2021-2022

Introduction

Kinetic study of the degradation of sulfamethoxazole by UV light combined with H₂O₂ and photo-Fenton treatment

Sebastien Jankelevitch

Master of Chemical Engineering Technology

More pharmaceutical products find their way into the environment because of increased use and increase in population and population aging. The pharmaceutical and personal care products (PCCPs) are mostly disposed through excretion and household waste. Incomplete removal of PCCPs in wastewater treatment can cause health risks, but these long-term health risks remain poorly understood. Der Beek et al. find evidence of **30 to 200 different pharmaceuticals** in surface water, groundwater or tap/drinking water (der Beek et al., 2015) in most countries of Western Europe. One of the compounds under scrutiny is sulfamethoxazole.

Sulfamethoxazole

Background and objective

Sulfamethoxazole (figure 1) is among the most used sulphanilamide antibiotics. Due to its polarity and antibacterial nature, it cannot easily degraded with biological be treatment. Sulfamethoxazole can be H₂N present in surface water in the range of nanogram per litre to microgram per litre (Gao et al., 2016; J. Wang &

Wang, 2016). More information is needed on the degradation of sulfamethoxazole to estimate its effect on the aquatic environment. This paper studies the degradation of sulfamethoxazole with UV/H₂O₂ and photo-Fenton oxidation. A kinetic study of the change in sulfamethoxazole concentration, colour (absorbance at 455 nm), aromaticity (absorbance at 254 nm) and turbidity during the reaction is done. The results are linked to existing literature about the degradation of sulfamethoxazole.

Goals

Reaction kinetics	Degradation analysis	Link the results
1. Perform reactions	1. Perform HPLC	1. Support
2. Measure turbidity,	analysis of the samples	degradation
aromaticity and	2. Determine reaction	pathway with colour,
colour	intermediates and	turbidity and
3. Fit a model	sulfamethoxazole	aromaticity kinetics
	degradation	2. Validate analysis
		methods

Degradation pathway

	nethods	
Reaction system		HE SEE With Provide Articles
-Dissolved ox	vgen Figure 2: pH meter	Figure 3: Dissolved
	by	oxygen meter
oxidizing aqueous solutions 50.0 mg L ⁻¹ sulfamethoxazole	of of	
1.0 L in a photocatalytic reac	tor Figure 4: Cooling system	Figure 5: 150 W UV mercury lamp
lamp (figure 5). The temperatu	ure Sa	mple analysis
(figure 4). The pH was monitor (figure 2) and kept constant during the treatment by add diluted NaOH and HCl. dissolved oxygen meter was a added to the reactor (figure 3). Performed reaction	red Samples were ant every 5 minu ing turbidity, abso A absorbance at Iso IC analysis was steady-state sa	taken from the reactor ites. Immediately the rbance at 254 nm and 455 nm was analyzed also performed on the mples.
UV/H ₂ O ₂	UV/H ₂ O ₂ /Fe ²⁺ =	photo-Fenton
	$-[H_2O_2] = varied (5)$	$-[H_2O_2] = 10 \text{ mM}$
-[H ₂ O ₂] = 100 mM -pH = varied (2.0 – 12.0)	mM – 100 mM) -pH = 3.0	-pH = 3.0 -Fe ²⁺ = varied (0.

Supervisors / Co-supervisors / Advisors Prof. Dr. Ir. Leen Thomassen Prof. Dr. Ir. Natalia Villota Prof. Dr. Josemaria Lomas

der Beek, T. A., Weber, F.-A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küsterz, A. (2015). PHARMACEUTICALS IN THE ENVIRONMENT-GLOBA References OCCURRENCES AND PERSPECTIVES. Environmental Toxicology and Chemistry, 35(4), 823–835. https://doi.org/10.1002/etc.3339

> Gonçalves, A. G., órfão, J. J. M., & Pereira, M. F. R. (2012). Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: Catalytic performance and reaction pathways. Journal of Hazardous Materials, 239–240, 167–174. https://doi.org/10.1016/j.jhazmat.2012.08.057

Gao, S., Zhao, Z., Xu, Y., Tian, J., Qi, H., Lin, W., & Cui, F. (2014). Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate—A comparative study. Journal of Hazardous Materials, 274, 258–269. https://doi.org/10.1016/J.JHAZMAT.2014.04.024

Wang, J., & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmenta Management, 182, 620–640. https://doi.org/10.1016/J.JENVMAN.2016.07.049

VITORIA-GASTEIZKO **INGENIARITZA ESKOLA ESCUELA** DE INGENIERÍA **DE VITORIA-GASTEIZ**

[XINS]/[XINS]

