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Summary. Before a surrogate end point can replace a final (true) end point in the evaluation of an
experimental treatment, it must be formally ‘validated’. The validation will typically require large
numbers of observations. It is therefore useful to consider situations in which data are available from
several randomized experiments. For two normally distributed end points Buyse and co-workers
suggested a new definition of validity in terms of the quality of both trial level and individual level
associations between the surrogate and true end points. This paper extends this approach to the
important case of two failure time end points, using bivariate survival modelling. The method is
illustrated by using two actual sets of data from cancer clinical trials.
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1. Introduction

Surrogate end points are referred to as end points that can be used in lieu of other end points
in the evaluation of experimental treatments or other interventions. They are useful when
they can be measured earlier, more conveniently or more frequently than the end points of
interest, which are referred to as the ‘true’ or ‘final’ end points (Ellenberg and Hamilton,
1989). Before a surrogate end point can replace a final end point in the evaluation of an
experimental treatment, it must be formally ‘validated’, a process that has caused much
controversy and has not been fully elucidated so far.

Prentice (1989) proposed a formal definition of surrogate end points and outlined how
potential surrogate end points could be validated. Much debate ensued, for the criteria set
out by Prentice are too stringent and are not straightforward to verify (Fleming et al., 1994).
Freedman er al. (1992) took Prentice’s approach one step further by introducing the
proportion explained, which is the proportion of the treatment effect that is mediated by the
surrogate. This proposal is itself surrounded with difficulties, the most important being that it
is not confined to the unit interval (Flandre and Saidi, 1999; Molenberghs et /., 2000). Buyse
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and Molenberghs (1998) proposed to replace the proportion explained by two new measures.
The first, defined at the population level and termed the relative effect, is the ratio of the
overall treatment effect on the true end point over that on the surrogate end point. The
second is the individual level association between both end points, after accounting for the
effect of treatment, and referred to as adjusted association.

To be informative and of practical value, however, the validation of a surrogate end point
will typically require large numbers of observations. It is therefore useful to consider
situations in which data are available from several randomized experiments, where the
experimental unit can be the centre in a multicentric trial or the trial in a meta-analysis of
several trials. For two normally distributed end points Buyse e al. (2000) suggested a new
definition of validity in terms of the quality of both trial level and individual level associations
between the surrogate and true end points. From a modelling standpoint, a two-stage model
is required that can be fitted by using a fixed or random-effects representation. Standard
software for linear mixed models (Verbeke and Molenberghs, 1997) or multilevel models
(Goldstein, 1995) can be utilized for this purpose.

As Buyse et al. (2000) centred solely on the case of normally distributed end points, it is
necessary to explore other settings, which are often more complicated owing to the absence
of a unifying framework such as the multivariate normal distribution. In this paper, we
concentrate on the important case when both the surrogate and the true end points are failure
time variables. Such a setting is commonly encountered, for instance, in oncology, where the
time to progression or progression-free survival time is frequently used as a surrogate for the
survival time (Chen et al., 1998).

Our notation and motivating studies are presented in Section 2. Section 3 summarizes the
method of validation proposed by Buyse er al. (2000) for two normally distributed end
points. Section 4 describes a proposed extension of the method to two failure time end points.
The examples are analysed in Section 5. Section 6 briefly discusses the merits and limitations
of the extension proposed and suggests directions for future research.

The programs which are used to analyse the data can be obtained from

http://www.blackwellpublishers.co.uk/rss/

2. Notation and motivating studies

Suppose that we have data from i =1, . . ., N trials, in the ith of which j =1, . . ., n; subjects
are enrolled. Let 7;; and S;; be random variables that denote the true and surrogate end
points respectively, and let Z; be an indicator variable for treatment.

2.1. A meta-analysis of advanced ovarian cancer trials

Our methods will first be applied to data from a meta-analysis of four randomized
multicentre trials in advanced ovarian cancer (Ovarian Cancer Meta-Analysis Project, 1991).
Individual patient data are available in these four trials for the comparison of two treatment
modalities: cyclophosphamide plus cisplatin (CP) versus cyclophosphamide plus adriamycin
plus cisplatin (CAP). The binary indicator for treatment (Z;;) will be set to 0 for treatment CP
and to 1 for treatment CAP. The surrogate end point S;; will be the progression-free survival
time, defined as the time (in years) from randomization to clinical progression of the disease
or death, whereas the final end point T;; will be the survival time, defined as the time (in years)
from randomization to death from any cause. The full results of this meta-analysis were
published with a minimum follow-up of 5 years in all trials (Ovarian Cancer Meta-Analysis
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Project, 1991). The data set was subsequently updated to include a minimum follow-up of 10
years in all trials (Ovarian Cancer Meta-Analysis Project, 1998). After such a long follow-up,
disease progression or death has occurred for most patients (952 of 1194 patients, i.e. 80%).

The method proposed can be applied as soon as there is replication not only at the patient
level but also at minimally one hierarchically higher level, such as centre within trial or trial
within meta-analysis. Technically, the ovarian cancer case is a meta-analysis but it contains
only four trials. In the two larger trials, information is also available on the centres in which
the patients had been treated. For the two smaller studies, by the Danish Ovarian Cancer
Group (DACOVA) and the Gruppo Oncologico Nord-Ovest (GONO), this information is
not available; in these studies the investigators argued that the proximity and close co-
operation of the centres enable us to consider the enrolled patients as essentially treated in
one institution. It is thus natural to use the centre as the unit of analysis for the two larger
trials, and the trial as the unit of analysis for the two smaller trials. A total of 50 ‘units’ are
then available for analysis, with a number of individual patients per unit ranging from 2 to
274. The replication at the level of the centre is thus sufficient to apply the meta-analytic
methods.

