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Abstract 

Text-to-speech (TTS) is a computer-based technology that allows text to be read aloud, 

sounding like a human voice. Based on textual input, TTS synthesis generates a speech waveform. 

This study aims to explore the deep learning approach based on neural networks and investigate an 

efficient architecture to improve TTS synthesis. First, the current architecture of speech synthesis 

used in the Merlin toolkit will be investigated. Several speech syntheses, taken from the 

CMU_ARCTIC speech synthesis databases, will be run on this architecture, and objective and 

subjective evaluations will be used to evaluate the performance. For example, this study will 

examine the world and continuous vocoder already integrated into the Merlin toolkit, and a new 

vocoder, the ahocoder, will be integrated into the toolkit and evaluated afterwards. After that, both 

the configuration of the neural network will be investigated, think of the different types of neural 

networks and the number of hidden layers. The different optimization algorithms offered in Merlin 

will be investigated. The best-made model includes using the full dataset, a neural network with six 

hidden layers, and the stochastic gradient descent optimization algorithm. According to the 

objective evaluations, it can be concluded that the WORLD and continuous vocoder perform almost 

equally when comparing their MCDs. The ahocoder performs with an MCD of 6.063, which means 

that it is less accurate but still intelligible. The continuous vocoder performs best on the slt dataset 

with an MCD of 4.192. From the subjective evaluations, it can be concluded that the WORLD 

vocoder gives the best results, with a subjective rating of 74. In comparison, the implemented 

ahocoder has a rating of 62, which means that it is natural enough synthesized speech according to 

the listeners. 
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Samenvatting 

Text-to-Speech (TTS) is een op de computer gebaseerde technologie die het mogelijk maakt 

tekst hardop voor te lezen, klinkend als een menselijke stem. Op basis van tekstuele input zorgt TTS 

synthese ervoor dat er een spraakgolfvorm gegenereerd wordt. Het doel van deze studie is het 

verkennen van de deep learning aanpak op basis van neurale netwerken en het onderzoeken van een 

efficiënte architectuur om de TTS synthese te verbeteren. Eerst zal de huidige architectuur van de 

spraaksynthese, gebruikt in de Merlin toolkit, onderzocht worden. Verschillende spraaksyntheses, 

afkomstig uit de CMU_ARCTIC spraaksynthese databanken, zullen op deze architectuur worden 

uitgevoerd, en de hand van een objectieve en subjectieve evaluatie zal de prestatie beoordeeld 

worden. Zo zal er in deze studie onderzoek worden gedaan naar de world en continuous vocoder die 

al geïntegreerd zijn in de Merlin toolkit en zal er een nieuwe vocoder, de ahocoder, geïntegreerd 

worden in de toolkit en zal deze achteraf geëvalueerd. Daarna zal zowel de configuratie van het 

neurale netwerk onderzocht worden, denk hierbij aan de verschillende type neurale netwerken en 

het aantal hidden layers, als de verschillende optimalisatie algoritmes aangeboden in Merlin 

onderzocht worden. Het best gemaakte model omvat het gebruik van de volledige dataset, een 

neuraal netwerk met zes hidden layers, en het stochastic gradient descent-optimalisatiealgoritme. 

Volgens de objectieve evaluaties kan worden geconcludeerd dat de WORLD en continuous vocoder 

vrijwel gelijk presteren bij de vergelijking van hun MCD's. Waarbij de ahocoder het slechts 

presteert met een MCD van 6.063, wat betekent dat het minder accuraat is maar wel nog 

verstaanbaar is. De continue vocoder presteert het beste op de slt dataset met een MCD van 4,192. 

Uit de subjectieve evaluaties kan worden geconcludeerd dat de WORLD vocoder het beste resultaat 

geeft, met een subjectieve waardering van 74. Terwijl de geïmplementeerde ahocoder een 

waardering van 62 heeft, wat betekent dat het een natuurlijk genoeg gesynthetiseerde spraak is 

volgens de luisteraars. 
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1 Introduction 

Text-to-speech (TTS) is a computer-based technology that enables text to be read aloud, 

sounding like a human voice. TTS synthesis involves generating a speech waveform given textual 

input. TTS can be used for various things, including car navigation, train station announcements, 

telecoms response services, and e-mail reading. Nowadays, the goal of TTS is not to have machines 

talk but to make them sound like humans of different ages and gender. However, text-to-speech 

quality in conventional TTS systems is still far from natural-sounding. Deep learning is a new 

research direction in the machine learning area and has added a new perspective to the problem of 

speech synthesis.  

           The current thesis aims to explore the deep learning approach based on neural 

networks and investigate an efficient architecture to improve the TTS synthesis. First, the current 

architecture of the speech synthesis used in the Merlin toolkit will be examined. Several speech 

syntheses, taken from the CMU_ARCTIC speech synthesis databases, will be run on this 

architecture, and how they perform will be discussed. In addition, the efficiency of different 

vocoders will be explored. Three traditional vocoders will be researched, namely the world vocoder, 

the continuous vocoder and the ahocoder. Furthermore, the network architecture will be further 

investigated to see if the algorithm can be further optimized and if the number of hidden layers 

impacts the efficiency. 
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2 Fundamental theories 

2.1 Machine learning 

Machine learning (ML) is a type of artificial intelligence (AI) that aims to create systems 

that can learn from and improve processed data without being explicitly programmed [1]. Artificial 

intelligence is a broad phrase that refers to systems or technologies that are designed to emulate 

human intelligence. Even though machine learning and artificial intelligence are sometimes used 

interchangeably, they do not mean the same thing. One significant distinction is that, whereas 

machine learning is usually included in AI, AI is not necessarily included in machine learning. 

 
Figure 2.1: Machine learning flowchart [2]  

In total, there are four types of algorithms used in machine learning: supervised learning, 

unsupervised learning, semi-supervised learning and reinforcement learning. Roughly two of these 

types of algorithms are used for machine learning: supervised learning and unsupervised learning. 
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The difference between the two types is how data is processed to learn from it or make predictions 

with it [3]. 

2.1.1 Supervised machine learning 

A data scientist serves as a middleman in this model, instructing the algorithm on which 

conclusions to make. The algorithm is 'trained' in supervised learning using a pre-labelled dataset. It 

has a predefined outcome, similar to how a toddler learns about different types of fruit by having 

them pointed out in a picture book. 

 
Figure 2.2: Supervised machine learning [4] 

Algorithms for linear and logistic regression, multiclass classifiers, and support vector 

machines are examples of supervised machine learning. 

2.1.2 Unsupervised machine learning 

Unsupervised machine learning is a type of machine learning in which a computer learns to 

recognize complex processes and patterns without the assistance of a human. Unsupervised 

machine learning uses data without labels or a specified outcome. 

