
Faculteit Bedrijfseconomische
Wetenschappen
master handelsingenieur in de beleidsinformatica
Masterthesis

Transferring Learned Representations for Process Outcome Prediction with Transformer-
Based Models

Dmitri Beloshitskiy
Scriptie ingediend tot het behalen van de graad van master handelsingenieur in de beleidsinformatica

2021
2022

PROMOTOR :

dr. Gert JANSSENSWILLEN

Faculteit Bedrijfseconomische
Wetenschappen
master handelsingenieur in de beleidsinformatica
Masterthesis

Transferring Learned Representations for Process Outcome Prediction with Transformer-
Based Models

Dmitri Beloshitskiy
Scriptie ingediend tot het behalen van de graad van master handelsingenieur in de beleidsinformatica

PROMOTOR :

dr. Gert JANSSENSWILLEN

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 1

Transferring Learned Representations
for Process Outcome Prediction
with Transformer-based Models

Dmitri Beloshitskiy, Faculty of Business Economics, Hasselt University.

Abstract—With digitalisation, the amount of business process execution data is ever increasing. Wielding this data in order to improve
business processes could be beneficial for the performance of businesses. In similar vein, the field of predictive business process
monitoring aims to improve the execution of processes by analyzing event logs and foreseeing future events and process-outcomes.
Furthermore, significant progress has been made on deep learning techniques over the recent years. Pre-trained transformer models
have been proven to be effective in dealing with sequential data in natural language processing. The same architecture and
pre-training techniques are now being used in other research fields, such as recommender systems. This paper aims to study the
relevance of these techniques in predictive business process monitoring by applying the transformer architecture to the
process-outcome prediction task. To the best of our knowledge, transformers are not yet applied to process-outcome prediction. In
addition, the significance of transfer learning is examined by reattempting the prediction task on a model that was pre-trained on the
next-activity prediction task. This way, we will examine whether learned representations from one task can be easily transferred onto
another task. Results show that transformers perform competitively against established models such as LSTMs and CNNs, even
showing slight advantages in terms of accuracy and speed, while transfer learning yields no hypothesized benefit.

Index Terms—Predictive Business Process Monitoring, Process Outcome Prediction, Transfer Learning, Transformers

✦

1 INTRODUCTION

A Clear trend towards digital transformation dominates
the current business landscape [1]. With digitalisation,

the amount of business process execution data is increasing
at a rapid rate [1]. Businesses could benefit from the increas-
ing amount of execution data by wielding it to monitor and
predict process behaviour [2]. Predictive business process
monitoring (PBPM) originates from process mining, which
is a field aiming to discover, control, and improve business
processes by analyzing process logs [3].

Meanwhile, significant progress has been made on deep
learning techniques during the past years. Much of that
progress happened in the fields of natural language process-
ing (NLP) and computer vision (CV) [4], [5]. NLP problems
are characterized by the sequential nature of language. Pre-
trained transformer models proved to be very effective in
dealing with sequential data [6], [7]. In fact, transformer
model architectures and pre-training techniques derived
from the field of NLP are considered to be the driving force
of the recent advancement in recommendation systems [8].

The purpose of this paper is to further study whether
transformers and transfer learning are relevant in the field of
PBPM. Some work already exists on the use of transformers
in predicting process behaviour. ProcessTransformer [1] for
example, is an open source library that enables a few PBPM
tasks such as next activity prediction, event time prediction
and remaining time prediction. In its concluding remarks, it
is mentioned that future work could focus on other tasks
of interest such as similar trace retrieval, activity recom-
mendation and process-outcome prediction. Furthermore,
little emphasis has been put on the role of transfer learning
in PBPM. It is unclear how learned representations from
one task could be used in order to fine tune for another

task. Transfer learning through pre-training a model and
fine tuning it on specific tasks is common practice for
language models in NLP tasks. It often yields advantages
such a more efficient training process, requiring less time,
less computational resources and less labeled data [9].

The contribution of this text is twofold. In the first place,
the text aims to apply the transformer architecture to an-
other PBPM task: process-outcome prediction. Transformers
are, to the best of our knowledge, not yet applied to process-
outcome prediction. The performance is compared to the
performance of other deep learning techniques such as
recurrent neural networks (RNN) and convolutional neural
networks (CNN). Secondly, the experiment is repeated on
a pre-trained model that is only fine tuned on the process-
outcome prediction task. With this, the aim is to get insight
whether learned representations can be transferred from one
task to another and whether this is beneficial to do.

The remainder of the text is structured as follows. In the
next section, the text elaborates on related work regarding
the use of transformers in PBPM and regarding the process-
outcome prediction task in particular. Afterwards, represen-
tation learning and sequence modeling will be discussed
in Section 3. Section 3 also covers the memory issue of
learning representations from long input sequences. RNNs,
LSTMs and transformers are discussed as possible solutions
to this problem. Finally, the topic of transfer learning will
close the section. Section 4 clarifies the datasets used in
the experiments, as well as the deep learning models that
were utilized in achieving the results. The findings of the
experiment are discussed in Section 5. Finally, Section 6
closes the text with a conclusion along with implications
for future research work.

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 2

2 RELATED WORK

Transformers got popular due to their successful application
in the field of NLP, which is mainly concerned with dealing
with unstructured language data. Yet a considerable amount
of present-day research focuses on the use of transformers
for structured sequential data. In the next subsection, we
highlight some of that work that is related to PBPM. Af-
terwards, we take a closer look at research concerning the
process-outcome prediction task in particular. Finally, we
mention some work in related fields that may be worthwhile
to pay attention to as research progresses. Table 1 contains
an overview of related research work and highlights which
deep learning models and process prediction tasks are dis-
cussed.

TABLE 1
Overview of related research work concerning the use of deep learning
techniques in process prediction tasks. This list is not exhaustive and

contains only the papers addressed in this text.

Paper Transf. LSTM CNN Outcome Other
Ketyko [10] x x - - x
Wickra. [11] - x - - x

Teinemaa [12] - - - x -
Bukhsh [1] x - - - x

Weytjens [2] - x x x -
This paper x x x x -

2.1 Predictive Business Process Monitoring

As mentioned previously, Bukhsh et al. [1] developed the
ProcessTransformer library that enables easy application
of transformers on event logs to predict future character-
istics of a running process. In their work, they managed
to perform competitively on two PBPM tasks: event time
prediction and remaining time prediction. Even more so,
they outperformed current baselines on the next activ-
ity prediction task. The authors only used the minimum
amount of attributes (i.e. case id, activity and timestamp) as
input for their model and did not consider any additional
case or event attributes. With this, they emphasise that Pro-
cessTransformer is able to bring optimal performance even
if additional attributes are not available. In their concluding
remarks, they underscore that research could scope out by
including other PBPM tasks such as similar trace retrieval,
activity recommendation and process-outcome prediction.

