is able to accurately predict the KGae coefficient 
for CO2 capture in both a spray and packed column with a wide variety of input parameters. 
Besides the various input parameters and capture technology the model can make prediction 
over several different amine solutions. This means that the model trained in this thesis is 
highly flexible both on process condition, spray technology and absorbent solutions. 

To further generalize the capabilities of the model in future work the dataset can be enriched 
with more types of amines and more operating conditions. A further development in the 
model structure is the usage of Graph Neural Network structure, which could also increases 
the generalization capabilities of the model.  
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A.1. Operating conditions and results of experiments 

In this section the operating conditions and results of the lab experiments done in this thesis 
are shown. 

Am1 Am2 wAmin
e1 
[%wt] 

wAmin
e2 
[%wt] 

wWater 
[%wt] 

CO2 
conc 
[%vol] 

Liquid Fr 
[mL.min-1] 

Gas Fr 
[L.min-1] 

KGae 
[kmol. 
m-3.kPa-1 

.h-1] 
AMP NONE 0 5 10 0.5 9.5 10 25.3 
AMP NONE 0 5 10 2.35 44.65 47 108.8 
AMP NONE 0 5 10 1.175 22.325 23.5 0.0 
AMP NONE 70 10 5 0.18 1.62 1.8 78.5 
AMP NONE 50 10 5 0.3 2.7 3 62.6 
AMP NONE 70 5 3.14 0.74 14.06 14.8 121.7 
AMP NONE 70 5 5 0.075 1.425 1.5 40.6 
AMP NONE 70 5 5 0.09 1.71 1.8 47.8 
AMP NONE 70 5 5 0.125 2.375 2.5 58.1 
AMP NONE 70 5 8 0.1 1.9 2 32.3 
AMP NONE 70 5 10 0.105 1.995 2.1 23.0 
AMP NONE 70 5 10 0.74 14.06 14.8 33.7 
AMP NONE 70 5 13 0.48 9.12 9.6 24.7 
AMP NONE 70 5 10 0.09 1.71 1.8 25.3 
AMP NONE 70 15 10 0.375 2.125 2.5 65.5 
AMP NONE 70 12.5 10 0.3625 2.5375 2.9 47.1 
AMP MEA 0 10 10 0.1 0.9 1 17.0 
AMP MEA 0 10 10 0.93 8.37 9.3 84.7 
AMP MEA 0 5 10 0.05 0.95 1 8.9 
AMP MEA 0 10 10 0.1 0.9 1 16.5 
AMP MEA 0 5 10 0.1 1.9 2 17.8 
AMP MEA 0 5 10 0.055 1.045 1.1 9.2 
AMP MEA 0 5 10 0.05 0.95 1 8.8 
AMP MEA 0 5 10 0.15 2.85 3 22.4 
AMP MEA 0 5 10 0.045 0.855 0.9 7.9 
AMP MEA 0 5 10 0.165 3.135 3.3 24.9 
AMP MEA 0 5 10 0.165 3.135 3.3 24.9 
AMP MEA 0 5 10 1.64 31.16 32.8 142.3 
AMP MEA 0 5 10 0.14 2.66 2.8 20.5 
AMP NONE 0 10 10 0.039 0.351 0.39 8.4 
AMP NONE 0 10 10 0.12 1.08 1.2 0.1 
AMP MEA 0 10 10 0.16 1.44 1.6 19.6 
MDEA NONE 30 5 10 1.35 25.65 27 0.0 
MDEA NONE 0 10 10 0.1 0.9 1 1.2 
MDEA MEA 0 5 10 0.055 1.045 1.1 0.0 
MDEA MEA 0 5 10 0.16 3.04 3.2 27.2 
MDEA MEA 0 5 10 0.045 0.855 0.9 0.0 
MDEA MEA 0 5 10 0.14 2.66 2.8 6.6 
MEA NONE 70 10 10 0.2 1.8 2 59.0 
MEA NONE 0 10 2.5 0.93 8.37 9.3 101.2 
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MEA NONE 0 10 5 0.93 8.37 9.3 202.8 
MEA NONE 0 10 10 0.1 0.9 1 13.7 
MEA NONE 0 10 10 0.93 8.37 9.3 119.7 
MEA NONE 0 10 15 0.93 8.37 9.3 83.2 
MEA NONE 0 10 20 0.93 8.37 9.3 63.5 
AMP MEA 70 10 10 0.00088