Unsupervised machine learning, to continue with the "learning child" analogy, is analogous 

to a kid learning to distinguish fruit by seeing colours and patterns rather than memorizing the 

names spoken by the supervisor. The kid compares photographs and categorizes them into groups, 

each with its own label.  
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Figure 2.3: Unsupervised machine learning [4] 

K-means clustering, main and independent component analysis, and association rules are 

some examples of unsupervised machine learning techniques. 

2.1.3 Cost function 

The cost function is used to express the algorithm's performance [5]. It will compare the 

predicted and actual outputs and calculate how accurate the model was in its prediction. If our 

predictions differ from the actual values, it returns a higher number. The cost function indicates 

how the model has improved as we adjust it to improve the predictions. The goal of all optimization 

strategies is to minimize the cost function. 

2.1.4 Gradient descent 

In order to attempt to minimize the cost function, gradient descent is used [6], [7]. The 

gradient descent optimization algorithm will attempt to minimize the cost function by moving in the 

steepest descent, defined by the negative of the gradient as seen in Figure 2.4. 

 
Figure 2.4: Visualisation of gradient descent [8] 
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2.1.4.1 Stochastic gradient descent 

The most commonly used algorithm for solving optimization problems is stochastic gradient 

descent, abbreviated SGD [9]. The term "stochastic" refers to a system or process associated with a 

random probability. Consequently, a few random samples are chosen for each iteration in stochastic 

gradient descent rather than the entire dataset [10]. SGD does each iteration with only one sample, 

i.e., a batch size of one, making it less computationally intensive. To perform the iteration, the 

sample is randomly shuffled and selected. Because SGD selects only one sample from the dataset at 

random for each iteration, as illustrated in Figure 2.5, the path the algorithm takes to reach the 

minima is noisier than that of a standard gradient descent method. 

 
Figure 2.5: Stochastic gradient descent compared with gradient descent [11] 

2.1.4.2 Adaptive movement estimation algorithm 

The adaptive movement estimation algorithm, or Adam [12] for short, is an extension of the 

gradient descent optimization algorithm [13]. By reducing the number of function evaluations 

required to reach the optimum or improving the capability of the optimization algorithm by 

obtaining a better final result, the optimization process by using Adam can be accelerated [13]. The 

use of momentum and adaptive learning rates makes it so that adam can converge faster [14]. 

Adam combines adaptive gradients and root mean square propagation, two stochastic 

gradient descent methods [15]. Using a randomly selected data subset, the optimization algorithm 

creates a stochastic approximation. 

2.1.4.3 Resilient backpropagation 

Resilient backpropagation, or rprop for short, is a first-order optimization algorithm [16], 

[17]. The gradients are computed, and the step sizes are updated for each dimension individually in 

each iteration. By comparing the sign of the current and previous iteration gradient, the step size can 
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be determined. When both iterations have the same sign, this is the right direction, and the step will 

continue in the same direction, and the step size will be increased. If the sign of the last two 

iterations is different, we have missed the optimum, and the step will have to change direction, and 

the step will be reduced in size so that the optimum is not missed again. The change of direction of 

the step and increasing or decreasing the step can be seen in Figure 2.6.  

 
Figure 2.6: The gradient direction changes when jumping over optima [18] 

2.1.5 Data set 

In order to create a efficient systems that can learn from and improve processed data, the 

input data used to build the model is split into multiple data sets: test, training, and cross-validation. 

2.1.5.1 Training set 

The training dataset is used to train the model, i.e., the neural network. That is, based on the 

training dataset, the parameters of the neural network are determined [19].  

2.1.5.2 Cross validation set 

While tuning the model's hyperparameters, the validation data set allows for an unbiased 

evaluation of a model fit on the training data set [20]. In other words, the training set is used to fit 

the model, which is then used to predict the outputs for the validation set observations [21]. Based 

on this cross-validation set, the best hyperparameters [22] for the model can be determined.  

Figure 2.7 shows an example of tuning the complexity of the neural network. Thus, it can be 

seen that with low complexity, high bias occurs. High bias can cause underfitting, which means that 

an algorithm can miss the relevant relations between features and target outputs [23]. However, as 

can be seen, too high a complexity is also not suitable because then high variance occurs. High 

variance can cause the data set on which the model is trained to be accurately represented, but when 
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this model is tested on an unknown data set, the output may be inaccurate [24]. This inaccuracy is 

due to overfitting. 

 
Figure 2.7: Bias and variance tradeoff [25] 

2.1.5.3 Test set 

The test data set is a portion of the input data that is used to provide an unbiased evaluation 

of a final model fit on the training data set [20]. 

2.2 Deep learning 

Machine learning has a subfield called deep learning where artificial neural networks are 

used [26]. Deep learning allows computers to learn new skills by analyzing large amounts of data. 

Due to its versatility and effective results, deep learning is being used in various domains, including 

text generation, machine translation, speech synthesis, picture identification, and others [27]. Deep 

learning is a catch-all term for several types of neural networks and related algorithms that 

frequently consume raw input data. 

2.2.1 Neural networks 

Deep learning focuses on machine learning approaches using several layers of neurons in 

deep neural networks. Neural networks, meaning extremely elaborate and interconnected networks 

of neurons, are designed the same way as the human brain, and these neural networks mimic the 

human brain's behavior. The human brain, a biological neural network, allows computer programs 

to detect patterns and solve typical artificial intelligence, machine learning, and deep learning 

challenges. 
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When neural networks with multiple layers of neurons are implemented, deep learning 

occurs. A deep learning algorithm is defined as a neural network with more than one hidden layer or 

three layers in total, including inputs and outputs layers [28]. 

 
Figure 2.8: An example of a deep learning neural network with 3 hidden layers. Each layer is specified as a 

vector of binary components, with the edges between the vectors defined as a matrix of weight values. [29] 

As seen in Figure 2.8, each neuron in a neural network assigns a weight to its input. The 

input is combined with weights that attenuate or amplify the input. The output of each layer is the 

input of the next layer. By combining weights with inputs, the network can rank and aggregate these 

inputs. Ultimately, the output is determined by the total of the weights. Neural networks are the 

backbone of deep learning algorithms [26]. 

Each node layer has an activation function that works on the previous layer's sum of inputs. 

The activation function determines whether or not the neuron is activated. It accomplishes this by 

applying a non-linear adjustment to the input, allowing the neural network to learn and perform 

more complex tasks [27]. 

 
Figure 2.9: One single node with activation function [30] 
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2.2.1.1 Sigmoid activation function 

A continuous space value can be converted to a binary value using the sigmoid function. Its 

non-linearity is its significant benefit over other steps and linear functions [31]. The function has an 

S form ranging from 0 to 1. 

S(𝑥) = 1 −
1

1 + 𝑒ି௫
(1.1) 

As seen in Figure 2.10, when an independent variable z approaches negative infinity, the 

function return tends to be zero, and when z approaches positive infinity, it tends to be one. 