Ketyko et al. [10] apply the transformer architecture to
yet another PBPM task: suffix prediction. In their work, they
compare the performance of seven different deep learning
architectures, of which four have never been applied to
suffix prediction. During evaluation, they compared the
performance of each architecture on different prefix lengths
only to conclude that none of the architectures is a one-size-
fits-all type of solution. They argue that average measures
fail to capture these type of differences and that more
research is needed to correctly assess the suitability of deep
learning architectures for a given task. Furthermore, the
authors discuss how event log data differs from natural
language sentences or images, which are more often studied

in deep learning research. That is to say that event log
traces are multidimensional sequences, unlike language or
visual sequences, containing both label and time instead of
continuous corpus. These kind of distinctions may require
different processing. Currently, little attention is paid on
differences between event logs and how they are processed.

Deep learning models are often critiqued to be ”black
boxes”. It other words, it is difficult to understand why
a certain prediction has been made. Wickramanayake et
al. [11] attempt to tackle this problem by creating inter-
pretable LSTM models for the next activity prediction task.
They introduce two types of attentions, event attention and
attribute attention, that should respectively show which
event(s) or which attribute(s) contributed to the prediction
of the next activity label. They finally evaluated the gener-
ated explanations by consulting with domain experts.

Rama-Maneiro et al. [13] published a literature review
discussing a wide array of deep learning techniques for
PBPM. These deep learning techniques include different
kinds of transformers as well as RNNs. The authors provide
additional evidence to support the fact that transformers
are yet to be applied to certain PBPM tasks such as process-
outcome prediction.

2.2 Process-outcome prediction
On the topic of process-outcome prediction in particular,
Teinemaa et al. [12] studied the relevant research up to 2019.
It becomes clear that only traditional machine learning tech-
niques were considered and no deep learning techniques
were present. These traditional techniques include decision
trees, support vector machines, random forests and gradient
boosting machines. They emphasize the fact that process
outcome prediction research differs in terms of input data,
learning technique, bucketing technique and the type of
sequence encoding.

Kratsch et al. [14] verified that deep learning is gener-
ally superior to traditional machine learning in predicting
process-outcomes. While the performance gain is modest
for well-balanced and highly standard event logs, they
identified three types of event logs in which deep neural net-
works significantly outperform traditional machine learning
techniques: event logs with (1) many non-standard cases
containing different prefixes, (2) imbalanced outcome labels
and (3) many event attributes (relative to the amount of case
attributes).

Weytjens et al. [2] compared different kinds of deep
learning techniques for the process-outcome prediction task.
In their research, they specifically compared RNNs to
CNNs. The RNNs made use of long short-term memory
(LSTM) gates with and without attention mechanisms. They
concluded that despite having similar results, CNNs were
the preferred model of choice due to the fact that they
required less computation time than RNNs. The authors also
noted that the attention mechanisms did not significantly
impact the performance of the RNNs.

2.3 Recommendation systems and model size
Other related work stems mainly from the field of recom-
mendation systems. Session-based recommender systems
(SBRS) have recently emerged as a new paradigm within the

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 3

field [15]. Different from collaborative filtering and content
based recommendation, SBRS aims to capture short-term
but dynamic user preferences. As a result, SBRS is able
to provide more timely and context-sensitive recommenda-
tions [15]. SBRS share similarities with PBPM. For example,
both process multimodal, sequential and tabular input data.
As such, it might be beneficial to keep track of research in
the field.

Drawing its inspiration from NLP, BERT4Rec [16] aims
to use the popular language model BERT as a sequential
recommendation model for tabular data. In a similar vein,
De Souza et al. [8] provided the Transformer4Rec library
in order to make the use of transformers more accessible
for recommendation problems involving tabular data. The
library builds directly on top of HuggingFace transformers,
which is a popular open source library containing many
state-of-the-art pre-trained transformer models for NLP [5].

Despite the constant emphasis on the transformer archi-
tecture, breakthroughs in NLP may actually be attributed to
the training of enormous language models [17], [18]. After
pre-training on large amount of data, language models are
usually finetuned on a specific task [7]. Little research has
been put on the potential of transfer learning in PBPM.

3 FUNDAMENTALS

In the following subsections, we discuss representation
learning and sequence modeling. Traditional feed-forward
neural networks struggle to learn representations of sequen-
tial data due to a lack of memory mechanisms. We show
how RNNs and LSTMs attempt to solve this issue. The
transformer architecture provides another solution to the
memory problem using attention mechanisms. Finally we
discuss the concept of transfer learning.

3.1 Representation learning
Representation or feature learning is the act of extracting
high level features from raw data. The most common exam-
ple is that of computer vision, in which an object recognition
model first learns distinct lines and shapes of an object
(e.g. the nose or tail of a dog), in order to finally create
an internal representation of that object. Representation
learning can also be demonstrated in NLP. For instance,
language models create internal representations of words
called word embeddings. The learned word embeddings
allow to model relations and similarities between different
words as illustrated in Figure 1. There we can clearly see
that words like cat and kitten are closely related, but less
related to dog and even less to houses. Going even further,
the representation of the word queen can be mathematically
described using arithmetic with other representations:

“queen” = “king”− “man” + “woman”

The same process of representation learning happens
with other kinds of data such as event log data. In order
to enable representation learning, input data must first be
transformed in numbers that can be fed to a deep learning
model. The process of encoding raw sequential data into se-
quences of numbers is called sequence encoding or sequence
modeling.

Fig. 1. Representation learning in natural language processing [19].

For sequential data such as language and event logs,
the data needs to modeled into a sequence. Elements in a
sequence are dependent of each other and must adhere to
their order in the sequence. Traditional feed forward neural
networks are unable to deal with the sequential nature of
data and struggle to keep memory of items that happened
early on in the sequence. This led to the creation of recurrent
neural networks (RNNs) [20].

3.2 RNNs and LSTMs

RNNs are different from traditional feed forward neural
networks, in the sense that all neuron inputs and outputs
are interconnected. This design allows for recursion which is
necessary to process sequential data [20]. A network is said
to have a memory if it is able to look back at previously en-
countered input tokens [21]. Traditional feed forward neural
networks fail to have a memory because there is no remem-
bering mechanism. Each token simply gets forgotten after
each traversal through the network. RNNs instead maintain
a hidden state in which information of previous tokens is
retained [22]. For example, when token n passes through
the network, the model merges the state representing all
tokens up to token n− 1 with the new information of token
n, to create a new state. Theoretically, the information from
one token can propagate arbitrarily far as newer tokens are
traversing the network. In practice, however, RNNs fail to
achieve this ability [23]. The vanishing/exploding gradient
problem is one important reason for the lack of long-term
memory in RNNs [24].

