
Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Exploring Efficient Neural Architectures for Text-to-Speech
Synthesis

2021•2022

PROMOTOR :

Prof. dr. ir. Ronald THOELEN

PROMOTOR :

dr. Mohammed Salah AL-RADHI

dr. Tamás Gábor CSAPO

Dean Reymen
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Gezamenlijke opleiding UHasselt en KU Leuven

Faculteit Industriële Ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Exploring Efficient Neural Architectures for Text-to-Speech
Synthesis

2021•2022

PROMOTOR :

Prof. dr. ir. Ronald THOELEN

PROMOTOR :

dr. Mohammed Salah AL-RADHI

dr. Tamás Gábor CSAPO

Dean Reymen
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

 Dean Reymen

EXPLORING EFFICIENT NEURAL

ARCHITECTURES FOR TEXT-TO-

SPEECH SYNTHESIS

SUPERVISOR

Dr. Csapó Tamás Gábor
CO-SUPERVISOR

Dr. Mohammed Salah Al-Radhi
BUDAPEST, 2022

Contents

Abstract .. 5

Samenvatting ... 6

1 Introduction .. 7

2 Fundamental theories .. 8

2.1 Machine learning .. 8

2.1.1 Supervised machine learning .. 9

2.1.2 Unsupervised machine learning .. 9

2.1.3 Cost function ... 10

2.1.4 Gradient descent .. 10

2.1.5 Data set .. 12

2.2 Deep learning ... 13

2.2.1 Neural networks .. 13

2.2.2 Different types of neural networks ... 16

2.3 Merlin ... 18

2.3.1 Front-end ... 18

2.3.2 Vocoder ... 19

3 Related work ... 25

4 Task analysis ... 26

5 Implementation .. 27

5.1 Dataset .. 27

5.2 Working environments ... 27

5.2.1 Google Colab .. 27

5.2.2 TMIT Deep 1 server .. 28

5.3 Implementation of the Merlin toolkit ... 28

5.3.1 SLT Arctic .. 28

5.3.2 Build your own voice .. 31

5.3.3 Vocoders ... 31

6 Model evaluation methods... 35

6.1 Objective model evaluation methods ... 35

6.1.1 MCD ... 35

6.1.2 BAP ... 35

6.1.3 RMSE .. 35

6.1.4 Correlation .. 35

6.1.5 VUV .. 36

6.1.6 Spectrogram .. 36

6.2 Subjective model evaluation methods .. 36

6.2.1 Speakers testing .. 36

7 Evaluation ... 37

7.1.1 Effect of training data size .. 37

7.1.2 Effect of hidden layers in neural network ... 38

7.1.3 Effect of different optimization algorithms .. 39

7.1.4 Effect of different extractions of the cepstral coefficients on the ahocoder 40

7.1.5 Effect of different vocoders .. 41

7.2 Subjective evaluation ... 45

7.3 Summary .. 46

8 Conclusion... 47

8.1 Future work .. 47

9 Acknowledgement .. 48

References .. 49

List of figures ... 57

List of tables ... 59

Abbreviations .. 60

STUDENT DECLARATION

I, Dean Reymen, the undersigned, hereby declare that the present MSc thesis work has been

prepared by myself and without any unauthorized help or assistance. Only the specified sources

(references, tools, etc.) were used. All parts taken from other sources word by word, or after

rephrasing but with identical meaning, were unambiguously identified with explicit reference to the

sources utilized.

I authorize the Faculty of Electrical Engineering and Informatics of the Budapest University of

Technology and Economics to publish the principal data of the thesis work (author's name, title,

abstracts in English and in a second language, year of preparation, supervisor's name, etc.) in a

searchable, public, electronic and online database and to publish the full text of the thesis work on

the internal network of the university (this may include access by authenticated outside users). I

declare that the submitted hardcopy of the thesis work and its electronic version are identical.

Full text of thesis works classified upon the decision of the Dean will be published after a period of

three years.

Budapest, 29 May 2022

 ...…………………………………………….
 Dean Reymen

Abstract

Text-to-speech (TTS) is a computer-based technology that allows text to be read aloud,

sounding like a human voice. Based on textual input, TTS synthesis generates a speech waveform.

This study aims to explore the deep learning approach based on neural networks and investigate an

efficient architecture to improve TTS synthesis. First, the current architecture of speech synthesis

used in the Merlin toolkit will be investigated. Several speech syntheses, taken from the

CMU_ARCTIC speech synthesis databases, will be run on this architecture, and objective and

subjective evaluations will be used to evaluate the performance. For example, this study will

examine the world and continuous vocoder already integrated into the Merlin toolkit, and a new

vocoder, the ahocoder, will be integrated into the toolkit and evaluated afterwards. After that, both

the configuration of the neural network will be investigated, think of the different types of neural

networks and the number of hidden layers. The different optimization algorithms offered in Merlin

will be investigated. The best-made model includes using the full dataset, a neural network with six

hidden layers, and the stochastic gradient descent optimization algorithm. According to the

objective evaluations, it can be concluded that the WORLD and continuous vocoder perform almost

equally when comparing their MCDs. The ahocoder performs with an MCD of 6.063, which means

that it is less accurate but still intelligible. The continuous vocoder performs best on the slt dataset

with an MCD of 4.192. From the subjective evaluations, it can be concluded that the WORLD

vocoder gives the best results, with a subjective rating of 74. In comparison, the implemented

ahocoder has a rating of 62, which means that it is natural enough synthesized speech according to

the listeners.

 6

Samenvatting

Text-to-Speech (TTS) is een op de computer gebaseerde technologie die het mogelijk maakt

tekst hardop voor te lezen, klinkend als een menselijke stem. Op basis van tekstuele input zorgt TTS

synthese ervoor dat er een spraakgolfvorm gegenereerd wordt. Het doel van deze studie is het

verkennen van de deep learning aanpak op basis van neurale netwerken en het onderzoeken van een

efficiënte architectuur om de TTS synthese te verbeteren. Eerst zal de huidige architectuur van de

spraaksynthese, gebruikt in de Merlin toolkit, onderzocht worden. Verschillende spraaksyntheses,

afkomstig uit de CMU_ARCTIC spraaksynthese databanken, zullen op deze architectuur worden

uitgevoerd, en de hand van een objectieve en subjectieve evaluatie zal de prestatie beoordeeld

worden. Zo zal er in deze studie onderzoek worden gedaan naar de world en continuous vocoder die

al geïntegreerd zijn in de Merlin toolkit en zal er een nieuwe vocoder, de ahocoder, geïntegreerd

worden in de toolkit en zal deze achteraf geëvalueerd. Daarna zal zowel de configuratie van het

neurale netwerk onderzocht worden, denk hierbij aan de verschillende type neurale netwerken en

het aantal hidden layers, als de verschillende optimalisatie algoritmes aangeboden in Merlin

onderzocht worden. Het best gemaakte model omvat het gebruik van de volledige dataset, een

neuraal netwerk met zes hidden layers, en het stochastic gradient descent-optimalisatiealgoritme.

Volgens de objectieve evaluaties kan worden geconcludeerd dat de WORLD en continuous vocoder

vrijwel gelijk presteren bij de vergelijking van hun MCD's. Waarbij de ahocoder het slechts

presteert met een MCD van 6.063, wat betekent dat het minder accuraat is maar wel nog

verstaanbaar is. De continue vocoder presteert het beste op de slt dataset met een MCD van 4,192.

Uit de subjectieve evaluaties kan worden geconcludeerd dat de WORLD vocoder het beste resultaat

geeft, met een subjectieve waardering van 74. Terwijl de geïmplementeerde ahocoder een

waardering van 62 heeft, wat betekent dat het een natuurlijk genoeg gesynthetiseerde spraak is

volgens de luisteraars.

 7

1 Introduction

Text-to-speech (TTS) is a computer-based technology that enables text to be read aloud,

sounding like a human voice. TTS synthesis involves generating a speech waveform given textual

input. TTS can be used for various things, including car navigation, train station announcements,

telecoms response services, and e-mail reading. Nowadays, the goal of TTS is not to have machines

talk but to make them sound like humans of different ages and gender. However, text-to-speech

quality in conventional TTS systems is still far from natural-sounding. Deep learning is a new

research direction in the machine learning area and has added a new perspective to the problem of

speech synthesis.

 The current thesis aims to explore the deep learning approach based on neural

networks and investigate an efficient architecture to improve the TTS synthesis. First, the current

architecture of the speech synthesis used in the Merlin toolkit will be examined. Several speech

syntheses, taken from the CMU_ARCTIC speech synthesis databases, will be run on this

architecture, and how they perform will be discussed. In addition, the efficiency of different

vocoders will be explored. Three traditional vocoders will be researched, namely the world vocoder,

the continuous vocoder and the ahocoder. Furthermore, the network architecture will be further

investigated to see if the algorithm can be further optimized and if the number of hidden layers

impacts the efficiency.

 8

2 Fundamental theories

2.1 Machine learning

Machine learning (ML) is a type of artificial intelligence (AI) that aims to create systems

that can learn from and improve processed data without being explicitly programmed [1]. Artificial

intelligence is a broad phrase that refers to systems or technologies that are designed to emulate

human intelligence. Even though machine learning and artificial intelligence are sometimes used

interchangeably, they do not mean the same thing. One significant distinction is that, whereas

machine learning is usually included in AI, AI is not necessarily included in machine learning.

Figure 2.1: Machine learning flowchart [2]

In total, there are four types of algorithms used in machine learning: supervised learning,

unsupervised learning, semi-supervised learning and reinforcement learning. Roughly two of these

types of algorithms are used for machine learning: supervised learning and unsupervised learning.

 9

The difference between the two types is how data is processed to learn from it or make predictions

with it [3].

2.1.1 Supervised machine learning

A data scientist serves as a middleman in this model, instructing the algorithm on which

conclusions to make. The algorithm is 'trained' in supervised learning using a pre-labelled dataset. It

has a predefined outcome, similar to how a toddler learns about different types of fruit by having

them pointed out in a picture book.