 
Figure 2.10: Plot of the sigmoid function 

Some of its fundamental shortcomings are sharp damp gradients during backpropagation, 

gradient saturation, slow convergence, and non-zero centred output, allowing gradient updates to 

propagate in multiple directions [30]. 

2.2.1.2 TANH activation function 

The hyperbolic tangent activation function is referred to as the tanh function. The function 

takes any real value as input and returns a value between minus one and one since the tanh function 

is similar to the sigmoid activation function and has the same S-shape [32]. 

tanh(𝑥) =
𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
(1.2) 

As seen in Figure 2.11, the more positive the variable, the more the function will tend to 

return one, but the more negative the variable, the more the function will tend to return minus one. 
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Figure 2.11: Plot of tanh function 

2.2.2 Different types of neural networks 

2.2.2.1 Feedforward neural network 

The typical deep learning models are deep feedforward networks, also known as 

feedforward neural networks or multilayer perceptrons (MLPs) [33]. As seen in Figure 2.12, a 

feedforward neural network (FNN) is a type of artificial neural network in which nodes' 

connections do not form a cycle [34]. This means that the data always flows in one direction and 

never in the opposite direction. 

 
Figure 2.12: Sample of a feed-forward neural network [35] 

The feedforward neural network was the first and most straightforward artificial neural 

network to be developed [36]. 
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2.2.2.2 Recurrent neural network 

Recurrent neural networks (RNNs) are identified by their feedback loops [37]. RNNs are 

often preferable for tasks that need sequential inputs, such as speech and language [38]. In order to 

predict the output of the layer, RNN makes it possible to save the previous output of a particular 

layer and feed it back to the input [39]. Advanced varieties of recurrent neural networks can 

produce the best results when processing sequential input such as text, audio, music, or video. 

 
Figure 2.13: Recurrent neural network (RNN) [40] 

Long short-term memory (LSTM) was introduced to alleviate the vanishing gradient 

problem [41], and it has since become one of the most widely used RNN architectures. By using 

LSTM, the vanishing problem can be avoided. Since errors can propagate backwards over an 

infinite number of virtual layers spread out in space. LSTM may learn tasks requiring memory of 

events that occurred hundreds or even millions of discrete time steps ago [36]. Therefore, it 

prevents backpropagated errors from vanishing or exploding [42]. 

 
Figure 2.14: The repeating module in an LSTM contains four interacting layers [43] 
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2.3 Merlin  

The Merlin toolkit [44] used in this paper is an open-source system for speech synthesis 

published by the Speech Research Center of Edinburgh University [45]. Merlin includes the 

extraction of characteristic acoustic parameters required for the vocoder, acoustic modelling 

learning function through a neural network, and vocoder function for voice waveform generation 

[46]. Merlin, based on the theano library, is written in Python and includes source code 

documentation and recipes for various system configurations. The toolkit is free software, 

distributed under an Apache License Version 2.0, allowing unrestricted commercial and non-

commercial use alike [47]. 

As seen in Figure 2.15, the toolkit must be used in combination with a front-end text 

processor and a vocoder. Where the front-end makes sure the waveform is transformed into 

linguistic features and the vocoder makes sure the acoustic features are transformed into 

waveforms. 

 
Figure 2.15: Overview of the used model in Merlin 

2.3.1 Front-end 

An external front-end, such as Festival, is required in Merlin [45]. For the time being, the 

front-end output must be formatted as HTS-style labels with state-level alignment. The toolkit 

transforms such labels into vectors of binary and continuous features for neural network input. 

Using HTS-style questions, the characteristics are extracted from the label files. If the HTS-like 

approach is not convenient, it is also possible to offer already-vectorized input features directly. 
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2.3.2 Vocoder 

Vocoders analyze and synthesize human voice signals for audio data compression, 

multiplexing, voice encryption, and voice transformation. 

2.3.2.1 WORLD 

The WORLD vocoder is open-source speech analysis, modification, and synthesis software 

[48]–[50]. As seen in Figure 2.16, it can estimate the fundamental frequency (F0), aperiodicity, and 

spectral envelope and synthesize speech with only estimated parameters. Despite the development 

of various high-quality speech synthesis systems, real-time processing has proven difficult due to its 

high computational costs. This new speech synthesis technology has excellent sound quality, but it 

also processes information quickly [50]. The system's effectiveness was determined by comparing 

its output to natural speech, which included consonants. Its processing speed was also measured 

against that of traditional systems. The results showed that WORLD outperformed the other 

systems in terms of sound quality and processing speed. It was more than ten times faster than 

conventional systems, and the real-time factor (RTF) suggested that it could handle real-time 

processing. 

 
Figure 2.16: Simplified world vocoder workflow 

Three algorithms for determining three speech parameters are included in WORLD, and a 

synthesis algorithm that uses these parameters as input. First, DIO [51], [52] is used to estimate the 

f0 contour. Second, the spectral envelope is calculated using CheapTrick [53], [54], which 

considers both the waveform and the F0 data. Third, PLATINUM [55] is utilized to estimate the 

excitation signal, then used as an aperiodic parameter. 
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(a) LF0 (b) MGC 

 

(c) BAP 

Figure 2.17: Example of features extracted by the WORLD vocoder 

2.3.2.2 Continuous 

Figure 2.18 and Figure 2.19 show the continuous vocoder's analysis and synthesis phases 

[56].  

 
Figure 2.18: Simplified continuous vocoder workflow 
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The continuous fundamental frequency (contF0) is determined using a simple continuous 

pitch tracker on the input waveforms during the analysis phase [57]. This pitch tracker uses a linear 

dynamic system with Kalman smoothing to interpolate F0 in areas of creaky voice, as well as 

unvoiced sounds or silences. Another excitation parameter is the maximum voiced frequency 

(MVF), which uses amplitude and phase spectra to determine MVF decisions [58] using a 

maximum probability criterion. An an accurate and temporally stable spectral envelope estimation 

called CheapTrick [53] is  used to achieve high-quality Mel-Generalized Cepstral analysis (MGC). 

The results are the contF0, MVF, and MGC parameter streams.  