2.2. A study of two advanced colorectal cancer trials

As a second case-study, we shall use data from two randomized multicentre trials in advanced
colorectal cancer (Corfu-A Study Group, 1995; Greco et al., 1996). In one trial, treatment
with fluorouracil (SFU) plus interferon (SFU-IFN) was compared with treatment with
SFU plus folinic acid (SFU-LV) (Corfu-A Study Group, 1995). In the other trial, treatment
with SFU-IFN was compared with treatment with SFU alone (Greco et al., 1996). The
binary indicator for treatment (Z;) will be set to 0 for SFU-IFN and to 1 for SFU-LV or
SFU alone. The surrogate end point S;; will be the progression-free survival time, defined
as the time (in years) from randomization to clinical progression of the disecase or death,
whereas the final end point 7; will be the survival time, defined as the time (in years) from
randomization to death from any cause. Disease progression or death had occurred for most
patients in the two trials (694 of 736 patients, i.e. 94.3%).

Similarly to the ovarian cancer example, we shall use the centre as the unit of analysis. A
total of 76 ‘units’ are thus available for analysis. However, in eight centres one of the
treatment arms accrued no patients. These eight centres were therefore excluded from the
analysis. As a result, the data used for illustration contained 68 units, with the number of
individual patients per unit ranging from 2 to 38.

3. Two normally distributed end points

3.1. The two-stage model
In this section, we describe the two-stage model which is the core of the method proposed by
Buyse et al. (2000) for two normally distributed end points.

The first stage is based on a fixed effects model:

Sij|Zif = psi + oz + €y (1)
Ty Zy = pri + BiZi + €ryjs (2
where pg; and pp; are trial-specific intercepts and «; and f; are trial-specific effects of

treatment Z on the end points in trial i. Finally, €g; and e7; are correlated error terms,
assumed to be mean 0 normally distributed with covariance matrix
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At the second stage, it is assumed that
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B; B b;

where the second term on the right-hand side of equation (3) follows a zero-mean normal
distribution with dispersion matrix

dSS dS T dS a dS b
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b= dua dnb
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3.2. Trial level surrogacy

Suppose then that the new trial i =0 is considered for which data are available on the
surrogate end point but not on the true end point. We are interested in the estimated effect of
Z,; on Ty, given the effect of Zj; on Sy;. It can be shown that (3 + bylmgy, ay) follows a
normal distribution with mean and variance

dsy, ! dss dg, B Hso — Hs
E(ﬂ + b0|mS0’ aO) = ﬂ+ s (4)
dab dSa daa oy —
dsp \" (dss ds,\ ™" [ dsp
var((8 + by|lmgy, ay) = d —( ) ( ) ( )
‘ 50 0 P dah dSa daa dab

Consequently, a measure to assess the quality of the surrogate at the trial level is the

coefficient of determination
T -1
ds), dss ds, dsy,
_ dab dSa daa dab

ap T
dbb

Rlzrial(f) = Rii\ms,v, (5)
A surrogate could be called perfect at the trial level if the coefficient of determination (5) were
equal to 1. Intuition can be gained by considering the special case where the prediction of b,
can be done independently of the random intercept mg,. The coefficient (5) then reduces to

Rl = Rbyo, = dop/dyudyy. (6)

It is simply the square of the correlation between «; and 3;. Now, thrial(r) = 1 if the trial level

treatment effects are simply multiples of each other. We shall refer to this simplified version
as the reduced random-effects model, whereas the original expression (5) will be said to derive
from the full random-effects model.

An estimate for 5+ b is obtained by replacing the right-hand side of equation (4) with the
corresponding parameter estimates. A confidence interval is obtained by applying the delta
method to equation (4). The covariance matrix of the parameters involved is obtained from
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the meta-analysis, except for ug, and «y, which are obtained from fitting model (1) to the data
for the surrogate end point in the new trial. The corresponding prediction interval is found by
adding equation (5) to the variance obtained for the confidence interval. Although it can be
of interest to study the performance of delta-type intervals and to propose alternatives if
necessary, this is outside the scope of the current paper.

3.3. Individual level surrogacy

To validate a surrogate end point, Buyse et al. (2000) suggested that we consider the asso-
ciation between the surrogate and the final end point after adjusting the marginal models
(1) and (2) for the treatment effect. From model (1)-(2) it follows that the conditional

distribution of T};, given S;; and Z;;, is

Tij|Zij» Sij ~ N{pg; — UTSUEA*MSI' + (B — O'TSO'E;‘o‘i)Zi/' + UTSUEAISSU; Orr — O%"SOE.]S}~ (7

The association between both end points after adjustment for both the trial effects and the
treatment effect in distribution (7) is captured by

2 2 2
Rinaiv = Rq-,fkg,-,- = 057/0ssOrTs (8

the squared correlation between ‘adjusted’ variables S;; — (ug; + o, Z;;) and T; — (ur; + 5,Z,)).