Figure 2.2: Supervised machine learning [4]

Algorithms for linear and logistic regression, multiclass classifiers, and support vector

machines are examples of supervised machine learning.

2.1.2 Unsupervised machine learning

Unsupervised machine learning is a type of machine learning in which a computer learns to

recognize complex processes and patterns without the assistance of a human. Unsupervised

machine learning uses data without labels or a specified outcome.

Unsupervised machine learning, to continue with the "learning child" analogy, is analogous

to a kid learning to distinguish fruit by seeing colours and patterns rather than memorizing the

names spoken by the supervisor. The kid compares photographs and categorizes them into groups,

each with its own label.

 10

Figure 2.3: Unsupervised machine learning [4]

K-means clustering, main and independent component analysis, and association rules are

some examples of unsupervised machine learning techniques.

2.1.3 Cost function

The cost function is used to express the algorithm's performance [5]. It will compare the

predicted and actual outputs and calculate how accurate the model was in its prediction. If our

predictions differ from the actual values, it returns a higher number. The cost function indicates

how the model has improved as we adjust it to improve the predictions. The goal of all optimization

strategies is to minimize the cost function.

2.1.4 Gradient descent

In order to attempt to minimize the cost function, gradient descent is used [6], [7]. The

gradient descent optimization algorithm will attempt to minimize the cost function by moving in the

steepest descent, defined by the negative of the gradient as seen in Figure 2.4.

Figure 2.4: Visualisation of gradient descent [8]

 11

2.1.4.1 Stochastic gradient descent

The most commonly used algorithm for solving optimization problems is stochastic gradient

descent, abbreviated SGD [9]. The term "stochastic" refers to a system or process associated with a

random probability. Consequently, a few random samples are chosen for each iteration in stochastic

gradient descent rather than the entire dataset [10]. SGD does each iteration with only one sample,

i.e., a batch size of one, making it less computationally intensive. To perform the iteration, the

sample is randomly shuffled and selected. Because SGD selects only one sample from the dataset at

random for each iteration, as illustrated in Figure 2.5, the path the algorithm takes to reach the

minima is noisier than that of a standard gradient descent method.

Figure 2.5: Stochastic gradient descent compared with gradient descent [11]

2.1.4.2 Adaptive movement estimation algorithm

The adaptive movement estimation algorithm, or Adam [12] for short, is an extension of the

gradient descent optimization algorithm [13]. By reducing the number of function evaluations

required to reach the optimum or improving the capability of the optimization algorithm by

obtaining a better final result, the optimization process by using Adam can be accelerated [13]. The

use of momentum and adaptive learning rates makes it so that adam can converge faster [14].

Adam combines adaptive gradients and root mean square propagation, two stochastic

gradient descent methods [15]. Using a randomly selected data subset, the optimization algorithm

creates a stochastic approximation.

2.1.4.3 Resilient backpropagation

Resilient backpropagation, or rprop for short, is a first-order optimization algorithm [16],

[17]. The gradients are computed, and the step sizes are updated for each dimension individually in

each iteration. By comparing the sign of the current and previous iteration gradient, the step size can

 12

be determined. When both iterations have the same sign, this is the right direction, and the step will

continue in the same direction, and the step size will be increased. If the sign of the last two

iterations is different, we have missed the optimum, and the step will have to change direction, and

the step will be reduced in size so that the optimum is not missed again. The change of direction of

the step and increasing or decreasing the step can be seen in Figure 2.6.

Figure 2.6: The gradient direction changes when jumping over optima [18]

2.1.5 Data set

In order to create a efficient systems that can learn from and improve processed data, the

input data used to build the model is split into multiple data sets: test, training, and cross-validation.

2.1.5.1 Training set

The training dataset is used to train the model, i.e., the neural network. That is, based on the

training dataset, the parameters of the neural network are determined [19].

2.1.5.2 Cross validation set

While tuning the model's hyperparameters, the validation data set allows for an unbiased

evaluation of a model fit on the training data set [20]. In other words, the training set is used to fit

the model, which is then used to predict the outputs for the validation set observations [21]. Based

on this cross-validation set, the best hyperparameters [22] for the model can be determined.

Figure 2.7 shows an example of tuning the complexity of the neural network. Thus, it can be

seen that with low complexity, high bias occurs. High bias can cause underfitting, which means that

an algorithm can miss the relevant relations between features and target outputs [23]. However, as

can be seen, too high a complexity is also not suitable because then high variance occurs. High

variance can cause the data set on which the model is trained to be accurately represented, but when

 13

this model is tested on an unknown data set, the output may be inaccurate [24]. This inaccuracy is

due to overfitting.

Figure 2.7: Bias and variance tradeoff [25]

2.1.5.3 Test set

The test data set is a portion of the input data that is used to provide an unbiased evaluation

of a final model fit on the training data set [20].

2.2 Deep learning

Machine learning has a subfield called deep learning where artificial neural networks are

used [26]. Deep learning allows computers to learn new skills by analyzing large amounts of data.

Due to its versatility and effective results, deep learning is being used in various domains, including

text generation, machine translation, speech synthesis, picture identification, and others [27]. Deep

learning is a catch-all term for several types of neural networks and related algorithms that

frequently consume raw input data.

2.2.1 Neural networks

Deep learning focuses on machine learning approaches using several layers of neurons in

deep neural networks. Neural networks, meaning extremely elaborate and interconnected networks

of neurons, are designed the same way as the human brain, and these neural networks mimic the

human brain's behavior. The human brain, a biological neural network, allows computer programs

to detect patterns and solve typical artificial intelligence, machine learning, and deep learning

challenges.

 14

When neural networks with multiple layers of neurons are implemented, deep learning

occurs. A deep learning algorithm is defined as a neural network with more than one hidden layer or

three layers in total, including inputs and outputs layers [28].

Figure 2.8: An example of a deep learning neural network with 3 hidden layers. Each layer is specified as a

vector of binary components, with the edges between the vectors defined as a matrix of weight values. [29]

As seen in Figure 2.8, each neuron in a neural network assigns a weight to its input. The

input is combined with weights that attenuate or amplify the input. The output of each layer is the

input of the next layer. By combining weights with inputs, the network can rank and aggregate these

inputs. Ultimately, the output is determined by the total of the weights. Neural networks are the

backbone of deep learning algorithms [26].

Each node layer has an activation function that works on the previous layer's sum of inputs.

The activation function determines whether or not the neuron is activated. It accomplishes this by

applying a non-linear adjustment to the input, allowing the neural network to learn and perform

more complex tasks [27].

Figure 2.9: One single node with activation function [30]

 15

2.2.1.1 Sigmoid activation function

A continuous space value can be converted to a binary value using the sigmoid function. Its

non-linearity is its significant benefit over other steps and linear functions [31]. The function has an

S form ranging from 0 to 1.

S(𝑥) = 1 −
1

1 + 𝑒ି௫
(1.1)

As seen in Figure 2.10, when an independent variable z approaches negative infinity, the

function return tends to be zero, and when z approaches positive infinity, it tends to be one.

Figure 2.10: Plot of the sigmoid function

Some of its fundamental shortcomings are sharp damp gradients during backpropagation,

gradient saturation, slow convergence, and non-zero centred output, allowing gradient updates to

propagate in multiple directions [30].

2.2.1.2 TANH activation function

The hyperbolic tangent activation function is referred to as the tanh function. The function

takes any real value as input and returns a value between minus one and one since the tanh function

is similar to the sigmoid activation function and has the same S-shape [32].

tanh(𝑥) =
𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
(1.2)

As seen in Figure 2.11, the more positive the variable, the more the function will tend to

return one, but the more negative the variable, the more the function will tend to return minus one.

 16

Figure 2.11: Plot of tanh function

2.2.2 Different types of neural networks

2.2.2.1 Feedforward neural network

The typical deep learning models are deep feedforward networks, also known as

feedforward neural networks or multilayer perceptrons (MLPs) [33]. As seen in Figure 2.12, a

feedforward neural network (FNN) is a type of artificial neural network in which nodes'

connections do not form a cycle [34]. This means that the data always flows in one direction and

never in the opposite direction.

Figure 2.12: Sample of a feed-forward neural network [35]

The feedforward neural network was the first and most straightforward artificial neural

network to be developed [36].

 17

2.2.2.2 Recurrent neural network

Recurrent neural networks (RNNs) are identified by their feedback loops [37]. RNNs are

often preferable for tasks that need sequential inputs, such as speech and language [38]. In order to

predict the output of the layer, RNN makes it possible to save the previous output of a particular

layer and feed it back to the input [39]. Advanced varieties of recurrent neural networks can

produce the best results when processing sequential input such as text, audio, music, or video.

Figure 2.13: Recurrent neural network (RNN) [40]

Long short-term memory (LSTM) was introduced to alleviate the vanishing gradient

problem [41], and it has since become one of the most widely used RNN architectures. By using

LSTM, the vanishing problem can be avoided. Since errors can propagate backwards over an

infinite number of virtual layers spread out in space. LSTM may learn tasks requiring memory of

events that occurred hundreds or even millions of discrete time steps ago [36]. Therefore, it

prevents backpropagated errors from vanishing or exploding [42].

Figure 2.14: The repeating module in an LSTM contains four interacting layers [43]

 18

2.3 Merlin

The Merlin toolkit [44] used in this paper is an open-source system for speech synthesis

published by the Speech Research Center of Edinburgh University [45]. Merlin includes the

extraction of characteristic acoustic parameters required for the vocoder, acoustic modelling

learning function through a neural network, and vocoder function for voice waveform generation

[46]. Merlin, based on the theano library, is written in Python and includes source code

documentation and recipes for various system configurations. The toolkit is free software,

distributed under an Apache License Version 2.0, allowing unrestricted commercial and non-

commercial use alike [47].