 
Figure 2.19: Schematic diagram of the developed continuous vocoder. Additions and refines are marked with 

dashed lines. [56] 

The continuous vocoder can avoid per-frame voicing decisions, which can contribute to 

minimizing perceptual degradation caused by voicing decision errors [56]. Furthermore, it models 

the excitation using only two one-dimensional parameters, which is computationally feasible in 

deep neural network-based text-to-speech [59], [60]. The noise component in the continuous 

baseline vocoder, on the other hand, is still not accurately modelled, limiting the overall perceived 

quality. 
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In order to reduce the overall buzziness of the voice in the continuous baseline vocoder [61], 

a combination of the binary noise masking (bNM) and Phase Distortion Deviation (PDD) called 

continuous noise masking (cNM) is used. The PDD of the signal carries all of the crucial 

information relevant to the glottal pulses shape [62]. Moreover, noise masking is a fundamental 

technique to improve the performance of the speech synthesizer by reducing the number of noise 

artefacts in the time-frequency domain. Based on a simple measure of harmonicity, a bNM in the 

time-frequency space is used in [63]. However, since bNM might lack a minimum of randomness in 

the voiced segments because of forcing values below the threshold to zero [63], [64], bNM and 

PDD are combined. Therefore changes from 0 to 1 (or 1 to 0) are made in the cNM, rather than a 

binary 0 or 1 as in the bNM, and hence preserve the quality of the voiced segments. 

(a) LF0 (b) MGC 

 

(c) MVF 

Figure 2.20: Example of features extracted by the continuous vocoder 
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2.3.2.3 Ahocoder 

As seen in Figure 2.21, the ahocoder parameterizes speech waveforms into three streams: 

log-f0, cepstral representation of the spectral envelope, and maximum voiced frequency [65]. It 

provides high accuracy during analysis and high quality during reconstruction. For statistical 

parametric speech synthesis and voice conversion, it is adequate. It can also be used for simple 

speech manipulation and transformation (pitch level and variance, speaking rate or vocal tract 

length). 

 
Figure 2.21: Simplified ahocoder vocoder workflow 

The way the three different parameter streams (log 𝑓, MCEP coefficients and MVF) are 

obtained and discuss different issues arose during the development of the vocoder are described in 

[65, Sec. II], [65, Sec. III] and [65, Sec. IV]. The harmonics-plus-noise model (HNM) [66] based 

reconstruction procedure is described in [65, Sec. V]. The optimization of several aspects of the 

vocoding process in resynthesis tasks is devoted in [65, Sec. VI]. The performance of the optimized 

vocoder in synthesis is evaluated in [65, Sec. VII]. The final conclusions are summarized in [65, 

Sec. VIII].  
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(a) LF0 (b) MGC 

 

(c) MVF 

Figure 2.22: Example of features extracted by the ahocoder  

Unlike other HNM-based systems, which reconstruct signals at the pitch-synchronous frame 

rate and frame length, the reconstruction method, in this case, has been intended to function at a 

constant frame rate, making it compatible with statistical synthesizer output.  
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3 Related work 

Studies have attempted to research the improvement of the TTS synthesis using the Merlin 

toolkit. Merlin is a stable toolkit where text-to-speech can be applied to datasets in the English 

language and foreign languages. For example, [67] obtains accurate results with the Arabic 

language by examining DNN-based architectures and figured out that a class-specific modelling 

approach, which for each sound, uses the model that performs the best on the validation set, 

improves the results. [68] achieved first place in all three subjects, including naturalness, 

intelligibility, and MOS, with an optimized DNN-based speech synthesis system. The results of [68] 

indicated that using deeper architectures improves the synthesized speech quality. [68], [69] 

describe that less training data reduces speech quality. 

It is possible to modify the Merlin toolkit with many different options. For example, several 

studies examine modifying the vocoder. A hierarchical encoder-decoder model is proposed in [70]. 

The model is designed to make better use of suprasegmental characteristics than traditional designs 

while also being computationally efficient. The suggested solution outperforms a traditional design 

requiring linguistic input to be at the same frame rate as the auditory input.  

It is not always the case that a developed vocoder performs better than an old version. In the 

following study [71], a vocoder called Yang was developed where the results were worse than the 

already existing WORLD vocoder since the low accuracy of the spectral envelope.  

The possibility of a WaveNet architecture as a statistical vocoder is researched in [72]. In 

this research it could be concluded that the WaveNet architecture gives a good result since only one 

hour of training data is enough for producing very good quality of speech.  

Instead of a vocoder-based system, [73] uses a hybrid text-to-speech framework that uses a 

waveform generation method based on the natural speech waveform exemplars. Using a larger 

dataset that contains around four hours of training data, the examplar-based waveform generation 

variants were rated higher than the vocoder-based system. 
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4 Task analysis 

There are several approaches to improving neural architectures' efficiency for text-to-speech 

synthesis. The various modifications and tests to research the approaches will be performed using 

the Merlin toolkit.  

It is also possible to obtain better results by modifying the vocoder. Thus, the world, 

continuous and ahocoder will be integrated in the toolkit. The world and continuous vocoder have 

already been implemented in the Merlin toolkit. The code for the ahocoder needs to be written since 

the ahocoder is not implemented in the Merlin toolkit. In order to implement the ahocoder, the first 

step will be to look at how exactly this vocoder works. After that, the code for the analysis and 

synthesis step will have to be written. Once the vocoders are implemented in the toolkit and the 

demo datasets are tested. When these give a correct result the full dataset will be tested on the 

vocoders. 

In order to optimize the use of the vocoders, the neural network architecture can be 

modified. These hidden layers influence the final result by changing the hidden layers, such as 

adding extra layers or using a different type of neural network. In addition, not only does the 

architecture affect the efficiency but also how this architecture is trained. The algorithm used to 

calculate the gradient descent also impacts efficiency. For example, different optimizers such as 

sgd, adam and rprop will be used. 

The different datasets that will be used, consist of male and female speakers, and this will 

allow the research to determine which architectures work better on male or female speakers. Two 

males, awb and ksp, will be used, where awb is a Scottish English male and ksp is an Indian English 

male, and two English female speakers, slt and clb, will be used.  

All these possibilities will be investigated, and the natural and synthesized speech will be 

compared using MCD, BAP, RMSE, correlation and VUV.  
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5 Implementation 

In this section, there will be a discussion of the tools, dataset and optimizations used in this 

thesis. It will include a discussion of exactly how these datasets and optimizations were 

implemented and the problems and errors that come with this implementation. 

5.1 Dataset 

The CMU Arctic databases were designed for the purpose of speech synthesis research [74]. 

The database contains datasets of male and female speakers. In this thesis, two male (awb and ksp) 

and two female (clb and slt) speakers were used. Each dataset contains about 1500 out-of-copyright 

utterances, including 16KHz waveform and simultaneous EGG signals. Only the waveforms and the 

sentence prompt list are needed to perform speech synthesis. 

5.2 Working environments 

5.2.1 Google Colab 

Google Colab is a Google Research product. Colab allows anyone to write and run arbitrary 

Python code in the browser, making it ideal for machine learning [75]. The choice to use Colab is 

because it allows Jupyter notebooks to be shared with others in an easy way. 

In order to make sure that the toolkit would work on Colab the required libraries and tools 

had to be installed on this environment. Since Merlin works on Python versions 2.7 to 3.6, it is  

necessary to downgrade the environment. 

 
sudo update-alternatives --config python3 
 

By using the above code, the python version can be changed manually. In this case, python 

is downgraded from python 3.7 to python 3.6. 

