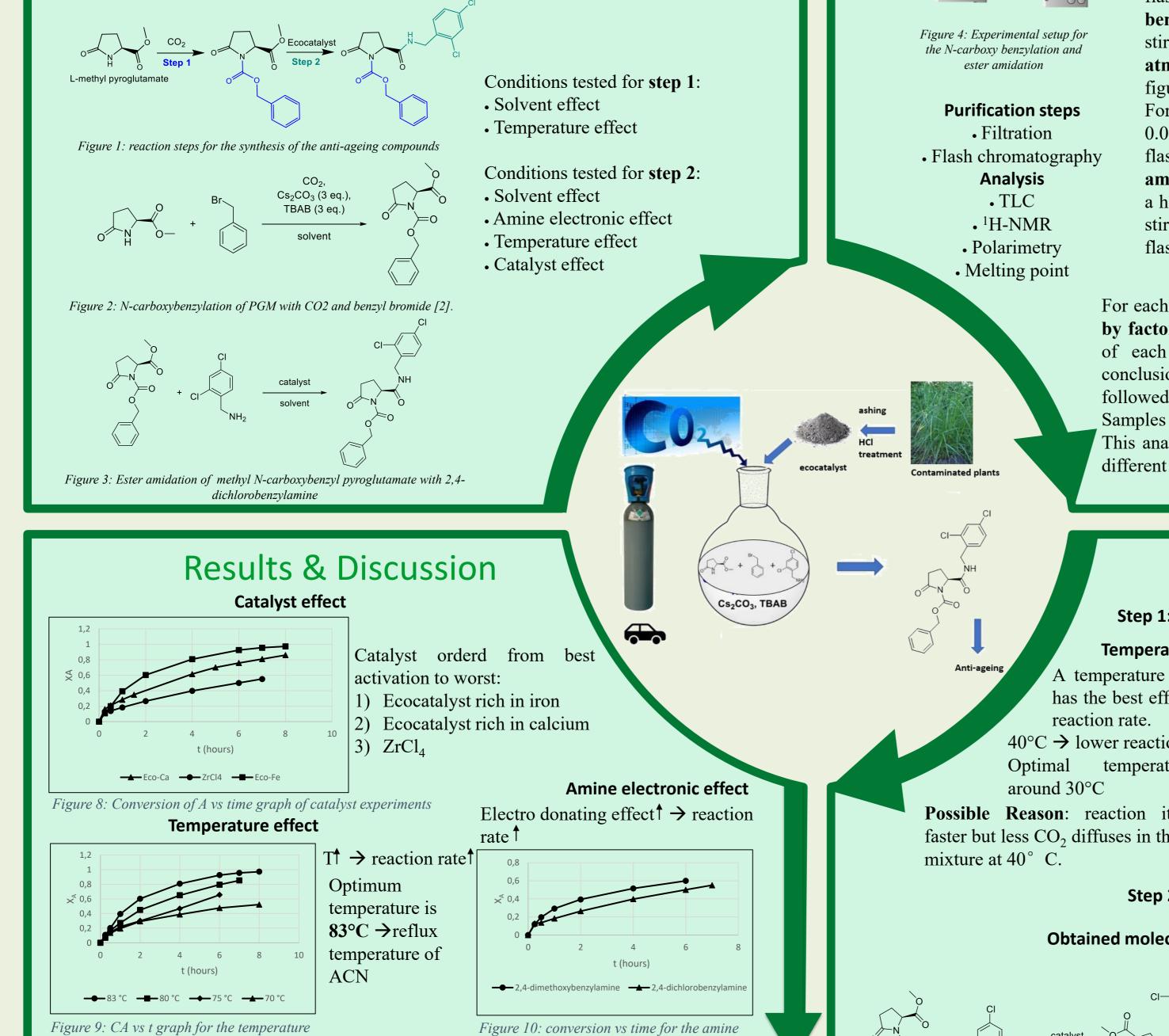
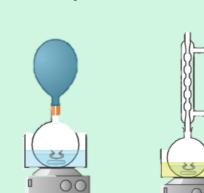
Optimization of the green synthesis of potential antiageing compounds


Birbouz Othmane


Master of Chemical Engineering Technology

Introduction

The traditional linear economy has shown that earth's valuable resources are starting to diminish. The current linear economy must be redesigned into a circular economy where waste and pollution are eliminated, products and materials are recirculated and nature is restoring some balances which are now unbalanced [1].