In order to still achieve the desired property of having
a long-term memory, the long short-term memory (LSTM)
network was adopted [25]. A LSTM network is a particular
type of RNN, where the neurons are not only intercon-
nected, but also designed in such a way as to create a
mechanism specifically for retaining or forgetting certain
information [25]. The mechanism consists of a cell state
through which information can flow. Information inside the
cell state can either be removed or added by the LSTM
through the use of gate structures [25].

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 4

Note that the cell state is additional to the hidden state
that RNNs and LSTMs normally possess. In fact, it might
be useful to consider the hidden state as working memory,
while viewing the cell state as long-term memory. With the
cell state, it is now possible for the network to remember
relevant information from the past, no matter how long ago
the input tokens were processed. At the same time, it will
not pay any exceptional attention to information that might
have been encountered more recently, but was in fact less
relevant [26].

3.3 Transformers
The transformer consists of an encoder-decoder structure.
When first introduced, it was common practice to employ
the encoder-decoder structure in various deep learning
problems [4]. Figure 2 illustrates a simplified version of the
transformer architecture with a stack of encoder blocks on
the left and a stack of decoder blocks on the right.

Fig. 2. A simplified illustration of the transformer architecture, highlight-
ing the encoder-decoder structure [27]. Notice how each stack contains
six blocks, as originally proposed by Vaswani et al. [4]. In our case, the
input will be a sequence of events.

The encoder and decoder stacks serve different pur-
poses. The purpose of the encoder is to take input sequences
and to learn high level representations from those input se-
quences. In turn, these learned representations can be used
for tasks such as classification. When classification is the end
goal, decoders are not necessarily required. However, when
the task is to generate an output that is of similar form as the
input sequence (e.g. you input a sentence and you expect a
sentence as output), it is imperative to use decoders. It is for
that reason that encoder-decoder models are also referred to
as sequence-to-sequence models.

Before the introduction of the transformer, sequence-to-
sequence models often used LSTM cells inside the encoder
and decoder blocks [28]. With transformers, it turned out
that LSTM cells were not needed. Instead, their function got
replaced by attention mechanisms. This is significant, as the
recursive nature of the LSTM cell allowed for the processing
of sequential data. Transformer models are still able to pro-
cess sequential data despite not having a recursive design
[4]. Even more so, the hidden states and cell states of the
LSTM were essential to produce a context vector and to use

the attention mechanism. Instead, the transformer makes
use of self-attention [4].

Self-attention was first proposed as an addition to the
sequence to sequence model [29], [30]. With the creation
of transformers, it turned out that the self-attention alone
was enough to complete NLP related tasks [4]. Instead of
the encoder layer being a LSTM cell, it now consists of
two main layers: a self-attention layer and a feed forward
layer. The layout of a single encoder block is illustrated
in Figure 3. The decoder block only differs by having an
additional attention layer that works in a similar fashion as
the attention mechanism in the sequence to sequence model
[4].

Fig. 3. The layout of a single encoder block [27]. It consists of two
primary parts: the self-attention layer and a feed forward layer. Supple-
mentary, each of these parts has a residual ”addition” and ”normaliza-
tion” operation. These operations are alterations to solve the vanishing
gradient problem [31] and to improve training [32].

Before entering the self-attention layer of the encoder,
each input token is modified with its positional encoding
(illustrated in Figure 4) [33]. This is done to remember
each tokens position in the original input sequence. In the
self-attention layer, a unique attention score is calculated
for each input token [4]. The attention score provides ad-
ditional information to the input token, by relating it to
other tokens in the input sequence. The purpose of this
is to eventually provide a better encoding for the input
token [4]. (To illustrate this, suppose we have a NLP related
problem in which the word “sleep”, i.e. an input token, is
passing through the self-attention layer. The encoding of the
word “sleep” will be quite different if it is preceded by the
word “no”.) Remember how a RNN was able to incorporate
the representations of previously processed tokens with the
tokens that are currently being processed by maintaining a
hidden state. With transformers, this mechanism is replaced
by self-attention.

Fig. 4. Each trace (sequence of events) will be embedded into a vector
before entering the encoder. Additionally, the order of events gets en-
coded into a second vector. Both vectors will then be concatenated [1].

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 5

A big advantage of transformers over RNNs such as
LSTM, is the ability to process data in parallel [4]. This
parallelization is possible because transformers do not need
to process data in order. The knowledge of the order of
the input tokens is replaced by the attention mechanism
that learns the context that confers meaning to each word
in the sentence. The fact that parallelization is possible,
allows the model to process larger sequences of input tokens
while memory constraints would usually limit the ability
to batch across examples [4]. Parallelization also reduces
the time needed to train such a language model. In turn,
this allows for training on larger datasets which improves
performance. These developments lead to the creation of
current state-of-the-art pre-trained systems such as Google’s
BERT model (Bidirectional Encoder Representations from
Transformers) [6] and OpenAI’s GPT-3 model (Generative
Pre-trained Transformer) [7]. Both BERT and GPT-3 are,
as their full name suggests, variations of the transformer
architecture.

3.4 Transfer Learning

Transfer learning is about applying knowledge and skills
learned in previous tasks to new tasks [34]. The task from
which knowledge originates, is called the source task. The
new task that takes advantage of the learned knowledge
is referred to as the target task. In practice, large pre-
trained models are developed. These pre-trained models
are proficient in solving a certain source task. Afterwards,
the pre-trained models are fine-tuned by being exposed to
examples of a target task.

A necessary requirement to transfer knowledge between
tasks, is that the source and target domain share a common
feature space [34]. For example, in NLP tasks, a large part
of the model is dedicated to learning word embeddings.
These word embeddings are used in top layers to perform
different language related tasks. While the tasks may be
different, the underlying word embeddings do not differ
significantly between tasks. Non-language models do not
have word embeddings, but they do extract other high level
representations from raw data. These high-level represen-
tations or features could be common across different tasks.
In transfer learning, the learned representations from the
source task are derived as a starting point to solve a target
task.

While there are various reasons as to why this approach
is desirable, the main reason is that it allows to train new
models faster [9]. The pre-trained model would have spent
a considerable amount of time on learning representations
from the source task. Since the source model already spent
the effort to learn representations, it will require less time to
train new models as the new model would not have to start
learning from scratch. This is significant as training deep
learning models can be costly in terms of computational
resources [9]. To illustrate this with an example, it has cost
up to twenty hours for some of the models to be trained in
this paper due to hardware constraints. The hardware and
experimental setup are described further in Section 4.