In addition, it is necessary to install the basic tools for Merlin. This was not without 

problems either, first the pip had to be updated, next it was necessary to install the corresponding 

packages. Before compiling the tools, it was necessary to manually install csh, manpages-pl, 

manpages-fr-extra, autotools-dev, automake, python3-numpy and python3-scipy. The Python 

package, cmake and bandmat, also needed to be installed 
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In addition, Colab is not an ideal environment to run the code. For example, Colab has an 

idle timeout of 90 minutes and an absolute timeout of 12 hours. As a result, it was impossible to 

train the neural network efficiently, and valuable time was lost. 

5.2.2 TMIT Deep 1 server 

As an alternative to Colab, a docker image running on a larger server of the TMIT 

department was chosen. The correct python version was already installed on this server. Only the 

additional packages had to be installed to be able to compile the tools within Merlin. 

In order to run longer scripts in the background, tmux is used. Tmux is a program which 

runs in a terminal and allows multiple other terminal programs to be run inside it [76], and this 

made it possible to run multiple scripts simultaneously. 

5.3 Implementation of the Merlin toolkit 

As discussed earlier, the Merlin toolkit is used to perform speech synthesis. This section will 

discuss the practical part of Merlin, such as what code and scripts are used and what code is written. 

Merlin includes many sample scripts to learn how to use the toolkit. Depending on the 

purpose of the speech synthesis, a different example script is used. For example, there is a sample 

script to perform speech synthesis on a mandarin dataset. There also is a sample script to use your 

dataset to develop a speech synthesis. 

5.3.1 SLT Arctic 

Merlin recommends testing the SLT Arctic demo first to ensure all libraries, tools and 

packages are installed correctly. The demo is run by using the run_demo script.  

 
./run_demo.sh 
 

However, this demo did not work the first time. For example, an error was generated when 

calculating the MCD. 

 
TypeError: No loop matching the specified signature and casting was found for ufunc 
add 
 

The error is related to the version of NumPy and SciPy. The version of NumPy is 

downgraded from version 1.19.2 to version 1.16.4, and SciPy upgraded to version 1.2.3. 
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By updating both Python packages, the error is resolved. Now that we know the program 

works, exactly what steps are being performed can be examined to reuse the program with another 

dataset. 

 
./01_setup.sh voice_name 
 

In order to run the setup, one parameter is required. This parameter is the name of the voice. 

If the parameter matches the preexisting datasets, the setup will ensure the dataset is downloaded. 

The following datasets are available in the setup: slt_arctic_demo, slt_arctic_full, awb_arctic_demo, 

awb_arctic_full. The bdl_arctic_full dataset for this example is no longer available. 

The setup creates the necessary folders, and moves the downloaded data in the dataset to the 

correct place. It also creates the global configuration file. This configuration file contains the 

information the speech synthesis needs. For example, it contains the partition between the train, 

validate and test set to train the model. 

 
./02_prepare_conf_files.sh conf/global_settings.cfg 
 

The parameter given is the path to the global configuration file. In this step, the 

configuration files are created for the acoustic and duration model and the synthesis. 

 
./03_train_duration_model.sh conf/duration_voice_name.conf 
 

This step ensures that the duration model is generated and trained. The duration model is 

trained with the state-aligned data. This model trains the state-level durations and is needed as an 

input to the acoustic model to predict the speech parameters at the synthesis time [77]. 

The main Merlin script (run_merlin.py) that is used to train the neural network, is fed into 

another script (submit.py). This script makes sure that the job runs on the CPU or GPU. The main 

script used to train the neural network is train_DNN which is shown below with its arguments and 

defaults [78]. 

 
def train_DNN(train_xy_file_list, # training file list 
           valid_xy_file_list,  # validation file list 
           nnets_file_name,     # filename for DNN we save to disk 
           n_ins,               # input feature dimensionality 
           n_outs,              # output feature dimensionality 
           ms_outs,             # multistream_outs 
           hyper_params,        # hyperparameters for training and architecture 
           buffer_size,         # training buffer size 
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           plot=False,         # create plot of (train/dev) training 
convergence 
           var_dict=None,          # load covariance matrix 
           cmp_mean_vector = None,  # cmp == audio features used in HTS training 
           cmp_std_vector = None,   # cmp == audio features used in HTS training 
           init_dnn_model_file = None):  # DNN model with which we initialize new 
DNN  
 

Once the duration model is trained, the next step is to train the acoustic model.  

 
./04_train_acoustic_model.sh conf/acoustic_voice_name.conf 
 

Training the neural network for the acoustic model is identical to training the duration 

model. Nevertheless, since the acoustic configuration file is used, the neural network will comply 

with the configuration of the acoustic model. Also, in this case, the model will be trained in 

run_merlin.py and the function train_DNN to be exact. The Merlin script will be plugged into 

another script and will thus be run on the CPU or GPU. 

 
./05_run_merlin.sh conf/test_dur_synth_voice_name.conf 
conf/test_synth_voice_name.conf 
 

The final step is the synthesis. This step can be divided into two steps. First, there will be a 

synthesis for the durations and second the acoustic synthesis.  

Now that the different steps have been mastered, it is possible to research the different 

configurations to improve the synthesis's efficiency. One of the first steps to get a better result is to 

enlarge the size of the dataset. The demo dataset contains only 60 samples, while the full dataset 

contains about 1132 samples. This adjustment is accomplished by downloading and implementing a 

different dataset. 

As a standard, the neural network consists of 6 TANH layers with a layer size of 1024, and 

this is referred to as the DNN in this paper. The following change that will be implemented is 

modifying the neural network. Instead of the six TANH layers, five TANH layers with 1024 layers 

followed by an LSTM layer with 512 layers will be used, and this is referred to as the LSTM in this 

paper. This modification is accomplished by modifying the configuration files for the duration, 

acoustic, and synthesis models. It is essential to adjust the layout of the neural network and set the 

sequential training parameter to true. 

Now that we know how to modify the neural network and implement other pre-made 

datasets into the model, it is possible to perform speech synthesis for different gender. Therefore, 
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we will use a male speaker, namely the dataset of US English by Indian English male (ksp) from the 

CMU Arctic database.  

5.3.2 Build your own voice 

Since Merlin's example script, slt arctic uses the pre-made datasets. The correct labels and 

features in these datasets are already generated. Therefore the ksp dataset cannot be executed in slt 

arctic. Therefore, another script must be used to generate the features and labels. Within Merlin, an 

example script is provided for this purpose, namely 'build your own voice'. 

This script contains the same steps as the script discussed above. 