As seen in Figure 2.15, the toolkit must be used in combination with a front-end text

processor and a vocoder. Where the front-end makes sure the waveform is transformed into

linguistic features and the vocoder makes sure the acoustic features are transformed into

waveforms.

Figure 2.15: Overview of the used model in Merlin

2.3.1 Front-end

An external front-end, such as Festival, is required in Merlin [45]. For the time being, the

front-end output must be formatted as HTS-style labels with state-level alignment. The toolkit

transforms such labels into vectors of binary and continuous features for neural network input.

Using HTS-style questions, the characteristics are extracted from the label files. If the HTS-like

approach is not convenient, it is also possible to offer already-vectorized input features directly.

 19

2.3.2 Vocoder

Vocoders analyze and synthesize human voice signals for audio data compression,

multiplexing, voice encryption, and voice transformation.

2.3.2.1 WORLD

The WORLD vocoder is open-source speech analysis, modification, and synthesis software

[48]–[50]. As seen in Figure 2.16, it can estimate the fundamental frequency (F0), aperiodicity, and

spectral envelope and synthesize speech with only estimated parameters. Despite the development

of various high-quality speech synthesis systems, real-time processing has proven difficult due to its

high computational costs. This new speech synthesis technology has excellent sound quality, but it

also processes information quickly [50]. The system's effectiveness was determined by comparing

its output to natural speech, which included consonants. Its processing speed was also measured

against that of traditional systems. The results showed that WORLD outperformed the other

systems in terms of sound quality and processing speed. It was more than ten times faster than

conventional systems, and the real-time factor (RTF) suggested that it could handle real-time

processing.

Figure 2.16: Simplified world vocoder workflow

Three algorithms for determining three speech parameters are included in WORLD, and a

synthesis algorithm that uses these parameters as input. First, DIO [51], [52] is used to estimate the

f0 contour. Second, the spectral envelope is calculated using CheapTrick [53], [54], which

considers both the waveform and the F0 data. Third, PLATINUM [55] is utilized to estimate the

excitation signal, then used as an aperiodic parameter.

 20

(a) LF0 (b) MGC

(c) BAP

Figure 2.17: Example of features extracted by the WORLD vocoder

2.3.2.2 Continuous

Figure 2.18 and Figure 2.19 show the continuous vocoder's analysis and synthesis phases

[56].

Figure 2.18: Simplified continuous vocoder workflow

 21

The continuous fundamental frequency (contF0) is determined using a simple continuous

pitch tracker on the input waveforms during the analysis phase [57]. This pitch tracker uses a linear

dynamic system with Kalman smoothing to interpolate F0 in areas of creaky voice, as well as

unvoiced sounds or silences. Another excitation parameter is the maximum voiced frequency

(MVF), which uses amplitude and phase spectra to determine MVF decisions [58] using a

maximum probability criterion. An an accurate and temporally stable spectral envelope estimation

called CheapTrick [53] is used to achieve high-quality Mel-Generalized Cepstral analysis (MGC).

The results are the contF0, MVF, and MGC parameter streams.

Figure 2.19: Schematic diagram of the developed continuous vocoder. Additions and refines are marked with

dashed lines. [56]

The continuous vocoder can avoid per-frame voicing decisions, which can contribute to

minimizing perceptual degradation caused by voicing decision errors [56]. Furthermore, it models

the excitation using only two one-dimensional parameters, which is computationally feasible in

deep neural network-based text-to-speech [59], [60]. The noise component in the continuous

baseline vocoder, on the other hand, is still not accurately modelled, limiting the overall perceived

quality.

 22

In order to reduce the overall buzziness of the voice in the continuous baseline vocoder [61],

a combination of the binary noise masking (bNM) and Phase Distortion Deviation (PDD) called

continuous noise masking (cNM) is used. The PDD of the signal carries all of the crucial

information relevant to the glottal pulses shape [62]. Moreover, noise masking is a fundamental

technique to improve the performance of the speech synthesizer by reducing the number of noise

artefacts in the time-frequency domain. Based on a simple measure of harmonicity, a bNM in the

time-frequency space is used in [63]. However, since bNM might lack a minimum of randomness in

the voiced segments because of forcing values below the threshold to zero [63], [64], bNM and

PDD are combined. Therefore changes from 0 to 1 (or 1 to 0) are made in the cNM, rather than a

binary 0 or 1 as in the bNM, and hence preserve the quality of the voiced segments.

(a) LF0 (b) MGC

(c) MVF

Figure 2.20: Example of features extracted by the continuous vocoder

 23

2.3.2.3 Ahocoder

As seen in Figure 2.21, the ahocoder parameterizes speech waveforms into three streams:

log-f0, cepstral representation of the spectral envelope, and maximum voiced frequency [65]. It

provides high accuracy during analysis and high quality during reconstruction. For statistical

parametric speech synthesis and voice conversion, it is adequate. It can also be used for simple

speech manipulation and transformation (pitch level and variance, speaking rate or vocal tract

length).

Figure 2.21: Simplified ahocoder vocoder workflow

The way the three different parameter streams (log 𝑓଴, MCEP coefficients and MVF) are

obtained and discuss different issues arose during the development of the vocoder are described in

[65, Sec. II], [65, Sec. III] and [65, Sec. IV]. The harmonics-plus-noise model (HNM) [66] based

reconstruction procedure is described in [65, Sec. V]. The optimization of several aspects of the

vocoding process in resynthesis tasks is devoted in [65, Sec. VI]. The performance of the optimized

vocoder in synthesis is evaluated in [65, Sec. VII]. The final conclusions are summarized in [65,

Sec. VIII].

 24

(a) LF0 (b) MGC

(c) MVF

Figure 2.22: Example of features extracted by the ahocoder

Unlike other HNM-based systems, which reconstruct signals at the pitch-synchronous frame

rate and frame length, the reconstruction method, in this case, has been intended to function at a

constant frame rate, making it compatible with statistical synthesizer output.

 25

3 Related work

Studies have attempted to research the improvement of the TTS synthesis using the Merlin

toolkit. Merlin is a stable toolkit where text-to-speech can be applied to datasets in the English

language and foreign languages. For example, [67] obtains accurate results with the Arabic

language by examining DNN-based architectures and figured out that a class-specific modelling

approach, which for each sound, uses the model that performs the best on the validation set,

improves the results. [68] achieved first place in all three subjects, including naturalness,

intelligibility, and MOS, with an optimized DNN-based speech synthesis system. The results of [68]

indicated that using deeper architectures improves the synthesized speech quality. [68], [69]

describe that less training data reduces speech quality.

It is possible to modify the Merlin toolkit with many different options. For example, several

studies examine modifying the vocoder. A hierarchical encoder-decoder model is proposed in [70].

The model is designed to make better use of suprasegmental characteristics than traditional designs

while also being computationally efficient. The suggested solution outperforms a traditional design

requiring linguistic input to be at the same frame rate as the auditory input.

It is not always the case that a developed vocoder performs better than an old version. In the

following study [71], a vocoder called Yang was developed where the results were worse than the

already existing WORLD vocoder since the low accuracy of the spectral envelope.

The possibility of a WaveNet architecture as a statistical vocoder is researched in [72]. In

this research it could be concluded that the WaveNet architecture gives a good result since only one

hour of training data is enough for producing very good quality of speech.

Instead of a vocoder-based system, [73] uses a hybrid text-to-speech framework that uses a

waveform generation method based on the natural speech waveform exemplars. Using a larger

dataset that contains around four hours of training data, the examplar-based waveform generation

variants were rated higher than the vocoder-based system.

 26

4 Task analysis

There are several approaches to improving neural architectures' efficiency for text-to-speech

synthesis. The various modifications and tests to research the approaches will be performed using

the Merlin toolkit.

It is also possible to obtain better results by modifying the vocoder. Thus, the world,

continuous and ahocoder will be integrated in the toolkit. The world and continuous vocoder have

already been implemented in the Merlin toolkit. The code for the ahocoder needs to be written since

the ahocoder is not implemented in the Merlin toolkit. In order to implement the ahocoder, the first

step will be to look at how exactly this vocoder works. After that, the code for the analysis and

synthesis step will have to be written. Once the vocoders are implemented in the toolkit and the

demo datasets are tested. When these give a correct result the full dataset will be tested on the

vocoders.

In order to optimize the use of the vocoders, the neural network architecture can be

modified. These hidden layers influence the final result by changing the hidden layers, such as

adding extra layers or using a different type of neural network. In addition, not only does the

architecture affect the efficiency but also how this architecture is trained. The algorithm used to

calculate the gradient descent also impacts efficiency. For example, different optimizers such as

sgd, adam and rprop will be used.

The different datasets that will be used, consist of male and female speakers, and this will

allow the research to determine which architectures work better on male or female speakers. Two

males, awb and ksp, will be used, where awb is a Scottish English male and ksp is an Indian English

male, and two English female speakers, slt and clb, will be used.

All these possibilities will be investigated, and the natural and synthesized speech will be

compared using MCD, BAP, RMSE, correlation and VUV.

 27

5 Implementation

In this section, there will be a discussion of the tools, dataset and optimizations used in this

thesis. It will include a discussion of exactly how these datasets and optimizations were

implemented and the problems and errors that come with this implementation.

5.1 Dataset

The CMU Arctic databases were designed for the purpose of speech synthesis research [74].

The database contains datasets of male and female speakers. In this thesis, two male (awb and ksp)

and two female (clb and slt) speakers were used. Each dataset contains about 1500 out-of-copyright

utterances, including 16KHz waveform and simultaneous EGG signals. Only the waveforms and the

sentence prompt list are needed to perform speech synthesis.

5.2 Working environments

5.2.1 Google Colab

Google Colab is a Google Research product. Colab allows anyone to write and run arbitrary

Python code in the browser, making it ideal for machine learning [75]. The choice to use Colab is

because it allows Jupyter notebooks to be shared with others in an easy way.