Besides enabling a faster learning process, transfer learn-
ing requires less labelled data for training on the target task
[9]. The reason for this lies again in the fact that much

of the representation learning already happened during
pre-training. Requiring less labeled may be advantageous
when the labeling of cases is not straightforward and costly
(e.g. when the exact same prefixes have different outcomes,
which may even require manual labeling). Furthermore,
transfer learning helps prevent the issue of overfitting. Over-
fitting is prevented by freezing layers during the finetuning
of a pre-trained model. Essentially, frozen layers have a
zero learning rate which prevents model weights from being
updated during finetuning.

In order to transfer representations from a source model,
it is necessary to change the final layer(s) of the model
because the output of the source model and the target model
should be different [35]. In the example of this paper, the
source model involves predicting the next-activity while the
target model predicts the outcome of a process. Besides
changing the final classification layers, the weights of the
newly created model need to be updated by processing ex-
amples of the target task. This process of changing weights
according to examples is called fine-tuning [35].

In updating the weights of the new model, the first layers
of the pre-trained model are usually frozen. In other words,
the weights of these first layers cannot be changed while
the other weights get optimized for the examples. There is a
motive for freezing some of the weights. The frozen layers
generally serve as generic feature extractors that derive
meaningful features that are common between source task
and target model. The weights of the frozen layers are the
direct evidence of how knowledge learned from a source
task is transferred onto a target task.

In designing a deep learning model with transferred
knowledge, the designer would have to find the optimal
balance between freezing and fine-tuning by adjusting the
learning rates. Freezing the starting layers from a trained
source model is important to avoid that the target model
relearns basic features. If the starting layers are not frozen,
the learning of the source task will be lost and no knowledge
would be transferred. Freezing more layers could be benefi-
cial to avoid overfitting the model on the target task labels.
This is especially important if the target task labels are scarce
and many possible examples are unseen. If the target task
labels are abundantly available, it could be beneficial to fine-
tune more of the weights.

4 METHODOLOGY

In the following subsections, we will describe the datasets
that were used in conducting the experiments. Likewise,
we will highlight the necessary data preprocessing (i.e. the
labeling of cases with process-outcomes) for each dataset.
Following that, we will discuss the experimental setup and
we clarify the models that were used to obtain the results
and how they contribute to our research questions.

4.1 Preliminaries
Before introducing the datasets and the experimental setup,
a number of key concepts will be defined first. These are
commonly applied in the field of process mining and will
be referred to in the remainder of the text.

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 6

Definition 1 (Event). Let A be the set of activities, C the
set of cases, T the time domain and D1, .., Dm the set of
related attributes where m > 0. An event is a tuple e =
(a, c, t, d1, ..., dm), where a ∈ A, c ∈ C , t ∈ T and di ∈ {Di}
with i ∈ [1,m] [1].

Definition 2 (Mapping Functions). Let πA, πC , and πT

be functions that map an event e = (a, c, t, d1, ..., dm) to an
activity, to a unique case id, or to a timestamp. For example:
πA(e) = a, πC(e) = c or πT (e) = t [1].

Definition 3 (Trace, Prefix). A trace is defined as a finite
non-empty sequence of events σ = ⟨e1, ..., en⟩, such that
∀ei, ej ∈ σ, it must hold that: the events within a trace
σ must have same case id, i.e. πC(ei) = πC(ej) and time
should be non-decreasing, i.e. πT (ej) ≥ πT (ei) for j > i.
We say that a trace σ = ⟨e1, ..., en⟩ has length n, denoted
by |σ|. Given a trace σ = ⟨e1, ..., en⟩ and a positive integer
k ≤ n, the prefix of a trace is the sequence of events up to
the kth event, such that prefix(σ, k) = ⟨e1, ..., ek⟩ [1].

Definition 4 (Event Log). An event log is collection of
traces L = {σ1, σ2, ..., σl}. We say that an event log
L = {σ1, σ2, ..., σl} has size l, denoted |L| [1].

The process-outcome prediction task aims at predicting
the class label (the process-outcome) of a given trace [12]. In
order to train such a model, we need a set of completed
cases with their known class labels. In other words, we
need a labeling function that labels completed cases to
their outcomes. The outcomes of a process can be stored
differently across event logs. On some occasions, outcomes
are simply defined by the last event in a completed case.
On other occasions, the derivation of an outcome is more
complex and custom rules need to be defined to label a case.

Definition 5 (Labeling Function). A labeling function λ
aims to label a given trace σ to its class label (its process
outcome) O, such that λ(σ) ∈ O. For process-outcome
predictions, O is a finite set of categorical outcomes. For
example, for a binary outcome O = {0, 1}.

Definition 6 (Outcome Prediction). Process-outcome pre-
diction is the definition of a function ϕ that takes a prefix
prefix(σ, k) where k ∈ [1, n − 1], and predicts the most
likely outcome O of that prefix, i.e.:

ϕ(prefix(σ, k)) = O

4.2 Datasets
The experiments are based on four real-life event logs.
Table 2 provides an overview of the event logs and their
descriptive statistics. The events logs are publicly available
at the 4TU research data repository 1. For all event logs,
different labeling functions λ were needed to create the class
labels. In the following paragraphs, we describe each of
these event logs and their labeling methods in more detail.

BPIC2012 [36]. The dataset was originally published with
regard to the Business Process Intelligence Challenge (BPIC)
in 2012. It contains the execution history of a loan applica-
tion process for a Dutch financial institution. Each case in

1. Data repository available at https://data.4tu.nl/

TABLE 2
Datasets used in the experiments of this text.

Descriptive statistics are given for each dataset.

Datasets Cases Events Unique Min. Max.
BPIC2012 [36] 13 087 262 200 24 3 175
BPIC2017 [37] 31 509 1 202 267 26 10 180

Traffic [38] 150 370 561 470 11 2 20

this event log records the events related to a singular loan
application. We define a labeling function λ for the purpose
of predicting the process-outcome. In this particular dataset
the labeling function λ is simply taking the last event of
a completed case. This results in three possible process-
outcomes: application accepted, rejected or cancelled.

BPIC2017 [37]. This dataset shares similarities with
BPIC2012. Particularly, it stems from the same financial
institution and it is still concerned with the loan application
process. However, the procedure for data collection has
improved which resulted in a cleaner and richer event log.
The data itself is more recent as is indicated by the year of
the dataset. The labeling function λ still takes the last event
of a completed case. The resulting process-outcome labels
(accepted, rejected and cancelled) also remain unchanged.

Traffic [38]. The dataset is an event log of an information
system managing road traffic fines. The log comes from an
Italian police station. The dataset contains fine notification
events as well as repayments. Additional information in-
cludes the total fine amount and the amount of repayments
for each fine. The labeling is based on [12], where the label-
ing function λ assigns the two possible process-outcomes:
repaid in full or sent for credit collection.