In this work, the synthesis of potential anti-ageing compounds is optimized by opting for the use of eco-friendly solvents, catalysts and reagents. These compounds can be made in 2 reaction steps as illustrated in figure 1. The first reaction is the N-carboxy benzylation illustrated in figure 2 and the second reaction is the ester amidation shown by figure 3.

Materials & Methods

Experimental setup for respectively step 1 and 2

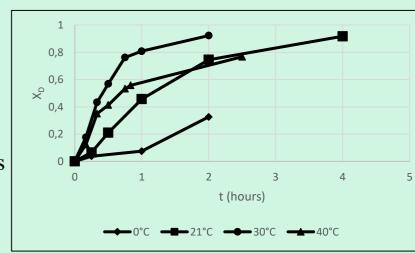
N-carboxy benzylation and ester amidation

reaction

For the N-carboxy benzylation shown by figure 2, 3 equivalents of phase transfer agent tertiary butylammonium bromide (TBAB) and base cesium carbonate are added into a round bottom flask. Then 1 equivalent of L-pyroglutamate (PGM) is added together with 15 mL of solvent. The round bottom flask is then purged with CO₂ gas. Eventually the **benzyl bromide** is added, and the reaction mixture is stirred with a magnetic stirrer under a CO₂ atmosphere provided by the balloon as shown in figure 4. For the ester amidation, 100 mg of ecocatalyst or 0.05 equivalent of $ZrCl_4$ is added to a round bottom flask. Then the carbamate is added together with the amine and 5 mL of solvent. The flask is then placed in a hot oil bath on the hotplate together with a magnetic stirrer. The condenser is then secured on top of the flask as illustrated in figure 4.

Experimental plan

For each experiment, the reaction conditions are changed **factor** by factor. The effect on the reaction rate of the different levels of each factor were compared with each other to draw conclusions. The conversion of all the experiments were followed by ¹H-NMR with the different reaction conditions. Samples are taken at fixed time intervals during the reaction. This analysis method provides a good comparison between the different conditions.


Results & Discussion

Step 1: N-carboxy benzylation

Temperature effect

A temperature of 30° C has the best effect on the $40^{\circ}C \rightarrow lower reaction rate$ Optimal temperature lays

Possible Reason: reaction itself gets faster but less CO₂ diffuses in the reaction

Figure 5: temperature effect on the N-carboxy benzylation reaction

Step 2: ester amidation

Obtained molecule

Synthetic alternative to access closed ring target compound

effect experiments

electronic effect

Conclusions

The ecocatalysts showed promising results on the reaction rate. The other metal chlorides had better effect on the activation of the ester amidation reaction compared to ZrCl₄. The solvent ACN had the best result for both reactions. An electro donating effect on the amine for the ester amidation reaction had a positive effect on the reaction rate. The best results were obtained with **2,4-dimethoxybenzylamine** as a reagent. The yield for the *N*-carboxy benzylation and the ester amidation with the best reaction conditions, identified upon optimization study, gave a yield of respectively 73.4 % and 64.3 %. This study could be of interest for the industrializing of these type of reactions by the pharmaceutic or cosmetic industry.

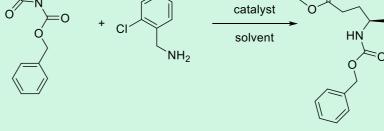


Figure 6: obtained molecule from the ester amidation

The possible reason why an open ring molecule is obtained, is because the methanolate from methanol attacked on the carbonyl carbon of the 5-ring.

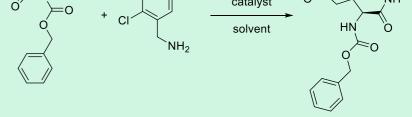


Figure 7: ester amidation with tert-butyl ester

the obtained molecule was also the opened ring compound with a *tert*-butyl ester group instead of methyl. Thus, the ring opening reaction still occurred even with the bulky *tert*-butyl ester group.

Supervisors / Co-supervisors / Advisors Prof. Dr. ir. Thomassen Leen Prof. dr. Ghinet Alina

References:

- E. MacArthur, "Ellenmacarthurfoundation.org." https://ellenmacarthurfoundation.org/circulate-productsand-materials (accessed Apr. 08, 2022).
- [2] G. Homerin, A. S. Nica, A. Aitouche, B. Rigo, E. Lipka, and A. Ghinet, "Carbon dioxide transformation as a green alternative to phosgene and chloroformates: N-carboxyalkylation of lactams and analogues," J. CO₂ Util., vol. 54, no. September, p. 101782, 2021, doi: 10.1016/j.jcou.2021.101782.