In order to make sure that the toolkit would work on Colab the required libraries and tools

had to be installed on this environment. Since Merlin works on Python versions 2.7 to 3.6, it is

necessary to downgrade the environment.

sudo update-alternatives --config python3

By using the above code, the python version can be changed manually. In this case, python

is downgraded from python 3.7 to python 3.6.

In addition, it is necessary to install the basic tools for Merlin. This was not without

problems either, first the pip had to be updated, next it was necessary to install the corresponding

packages. Before compiling the tools, it was necessary to manually install csh, manpages-pl,

manpages-fr-extra, autotools-dev, automake, python3-numpy and python3-scipy. The Python

package, cmake and bandmat, also needed to be installed

 28

In addition, Colab is not an ideal environment to run the code. For example, Colab has an

idle timeout of 90 minutes and an absolute timeout of 12 hours. As a result, it was impossible to

train the neural network efficiently, and valuable time was lost.

5.2.2 TMIT Deep 1 server

As an alternative to Colab, a docker image running on a larger server of the TMIT

department was chosen. The correct python version was already installed on this server. Only the

additional packages had to be installed to be able to compile the tools within Merlin.

In order to run longer scripts in the background, tmux is used. Tmux is a program which

runs in a terminal and allows multiple other terminal programs to be run inside it [76], and this

made it possible to run multiple scripts simultaneously.

5.3 Implementation of the Merlin toolkit

As discussed earlier, the Merlin toolkit is used to perform speech synthesis. This section will

discuss the practical part of Merlin, such as what code and scripts are used and what code is written.

Merlin includes many sample scripts to learn how to use the toolkit. Depending on the

purpose of the speech synthesis, a different example script is used. For example, there is a sample

script to perform speech synthesis on a mandarin dataset. There also is a sample script to use your

dataset to develop a speech synthesis.

5.3.1 SLT Arctic

Merlin recommends testing the SLT Arctic demo first to ensure all libraries, tools and

packages are installed correctly. The demo is run by using the run_demo script.

./run_demo.sh

However, this demo did not work the first time. For example, an error was generated when

calculating the MCD.

TypeError: No loop matching the specified signature and casting was found for ufunc
add

The error is related to the version of NumPy and SciPy. The version of NumPy is

downgraded from version 1.19.2 to version 1.16.4, and SciPy upgraded to version 1.2.3.

 29

By updating both Python packages, the error is resolved. Now that we know the program

works, exactly what steps are being performed can be examined to reuse the program with another

dataset.

./01_setup.sh voice_name

In order to run the setup, one parameter is required. This parameter is the name of the voice.

If the parameter matches the preexisting datasets, the setup will ensure the dataset is downloaded.

The following datasets are available in the setup: slt_arctic_demo, slt_arctic_full, awb_arctic_demo,

awb_arctic_full. The bdl_arctic_full dataset for this example is no longer available.

The setup creates the necessary folders, and moves the downloaded data in the dataset to the

correct place. It also creates the global configuration file. This configuration file contains the

information the speech synthesis needs. For example, it contains the partition between the train,

validate and test set to train the model.

./02_prepare_conf_files.sh conf/global_settings.cfg

The parameter given is the path to the global configuration file. In this step, the

configuration files are created for the acoustic and duration model and the synthesis.

./03_train_duration_model.sh conf/duration_voice_name.conf

This step ensures that the duration model is generated and trained. The duration model is

trained with the state-aligned data. This model trains the state-level durations and is needed as an

input to the acoustic model to predict the speech parameters at the synthesis time [77].

The main Merlin script (run_merlin.py) that is used to train the neural network, is fed into

another script (submit.py). This script makes sure that the job runs on the CPU or GPU. The main

script used to train the neural network is train_DNN which is shown below with its arguments and

defaults [78].

def train_DNN(train_xy_file_list, # training file list
 valid_xy_file_list, # validation file list
 nnets_file_name, # filename for DNN we save to disk
 n_ins, # input feature dimensionality
 n_outs, # output feature dimensionality
 ms_outs, # multistream_outs
 hyper_params, # hyperparameters for training and architecture
 buffer_size, # training buffer size

 30

 plot=False, # create plot of (train/dev) training
convergence
 var_dict=None, # load covariance matrix
 cmp_mean_vector = None, # cmp == audio features used in HTS training
 cmp_std_vector = None, # cmp == audio features used in HTS training
 init_dnn_model_file = None): # DNN model with which we initialize new
DNN

Once the duration model is trained, the next step is to train the acoustic model.

./04_train_acoustic_model.sh conf/acoustic_voice_name.conf

Training the neural network for the acoustic model is identical to training the duration

model. Nevertheless, since the acoustic configuration file is used, the neural network will comply

with the configuration of the acoustic model. Also, in this case, the model will be trained in

run_merlin.py and the function train_DNN to be exact. The Merlin script will be plugged into

another script and will thus be run on the CPU or GPU.

./05_run_merlin.sh conf/test_dur_synth_voice_name.conf
conf/test_synth_voice_name.conf

The final step is the synthesis. This step can be divided into two steps. First, there will be a

synthesis for the durations and second the acoustic synthesis.

Now that the different steps have been mastered, it is possible to research the different

configurations to improve the synthesis's efficiency. One of the first steps to get a better result is to

enlarge the size of the dataset. The demo dataset contains only 60 samples, while the full dataset

contains about 1132 samples. This adjustment is accomplished by downloading and implementing a

different dataset.

As a standard, the neural network consists of 6 TANH layers with a layer size of 1024, and

this is referred to as the DNN in this paper. The following change that will be implemented is

modifying the neural network. Instead of the six TANH layers, five TANH layers with 1024 layers

followed by an LSTM layer with 512 layers will be used, and this is referred to as the LSTM in this

paper. This modification is accomplished by modifying the configuration files for the duration,

acoustic, and synthesis models. It is essential to adjust the layout of the neural network and set the

sequential training parameter to true.

Now that we know how to modify the neural network and implement other pre-made

datasets into the model, it is possible to perform speech synthesis for different gender. Therefore,

 31

we will use a male speaker, namely the dataset of US English by Indian English male (ksp) from the

CMU Arctic database.

5.3.2 Build your own voice

Since Merlin's example script, slt arctic uses the pre-made datasets. The correct labels and

features in these datasets are already generated. Therefore the ksp dataset cannot be executed in slt

arctic. Therefore, another script must be used to generate the features and labels. Within Merlin, an

example script is provided for this purpose, namely 'build your own voice'.

This script contains the same steps as the script discussed above.

./01_setup.sh voice_name
./04_prepare_conf_files.sh conf/global_settings.cfg
./05_train_duration_model.sh conf/duration_voice_name.conf
./06_train_acoustic_model.sh conf/acoustic_voice_name.conf
./07_run_merlin.sh conf/test_dur_synth_voice_name.conf
conf/test_synth_voice_name.conf

However, there are some steps missing that have not yet been explained. Namely, two steps

are missing: the step to generate the linguistic features and the step to generate the acoustic features.

./02_prepare_labels.sh database/wav database/txt.data database/labels

This step will generate the linguistic features. Depending on the two inputs, the waveforms

and the text file, the labels will be determined. State align labels or phone align labels will be

generated depending on the global configuration.

./03_prepare_acoustic_features.sh database/wav database/feats

In this step, the acoustic features will be generated. What kind of features these depend on

the vocoder set in the global configuration file.

Changing the neural network on which the model is trained can be changed in the same way

as the 'slt arctic' script. In other words, the LSTM layout can be applied to the ksp dataset.

5.3.3 Vocoders

Now that it is possible to use different neural network configurations and other datasets,

changing the vocoder will be the next step. Since the world vocoder is already implemented in the

 32

Merlin toolkit, also the continuous vocoder is already implemented in a modified Merlin toolkit

[79].

5.3.3.1 Ahocoder

Before the ahocoder is implemented in the Merlin toolkit, the coder and decoder for the

ahocoder will be looked at individually.

 ahocoder16 filein filef0 filecc [filefv] [params]

The coder ensures that the waveform is converted to the following features: fundamental

frequency, mel-cepstral coefficients and maximum voiced frequency. In addition, it is possible to

change parameters that affect the generated features. The parameters are shown below with their

standard values.

--LFRAME=80 Frame shift (samples)
--CCORD=39 Order of the cepstral representation
--CCMETH=0 Method for cepstral coeff. extraction in voiced frames:
 0 = harmonic analysis + interpolation + mcep analysis
 1 = harmonic analysis + mel regularized discrete cepstrum
 2 = efficient (slightly less accurate) method
--F0MIN=60 Lowest detectable pitch (Hz)
--F0MAX=500 Highest detectable pitch (Hz)
--F0LOAD=0 Using external pitch detector?
 0 = use the default pitch analysis method (based on
 autocorrelation plus dynamic programming)
 1 = load pitch file if it already exists. Otherwise, use
 the default pitch analysis method.

In order to use the vocoder in the Merlin toolkit, it is important that the size of the features

the acohoder outputs match with the features that are used in Merlin. Therefore, the coder

parameters for determining the highest detectable pitch (F0MAX) and the order of cepstral

representation (CCORD) were changed from their default values. Thus, the F0MAX was changed

from a default value of 500 to 350, and the CCORD from a default value of 39 to 59.

ahodecoder16 filef0 filecc [filefv] fileout [params]

The decoder converts the fundamental frequency, the cepstral coefficients, and the

maximum voiced frequency optionally to a waveform. There are also optional parameters for the

decoder.

First, a tool or script will need to be written to ensure that all acoustic features are generated.

This script is written in Python, which is the standard for the Merlin toolkit.