In Table 3 we present the datasets and their correspond-
ing outcome labels. Note that for the Hospital dataset, we
have in fact four different process-outcome labels.

TABLE 3
Datasets and their corresponding process-outcome labels

Datasets Process-outcome labels
BPIC2012 accepted, cancelled, declined
BPIC2017 accepted, cancelled, declined

Traffic repaid in full, credit collection

4.3 Experimental setup
The experiments are based on the ProcessTransformer li-
brary [1]. The ProcessTransformer library enables easy ap-
plication of transformers on event logs to predict future
characteristics of a running process. ProcessTransformer
relies on Google’s TensorFlow library [39]. TensorFlow is
an open source library created to develop machine learning
models. In the next subsections, additional information on
the experimental setup is provided.

4.3.1 Data preprocessing
The original datasets do not contain any outcome-labels. As
mentioned above, labeling functions were defined to first
append an outcome to each observation.

https://data.4tu.nl/

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 7

4.3.2 Training hardware
Training was performed using consumer grade hardware.
In particular, a single NVIDIA RTX3060TI GPU was used.
While Tensorflow is compatible with CUDA enabled GPUs
such as the RTX3060TI, training remains a lengthy process.
The quickest model was able to perform an epoch in five
minutes, while the slowest model had a total training time
of almost thirty hours. Total training times are provided for
each model in Section 4.5

4.3.3 Data split
For evaluation purposes, each dataset was split with a
20% test set being reserved to calculate evaluation metrics
after training. Of the remaining data, another 20% was
used as a validation set during training. The validation set
was used to calculate the loss and accuracy measures after
every epoch. These measures were used to implement an
early stopping mechanism. More precisely, if the loss of the
validation set did not improve in five epochs, the training
was stopped.

4.3.4 Overfitting
The early stopping mechanism prevents overfitting by stop-
ping training as soon as the validation set seizes to im-
prove for five epochs. Besides the early stopping mech-
anism, standard regularization techniques were employed
to reduce overfitting. Regularization techniques include the
use of normalization and the use of dropout layers to set
arbitrary input units to zero while training. Additionally,
transfer learning reduces the amount of overfitting due to
the freezing of early layers.

4.3.5 Hyperparameters
In conducting the experiments, no effort was spent on
optimizing the hyperparameters. Instead, the hyperparam-
eters were based on values used in similar models in the
literature. While it is not practical to discuss all available
hyperparameters, some of them are listed in Table 4. The
number of epochs is determined by the early stopping
mechanism as discussed above. The only exception to this is
the second experiment with transfer learning, where each
model was trained for ten epochs. For more details on
hyperparameters, please refer to the source code.

4.3.6 Reproducibility
For reproducibility, the source code is made available on
Github at http://github.com/dmitri-bel/thesis. Addition-
ally, training information on each model can be viewed at
https://tensorboard.dev/experiments/[EXPERIMENT ID].
Experiment IDs and hyperlinks are listed in Table 8.

4.4 Experiments

In the next sections, two experiments are discussed. The
first experiment involves applying the transformer architec-
ture to process-outcome prediction. The second experiment
studies whether learned representations can be transferred
between different process prediction tasks.

TABLE 4
Overview of used hyperparameters.

Hyperparameter Value
Loss function Sparse categorical cross entropy

Optimizer Adam
Learning rate 0.001
Dropout rate 0.1

Batch size 12

TABLE 5
The amount of trainable parameters for each model. Notice how the

CNN model contains significantly more trainable parameters.

Model Amount of trainable parameters
Transformer 29706

LSTM 31298
CNN 93080

4.4.1 Experiment 1: Process outcome prediction

The first goal is to apply the transformer architecture to
process-outcome prediction. In order to do this, the Pro-
cessTransformer library was expanded in three steps. In the
first step, a new data processor has been added to prepare
the datasets. The processor outputs a table in which the trace
of each case is linked to the related process-outcome label.
A labeling function λ assigns the process-outcome label to
each case as described in Section 4.2. Furthermore, for each
trace, all possible prefixes are added as additional examples.
The dataset is then split into a train set and a test set. In
the second step, the data loader takes the train and test set,
collects the necessary metadata and transformers the labeled
examples into padded sequences of numbers that can serve
as input for the transformer model. In the third step, the
actual transformer model is created using TensorFlow with
the Keras [35] interface.

Figures 5 and 6 display a high level view on the archi-
tectures of the transformer, LSTM and CNN models. The
components in the figures represent the layers as available
in Keras. Despite their visual size difference, the transformer
model and the LSTM model actually share a number of
similarities. First of all, both models start with an embed-
ding layer, highlighted in darker gray). The embedding
layer, as described in Figure 4, embeds each trace into a
vector and adds a positional encoding using a second vector.
Secondly, both the transformer and LSTM model enter their
characteristic building block. For the transformer, it is the
encoder block with self-attention as described in figure 3.
For the LSTM model, the characteristic building block is a
LSTM layer as defined in Keras. Thirdly, both models close
off with two fully connected (“dense”), feed forward neural
network layers with dropout.

The architecture of the CNN model is based on the
top performing model of a Kaggle2 competition for tabular
data. In studying the CNN model, notice how there is no
embedding layer compared to the previous two models. The
CNN model does not require the same positional embed-
ding and thus does not have the same embedding layer. The

2. CNN model inspired by Kaggle submission

http://github.com/dmitri-bel/thesis
https://www.keep-current.dev/convolution-networks-on-tabular-data/

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 8

CNN model also stands out due to the amount of trainable
parameters as presented in Table 5.

4.4.2 Experiment 2: Transferring learned representations
In this experiment, we create another transformer model to
predict process-outcomes. This new model is based on the
next-activity prediction task of the ProcessTransformer. Af-
ter training for the next-activity task, the resulting weights
are saved and the output layers of the model are altered
to fit the process-outcome prediction task. The model is
then retrained on process-outcome examples. The architec-
ture remains unchanged and is identical to the transformer
architecture in Figure 5.

4.5 Results
The results of the first experiment are displayed in Table 6.
In this experiment, three different outcome-prediction mod-
els were compared for each dataset. Note that the BPIC2012
and BPIC2017 dataset are included multiple times for each
possible outcome label. The three models include the trans-
former, LSTM and CNN architectures as discussed above.
For each dataset, the highest accuracy score is marked in
bold, highlighting the top performing model. The results
show, however, that the measures differ only slightly be-
tween the different models. This can be especially seen in
the traffic dataset, where all three models achieve the same
scores after rounding for two digits.