On the basis of the development in Sections 3.2 and 3.3, Buyse et al. (2000) suggested that
we term a surrogate trial level valid if Rfrial(g (or Rfrial(r)) is sufficiently close to 1 and call it
individual level valid if Ry, is sufficiently close to 1. A surrogate might be termed valid if it
were both trial level and individual level valid. The notion of ‘sufficiently close to 1’ will be
discussed in the examples.

4. Two failure time end points

4.1. The two-stage model
Assume now that S;; and T;; are failure time end points. To extend the approach used in the
case of two normally distributed end points that was described in Section 3, model (1)—(2)
might be replaced by a model for two correlated failure time random variables. An important
requirement is that the model should provide a measurement of association between the two
failure time variables. There are several classes of model that might be considered: copula
models (Genest and McKay, 1986; Shih and Louis, 1995; Nelsen, 1999); univariate (Hougaard,
1995; Anderson, 1995) or bivariate (Xue and Brookmeyer, 1996) proportional frailty models;
scale change models (Anderson, 1995); marginal models estimated using generalized estimation
equations (Prentice and Hsu, 1997). We propose to use copula models as they offer greater
flexibility than the other models (with the exception of the bivariate frailty model proposed
by Xue and Brookmeyer (1996), the use of which will be discussed in Section 6). In particular,
they include univariate proportional frailty models as a subclass (Oakes, 1989). Moreover,
univariate proportional frailty models and scale change models generally induce a non-
negative association between the two failure time variables (Anderson, 1995), whereas copula
models in principle do not suffer from this limitation. Finally, though based on the gen-
eralized estimating equations approach, the models proposed by Prentice and Hsu (1997)
require the use of a parametric bivariate survivor function and in that paper they in fact used
copula models.

Thus, to replace model (1)—~(2), we assume that the joint survivor function of (S
be written as

j» T,) can
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Fs, ) = P(S;; = 5, Ty = 1) = Cs{Fg(s), Fry(1)}, s, 120, )

where (Fg;;, Fr;) denotes marginal survivor functions and C; is a distribution function on
[0, 1]* with 6 € R". Cj is called a copula function (Genest and McKay, 1986; Shih and Louis,
1995; Nelsen, 1999). It describes association between S;; and T;;. An attractive feature of
model (9) is that the margins do not depend on the choice of the copula function.

To model the effect of treatment on the marginal distributions of S;; and T}, in equation (9)
we propose to use the proportional hazard model:

§

Aoi(x) exp(@iZy) dx}, (10)
0

Fgii(s) = exp { - J
Fryj(1) = exp { - J; Ari(x) exp(B,Z;;) dx}, (11)

where Ag; and A\, are trial-specific marginal base-line hazard functions and «; and (3; are trial-
specific effects of treatment Z on the end points in trial i. A version of model (10)—(11) with
common (across trials) base-line hazard functions can also be considered. The hazard
functions can be specified parametrically or can be left unspecified as in the classical model
proposed by Cox (1972). When the hazard functions are specified, estimates of the
parameters for the joint model (9) and (10)—(11) can be obtained by using the maximum
likelihood method. Alternatively, the two-stage parametric procedure proposed by Shih and
Louis (1995) can be used, in which parameters of the marginal survivor functions Fg,;; and Fr;
are estimated first (assuming independence), and then 6 is estimated conditionally on the
estimated values of the marginal parameters. When the hazard functions are left unspecified,
a two-stage semiparametric procedure of Shih and Louis (1995), similar to the parametric
version described above, can be applied.
If the copula function in equation (9) can be represented as

Cs(u, v) = ds{ds " () + 65" (V)}, 0<uv<l

where ¢s is a Laplace transform of some distribution, then model (9) reduces to a
proportional frailty model (Oakes, 1989). In the case-studies, the following special cases of a
proportional frailty model are considered: the model proposed by Clayton (1978) and the
model proposed by Hougaard (1986).

In Clayton’s model the copula function has the form

Cs(u, v) = (' 40" 0 — V1D, 5> 1. (12)
It is generated by the Laplace transform ¢4(x) = (1 + x)l/ (= of a gamma distribution with
density
A = x!/=D-1 exp(—x)
YT -

S;; and T;; are positively associated when 6 > 1 and are independent when 6 — 1.
In Hougaard’s model the copula function has the form

Cs(u, v) = exp(—[{— In()}"/° + {= In(v)}'/°]"), 0<6<1. (13)
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It is generated by the Laplace transform ¢;(x) = exp(—x°) of a positive stable distribution
with density (Hougaard, 1986)

< TI'(k
o = — Er( o+ 1),

—x~%Y sin(6km).

;; and T;; are positively associated when 6 is small and are independent when § — 1.
At the second stage, we propose to use the reduced random-effects model

<§f>:(§)+<gﬁ) (14)

where the second term on the right-hand side of equation (14) is assumed to follow a zero-
mean normal distribution with dispersion matrix

dy dy
D= aa ab | 15
<dab dbb) ( )

4.2. Validation criteria

Since the reduced random-effects model (14) is used at the second stage of the two-stage
model, the quality of surrogate S at the trial level will be assessed on the basis of the
coefficient of determination (6).