 33

def get_features(wav_path, basefilename):
 in_wav = wav_path + basefilename + '.wav'
 in_lf0i = lf0_path + basefilename + '.lf0'
 in_mgci = mgc_path + basefilename + '.mgc'
 in_mvfi = mvf_path + basefilename + '.mvf'

 # Get Features
 os.system('./ahocoder_64/ahocoder16_64 ' + in_wav + ' ' + in_lf0i + ' ' + in_mgci
+ ' ' + in_mvfi + ' --CCORD=59 --CCMETH=1 --F0MIN=60 --F0MAX=350')

 return 0

The code above is part of the code used to generate the acoustic features. For each

waveform in a directory, the get_features function is executed. Since the source code of the

ahocoder is not available, it is only possible to call the ahocoder script through the system and thus

execute it.

The same principle as above is used in the speech synthesis of the ahocoder. Before the

speech synthesis is performed, the three features are determined based on the linguistic features and

the trained neural network. The same principle as above is used in the speech synthesis of the

ahocoder. Before the speech synthesis is performed, the three features are determined based on the

linguistic features and the trained neural network. Since these features are all in the same directory,

it is essential to make sure that the three features that belong together are found and then perform

speech synthesis on these features.

for lf0_file in os.listdir(gen_path):
 if '.lf0' in lf0_file:
 basefilename = lf0_file[:-4]
 wav_file = basefilename + '.wav'
 for mgc_file in os.listdir(gen_path):
 if '.mgc' in mgc_file and basefilename == mgc_file[:-4]:
 for mvf_file in os.listdir(gen_path):
 if '.mvf' in mvf_file and basefilename == mvf_file[:-4]:
 print(lf0_file, mgc_file, mvf_file)

 os.system('./ahocoder_64/ahodecoder16_64 ' + gen_path +
lf0_file + ' ' + gen_path + mgc_file + ' ' + gen_path + mvf_file + ' ' + gen_path +
wav_file)

Apart from the analysis scripts and synthesis scripts, adjusting Merlin's configuration file is

crucial. The world vocoder uses bap, lf0 and mgc features. In contrast, the ahocoder uses lf0, mgc

and mvf features, and this mvf feature is not implemented by default in the configuration.

 34

def wavgen_ahocoder(gen_dir):
 import os
 cur_dir = os.getcwd()
 os.chdir("../../../misc/scripts/vocoder/ahocoder/")
 command = 'python3 aho_speech_synthesis.py ' + gen_dir + '/'
 os.system(command)
 os.chdir(cur_dir)

 return 0

In addition, a section of code had to be added to the generate.py file in the utils directory.

Here, the directory where the acoustic features are generated is passed along to the speech synthesis

of the ahocoder, where the features are converted to a waveform as described earlier.

 35

6 Model evaluation methods

In order to evaluate the TTS models, five metrics [80] are used. The smaller the MCD, BAP,

RMSE and VUV, the better, and the higher the correlation, the better.

In addition, the spectrogram of the generated waveforms will also be examined.

6.1 Objective model evaluation methods

6.1.1 MCD

Mel cepstral distortion (MCD) measures how different two MCDs are [81]. The MCD

between synthesized and natural mel cepstral sequences is used to assess the quality of parametric

speech synthesis systems, including statistical parametric speech synthesis systems. The idea is that

the smaller the MCD between synthesized and natural mel cepstral sequences, the closer synthetic

speech is to reproducing natural speech [82]. It is not a perfect statistic for evaluating the quality of

synthetic speech, but it is frequently used in conjunction with other indicators.

6.1.2 BAP

BAP stands for band aperiodicity of speech signals, where “aperiodicity” is defined as the

power ratio between the speech signal and the aperiodic component of the signal [83]. Since this

power ratio depends on the frequency band, the aperiodicity should be given for several frequency

bands.

6.1.3 RMSE

The root mean square error (RMSE) is a common statistical tool for evaluating model

performance. The RMSE measures the distance between the predicted and the expected output of a

model and is the square root of the mean of the square of all of the error.

6.1.4 Correlation

A correlation coefficient indicates the strength and direction of a relationship between

variables. It is a measure of linear correlation between two sets of data. It is the ratio between the

covariance of two variables and the product of their standard deviations.

 36

6.1.5 VUV

The voiced/unvoiced (VUV) analysis metric estimates a cut-off frequency for the voiced and

unvoiced part of a signal, in analogy with the production model of vocal sounds [84]. The

estimation is based on going through each natural and synthesis waveform frame. When the natural

waveform voiced and the synthesis waveform is unvoiced, it will count as an error. So this means

that the smaller the VUV is, the more accurate the obtained result is.

6.1.6 Spectrogram

The sound spectrograph is a wave analyzer which produces a permanent visual record

showing the distribution of energy in both frequency and time [85].

In order to plot spectrograms, Parselmouth is used [86]. Parselmouth is a Python library for

the Praat software [87].

6.2 Subjective model evaluation methods

6.2.1 Speakers testing

A web-based MUSHRA (MUlti-Stimulus test with Hidden Reference and Anchor) listening

test is used to determine which vocoder is closest to natural speech [88]. The listeners were asked to

score the naturalness of each stimulus in comparison to the reference, which was a natural voice, on

a scale of 0 to 100, where 0 is highly unnatural, and 100 is highly natural. For each participant, the

utterances were given in a different order.

The online listening test was performed by a total of 7 participants, all of whom were men,

between the ages of 21 and 25 (mean age: 22 years). They were primarily from an engineering

background, and only one of them spoke English natively, and none of them had any hearing

problems. The exam took an average of 11 minutes to complete. The listening test samples can be

found online [89].

 37

7 Evaluation

This section will describe the evaluation of the different models made. A distinction will be

made between the objective and the subjective evaluation.

7.1.1 Effect of training data size

We first examine the effect of the amount of training data used in the model. Two DNN-

based TTS systems with vocoder are trained, where one uses the demo dataset, and the other uses

the full dataset. The demo dataset contains about 60 waveforms that can be used to train where the

divide between train, validation and test set is 50, 10 and 10. In comparison, the full dataset

contains 1132 waveforms divided into 1000, 66, and 66.

Table 7.1 shows that a significant improvement in synthesized speech quality is achieved by

using a larger dataset.

Table 7.1: Comparison of MCD, BAP, RMSE, correlation and VUV of the WORLD vocoder with slt dataset

between the demo and full dataset

Dataset MCD (dB) BAP (dB) RMSE (Hz) CORR VUV (%)

Demo 6,586 0,259 15,309 0,701 8,821

Full 5,234 0,167 20,353 0,603 6,575

Figure 7.1 also shows this improvement in speech quality. For example, it can be seen that

the audio with the demo dataset is more faded than with the full dataset. This loss of quality can

also be seen in Table 7.1 since the VUV is higher in the demo dataset than in the full dataset.

 38

(a) Demo dataset

(b) Full dataset

Figure 7.1: Spectrograms of the slt voice and world vocoder with the sentence Anyway, no one saw her like that’

with different datasets

7.1.2 Effect of hidden layers in neural network

For the duration and acoustic models in previous experiments, 6-layer DNN was used. The

next experiment will be conducted to research the effect of DNN architecture on the quality of the

TTS system. It should be noted that the full dataset will be used from now on.

Table 7.2 shows that the results of the TTS systems with different DNN architectures differ

negligibly, meaning that using more than six layers is not worth the extra computational time. This

result corresponds to the result obtained in [68] , where it has been observed that the quality does

not much improve after more than four hidden layers.

Table 7.2: Comparison of MCD, RMSE, correlation and VUV of the continuous vocoder with slt dataset between

the amount of hidden layers in the neural network

Amount of hidden layers MCD (dB) RMSE (Hz) CORR VUV (%)

6 4,912 12,539 0,747 24,109

7 4,881 12,481 0,750 24,109

9 4,834 12,606 0,745 24,109

As seen in Figure 7.2, the spectrograms confirm this result since the spectrograms are

practically identical.

 39

(a) 6 hidden layers

(b) 7 hidden layers

(c) 9 hidden layers

Figure 7.2: Spectrograms of the slt voice and continuous vocoder with the sentence ’At the best, they were

necessary accessories’ with different amounts of hidden layers in the neural network

7.1.3 Effect of different optimization algorithms

The effect of using different optimization algorithms is discussed in this section. The

optimization algorithms offered by the Merlin toolkit are the sgd, adam and rprop algorithms. In

Table 7.3, it can be concluded that the sgd algorithm provides the best speech quality on the dataset.

Table 7.3: Comparison of MCD, RMSE, correlation and VUV of the ahocoder with slt dataset between different

optimizers

Optimizer MCD (dB) RMSE (Hz) CORR VUV (%)

sgd 6,063 14,878 0,692 25,957

adam 11,512 20,641 0,174 25,957

rprop 8,052 16,473 0,601 25,957

 40

In addition, it is unmistakable that the adam algorithm works inadequately as seen in Table

7.3 and Figure 7.3. The synthesized speech is completely washed out in the spectrogram, and the

natural speech is impossible to recognize.

(a) sgd

(b) adam

(c) rprop

Figure 7.3: Spectrograms of the slt voice and ahocoder with the sentence ’At the best, they were necessary

accessories’ with different optimizers

7.1.4 Effect of different extractions of the cepstral coefficients on the ahocoder

Since the ahocoder offers several options for extracting the cepstral coefficients, this section

explores the effect of these different types of extraction. The difference between performing

harmonic analysis, then interpolation, then mcep analysis and performing harmonic analysis, then

mel regularized discrete cepstrum was examined. From both Table 7.4 and Figure 7.4, it can be

concluded that there is little to no difference between the two methods.