 
./01_setup.sh voice_name 
./04_prepare_conf_files.sh conf/global_settings.cfg 
./05_train_duration_model.sh conf/duration_voice_name.conf 
./06_train_acoustic_model.sh conf/acoustic_voice_name.conf 
./07_run_merlin.sh conf/test_dur_synth_voice_name.conf 
conf/test_synth_voice_name.conf 
 

However, there are some steps missing that have not yet been explained. Namely, two steps 

are missing: the step to generate the linguistic features and the step to generate the acoustic features. 

 
./02_prepare_labels.sh database/wav database/txt.data database/labels 
 

This step will generate the linguistic features. Depending on the two inputs, the waveforms 

and the text file, the labels will be determined. State align labels or phone align labels will be 

generated depending on the global configuration. 

 
./03_prepare_acoustic_features.sh database/wav database/feats 
 

In this step, the acoustic features will be generated. What kind of features these depend on 

the vocoder set in the global configuration file. 

Changing the neural network on which the model is trained can be changed in the same way 

as the 'slt arctic' script. In other words, the LSTM layout can be applied to the ksp dataset. 

5.3.3 Vocoders 

Now that it is possible to use different neural network configurations and other datasets, 

changing the vocoder will be the next step. Since the world vocoder is already implemented in the 
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Merlin toolkit, also the continuous vocoder is already implemented in a modified Merlin toolkit 

[79]. 

5.3.3.1 Ahocoder 

Before the ahocoder is implemented in the Merlin toolkit, the coder and decoder for the 

ahocoder will be looked at individually. 

 ahocoder16 filein filef0 filecc [filefv] [params] 

The coder ensures that the waveform is converted to the following features: fundamental 

frequency, mel-cepstral coefficients and maximum voiced frequency. In addition, it is possible to 

change parameters that affect the generated features. The parameters are shown below with their 

standard values. 

--LFRAME=80  Frame shift (samples) 
--CCORD=39   Order of the cepstral representation 
--CCMETH=0   Method for cepstral coeff. extraction in voiced frames: 
             0 = harmonic analysis + interpolation + mcep analysis 
             1 = harmonic analysis + mel regularized discrete cepstrum 
             2 = efficient (slightly less accurate) method 
--F0MIN=60   Lowest detectable pitch (Hz) 
--F0MAX=500  Highest detectable pitch (Hz) 
--F0LOAD=0   Using external pitch detector? 
             0 = use the default pitch analysis method (based on 
                 autocorrelation plus dynamic programming) 
             1 = load pitch file if it already exists. Otherwise, use 
                 the default pitch analysis method. 

In order to use the vocoder in the Merlin toolkit, it is important that the size of the features 

the acohoder outputs match with the features that are used in Merlin. Therefore, the coder 

parameters for determining the highest detectable pitch (F0MAX) and the order of cepstral 

representation (CCORD) were changed from their default values. Thus, the F0MAX was changed 

from a default value of 500 to 350, and the CCORD from a default value of 39 to 59.  

 
ahodecoder16 filef0 filecc [filefv] fileout [params] 

The decoder converts the fundamental frequency, the cepstral coefficients, and the 

maximum voiced frequency optionally to a waveform. There are also optional parameters for the 

decoder. 

First, a tool or script will need to be written to ensure that all acoustic features are generated. 

This script is written in Python, which is the standard for the Merlin toolkit. 
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def get_features(wav_path, basefilename): 
    in_wav = wav_path + basefilename + '.wav' 
    in_lf0i = lf0_path + basefilename + '.lf0' 
    in_mgci = mgc_path + basefilename + '.mgc' 
    in_mvfi = mvf_path + basefilename + '.mvf' 
     
    # Get Features 
    os.system('./ahocoder_64/ahocoder16_64 ' + in_wav + ' ' + in_lf0i + ' ' + in_mgci 
+ ' ' + in_mvfi + ' --CCORD=59 --CCMETH=1 --F0MIN=60 --F0MAX=350') 
     
    return 0 
 

The code above is part of the code used to generate the acoustic features. For each 

waveform in a directory, the get_features function is executed. Since the source code of the 

ahocoder is not available, it is only possible to call the ahocoder script through the system and thus 

execute it. 

The same principle as above is used in the speech synthesis of the ahocoder. Before the 

speech synthesis is performed, the three features are determined based on the linguistic features and 

the trained neural network. The same principle as above is used in the speech synthesis of the 

ahocoder. Before the speech synthesis is performed, the three features are determined based on the 

linguistic features and the trained neural network. Since these features are all in the same directory, 

it is essential to make sure that the three features that belong together are found and then perform 

speech synthesis on these features. 

 
for lf0_file in os.listdir(gen_path): 
    if '.lf0' in lf0_file:  
        basefilename = lf0_file[:-4] 
        wav_file = basefilename + '.wav' 
        for mgc_file in os.listdir(gen_path): 
            if '.mgc' in mgc_file and basefilename == mgc_file[:-4]:  
                for mvf_file in os.listdir(gen_path): 
                    if '.mvf' in mvf_file and basefilename == mvf_file[:-4]:  
                        print(lf0_file, mgc_file, mvf_file) 
                         
                        os.system('./ahocoder_64/ahodecoder16_64 ' + gen_path + 
lf0_file + ' ' + gen_path + mgc_file + ' ' + gen_path + mvf_file + ' ' + gen_path + 
wav_file) 
 

Apart from the analysis scripts and synthesis scripts, adjusting Merlin's configuration file is 

crucial. The world vocoder uses bap, lf0 and mgc features. In contrast, the ahocoder uses lf0, mgc 

and mvf features, and this mvf feature is not implemented by default in the configuration. 
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def wavgen_ahocoder(gen_dir): 
    import os     
    cur_dir = os.getcwd() 
    os.chdir("../../../misc/scripts/vocoder/ahocoder/") 
    command = 'python3 aho_speech_synthesis.py ' + gen_dir + '/' 
    os.system(command) 
    os.chdir(cur_dir) 
     
    return 0 

In addition, a section of code had to be added to the generate.py file in the utils directory. 

Here, the directory where the acoustic features are generated is passed along to the speech synthesis 

of the ahocoder, where the features are converted to a waveform as described earlier. 
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6 Model evaluation methods 

In order to evaluate the TTS models, five metrics [80] are used. The smaller the MCD, BAP, 

RMSE and VUV, the better, and the higher the correlation, the better. 

In addition, the spectrogram of the generated waveforms will also be examined. 

6.1 Objective model evaluation methods 

6.1.1 MCD 

Mel cepstral distortion (MCD) measures how different two MCDs are [81]. The MCD 

between synthesized and natural mel cepstral sequences is used to assess the quality of parametric 

speech synthesis systems, including statistical parametric speech synthesis systems. The idea is that 

the smaller the MCD between synthesized and natural mel cepstral sequences, the closer synthetic 

speech is to reproducing natural speech [82]. It is not a perfect statistic for evaluating the quality of 

synthetic speech, but it is frequently used in conjunction with other indicators. 