From the considerations presented in Section 3.3 it follows that, to assess the quality of the
surrogate at the individual level, a measure of association between S;; and T, calculated
while adjusting the marginal distributions of the two end points for both the trial effects and
the treatment effect, is needed. For two normally distributed end points, the natural measure
was the correlation coefficient R, ;- (8). It is important to note that the coefficient remains
constant after specifying trial-specific intercepts and treatment effects in model (1)—(2).

For the two failure time end points the situation is different. First, non-linear associations
between the end points are more likely. Second, the correlation between S;; and T;; depends
on the shape of the marginal base-line hazard functions. It follows that if the general form of
model (10)—(11) is assumed there will be a separate correlation coefficient for each trial.
Consequently, the correlation is not a good candidate for the required measure of the
association between S;; and Tj;.

However, for a particular copula model the strength of the association between S;; and T},
after adjusting their marginal distributions for the trial and the treatment effects, of course
depends on ¢. Thus, 6 may be considered a natural candidate for the measure of association
that is needed. Its drawback is that it is difficult to interpret and cannot be directly compared
for different models. It would be easier to work with a transformation of é that would, for
example, have the interpretational properties of a correlation coefficient. To a large extent,
such a measure is Kendall’s 7. It can be shown that for the copula models (9) the following
relationship between 6 and Kendall’s 7 holds (Genest and MacKay, 1986):

1 pl
T= 4J J Cs(u, v) Cs(du, dv) — 1. (16)
0Jo
Kendall’s 7 is the difference between the probability of concordance and the probability of
discordance of two realizations of (S;, T})). It belongs to the interval [-1, 1] and assumes a
zero value when S;; and T; are mdependent From formula (16) it follows that 7 depends only
on the copula functlon C,; It is therefore independent of the marginal distributions of S,; and
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T;; (Schweizer and Wolff, 1981) and measures the association between the two end points
remaining after adjustment, through the marginal models (10)—(11), for trial and treatment
effects. Thus, it is a transformation of § that is easier to interpret and may be used as the
required measure of the association.

The relationship between ¢ and Kendall’s 7 is particularly simple in Clayton’s and
Hougaard’s models. For Clayton’s model 7 = (6 — 1)/(6 + 1), whereas for Hougaard’s model
7 =1 — 6. These relationships allow for constructing a maximum likelihood estimate 7 of 7,
given a maximum likelihood estimate § of 6. Furthermore, using the delta method it can be
shown that for Clayton’s model

var() ~ 2710 (17)
(0+1
whereas for Hougaard’s model
var(7) = var(é). (18)

It is perhaps also worth mentioning that in Clayton’s model the association parameter 6 can
be identified from the marginal distributions if a proportional hazard model with a set of
covariates is used for modelling conditional (on frailty) hazard functions. Thus, as Hougaard
(1987) pointed out, in the Clayton model case, 6 measures something besides dependence.
This problem does not appear for Hougaard’s model.

5. Data analysis

In this section the two-stage approach proposed is applied to the two case-studies introduced
in Section 2.

To construct the bivariate model at the first stage, the base-line hazard functions in model
(10)—~(11) were assumed to arise from a Weibull distribution. For both data sets the models
of Clayton and Hougaard were considered. Consequently, the following two forms of the
bivariate joint survivor function were assumed:

F(s, 1) = [exp{—(1 — 6)(As;8)"" exp(o,Z;))} + exp{—(1 — 6)(Ar:t)"" exp(B;Z;)} — 1]1/(176),
(19)

corresponding to Clayton’s model with the copula given by equation (12), and

F(s, t) = exp[{(Ag;5)"™ CXP(OQ'Z@/)}U(S +{An0)" exp(ﬁizij)}l/é]ba (20)

corresponding to Hougaard’s model with the copula given by equation (13). In formulae (19)
and (20), Ag; and rg,; denote respectively the scale and shape parameter of the (trial-specific)
marginal Weibull distribution of the surrogate end point, and A;; and r;; denote the
corresponding parameters for the true end point. In the analysis, both trial-specific and
common base-line hazard (Ag; = Ag, Ap; = Ap, rg; = 1, Py = I, for all i) versions of model
(10)—(11) were applied.

Maximum likelihood parameter estimates were obtained by using the Newton—Raphson
procedure with numerical second-order derivatives implemented in SAS-IML 6.12 as routine
NLPNRR (SAS Institute, 1995). Standard errors of the parameters were calculated by using
the inverse of the observed matrix of second derivatives. The standard error of 7 was
computed by using formulae (17) and (18).
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At the second stage the reduced random-effects model (14)—(15) was used. Effectively, it
implied ignoring the information about Ag;, Ar, rg; and rp; in modelling the relationship
between «; and (3;. Note that we used centres as the analysed units (rather than trials); thus
the term ‘trial specific’ should be understood as meaning ‘centre specific’ in the remainder of
this paper.

Under the reduced random-effects model (14)—(15), lel(r) can be estimated by the square
of the correlation coefficient between treatment effects «; and ;. However, in practice only
estimates &; and (3;, obtained from the first-stage copula model, are available. The estimate of
Rfrial(r), obtained by calculating the square of the correlation coefficient between &; and 3;, are
likely to be biased. To see this more formally, assume that the estimated treatment effects &;

and 3, follow the model
Q; Q; €
Al at 21
(5)-(3)+(2) @

where the estimation errors €, and ¢,; are normally distributed with means 0 and covariance

matrix
Ouaa,i Oab,i
Q. = B ’ . 22
l <0-ab,i Ubh,i) @2
and (oy, 6,)" follows the reduced random-effects model (14) with the dispersion matrix D
given by equation (15). Consequently, (&;, 3;)" follows a normal distribution with mean
(o, §)" and dispersion matrix D + ;.