Table 7.4: Comparison of MCD, RMSE, correlation and VUV of the ahocoder with slt dataset between different

methods to extract the cepstral coefficients where method 1 is harmonic analysis then interpolation then mcep

analysis and method 2 is harmonic analysis then mel regularized discrete cepstrum

 41

Method MCD (dB) RMSE (Hz) CORR VUV (%)

1 6,063 14,878 0,692 25,957

2 6,104 14,916 0,692 25,957

(c) Harmonic analysis then interpolation then mcep
analysis

(d) Harmonic analysis then mel regularized discrete
cepstrum

Figure 7.4: Spectrograms of the slt voice and ahocoder with the sentence ’At the best, they were necessary

accessories’ with different extractions of the cepstral coefficients

7.1.5 Effect of different vocoders

The current model obtained from previous experiments will be discussed before discussing

the effect of the three different vocoders. The current model includes using the full dataset, a neural

network with six hidden layers, and the sgd optimization algorithm. In addition, beyond changing

the vocoders, the focus will also be on investigating the type of neural network; for example, a

DNN and LSTM will be used. The effect of changing the vocoder and the type of neural network

will be examined on both the slt and ksp datasets.

Table 7.5 and Table 7.6 shows that based on the MCD, LSTM performs poorly on both

datasets. The model used for the ahocoder underperforms compared to the world and continuous

vocoder. Nevertheless, it can be shown in Figure 7.7 and Figure 7.11 that the ahocoder will still be

recognizable. When Table 7.5 and Table 7.6 are compared it is noticable that all vocoders perform

better on the slt dataset. The most significant difference is the continuous vocoder, which performs

about the same on the ksp dataset as the world vocoder. However, the continuous vocoder performs

better on the slt dataset than the world vocodor.

Table 7.5: Comparison of MCD, RMSE, correlation and VUV between the different vocoders and models of the

ksp dataset where the shows bold font shows the best performance

 42

Vocoder WORLD Continuous Ahocoder

Model DNN LSTM DNN LSTM DNN LSTM

MCD (dB) 5,234 7,28 5,271 7,352 6,199 8,303

RMSE (Hz) 20,353 23,831 19,834 23,628 14,878 19,425

CORR 0,603 0,48 0,635 0,459 0,686 0,503

VUV (%) 6,575 15,044 31,861 31,861 30,035 30,035

Table 7.6: Comparison of MCD, RMSE, correlation and VUV between the different vocoders and models of the

slt dataset where the shows bold font shows the best performance

Vocoder WORLD Continuous Ahocoder

Model DNN LSTM DNN LSTM DNN LSTM

MCD (dB) 4,923 7,116 4,192 7,144 6,063 8,451

RMSE (Hz) 17,668 15,361 12,539 15,768 14,878 17,923

CORR 0,648 0,637 0,747 0,627 0,692 0,559

VUV (%) 4,345 11,625 24,109 24,109 25,957 25,957

In the spectrograms, it can be concluded that the synthesis speech is more faded than the

natural speech, where the WORLD vocoder is the most closely resembling the original, then the

continuous vocoder and then the ahocoder.

(a) DNN

(b) LSTM

Figure 7.5: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ with

WORLD vocoder

 43

(a) DNN

(b) LSTM

Figure 7.6: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ with

continuous vocoder

(a) DNN

(b) LSTM

Figure 7.7: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ with

ahocoder

Figure 7.8: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ of the

natural voice

 44

(a) DNN

(b) LSTM

Figure 7.9: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ with

WORLD vocoder

(a) DNN

(b) LSTM

Figure 7.10: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ with

continuous vocoder

(a) DNN

(b) LSTM

Figure 7.11: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ with

ahocoder

 45

Figure 7.12: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ of the

natural voice

7.2 Subjective evaluation

Figure 7.13 distinguishes the evaluation of the male and female speakers and the

combination of both speakers. According to the listeners, the WORLD vocoder is the most natural

of the models made. However, the scores of the continuous vocoder and ahocoder are not far from

the performance of the WORLD vocoder. However, it is clear that when the models use an LSTM

neural network, the result is unnatural, meaning that by using LSTM, the quality is significantly

reduced. It can also be seen that the vocoders perform better on a female dataset.

The ahocoder, has an average mean naturalness of 62, meaning the use of the ahocoder can

generate an intelligible sound.

 46

(a) Male speaker

(b) Female speaker

(c) Overall

Figure 7.13: Results of the subjective evaluation for the naturalness question. Higher value means larger

naturalness. Error bars show the boot-strapped 95% confidence intervals.

7.3 Summary

According to the objective evaluations, the WORLD and continuous vocoder perform

roughly evenly when comparing their MCDs. The ahocoder has an MCD of 6.063, which suggests

it is less accurate but still understandable. With an MCD of 4.192, the continuous vocoder performs

best on the slt dataset. According to the subjective ratings, the WORLD vocoder produces the best

results, with a subjective rating of 74. In comparison, the implemented ahocoder has a rating of 62,

indicating that listeners find the synthesized speech to be natural enough.

 47

8 Conclusion

The paper discusses the research of the deep learning approach based on neural networks

and investigates an efficient architecture to improve the TTS synthesis. The main idea was to look

at new and old ways to generate a more efficient model. For example, the study looked at the

number of layers in a neural network and the type of neural network. In addition, three vocoders

were examined, the WORLD vocoder, the continuous vocoder and the ahocoder. Objective and

subjective evaluations allowed the different models to be compared.

The best-created model includes using the full dataset, a neural network with six hidden

layers, and the sgd optimization algorithm. It can be concluded from the objective evaluations that

the WORLD and continuous vocoder perform almost equally when comparing their MCDs. The

MCD of the ahocoder is slightly outside this range, but not far enough to say that it is a inaccurate

model. From the subjective evaluations, it can be concluded that the WORLD vocoder gives the

best results, with a subjective rating of 74. The implemented ahocoder has a rating of 62, meaning it

is natural enough synthesized speech according to the listeners. From this, it can be concluded that

the ahocoder is correctly integrated into the Merlin toolkit.

8.1 Future work

It is necessary for future work to further investigate the neural network architecture for the

ahocoder. For example, it would perhaps be possible to use other types of neural networks provided

by the Merlin toolkit, such as BLSTM or GRU, to improve speech quality.

In addition, the following paper [46] shows that the use of LSTM and adam optimization

algorithm provided a good result, unlike the results obtained in this paper. As a result, it would be

good to re-examine LSTM and adam.

 48

9 Acknowledgement

Without the help of numerous people, this thesis would not have been possible. Many thanks

to Massimo Morello, who read through all of my modifications and helped me make sense of it all.

I want to thank my mom, dad and brother for motivating me to keep going and making sure I would

bring the thesis to a good end.

I would like to express my gratitude to my supervisor, Dr. Mohammed Salah Al-Radhi, for

helping me with this project and bringing the thesis to a successful end. Without him, this would not

have been possible. I learned a lot while working on the thesis thanks to him. In addition, I would

also like to thank Dr Tamás Gábor Csapó for giving me the information I needed when I asked for

it. Thanks to the Budapest University of Technology and Economics for offering me the possibility

to have an Erasmus.

Finally, I want to express my gratitude to numerous friends who have supported me

throughout this long process.

 49

References

[1] “What Is Machine Learning and Why Is It Important?”

https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML (accessed

May 22, 2022).

[2] M. Chiesa, G. Maioli, G. I. Colombo, and L. Piacentini, “GARS: Genetic Algorithm for the

identification of a Robust Subset of features in high-dimensional datasets,” BMC

Bioinformatics, vol. 21, no. 1, Feb. 2020, doi: 10.1186/s12859-020-3400-6.

[3] “Wat is machine learning?” https://www.oracle.com/nl/data-science/machine-learning/what-

is-machine-learning/ (accessed May 22, 2022).

[4] “Supervised vs. Unsupervised Machine Learning.”

https://chisoftware.medium.com/supervised-vs-unsupervised-machine-learning-

7f26118d5ee6 (accessed May 22, 2022).

[5] “Types of Cost Function Machine Learning.”

https://www.analyticsvidhya.com/blog/2021/02/cost-function-is-no-rocket-science/ (accessed

May 28, 2022).

[6] “Gradient Descent Algorithm.” https://towardsdatascience.com/gradient-descent-algorithm-

a-deep-dive-cf04e8115f21 (accessed May 28, 2022).

[7] “Gradient Descent.” https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

(accessed May 28, 2022).

[8] “What are gradient descent and stochastic gradient descent?”

https://sebastianraschka.com/faq/docs/gradient-optimization.html (accessed May 28, 2022).

[9] N. Ketkar, “Stochastic Gradient Descent,” Deep Learning with Python, pp. 113–132, 2017,

doi: 10.1007/978-1-4842-2766-4_8.

[10] “Stochastic Gradient Descent (SGD).” https://www.geeksforgeeks.org/ml-stochastic-

gradient-descent-sgd/ (accessed May 28, 2022).

[11] K. A. Carpenter, D. S. Cohen, J. T. Jarrell, and X. Huang, “Deep learning and virtual drug

screening,” Future Medicinal Chemistry, vol. 10, no. 21, pp. 2557–2567, Nov. 2018, doi:

10.4155/FMC-2018-0314.

 50

[12] D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR STOCHASTIC

OPTIMIZATION”.

[13] “Code Adam Optimization Algorithm From Scratch.”

https://machinelearningmastery.com/adam-optimization-from-scratch/ (accessed May 28,

2022).

[14] X. Chen, B. Karimi, W. Zhao, and P. Li, “On the Convergence of Decentralized Adaptive

Gradient Methods”.

[15] “What is Adaptive Moment Estimation (ADAM).”

https://blog.marketmuse.com/glossary/adaptive-moment-estimation-adam-definition/

(accessed May 28, 2022).

[16] M. Riedmiller and H. Braun, “RPROP - A Fast Adaptive Learning Algorithm,” 1992.

[17] M. Riedmiller and H. Braun, “Direct adaptive method for faster backpropagation learning:

The RPROP algorithm,” in 1993 IEEE International Conference on Neural Networks, 1993,

pp. 586–591. doi: 10.1109/icnn.1993.298623.

[18] “RProp.” https://florian.github.io/rprop/#citation-1 (accessed May 28, 2022).

[19] B. D. Ripley, Pattern recognition and neural networks. Cambridge university press, 2007.