The results of the second experiment are displayed in
Table 7. The goal of the second experiment was to study
the significance of transfer learning in process prediction
tasks. Hypothesizing a quicker training process, we ran two
process outcome prediction models for ten epochs each. The
first model (”pre-trained”) loaded weights from a previous
training process for a the next-activity prediction task. The
second model served as a benchmark to compare to the
performance of the pre-trained model. Both models have
been exposed to ten epochs of training on the same training
data. In examining the results of Table 7, we notice that the
scores of the pre-trained model are a few percentage points
below the scores of the benchmark models.

5 DISCUSSION

Process outcome prediction
The results of the first experiment showed that the trans-
former model is indeed capable of completing the process
outcome prediction task. While in some cases the trans-
former model seems to have a slight edge on the LSTM
and CNN models, the differences are small. It appears that
different deep learning models perform similarly compared
to each other, based on the average measures used in the
experiment. This is in line with the findings of Weytjens et
al. [2].

However, as noted by Ketyko et al. [10], average mea-
sures fail to capture certain differences between models.
One of these differences is the speed at which models can
be trained. In their paper, Weytjens et al. suggested that
CNN models were a good alternative to LSTM models as

Fig. 5. Architectures used for the transformer model (left) and CNN
model (right). Compared to the transformer model and LSTM model, the
CNN model does not use an embedding layer (marked in darker gray).

Fig. 6. Architecture used for the LSTM model. Despite the visual dif-
ference in size, the LSTM architecture is in fact very similar to the
transformer architecture in figure 5

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 9

TABLE 6
Results of the process outcome prediction task. Three types of models

were compared to: transformers, LSTMs and CNNs. Four average
measures were computed: accuracy, f1-score, recall and precision.

Dataset Label Model Acc. F-Sc. Rec. Prec. Time

BPIC2012

Acc. Transf. 0.76 0.75 0.75 0.76 101

Acc. LSTM 0.74 0.73 0.73 0.74 202

Acc. CNN 0.73 0.72 0.72 0.73 253

Canc. Transf. 0.80 0.78 0.77 0.80 63

Canc. LSTM 0.78 0.77 0.77 0.78 175

Canc. CNN 0.77 0.76 0.74 0.77 116

Decl. Transf. 0.82 0.81 0.80 0.82 45

Decl. LSTM 0.80 0.80 0.79 0.80 154

Decl. CNN 0.80 0.77 0.78 0.80 54

BPIC2017

Acc. Transf. 0.69 0.65 0.68 0.69 241

Acc. LSTM 0.70 0.67 0.68 0.70 326

Acc. CNN 0.68 0.63 0.66 0.68 320

Canc. Transf. 0.81 0.74 0.85 0.81 314

Canc. LSTM 0.81 0.74 0.84 0.81 480

Canc. CNN 0.81 0.73 0.83 0.81 1714

Decl. Transf. 0.88 0.83 0.88 0.88 322

Decl. LSTM 0.88 0.83 0.86 0.88 416

Decl. CNN 0.87 0.81 0.83 0.87 486

Traffic

Paym. Transf. 0.68 0.68 0.68 0.68 26

Paym. LSTM 0.68 0.68 0.68 0.68 32

Paym. CNN 0.68 0.68 0.68 0.68 61

TABLE 7
Results of the experiment on transfer learning. For each dataset, two

models were run for 10 epochs.

Dataset Label Model Acc. F-Sc. Recall Prec. Time

BPIC2012

Acc. Pre-trained 0.73 0.73 0.73 0.73 55

Acc. Benchmark 0.76 0.75 0.75 0.76 59

Canc. Pre-trained 0.77 0.77 0.76 0.77 54

Canc. Benchmark 0.80 0.78 0.77 0.80 58

Decl. Pre-trained 0.81 0.80 0.80 0.81 62

Decl. Benchmark 0.82 0.81 0.80 0.82 61

BPIC2017

Acc. Pre-trained 0.64 0.59 0.74 0.68 240

Acc. Benchmark 0.69 0.67 0.67 0.69 254

Canc. Pre-trained 0.79 0.70 0.62 0.79 242

Canc. Benchmark 0.81 0.74 0.85 0.81 252

Decl. Pre-trained 0.88 0.83 0.88 0.88 254

Decl. Benchmark 0.88 0.83 0.88 0.88 247

Traffic
Paym. Pre-trained 0.68 0.68 0.68 0.68 39

Paym. Benchmark 0.68 0.68 0.68 0.68 76

they reached similar results but required less time to be
trained. In conducting these experiments however, the CNN
models required significantly more time to be trained. The
reason for this is that the CNN model of this experiment has
more trainable parameters than the transformer models and
LSTM models.

In similar vein, the performance of each model was
examined across different prefix lengths. The resulting ac-
curacy scores are presented in Figure 7. The results of the
traffic dataset were not included as the prefix lengths are
substantially shorter compared to other datasets (the largest
prefix length of the traffic test set was only nine events).
When examining the graphs, notice the differences between
the models in the BPIC2012 datasets. For instance, the CNN
model in BPIC2012c performs significantly worse on longer
prefixes, while the CNN model in BPIC2012a actually out-
performs the other models on longer prefixes. In BPIC2012d,
the LSTM model seems to perform poor when the prefix
length is larger than 40. Nevertheless, there is little evidence
that one model would be preferred over another. In fact, if
we examine the graphs of the BPIC2017 datasets, we notice
that models behave even more competitively to each other
as in BPIC2012. This is remarkable as both datasets originate
from the same underlying process. The larger competitive-
ness of the BPIC2017 models may be related to the larger
size of the BPIC2017 datasets. Another explanation could be
that process improvements over the years have lead to less
noise in the newer BPIC2017 dataset.

Transfer learning

The results of the second experiment showed that pre-
trained models consistently perform below the benchmark.
To make sure no errors were made during development, an
additional test was conducted. In this test, we attempted
to transfer representations without changing the prediction
task. This was done by pre-training a model and only
replacing the classification layer with a copy without trained
weights. In this case, pre-training did reach high accuracy
scores with only a fraction of the training time, as one would
expect in a model that is essentially unchanged.

It becomes clear that pre-trained models do not perform
as well after transfer learning as newly trained models in
process prediction tasks. The poor performance is likely
due to an increase in noise. Noise could have increased
as a consequence of training for two different tasks. With
this, the model essentially experienced twice the amount of
training data. A larger amount of training data could, in
turn, introduce more ambiguity as higher level representa-
tions might start to become contradicting. Usually a model
would adjust its weights to fit the training data. In the case
of transfer learning, however, a large set of weights is frozen
and cannot be updated to fit the new data.