For illustration, let us assume for the time being that 2, =  (this assumption will be
relaxed in what follows), with
Q= <Uaa Uab)
Oab O )’

and denote by p the correlation based on €. The correlation between & and [, can then be
written as

corr(dy, ) = corr(ey, BN + k)1 + k)7 + pl(1+ kD)0 + 5 N2 (23)

where k, = 0,,/d,, and K, = o,,/d,;, denote the reliability ratios for &; and 5. From equation
(23) it follows that in the presence of independent estimation errors Rmdl(r) will be under-
estimated, whereas, for p #0, Rtnal(r) may be ecither underestimated or overestimated.
Additional insight might be gained under the assumption that s, = x;, = k. Then, equation
(23) can be written as

Corr(al’ 51) - Corr(a,, /6) + 3, {p - Corr(alv 61)}

It follows that, if p > corr(ey, ), then the correlation coefficient corr(¢;, 3;) will overestimate
corr(e;, 3;). Conversely, if p < corr(ey, ), then corr(d,, 5;) will underestimate corr(cy, £3;).
To adjust for the possible bias in the estimation of Rfrial(r), we used an approach based on
the developments by van Houwelingen er al. (2000). More specifically, we estimated the
dispersion matrix D, defined by equation (14), by fitting the model resulting from equations
(21)~(22) and (14)~(15) to the estimated pairs (&;, ;). To fit the model, the covariance
matrices 2;, defined by equation (22), were assumed known and equal to their estimates
obtained from the bivariate copula model (19) or (20). Computations were performed using
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procedure MIXED implemented in SAS 6.12 (SAS Institute, 1997). An estimate ﬁfml(r) of
Rfrial(r) was then obtained from the resulting estimate D of D by means of formula (6). The
stanfiard error of R%rial(r) was calculated from the estimated covariance matrix of the elements
of D by using the delta method. In principle, the use of the delta method can lead to
confidence limits violating the [0, 1] constraints on a coefficient of determination. To restrict
the limits to the range [0, 1], a profile-likelihood-based approach for Rfrial(r) might be
considered instead (Barndorff-Nielsen and Cox, 1994). This approach is numerically more
involved and, as its results would not materially change the conclusions of the paper, it was
not applied here.

5.1. Advanced ovarian cancer

The analysis was restricted to centres with at least three patients on each treatment arm. This
constraint was adopted to ensure estimability of models (19) and (20), as they require the
estimation of six marginal parameters (\g;, Ar, 'si» P14 @, B;) for each trial i. (In general, the
minimum for the estimability of the marginal parameters would require at least three patients
per centre, with at least one observed failure and at least one patient in each treatment
group.) As a result, data for 39 centres (including the two smaller trials) were used, with a
total sample size of 1153 patients. For comparability, the common marginal hazard functions
version of model (10)—(11) was applied to the same data set.

Table 1 presents the results of the analysis. For all four models two values of Rfrial(r) are
given: unadjusted and adjusted. The former was not adjusted for the measurement error in &;
and (3; and was obtained by calculating the correlation coefficient for pairs (&;, 3;). The latter
was adjusted for the measurement error through fitting the model resulting from equations
(21)~(22) and (14)~(15) to the estimated pairs (&;, 3;), as described earlier.

Fig. 1 shows a plot of the treatment effects on the true end point (survival) by the treatment
effects on the surrogate end point (progression-free survival), corresponding to the four
models considered in the analysis. The effects are strongly correlated. The results shown
in Table 1 confirm this conclusion. For the models with base-line hazards common to all
centres, estimates of Rlzrm(r) adjusted for the measurement error are equal to 0.95. They are
higher than the corresponding unadjusted estimates and their 95% confidence intervals are
wider. Because of convergence problems, the adjusted estimates for the trial-specific versions
of models (19) and (20) could not be obtained. The unadjusted estimates suggest values of

Table 1. Results of the trial and individual level surrogacy analysis for the advanced ovarian cancer
data (Ovarian Cancer Meta-Analysis Project, 1991)7

Parameter Results for Clayton’s model with the Results for Hougaard’s model with the
following marginal hazards: following marginal hazards:
Common Trial specific Common Trial specific

Trial level thrmm

Adjusted 0.95[0.76, 1.14] i 0.95[0.82, 1.07] I
Unadjusted 0.86 [0.77, 0.94] 0.87 [0.80, 0.95] 0.94 [0.90, 0.98] 0.88 [0.81, 0.95]
Individual level

) 13.03 [11.87, 14.31] 14.52 [13.20, 15.97] 0.16 [0.15, 0.17] 0.15[0.14, 0.16]

T 0.857 [0.845, 0.870] 0.871 [0.860, 0.883] 0.839 [0.828, 0.850] 0.853 [0.842, 0.863]

95% confidence intervals are given in brackets.
tAdjusted estimates of Rﬁ.ial(l.) could not be obtained owing to numerical problems.
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Fig. 1. Advanced ovarian cancer data— treatment effects on the true end point (survival time) versus treatment
effects on the surrogate end point (progression-free survival time) for all units of analysis (the size of each point is
proportional to the number of patients in the corresponding unit; , predictions from a (weighted by sample
size) simple linear regression model): (a) Clayton’s model with common base-line hazards; (b) Clayton’s model
with centre-specific base-line hazards; (c) Hougaard’s model with common base-line hazards; (d) Hougaard’s
model with centre-specific base-line hazards

Rlzrial(r) around 0.88. It might be conjectured that, on the basis of the results obtained for the
models with the common base-line hazards, the unadjusted estimates are likely to be under-
estimating Rfrial(r).