[20] “What is the Difference Between Test and Validation Datasets?”

https://machinelearningmastery.com/difference-test-validation-datasets/ (accessed May 28,

2022).

[21] G. James, D. Witten, T. Hastie, and R. Tibshirani, “An Introduction to Statistical Learning

with Applications in R Second Edition,” 2021.

[22] M. Claesen and B. de Moor, “Hyperparameter Search in Machine Learning,” 2015,

Accessed: May 28, 2022. [Online]. Available: https://www.codalab.org/competitions/2321.

[23] R. Kohavi and D. H. Wolpert, “Bias Plus Variance Decomposition for Zero-One Loss

Functions,” 1996.

[24] “What Is the Difference Between Bias and Variance?”

https://www.mastersindatascience.org/learning/difference-between-bias-and-variance/

(accessed May 28, 2022).

[25] L. Freda, “Bias and variance tradeoff.” http://www.luigifreda.com/2017/03/22/bias-variance-

tradeoff/ (accessed May 28, 2022).

 51

[26] “Wat is deep learning? De betekenis uitgelegd.”

https://www.sdim.nl/helpcentrum/begrippenlijst/deep-learning/ (accessed May 22, 2022).

[27] A. Rysbekova, T. Gábor, and C. Budapest, “Comparison Of UTI-EMA-MRI-LIP video and

its application for Deep Learning-based Articulation-To-Speech Synthesis.”

[28] N. Kriegeskorte and T. Golan, “Neural network models and deep learning,” Current Biology,

vol. 29, no. 7, pp. R231–R236, Apr. 2019, doi: 10.1016/J.CUB.2019.02.034.

[29] J. Adcock et al., “Advances in quantum machine learning,” Dec. 2015, Accessed: May 23,

2022. [Online]. Available: http://arxiv.org/abs/1512.02900

[30] “Introduction to Activation Function for Deep Learning.”

https://www.analyticsvidhya.com/blog/2021/04/neural-networks-and-activation-function/

(accessed May 23, 2022).

[31] S. Sharma, S. Sharma, and A. Athaiya, “ACTIVATION FUNCTIONS IN NEURAL

NETWORKS,” 2020. [Online]. Available: http://www.ijeast.com

[32] P. Sibi, S. A. Jones, and P. Siddarth, “ANALYSIS OF DIFFERENT ACTIVATION

FUNCTIONS USING BACK PROPAGATION NEURAL NETWORKS,” J Theor Appl Inf

Technol, vol. 31, no. 3, 2013, [Online]. Available: www.jatit.org

[33] “Deep Learning: Feedforward Neural Network.” https://towardsdatascience.com/deep-

learning-feedforward-neural-network-26a6705dbdc7 (accessed May 23, 2022).

[34] A. Zeil, R. O. Verlag, and M. Wien, “Simulation neuronaler Netze.”

[35] J. P. Davim, Machining of hard materials. Springer London, 2011. doi: 10.1007/978-1-

84996-450-0.

[36] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol.

61, pp. 85–117, Jan. 2015, doi: 10.1016/J.NEUNET.2014.09.003.

[37] “What are Neural Networks? | IBM.” https://www.ibm.com/cloud/learn/neural-networks

(accessed May 23, 2022).

[38] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 2015 521:7553, vol. 521, no.

7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

[39] “Recurrent Neural Network (RNN) Tutorial.” https://www.simplilearn.com/tutorials/deep-

learning-tutorial/rnn#what_is_a_recurrent_neural_network_rnn (accessed May 23, 2022).

 52

[40] M. V. MISHRA, SMT. M. AGARWAL, and N. PURI, “COMPREHENSIVE AND

COMPARATIVE ANALYSIS OF NEURAL NETWORK,” INTERNATIONAL JOURNAL

OF COMPUTER APPLICATION, vol. 2, no. 8, 2018, doi: 10.26808/RS.CA.I8V2.15.

[41] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9,

no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/NECO.1997.9.8.1735.

[42] J. Hochreiter, “DIPLOMARBEIT IM FACH INFORMATIK Untersuchungen zu

dynamischen neuronalen Netzen,” 1991.

[43] “Understanding LSTM Networks.” https://colah.github.io/posts/2015-08-Understanding-

LSTMs/ (accessed May 23, 2022).

[44] “This is now the official location of the Merlin project.” https://github.com/CSTR-

Edinburgh/merlin (accessed May 27, 2022).

[45] Z. Wu, O. Watts, and S. King, “Merlin: An Open Source Neural Network Speech Synthesis

System,” Sep. 2016, pp. 202–207. doi: 10.21437/ssw.2016-33.

[46] J. Hong and C. Kwon, “Performance comparison of various deep neural network

architectures using Merlin toolkit for a Korean TTS system,” Phonetics and Speech Sciences,

vol. 11, no. 2, pp. 57–64, Jun. 2019, doi: 10.13064/KSSS.2019.11.2.057.

[47] “Merlin.” https://www.cstr.ed.ac.uk/projects/merlin/ (accessed May 23, 2022).

[48] M. Morise, “Implementation of sequential real-time waveform generator for high-quality

vocoder; Implementation of sequential real-time waveform generator for high-quality

vocoder,” 2020. [Online]. Available: https://github.com/mmorise/World

[49] M. Morise, “D4C, a band-aperiodicity estimator for high-quality speech synthesis,” Speech

Communication, vol. 84, pp. 57–65, Nov. 2016, doi: 10.1016/J.SPECOM.2016.09.001.

[50] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A vocoder-based high-quality speech

synthesis system for real-time applications,” IEICE Transactions on Information and

Systems, vol. E99D, no. 7, pp. 1877–1884, Jul. 2016, doi:

10.1587/TRANSINF.2015EDP7457.

[51] M. Morise, H. Kawahara, and H. Katayose, “Fast and Reliable F0 Estimation Method Based

on the Period Extraction of Vocal Fold Vibration of Singing Voice and Speech,” Feb. 2009.

[Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=15165

 53

[52] M. Morise, H. Kawahara, and T. Nishiura, “Rapid F0 estimation for high-SNR speech based

on fundamental component extraction,” Trans. IEICEJ, vol. 93, pp. 109–117, 2010.

[53] M. Morise, “CheapTrick, a spectral envelope estimator for high-quality speech synthesis,”

Speech Communication, vol. 67, pp. 1–7, Mar. 2015, doi: 10.1016/J.SPECOM.2014.09.003.

[54] M. Morise, “Error Evaluation of an F0-Adaptive Spectral Envelope Estimator in Robustness

against the Additive Noise and F0 Error,” IEICE Transactions on Information and Systems,

vol. E98.D, no. 7, pp. 1405–1408, Jul. 2015, doi: 10.1587/TRANSINF.2015EDL8015.

[55] M. Morise, “PLATINUM: A method to extract excitation signals for voice synthesis

system,” Acoustical Science and Technology, vol. 33, no. 2, pp. 123–125, Mar. 2012, doi:

10.1250/AST.33.123.

[56] M. S. Al-Radhi, T. G. Csapó, and G. Németh, “Continuous noise masking based vocoder for

statistical parametric speech synthesis,” IEICE Transactions on Information and Systems,

vol. E103D, no. 5, pp. 1099–1107, May 2020, doi: 10.1587/transinf.2019EDP7167.

[57] P. N. Garner, M. Cernak, and P. Motlicek, “A simple continuous pitch estimation algorithm,”

IEEE Signal Processing Letters, vol. 20, no. 1, pp. 102–105, Jan. 2013, doi:

10.1109/LSP.2012.2231675.

[58] T. Drugman and Y. Stylianou, “Maximum voiced frequency estimation: Exploiting

amplitude and phase spectra,” IEEE Signal Processing Letters, vol. 21, no. 10, pp. 1230–

1234, 2014, doi: 10.1109/LSP.2014.2332186.

[59] M. S. Al-Radhi, T. G. Csapó, and G. Németh, “Deep Recurrent Neural Networks in Speech

Synthesis Using a Continuous Vocoder,” 2017, doi: 10.1007/978-3-319-66429-3_27.

[60] M. S. Al-Radhi and G. Németh, “Continuous vocoder in feed-forward deep neural network

based speech synthesis Signal processing View project Medical imaging for acoustic-to-

articulatory inversion View project,” 2017. [Online]. Available:

https://www.researchgate.net/publication/321527303

[61] M. S. Al-Radhi, T. G. Csapó, and G. Németh, “Time-Domain Envelope Modulating the

Noise Component of Excitation in a Continuous Residual-Based Vocoder for Statistical

Parametric Speech Synthesis,” in Proc. Interspeech 2017, 2017, pp. 434–438. doi:

10.21437/Interspeech.2017-678.

 54

[62] G. Degottex and D. Erro, “A uniform phase representation for the harmonic model in speech

synthesis applications,” Tijdschrift voor Urologie, vol. 2014, no. 1, pp. 1–16, Jan. 2014, doi:

10.1186/S13636-014-0038-1/FIGURES/8.

[63] G. Degottex, P. Lanchantin, and M. Gales, “A Log Domain Pulse Model for Parametric

Speech Synthesis,” IEEE/ACM Transactions on Audio Speech and Language Processing,

vol. 26, no. 1, pp. 57–70, Jan. 2018, doi: 10.1109/TASLP.2017.2761546.

[64] W. Yang and R. Yantorno, “Improvement of MBSD by scaling noise masking threshold and

correlation analysis with MOS difference instead of MOS,” ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2, pp. 673–676,

1999, doi: 10.1109/ICASSP.1999.759756.

[65] D. Erro, I. Sainz, E. Navas, and I. Hernaez, “Harmonics plus noise model based vocoder for

statistical parametric speech synthesis,” IEEE Journal of Selected Topics in Signal

Processing, vol. 8, no. 2, pp. 184–194, 2014.

[66] Y. Stylianou, “Harmonic plus noise models for speech, combined with statistical methods,

for speech and speaker modification,” Ph. D thesis, Ecole Nationale Superieure des

Telecommunications, 1996.