To study this, we created three additional transformer
models for each dataset. The first model is not pre-trained.
The second and third model are both pre-trained, but differ
in the fact that one has all weights unfrozen. The accuracy
scores for each of these models is displayed in Figure 8.
Contrary to the previous experiment, we did not set a max-
imum number of epochs and allowed the models to train
until the validation loss stopped improving. As expected,

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 10

the pre-trained model without freezing scores better than
the model with freezing. In fact, the scores of the freshly
trained model and the model without freezing seem to
converge. However, not freezing any weights goes against
the purpose of transfer learning, as no knowledge is actually
transferred. Furthermore, the speed advantages of transfer
learning will likely seize to exist as the amount of trainable
weights increases.

Pre-trained models in domains such as NLP and CV
do not seem to suffer from this phenomena, as indicated
by their popularity [7]. A possible explanation lies in the
“expressive power” of data. Presumably, text and image
data contain more expressive power than process data. That
is, a natural language has hundreds of thousands of words
to express a certain thing. Meanwhile the datasets used
in these experiments only contain tens of unique activities
(Table 2).

6 CONCLUSION

In this paper, transformer-based neural networks with
self-attention were used in predicting business process-
outcomes. The resulting transformer models proved to per-
form competitively against established alternatives such as
long short-term memory networks and convolutional neural
networks. In fact, transformers proved to be significantly
faster at training than LSTMs and CNNs. For some datasets,
transformers even improved average measures with a few
percentage points.

The role of transfer learning in process prediction tasks
was studied next. To this objective, we compared the per-
formance of two transformer-based models on the process-
outcome prediction task. The first model was pre-trained
on the next-activity prediction task and finetuned for out-
come prediction. The second model was not pre-trained
and merely served as benchmark for the first model. Re-
sults show that pre-trained models, despite being faster in
training, consistently perform below the benchmark. The
poor performance is likely due to an increase in noise
as a consequence of being trained on two different tasks.
Interestingly, pre-trained models in other domains do not
seem to suffer from this. While a possible explanation was
formulated, no additional research was done to verify the
conjecture.

In developing the models, little attention was paid to
hyperparameter tuning. Therefore the results obtained in
these experiments are unlikely to be the best possible results.
In similar vein, no effort was spent on creating the most
optimal model architecture. As a result, the CNN model
turned out to be relatively more complex by having more
trainable parameters. In all likelihood, this impacted the
speed at which the CNN model was trained, making the
speed comparison between the models less accurate. In fact,
and contrary to the findings in this paper, evidence exists
that CNN models are preferred over LSTM models as they
provide similar performance while requiring significantly
less time to be trained.

Furthermore, all models were trained on trace input only.
In other words, only activities and their respective order
were taken into account. Additional input, such as event
and case attributes, were not considered. It would seem

Fig. 7. Accuracy scores for different prefix lengths.

Fig. 8. Accuracy scores of pre-trained models with and without freezing,
compared to a model with no pre-training. While not freezing improves
accuracy, it defeats the purpose of transfer learning.

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 11

that including extra attributes could improve the expressive
power of process data. Future research could thus focus on
different techniques for incorporating additional attributes
in deep learning models. Subsequently it could be beneficial
to see whether adding extra attributes would impact the pre-
viously mentioned conclusions. Likewise, the datasets used
in these experiments do not represent all possible process
data. Therefore future research should attempt to include a
broader variety of event logs to gauge the generalizability
of the conclusions.

TABLE 8
Training information on each model is uploaded at

https://tensorboard.dev/experiments/[EXPERIMENT ID].

Dataset Model Experiment ID

BPIC2012a

Transformer tjH7ytA4SAqncKfznqNkQw
LSTM 2HahLuoqSAyQsX5tvLWKsA
CNN vVeADqw2RXi9zT8yQAPv9Q

Pre-trained 0U5L2najRBC6dWtPgEJPgw
Benchmark Gt8bhqPzRYGFEgQ6ZTlRug

BPIC2012c

Transformer GMuewOwZTaaR8cv4Vd30rA
LSTM skztVHQuRC20jFvKZuNDyA
CNN teSr5eAcQEeVomAjHk0KvQ

Pre-trained Qfvz1ID5Txmk77vuGcKdhA
Benchmark jzwxR49fQhKdyf7eRKsXsg

BPIC2012d

Transformer Ur8RGK9VRkuxUEUgR6kzUA
LSTM xMneB2WlTlu6GWZp5yy1ag
CNN k41zgYDvTXK5QUrV9LV7LA

Pre-trained cdAhzk82RWeYtzlEWPGNfg
Benchmark QorKdGyFR6exuna98qKZNg

BPIC2017a

Transformer wXFLt4nZRjeJwsZpBrzCwQ
LSTM whJxlqa9QxmDb33Mhghxgg
CNN tOabNA0BS8CeMCDLrd65sg

Pre-trained LL1fLrEqTQ2lcbcN2fEVOg
Benchmark B3v4kRmDRserclX6LaHWWQ

BPIC2017c

Transformer HAn9GxheQxWs2Te6RU9Vvg
LSTM j88uXwrZQDiR2U2OH6FqEQ
CNN 4bXUjDnuRnaMqGumu4kAtg

Pre-trained pk0AFVixQYyQeZDYAr7L8A
Benchmark UqCMLro3Q5OUeP5VDkypUg

BPIC2017d

Transformer lvC8hYHJSKef8sOw8O3gJg
LSTM 700PQpEmQjGGoMNeHm8Tdg
CNN 6OQOJD9JQOy0NvjIBdBWsw

Pre-trained 7ylz0XIaQtmM2aPKYD8UGA
Benchmark qqAMj9O0Qhynru8pfZLJew

Traffic

Transformer GXDqnpcaQnKJgwT0MGtqsw
LSTM WeAJcA4lT4yHq1sYcWJBQA
CNN WF8voDWsRnSdJiok9cAEpg

Pre-trained HQy8vW0ASkaf7MUZw30KRA
Benchmark brPrvjuPQ4uoDpYUpRhO0Q

REFERENCES

[1] Z. A. Bukhsh, A. Saeed, and R. M. Dijkman, “ProcessTransformer:
Predictive Business Process Monitoring with Transformer
Network,” arXiv:2104.00721 [cs], Apr. 2021, arXiv: 2104.00721.
[Online]. Available: http://arxiv.org/abs/2104.00721

[2] H. Weytjens and J. De Weerdt, “Process Outcome Prediction:
CNN vs. LSTM (with Attention),” arXiv:2104.06934 [cs], vol.
397, pp. 321–333, 2020, arXiv: 2104.06934. [Online]. Available:
http://arxiv.org/abs/2104.06934

[3] W. M. P. v. d. Aalst, Process Mining: Data Science in Action.
Springer, Apr. 2016, google-Books-ID: hUEGDAAAQBAJ.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All
You Need,” arXiv:1706.03762 [cs], Dec. 2017, arXiv: 1706.03762.
[Online]. Available: http://arxiv.org/abs/1706.03762