4 
0.007958 0.008843 0.2 

AMP MEA 50 10 10 0.00147
1 

0.013238 0.014709 0.1 

AMP MEA 30 10 10 0.00205
5 

0.018497 0.020552 0.1 

AMP MEA 10 10 10 0.00263
7 

0.023734 0.026371 0.2 

AMP MEA 70 10 10 0.00081
9 

0.007371 0.00819 0.2 

AMP MEA 50 10 10 0.00135
8 

0.012223 0.013581 0.1 

AMP MEA 30 10 10 0.00189
2 

0.017026 0.018917 0.1 

AMP MEA 10 10 10 0.00242 0.021778 0.024198 0.1 
AMP MEA 70 10 10 0.00075

4 
0.006789 0.007543 0.2 

AMP MEA 50 10 10 0.00124
7 

0.011223 0.01247 0.1 

AMP MEA 30 10 10 0.00173
1 

0.015583 0.017314 0.1 

AMP MEA 10 10 10 0.00220
8 

0.019868 0.022076 0.1 

AMP MEA 50 10 10 0.00124
7 

0.011223 0.01247 0.1 

AMP MEA 30 10 10 0.00173
1 

0.015583 0.017314 0.1 

AMP MEA 10 10 10 0.00220
8 

0.019868 0.022076 0.1 

AMP MEA 10 5 10 0.00242 0.045977 0.048397 0.1 
AMP MEA 10 10 10 0.00242 0.021778 0.024198 0.2 
AMP MEA 10 15 10 0.00242 0.013712 0.016132 0.2 
AMP MEA 10 20 10 0.00242 0.009679 0.012099 0.2 
AMP MEA 10 30 10 0.00242 0.005646 0.008066 0.2 
AMP MEA 70 10 10 0.00044

2 
0.003979 0.004421 0.1 

AMP MEA 50 10 10 0.00073
5 

0.006619 0.007354 0.1 

AMP MEA 30 10 10 0.00102
8 

0.009248 0.010276 0.1 

AMP MEA 10 10 10 0.00131
9 

0.011867 0.013186 0.1 

AMP MEA 70 10 10 0.00041 0.003686 0.004095 0.1 
AMP MEA 50 10 10 0.00067

9 
0.006112 0.006791 0.1 

AMP MEA 30 10 10 0.00095 0.008513 0.009459 0.1 
AMP MEA 10 10 10 0.00121 0.010889 0.012099 0.1 
AMP MEA 70 10 10 0.00038 0.003395 0.003772 0.3 
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AMP MEA 50 10 10 0.00062
3 

0.005611 0.006235 0.3 

AMP MEA 30 10 10 0.00086
6 

0.007791 0.008657 0.3 

AMP MEA 10 10 10 0.00110
4 

0.009934 0.011038 0.3 

 

A.2. Chemical properties  

In this section the chemical properties of the amines and water, that were used by each model 
are shown. 

Chemical Density  
[g.cm-3] 

Source 

MEA 1.01 [46] 
AMP 0.930 [47] 
MDEA 1.04 [46] 
Water 1  
Chemical Dynamic viscosity [mPa.s] Source 
MEA 15.1 [48] 
AMP 99.2 [47] 
MDEA 57.8 [48] 
Water 0.986 [46] 
Chemical Kinematic viscosity 

[cm².s-1] 
Source 

MEA 15.0 [46]  
AMP 107 [46] 
MDEA 55.6 [46] 
Water 0.986 [46] 
Chemical Surface tension 

[mN.m-1] 
Source 

MEA 47.5 Measurement by previous work 
research group CIPT 

AMP 70.42 [49] 
MDEA 37.62 [50] 
Water 72 Measurement by previous work 

research group CIPT 
Chemical Diffusion coefficient 

[m².s-1] 
Source 

MEA 1.25E-10 Calculated by using equation of 
Versteeg et al. [51] 

AMP 9.86E-04 Calculated by using equation of 
Versteeg et al. [51] 

MDEA 1.91E-11 Calculated by using equation of 
Versteeg et al. [51] 

Water 3.28E-11 Calculated by using equation of 
Versteeg et al. [51] 

 

 