[67] I. Zangar, Z. Mnasri, V. Colotte, D. Jouvet, and A. Houidhek, “Duration modeling using

DNN for Arabic speech synthesis Duration modeling using DNN for Arabic speech synthesis

Duration modeling using DNN for Arabic speech synthesis,” 2018, Accessed: May 25, 2022.

[Online]. Available: https://hal.inria.fr/hal-01889917

[68] T. van Nguyen, B. Q. Nguyen, K. H. Phan, and H. van Do, “Development of Vietnamese

Speech Synthesis System using Deep Neural Networks,” Journal of Computer Science and

Cybernetics, vol. 34, no. 4, pp. 349--363, Jan. 2019, doi: 10.15625/1813-9663/34/4/13172.

[69] Tijana Delić, Milan Sečujski, and Siniša Suzić, “A Review of Serbian Parametric Speech

Synthesis Based on Deep Neural Networks,” Telfor Journal, vol. 9, 2017.

[70] S. Ronanki, O. Watts, and S. King, “A Hierarchical Encoder-Decoder Model for Statistical

Parametric Speech Synthesis,” 2017, doi: 10.21437/Interspeech.2017-628.

[71] M. Morise and Y. Watanabe, “Sound quality comparison among high-quality vocoders by

using re-synthesized speech,” Acoustical Science and Technology, vol. 39, no. 3, pp. 263–

265, 2018, doi: 10.1250/ast.39.263.

 55

[72] N. Adiga, V. Tsiaras, and Y. Stylianou, “ON the use of wavenet as a statistical vocoder,” in

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings, Sep. 2018, vol. 2018-April, pp. 5674–5678. doi:

10.1109/ICASSP.2018.8462393.

[73] C. Valentini-Botinhao, O. Watts, F. Espic, and S. King, “Examplar-Based Speechwaveform

Generation for Text-To-Speech,” 2018 IEEE Spoken Language Technology Workshop, SLT

2018 - Proceedings, pp. 332–338, Feb. 2019, doi: 10.1109/SLT.2018.8639679.

[74] J. Kominek and A. W. Black, “The CMU Arctic speech databases,” SSW5-2004, pp. 223–

224, 2004.

[75] “Google Colab.” https://research.google.com/colaboratory/faq.html (accessed May 19, 2022).

[76] “tmux Wiki.” https://github.com/tmux/tmux/wiki (accessed May 19, 2022).

[77] S. Ronanki, Z. Wu, O. Watts, and S. King, “A Demonstration of the Merlin Open Source

Neural Network Speech Synthesis System”, Accessed: May 20, 2022. [Online]. Available:

http://hdl.handle.net/10283/786.

[78] “Getting started with the Merlin Speech Synthesis Toolkit.”

http://jrmeyer.github.io/tts/2017/02/14/Installing-Merlin.html (accessed May 20, 2022).

[79] “Deep learning for Text-to-Speech with continuous speech analysis and synthesis system

based on Merlin.” https://github.com/malradhi/merlin (accessed May 21, 2022).

[80] H. Zen, A. Senior, and M. S. Google, “STATISTICAL PARAMETRIC SPEECH

SYNTHESIS USING DEEP NEURAL NETWORKS”.

[81] R. F. Kubichek, “Mel-Cepstral distance measure for objective speech quality assessment,”

IEEE Pac Rim Conf Commun Comput Signal Process, pp. 125–128, 1993, doi:

10.1109/PACRIM.1993.407206.

[82] “Mel cepstral distortion (MCD) computations in python.”

https://github.com/MattShannon/mcd (accessed May 22, 2022).

[83] M. Morise, “D4C, a band-aperiodicity estimator for high-quality speech synthesis,” Speech

Communication, vol. 84, pp. 57–65, Nov. 2016, doi: 10.1016/J.SPECOM.2016.09.001.

[84] P. Dai, S. Tamá Gá bor Csapó, and M. Salah Al-Radhi, “Investigation of F0 stimation

algorithms and their applications in Text-to-Speech and Ultrasound-to-Speech synthesis.”

 56

[85] W. Koenig, H. K. Dunn, and L. Y. Lacy, “The Sound Spectrograph,” J Acoust Soc Am, vol.

18, no. 1, p. 19, Jun. 2005, doi: 10.1121/1.1916342.

[86] Y. Jadoul, B. Thompson, and B. de Boer, “Introducing Parselmouth: A Python interface to

Praat,” Journal of Phonetics, vol. 71, pp. 1–15, Nov. 2018, doi:

10.1016/J.WOCN.2018.07.001.

[87] P. Boersma and D. Weenink, “Praat: doing phonetics by computer [Computer program].”

2021.

[88] I. Recommendation, “1534:‘Method for the subjective assessment of intermediate audio

quality.’” June, 2001.

[89] “Subjective listening test.” http://leszped.tmit.bme.hu/dr2022/ (accessed May 26, 2022).

 57

List of figures

Figure 2.1: Machine learning flowchart [2] ... 8

Figure 2.2: Supervised machine learning [4] ... 9

Figure 2.3: Unsupervised machine learning [4] ... 10

Figure 2.4: Visualisation of gradient descent [8] ... 10

Figure 2.5: Stochastic gradient descent compared with gradient descent [11] 11

Figure 2.6: The gradient direction changes when jumping over optima [18] 12

Figure 2.7: Bias and variance tradeoff [25] ... 13

Figure 2.8: An example of a deep learning neural network with 3 hidden layers. Each layer

is specified as a vector of binary components, with the edges between the vectors defined as a

matrix of weight values. [29] ... 14

Figure 2.9: One single node with activation function [30] .. 14

Figure 2.10: Plot of the sigmoid function .. 15

Figure 2.11: Plot of tanh function .. 16

Figure 2.12: Sample of a feed-forward neural network [35] ... 16

Figure 2.13: Recurrent neural network (RNN) [40] .. 17

Figure 2.14: The repeating module in an LSTM contains four interacting layers [43] 17

Figure 2.15: Overview of the used model in Merlin .. 18

Figure 2.16: Simplified world vocoder workflow ... 19

Figure 2.17: Example of features extracted by the WORLD vocoder 20

Figure 2.18: Simplified continuous vocoder workflow ... 20

Figure 2.19: Schematic diagram of the developed continuous vocoder. Additions and refines

are marked with dashed lines. [56] .. 21

Figure 2.20: Example of features extracted by the continuous vocoder 22

Figure 2.21: Simplified ahocoder vocoder workflow .. 23

Figure 2.22: Example of features extracted by the ahocoder ... 24

Figure 7.1: Spectrograms of the slt voice and world vocoder with the sentence Anyway, no

one saw her like that’ with different datasets ... 38

Figure 7.2: Spectrograms of the slt voice and continuous vocoder with the sentence ’At the

best, they were necessary accessories’ with different amounts of hidden layers in the neural network

 .. 39

 58

Figure 7.3: Spectrograms of the slt voice and ahocoder with the sentence ’At the best, they

were necessary accessories’ with different optimizers .. 40

Figure 7.4: Spectrograms of the slt voice and ahocoder with the sentence ’At the best, they

were necessary accessories’ with different extractions of the cepstral coefficients 41

Figure 7.5: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary

accessories’ with WORLD vocoder ... 42

Figure 7.6: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary

accessories’ with continuous vocoder .. 43

Figure 7.7: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary

accessories’ with ahocoder... 43

Figure 7.8: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary

accessories’ of the natural voice .. 43

Figure 7.9: Spectrogram of the slt voice with the sentence ’At the best, they were necessary

accessories’ with WORLD vocoder ... 44

Figure 7.10: Spectrogram of the slt voice with the sentence ’At the best, they were necessary

accessories’ with continuous vocoder .. 44

Figure 7.11: Spectrogram of the slt voice with the sentence ’At the best, they were necessary

accessories’ with ahocoder... 44

Figure 7.12: Spectrogram of the slt voice with the sentence ’At the best, they were necessary

accessories’ of the natural voice .. 45

Figure 7.13: Results of the subjective evaluation for the naturalness question. Higher value

means larger naturalness. Error bars show the boot-strapped 95% confidence intervals. 46

 59

List of tables

Table 7.1: Comparison of MCD, BAP, RMSE, correlation and VUV of the WORLD

vocoder with slt dataset between the demo and full dataset .. 37

Table 7.2: Comparison of MCD, RMSE, correlation and VUV of the continuous vocoder

with slt dataset between the amount of hidden layers in the neural network 38

Table 7.3: Comparison of MCD, RMSE, correlation and VUV of the ahocoder with slt

dataset between different optimizers .. 39

Table 7.4: Comparison of MCD, RMSE, correlation and VUV of the ahocoder with slt

dataset between different methods to extract the cepstral coefficients where method 1 is harmonic

analysis then interpolation then mcep analysis and method 2 is harmonic analysis then mel

regularized discrete cepstrum ... 40

Table 7.5: Comparison of MCD, RMSE, correlation and VUV between the different

vocoders and models of the ksp dataset where the shows bold font shows the best performance 41

Table 7.6: Comparison of MCD, RMSE, correlation and VUV between the different

vocoders and models of the slt dataset where the shows bold font shows the best performance 42

 60

Abbreviations

TTS Text-to-Speech

ML Machine learning

AI Artificial Intelligence

MLP Multilayer perceptron

FNN Feed forward neural network

RNN Recurrent neural network

LSTM Long short-term memory

F0 Fundamental frequency

RTF Real-time factor

MVF Maximum voiced frequency

MGC Mel-Generalized Cepstral analysis

bNM Binary noise masking

PDD Phase distortion deviation

cNM Continuous noise masking

HNM Harmonics-plus-noise model

MCD Mel cepstral distortion

BAP Band aperiodicity

RMSE Root mean square error

VUV Voiced/unvoiced

sgd Stochastic gradient descent

adam Adaptive Movement Estimation algorithm

rprop resilient backpropagation