It may be of interest to compare these results with those obtained by Buyse ez al. (2000) by
ignoring censoring and assuming a normal distribution for the logarithm of both end points.
Their results were based on data for 1192 patients included in the meta-analysis (excluding
two individuals lost to follow-up after randomization). In the analysis of the trial level
surrogacy, they obtained unadjusted RtZrial(r) = 0.94 (standard error 0.02). This value is
somewhat higher than the unadjusted estimates presented in Table 1 (with the exception of
Hougaard’s model with common marginal hazard functions).

The values of Kendall’s 7 shown in Table 1 are close to 0.85 for all the models. They are
slightly higher for the models generated by Clayton’s family of distributions.

Although an interpretation of the value of the coefficients of determination is subjec-
tive, on the basis of the results presented in Table 1 it seems plausible to conclude that
progression-free survival is a valid surrogate for survival in advanced ovarian cancer for
treatments of the type used in the trials analysed. The effect of treatment can be observed
earlier if progression-free survival is used instead of survival, although in this particular
example the difference is small (Fig. 2). Hence, a trial that used progression-free survival
would require less follow-up time and, possibly, fewer patients to conclude to the statistical
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Fig. 2. Advanced ovarian cancer data— Kaplan—Meier estimates of survival (OS) and progression-free survival
time (PFS) for the two treatment groups CP and CAP: , OS, CAP; — —, OS, CP; — — —, PFS, CAP;

Table 2. Predictions of the treatment effect on survival based on the estimated effect on progression-
free survival for the advanced ovarian cancer data (Ovarian Cancer Meta-Analysis Project, 1991)f

Unit N ay E(B+bylay) for the following models: B+ by
Cc Cs Hc Hs
Centre 6 17 1.40 1.40 1.59 1.27 1.26 1.14
(0.64) [0.08, 2.71] [0.02, 3.16] [0.09, 2.45]  [-0.04, 2.57] (0.738)
Centre 8 10 —1.00 —1.01 —1.04 —0.90 —0.85 —1.43
(0.93) [-2.86, 0.83] [—3.13,1.04] [-2.55,0.75] [-2.56, 0.85] (1.06)
Centre 37 12 —-0.82 —0.85 —0.89 —0.76 —-0.73 —0.55
(0.68) [-2.24, 0.53] [-2.53,0.75] [-2.01,0.49] [-2.10, 0.63] 0.78)
Centre 49 40 —1.14 —1.18 —1.23 —1.04 —1.02 —1.06
(0.46)  [-2.17, —0.19] [—2.46, 0.00] [—1.91, —0.18] [—2.06, 0.03] (0.48)
Centre 55 31 —1.13 —1.17 —1.22 —1.04 —1.01 —1.13
0.47)  [-2.18, —0.16] [—2.48,0.03] [—1.93, —0.15] [—2.08, 0.05] (0.49)
Centre BB 21 1.24 1.22 1.38 1.13 1.12 0.92
(0.64) [-0.09, 2.54] [-0.18,2.95] [-0.06, 2.32] [-0.20, 2.43] (0.78)
DACOVA 274 —0.26 —0.29 —0.27 —0.24 —0.23 —0.21
0.13) [-0.71, 0.13] [-1.05,0.52] [-0.60, 0.11] [—0.92, 0.46] 0.14)
GONO 125 —0.24 —0.27 —0.24 —0.23 —0.21 —0.16
(0.20) [-0.79, 0.25] [-1.08, 0.60] [—0.69, 0.22] [—0.95, 0.53] 0.23)

+ N is the number of patients per unit. &, and S+ b, are treatment effects on progression-free survival and
survival respectively, estimated from the data; £(3 + byla,) is the predicted effect of treatment on survival,
given its effect on progression-free survival. Standard errors are given in parentheses, 95% prediction intervals
in brackets; Cc, Clayton’s model with common base-line hazards; Cs, Clayton’s model with trial-specific base-
line hazards; He, Hougaard’s model with common base-line hazards; Hs, Hougaard’s model with trial-specific
base-line hazards.

significance of a truly superior treatment than a trial that used survival (Chen et al., 1998).

Predictions of the effect of treatment on the survival time, based on the observed effect of
treatment on progression-free survival time, are obviously of interest. Table 2 reports the
predicted treatment effects for several centres selected randomly from the two large trials, as
well as from the two small trials (DACOVA and GONO), in which the centre is unknown.
The predictions for each unit were calculated on the basis of model (14)—(15). In each case,



Surrogate End Points in Randomized Clinical Trials 417

the data for the unit for which the prediction was computed were excluded from fitting the
model. In most cases the values for 5+ b, predicted under Hougaard’s model are closer to
the values estimated from the data than those predicted under Clayton’s model. The former
agree reasonably well with the effects estimated from the data, although in certain cases
(for centre 8 or trial GONO, for instance) they are underestimated or overestimated by
approximately 50%. As the differences between point estimates and predictions are expected,
the prediction intervals are of more interest. Despite a high value of Rfml(r), the intervals are
wide. This is due to the error in the estimation of E(3 + by|a,), which remains substantial, in
spite of a relatively large amount of data.