6.1.2 BAP 

BAP stands for band aperiodicity of speech signals, where “aperiodicity” is defined as the 

power ratio between the speech signal and the aperiodic component of the signal [83]. Since this 

power ratio depends on the frequency band, the aperiodicity should be given for several frequency 

bands. 

6.1.3 RMSE 

The root mean square error (RMSE) is a common statistical tool for evaluating model 

performance. The RMSE measures the distance between the predicted and the expected output of a 

model and is the square root of the mean of the square of all of the error. 

6.1.4 Correlation 

A correlation coefficient indicates the strength and direction of a relationship between 

variables. It is a measure of linear correlation between two sets of data. It is the ratio between the 

covariance of two variables and the product of their standard deviations. 
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6.1.5 VUV 

The voiced/unvoiced (VUV) analysis metric estimates a cut-off frequency for the voiced and 

unvoiced part of a signal, in analogy with the production model of vocal sounds [84]. The 

estimation is based on going through each natural and synthesis waveform frame. When the natural 

waveform voiced and the synthesis waveform is unvoiced, it will count as an error. So this means 

that the smaller the VUV is, the more accurate the obtained result is.  

6.1.6 Spectrogram 

The sound spectrograph is a wave analyzer which produces a permanent visual record 

showing the distribution of energy in both frequency and time [85].  

In order to plot spectrograms, Parselmouth is used [86]. Parselmouth is a Python library for 

the Praat software [87].  

6.2 Subjective model evaluation methods 

6.2.1 Speakers testing 

A web-based MUSHRA (MUlti-Stimulus test with Hidden Reference and Anchor) listening 

test is used to determine which vocoder is closest to natural speech [88]. The listeners were asked to 

score the naturalness of each stimulus in comparison to the reference, which was a natural voice, on 

a scale of 0 to 100, where 0 is highly unnatural, and 100 is highly natural. For each participant, the 

utterances were given in a different order. 

The online listening test was performed by a total of 7 participants, all of whom were men, 

between the ages of 21 and 25 (mean age: 22 years). They were primarily from an engineering 

background, and only one of them spoke English natively, and none of them had any hearing 

problems. The exam took an average of 11 minutes to complete. The listening test samples can be 

found online [89]. 
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7 Evaluation 

This section will describe the evaluation of the different models made. A distinction will be 

made between the objective and the subjective evaluation. 

7.1.1 Effect of training data size 

We first examine the effect of the amount of training data used in the model.  Two DNN-

based TTS systems with vocoder are trained, where one uses the demo dataset, and the other uses 

the full dataset. The demo dataset contains about 60 waveforms that can be used to train where the 

divide between train, validation and test set is 50, 10 and 10. In comparison, the full dataset 

contains 1132 waveforms divided into 1000, 66, and 66.  

Table 7.1 shows that a significant improvement in synthesized speech quality is achieved by 

using a larger dataset. 

Table 7.1: Comparison of MCD, BAP, RMSE, correlation and VUV of the WORLD vocoder with slt dataset 

between the demo and full dataset 

Dataset MCD (dB) BAP (dB) RMSE (Hz) CORR VUV (%) 

Demo 6,586 0,259 15,309 0,701 8,821 

Full 5,234 0,167 20,353 0,603 6,575 

 

Figure 7.1 also shows this improvement in speech quality. For example, it can be seen that 

the audio with the demo dataset is more faded than with the full dataset. This loss of quality can 

also be seen in Table 7.1 since the VUV is higher in the demo dataset than in the full dataset. 
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(a) Demo dataset 

 

(b) Full dataset 

Figure 7.1: Spectrograms of the slt voice and world vocoder with the sentence Anyway, no one saw her like that’ 

with different datasets 

7.1.2 Effect of hidden layers in neural network  

For the duration and acoustic models in previous experiments, 6-layer DNN was used. The 

next experiment will be conducted to research the effect of DNN architecture on the quality of the 

TTS system. It should be noted that the full dataset will be used from now on. 

Table 7.2 shows that the results of the TTS systems with different DNN architectures differ 

negligibly, meaning that using more than six layers is not worth the extra computational time. This 

result corresponds to the result obtained in [68] , where it has been observed that the quality does 

not much improve after more than four hidden layers. 

Table 7.2: Comparison of MCD, RMSE, correlation and VUV of the continuous vocoder with slt dataset between 

the amount of hidden layers in the neural network 

Amount of hidden layers MCD (dB) RMSE (Hz) CORR VUV (%) 

6 4,912 12,539 0,747 24,109 

7 4,881 12,481 0,750 24,109 

9 4,834 12,606 0,745 24,109 

 

As seen in Figure 7.2, the spectrograms confirm this result since the spectrograms are 

practically identical. 
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(a) 6 hidden layers 

 

(b) 7 hidden layers 

 

(c) 9 hidden layers 

Figure 7.2: Spectrograms of the slt voice and continuous vocoder with the sentence ’At the best, they were 

necessary accessories’ with different amounts of hidden layers in the neural network 

7.1.3 Effect of different optimization algorithms  

The effect of using different optimization algorithms is discussed in this section. The 

optimization algorithms offered by the Merlin toolkit are the sgd, adam and rprop algorithms. In 

Table 7.3, it can be concluded that the sgd algorithm provides the best speech quality on the dataset. 

Table 7.3: Comparison of MCD, RMSE, correlation and VUV of the ahocoder with slt dataset between different 

optimizers 

Optimizer MCD (dB) RMSE (Hz) CORR VUV (%) 

sgd 6,063 14,878 0,692 25,957 

adam 11,512 20,641 0,174 25,957 

rprop 8,052 16,473 0,601 25,957 
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In addition, it is unmistakable that the adam algorithm works inadequately as seen in Table 

7.3 and Figure 7.3. The synthesized speech is completely washed out in the spectrogram, and the 

natural speech is impossible to recognize.  

 

(a) sgd 

 

(b) adam 

 

(c) rprop 

Figure 7.3: Spectrograms of the slt voice and ahocoder with the sentence ’At the best, they were necessary 

accessories’ with different optimizers  

7.1.4 Effect of different extractions of the cepstral coefficients on the ahocoder 

Since the ahocoder offers several options for extracting the cepstral coefficients, this section 

explores the effect of these different types of extraction. The difference between performing 

harmonic analysis, then interpolation, then mcep analysis and performing harmonic analysis, then 

mel regularized discrete cepstrum was examined. From both Table 7.4 and Figure 7.4, it can be 

concluded that there is little to no difference between the two methods.  

Table 7.4: Comparison of MCD, RMSE, correlation and VUV of the ahocoder with slt dataset between different 

methods to extract the cepstral coefficients where method 1 is harmonic analysis then interpolation then mcep 

analysis and method 2 is harmonic analysis then mel regularized discrete cepstrum 
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Method MCD (dB) RMSE (Hz) CORR VUV (%) 

1 6,063 14,878 0,692 25,957 

2 6,104 14,916 0,692 25,957 

 

 

(c) Harmonic analysis then interpolation then mcep 
analysis 

 

(d) Harmonic analysis then mel regularized discrete 
cepstrum 

Figure 7.4: Spectrograms of the slt voice and ahocoder with the sentence ’At the best, they were necessary 

accessories’ with different extractions of the cepstral coefficients 

7.1.5 Effect of different vocoders 

The current model obtained from previous experiments will be discussed before discussing 

the effect of the three different vocoders. The current model includes using the full dataset, a neural 

network with six hidden layers, and the sgd optimization algorithm. In addition, beyond changing 

the vocoders, the focus will also be on investigating the type of neural network; for example, a 

DNN and LSTM will be used. The effect of changing the vocoder and the type of neural network 

will be examined on both the slt and ksp datasets. 

Table 7.5 and Table 7.6 shows that based on the MCD, LSTM performs poorly on both 

datasets. The model used for the ahocoder underperforms compared to the world and continuous 

vocoder. Nevertheless, it can be shown in Figure 7.7 and Figure 7.11 that the ahocoder will still be 

recognizable. When Table 7.5 and Table 7.6 are compared it is noticable that all vocoders perform 

better on the slt dataset. The most significant difference is the continuous vocoder, which performs 

about the same on the ksp dataset as the world vocoder. However, the continuous vocoder performs 

better on the slt dataset than the world vocodor. 

Table 7.5: Comparison of MCD, RMSE, correlation and VUV between the different vocoders and models of the 

ksp dataset where the shows bold font shows the best performance 
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Vocoder WORLD Continuous Ahocoder 

Model DNN LSTM DNN LSTM DNN LSTM 

MCD (dB) 5,234 7,28 5,271 7,352 6,199 8,303 

RMSE (Hz) 20,353 23,831 19,834 23,628 14,878 19,425 

CORR 0,603 0,48 0,635 0,459 0,686 0,503 

VUV (%) 6,575 15,044 31,861 31,861 30,035 30,035 
 

Table 7.6: Comparison of MCD, RMSE, correlation and VUV between the different vocoders and models of the 

slt dataset where the shows bold font shows the best performance 

Vocoder WORLD Continuous Ahocoder 

Model DNN LSTM DNN LSTM DNN LSTM 

MCD (dB) 4,923 7,116 4,192 7,144 6,063 8,451 

RMSE (Hz) 17,668 15,361 12,539 15,768 14,878 17,923 

CORR 0,648 0,637 0,747 0,627 0,692 0,559 

VUV (%) 4,345 11,625 24,109 24,109 25,957 25,957 
 

In the spectrograms, it can be concluded that the synthesis speech is more faded than the 

natural speech, where the WORLD vocoder is the most closely resembling the original, then the 

continuous vocoder and then the ahocoder.  

 

(a) DNN 

 

(b) LSTM 

Figure 7.5: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ with 

WORLD vocoder 
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(a) DNN 

 

(b) LSTM 

Figure 7.6: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ with 

continuous vocoder 

 

(a) DNN 

 

(b) LSTM 

Figure 7.7: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ with 

ahocoder 

 
Figure 7.8: Spectrogram of the ksp voice with the sentence ’At the best, they were necessary accessories’ of the 

natural voice 
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(a) DNN 

 

(b) LSTM 

Figure 7.9: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ with 

WORLD vocoder 

 

(a) DNN 

 

(b) LSTM 

Figure 7.10: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ with 

continuous vocoder 

 

(a) DNN 

 

(b) LSTM 

Figure 7.11: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ with 

ahocoder 
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Figure 7.12: Spectrogram of the slt voice with the sentence ’At the best, they were necessary accessories’ of the 

natural voice 

7.2 Subjective evaluation 

Figure 7.13 distinguishes the evaluation of the male and female speakers and the 

combination of both speakers. According to the listeners, the WORLD vocoder is the most natural 

of the models made. However, the scores of the continuous vocoder and ahocoder are not far from 

the performance of the WORLD vocoder. However, it is clear that when the models use an LSTM 

neural network, the result is unnatural, meaning that by using LSTM, the quality is significantly 

reduced. It can also be seen that the vocoders perform better on a female dataset. 

The ahocoder, has an average mean naturalness of 62, meaning the use of the ahocoder can 

generate an intelligible sound. 
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(a) Male speaker 

 

(b) Female speaker 

 

(c) Overall 

Figure 7.13: Results of the subjective evaluation for the naturalness question. Higher value means larger 

naturalness. Error bars show the boot-strapped 95% confidence intervals. 

7.3 Summary 

According to the objective evaluations, the WORLD and continuous vocoder perform 

roughly evenly when comparing their MCDs. The ahocoder has an MCD of 6.063, which suggests 

it is less accurate but still understandable. With an MCD of 4.192, the continuous vocoder performs 

best on the slt dataset. According to the subjective ratings, the WORLD vocoder produces the best 

results, with a subjective rating of 74. In comparison, the implemented ahocoder has a rating of 62, 

indicating that listeners find the synthesized speech to be natural enough. 
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8 Conclusion 

The paper discusses the research of the deep learning approach based on neural networks 

and investigates an efficient architecture to improve the TTS synthesis. The main idea was to look 

at new and old ways to generate a more efficient model. For example, the study looked at the 

number of layers in a neural network and the type of neural network. In addition, three vocoders 

were examined, the WORLD vocoder, the continuous vocoder and the ahocoder. Objective and 

subjective evaluations allowed the different models to be compared. 

The best-created model includes using the full dataset, a neural network with six hidden 

layers, and the sgd optimization algorithm. It can be concluded from the objective evaluations that 

the WORLD and continuous vocoder perform almost equally when comparing their MCDs. The 

MCD of the ahocoder is slightly outside this range, but not far enough to say that it is a inaccurate 

model. From the subjective evaluations, it can be concluded that the WORLD vocoder gives the 

best results, with a subjective rating of 74. The implemented ahocoder has a rating of 62, meaning it 

is natural enough synthesized speech according to the listeners. From this, it can be concluded that 

the ahocoder is correctly integrated into the Merlin toolkit. 

8.1 Future work 

It is necessary for future work to further investigate the neural network architecture for the 

ahocoder. For example, it would perhaps be possible to use other types of neural networks provided 

by the Merlin toolkit, such as BLSTM or GRU, to improve speech quality. 

In addition, the following paper [46] shows that the use of LSTM and adam optimization 

algorithm provided a good result, unlike the results obtained in this paper. As a result, it would be 

good to re-examine LSTM and adam. 
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