5.2. Colorectal cancer

Fig. 3 shows overall Kaplan—-Meier estimates of the probability of survival and the
probability of progression-free survival for the two advanced colorectal cancer trials. The
estimates are based on the pooled data that are available for both trials (736 patients in total).
The time gap between survival and progression-free survival is similar (around 6 months) to
the gap observed in the previous example.

Similarly to the advanced ovarian cancer example that was presented in the previous
section, in the analysis of the advanced colorectal cancer data only centres with at least three
patients on each treatment arm were considered. As a result, data for 48 centres were used,
with a total sample size of 642 patients. For comparability, the common marginal hazard
functions version of model (10)—(11) was applied to the same data set.

Table 3 shows results obtained from the analysis. Fig. 4 shows a plot of the treatment
effects on the true end point (survival time) by the treatment effects on the surrogate end
point (progression-free survival time), corresponding to the four models considered in the
analysis. The picture is very much different from that for the ovarian cancer example. For all
four models the association of the trial-specfic treatment effects is low. The unadjusted
estimates of Rfrml(r) are around 0.50. The adjusted estimates for the common base-line hazards
versions of models (19) and (20) are equal to 0.24 and 0.33 respectively. The adjusted
estimates for the trial-specific versions of models (19) and (20) could not be obtained owing to
convergence problems. The estimates obtained for the common base-line hazards version
suggest, however, that the unadjusted estimates are likely to be overestimating Rfrial(r).
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Fig. 3. Advanced colorectal cancer data— Kaplan—Meier estimates of survival (OS) and progression-free
survival time (PFS) based on the pooled data for the Corfu trial (Corfu-A Study Group, 1996) and the trial by Greco
et al. (1996): , OS, 5FU-IFN; — —, OS, 5FU-LV; — — —, PFS, 5FU-IFN; - - - - - , PFS, 5FU-LV
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Table 3. Results of the trial and individual level surrogacy analysis for the advanced colorectal cancer
data (Greco et al., 1996; Corfu-A Study Group, 1995)7

Parameter Results for Clayton’s model with the Results for Hougaard’s model with the
following marginal hazards: following marginal hazards:
Common Trial specific Common Trial specific

Trial level thml(r)

Adjusted 0.24 [—0.40, 0.89] i 0.33 [-0.69, 1.36] i
Unadjusted 0.45 [0.24, 0.66] 0.46 [0.26, 0.67] 0.50 [0.31, 0.70] 0.53[0.34, 0.72]
Individual level

) 3.02 [2.68, 3.42] 4.04 [3.54, 4.64] 0.42 [0.38, 0.45] 0.37 [0.33, 0.40]

T 0.502 [0.457, 0.548] 0.603 [0.560, 0.646] 0.583 [0.548, 0.619] 0.632 [0.597, 0.667]

795% confidence intervals are given in brackets.
fAdjusted estimates of Rfml(r> could not be obtained owing to numerical problems.
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Fig. 4. Advanced colorectal cancer data—treatment effects on the true end point (survival time) versus
treatment effects on the surrogate end point (progression-free survival time) for all units of analysis (the size of
each point is proportional to the number of patients in the corresponding unit; , predictions from a (weighted
by sample size) simple linear regression model): (a) Clayton’s model with common base-line hazards; (b)
Clayton’s model with centre-specific base-line hazards; (c) Hougaard’s model with common base-line hazards;
(d) Hougaard’s model with centre-specific base-line hazards

These results suggest the conclusion that the progression-free survival time is neither trial
level nor individual level valid. Hence, it should probably not be used as a surrogate for
survival in colorectal cancer for treatments of the type used in the trials analysed.

The marked difference between this example in colorectal cancer and the previous example
in ovarian cancer underscores the difficulty of making general claims about surrogate end
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points. In both examples, the average time between progression and death is about 6 months
(see Figs 2 and 3), yet in colorectal cancer progression-free survival is not nearly as good a
surrogate for survival as in ovarian cancer. This may be because, in advanced colorectal
cancer, progression occurs early (a median time to progression of about 6 months) and is
often followed by aggressive second-line therapies that may themselves have an influence on
survival. In the presence of effective second-line therapies, progression-free survival might
be expected to be a poor surrogate for survival because of the ‘dilution’ of the effect of first-
line therapy on the final end point (Prentice, 1989). The examples analysed illustrate that
generally the validity of a particular end point as a surrogate may depend on both the
treatment and the disease under consideration.

6. Discussion

From a practical point of view it is unrealistic to expect perfect surrogacy. Thus, the
application of the method developed by Buyse er al. (2000) requires the specification of a
threshold allowing for an assessment of the proximity to 1 of the value of association
measures such as Kendall’s 7 or the coefficients of determination thrial(r) and R ,. On purely
theoretical grounds, however, it is difficult to propose such a threshold. Any other choice is
necessarily subjective. Preferably, it should be guided by practical experience in using the
definition of validity of a surrogate proposed by Buyse ef al. (2000). For obvious reasons such
an experience is thus far very limited. Taking this into account, observed values of Rfml(r)
around 0.9 have been judged as ‘sufficiently close to 1°, whereas those around 0.5 as ‘not close
to 1’

One might argue whether the estimates and intervals for Rfrml(r) that are presented in Table
1 constitute enough evidence to consider progression-free survival a valid surrogate for
survival in advanced ovarian cancer. However, even if it is judged insufficient, from Table 2 it
is clear that for advanced colorectal cancer there is even less evidence. This possibility of
assessing the strength of evidence for validity of a surrogate can be seen as an advantage of
the method proposed by Buyse et al. (2000), especially when compared, for example, with the
rigid ‘yes’ or ‘no’ decision rule that is implied by Prentice’s definition (Prentice, 1989).

An important issue that is related to the assessment of the observed value of Rfml(r) is the
possibility of bias induced by using the two-stage model and estimation of treatment effects.
To account for the bias, the mixed effects model (21)—(22) was fitted to the estimated
treatment effects while adjusting for the (estimated) measurement error in the estimates.
From this point of view it would be of interest to construct a full random-effects model
with random intercepts and random treatment effects, e.g. by using multilevel modelling
methodology (Goldstein, 1995). Such a model might replace the two-stage model (9)—(14) and
allow for a full generalization of the method proposed by Buyse et al. (2000). However, Buyse
et al. (2000) indicated that the conclusions coming from the somewhat ad hoc two-stage
approach followed here compare very well with the more elegant full random-effects model.
The drawback of such a random-effects model is its increased computational complexity.
More work is being carried out in this area.

The approach proposed in this paper allows the method of validation of surrogate end
points developed by Buyse et al. (2000) to be extended to the important case of two failure
time end points. In the case-studies S;; and T;; were assumed to have Weibull marginal
distributions. In general other distributional assumptions can be made. It is also possible to
use a semiparametric approach with unspecified base-line hazard functions (Shih and Louis,
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1995). If deemed necessary, the marginal models for the surrogate and the true end point can
include important prognostic factors.

In the case-studies two copula models equivalent to proportional frailty models were used.
In general, other models, which are not necessarily equivalent to proportional frailty models,
can be applied (Oakes, 1989; Shih and Louis, 1995). The choice of a particular form of the
copula function is of course important. It is possible to assess the goodness of fit of the chosen
copula model by comparing a nonparametric estimate of a time-dependent correlation
coefficient of martingale residuals for S;; and T;; with an estimate based on the model (Shih
and Louis, 1995). Alternatively, for Archimedean copulas the method recently proposed by
Wang and Wells (2000) might be used. Using these methods different copula models can be
fitted to the data and the choice can be made on the basis of the evaluation of their fit.

The copula models are marginal models but, as has been already mentioned, in particular
cases (Clayton, 1978; Hougaard, 1986; Oakes, 1989; Shih and Louis, 1995) they can be also
seen as proportional frailty models. Several limitations of such models have been reported
(Lindeboom and Van Den Berg, 1994; Xue and Brookmeyer, 1996). First, the unobserved
frailty is assumed to be the same for both end points, which in general may not be reasonable.
Second, in most cases the univariate frailty will induce only a positive association.

These limitations can be overcome by using a bivariate frailty model. Such a model has
been proposed by Xue and Brookmeyer (1996). It can be seen as a random-intercepts
proportional hazards model for S;; and T;;. The implementation of the model is numerically
complex, however, as it requires extensive bidimensional numerical integration. Recently,
Xue (1998) has proposed fitting the model by using quasi-likelihood equations, which
dramatically reduces the numerical complexity. However, in the proposed form, the variances
and correlation of the bivariate frailty distribution are treated as nuisance parameters and
estimated by the method of moments. As a consequence, the estimator for the correlation is
not restricted to lie in the interval [—1, 1]. In the (desirable) situation of high correlation
between the true and the surrogate end points, this may practically preclude convergence of
the estimation procedure for the model. This was observed when the method proposed by
Xue (1998) was applied to the examples analysed in Section 5. A possible remedy would be to
supplement the current procedure with an estimating equation for the parameters of the
bivariate frailty distribution. With such a remedy, the model might become a better candidate
than the copula model (9) and (10)—(11) for the first stage of the two-stage model.

A common limitation of the copula models and the model proposed by Xue and
Brookmeyer (1996) is that the two end points are treated as exchangeable. In general, this
need not be so, as is clear from the examples analysed (the progression-free survival time
cannot be longer than the survival time). Thus, from a practical point of view it would be of
interest to develop an approach allowing for a non-symmetrical treatment of the end points,
e.g. using a conditional survival type of model (Arnold, 1995). Alternatively, the method of
estimation of copula models when one of the failure time variables might be censored by the
other, recently proposed by Wang (2000), might be considered. This is an important topic for
future research.

In several cases, the confidence intervals are based on the normal approximation. This
assumption, although motivated by large sample theory and in line with common practice,
may require additional considerations, e.g. by means of a simulation study.

From a practical point of view, the extension of the method of validation of surrogate end
points that was developed by Buyse et al. (2000) to the case of two failure time end points
considerably broadens its applicability. Further extensions, e.g. to the case of a binary
surrogate and a failure time true end point, are being developed.
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