[5] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison,
S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,
T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush,
“Transformers: State-of-the-Art Natural Language Processing,” in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Online: Association
for Computational Linguistics, Oct. 2020, pp. 38–45. [Online].
Available: https://aclanthology.org/2020.emnlp-demos.6

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding,” arXiv:1810.04805 [cs], May 2019, arXiv:
1810.04805. [Online]. Available: http://arxiv.org/abs/1810.04805

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language Models are Few-Shot Learners,”
arXiv:2005.14165 [cs], Jul. 2020, arXiv: 2005.14165. [Online].
Available: http://arxiv.org/abs/2005.14165

[8] G. de Souza, S. Rabhi, J. M. Lee, R. Ak, and E. Oldridge,
“Transformers4Rec: Bridging the Gap between NLP and
Sequential / Session-Based Recommendation,” Fifteenth ACM
Conference on Recommender Systems, pp. 143–153, Sep. 2021.
[Online]. Available: https://doi.org/10.1145/3460231.3474255

[9] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10,
pp. 1345–1359, Oct. 2010, conference Name: IEEE Transactions on
Knowledge and Data Engineering.

[10] I. Ketykó, F. Mannhardt, M. Hassani, and B. F. van
Dongen, “What averages do not tell: predicting real life
processes with sequential deep learning,” in Proceedings of the
37th ACM/SIGAPP Symposium on Applied Computing. Virtual
Event: ACM, Apr. 2022, pp. 1128–1131. [Online]. Available:
https://dl.acm.org/doi/10.1145/3477314.3507179

[11] B. Wickramanayake, Z. He, C. Ouyang, C. Moreira, Y. Xu, and
R. Sindhgatta, “Building interpretable models for business process
prediction using shared and specialised attention mechanisms,”
Knowledge-Based Systems, vol. 248, p. 108773, Jul. 2022.

[12] I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi,
“Outcome-Oriented Predictive Process Monitoring: Review and
Benchmark,” ACM Transactions on Knowledge Discovery from
Data, vol. 13, no. 2, pp. 17:1–17:57, 2019. [Online]. Available:
https://doi.org/10.1145/3301300

[13] E. Rama-Maneiro, J. Vidal, and M. Lama, “Deep Learning for
Predictive Business Process Monitoring: Review and Benchmark,”
IEEE Transactions on Services Computing, pp. 1–1, 2021, conference
Name: IEEE Transactions on Services Computing.

[14] W. Kratsch, J. Manderscheid, M. Röglinger, and J. Seyfried,
“Machine Learning in Business Process Monitoring: A
Comparison of Deep Learning and Classical Approaches
Used for Outcome Prediction,” Business & Information Systems
Engineering, vol. 63, no. 3, pp. 261–276, Jun. 2021. [Online].
Available: https://link.springer.com/10.1007/s12599-020-00645-0

[15] S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun, and
D. Lian, “A Survey on Session-based Recommender Systems,”
ACM Computing Surveys, vol. 54, no. 7, pp. 154:1–154:38, Jul. 2021.
[Online]. Available: https://doi.org/10.1145/3465401

[16] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang,
“BERT4Rec: Sequential Recommendation with Bidirectional
Encoder Representations from Transformer,” arXiv:1904.06690
[cs], Aug. 2019, arXiv: 1904.06690. [Online]. Available: http:
//arxiv.org/abs/1904.06690

[17] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A

https://tensorboard.dev/experiment/tjH7ytA4SAqncKfznqNkQw/
https://tensorboard.dev/experiment/2HahLuoqSAyQsX5tvLWKsA/
https://tensorboard.dev/experiment/vVeADqw2RXi9zT8yQAPv9Q/
https://tensorboard.dev/experiment/0U5L2najRBC6dWtPgEJPgw/
https://tensorboard.dev/experiment/Gt8bhqPzRYGFEgQ6ZTlRug/
https://tensorboard.dev/experiment/GMuewOwZTaaR8cv4Vd30rA/
https://tensorboard.dev/experiment/skztVHQuRC20jFvKZuNDyA/
https://tensorboard.dev/experiment/teSr5eAcQEeVomAjHk0KvQ/
https://tensorboard.dev/experiment/Qfvz1ID5Txmk77vuGcKdhA/
https://tensorboard.dev/experiment/jzwxR49fQhKdyf7eRKsXsg/
https://tensorboard.dev/experiment/Ur8RGK9VRkuxUEUgR6kzUA/
https://tensorboard.dev/experiment/xMneB2WlTlu6GWZp5yy1ag/
https://tensorboard.dev/experiment/k41zgYDvTXK5QUrV9LV7LA/
https://tensorboard.dev/experiment/cdAhzk82RWeYtzlEWPGNfg/
https://tensorboard.dev/experiment/QorKdGyFR6exuna98qKZNg/
https://tensorboard.dev/experiment/wXFLt4nZRjeJwsZpBrzCwQ/
https://tensorboard.dev/experiment/whJxlqa9QxmDb33Mhghxgg/
https://tensorboard.dev/experiment/tOabNA0BS8CeMCDLrd65sg/
https://tensorboard.dev/experiment/LL1fLrEqTQ2lcbcN2fEVOg/
https://tensorboard.dev/experiment/B3v4kRmDRserclX6LaHWWQ/
https://tensorboard.dev/experiment/HAn9GxheQxWs2Te6RU9Vvg/
https://tensorboard.dev/experiment/j88uXwrZQDiR2U2OH6FqEQ/
https://tensorboard.dev/experiment/4bXUjDnuRnaMqGumu4kAtg/
https://tensorboard.dev/experiment/pk0AFVixQYyQeZDYAr7L8A/
https://tensorboard.dev/experiment/UqCMLro3Q5OUeP5VDkypUg/
https://tensorboard.dev/experiment/lvC8hYHJSKef8sOw8O3gJg/
https://tensorboard.dev/experiment/700PQpEmQjGGoMNeHm8Tdg/
https://tensorboard.dev/experiment/6OQOJD9JQOy0NvjIBdBWsw/
https://tensorboard.dev/experiment/7ylz0XIaQtmM2aPKYD8UGA/
https://tensorboard.dev/experiment/qqAMj9O0Qhynru8pfZLJew/
https://tensorboard.dev/experiment/GXDqnpcaQnKJgwT0MGtqsw/
https://tensorboard.dev/experiment/WeAJcA4lT4yHq1sYcWJBQA/
https://tensorboard.dev/experiment/WF8voDWsRnSdJiok9cAEpg/
https://tensorboard.dev/experiment/HQy8vW0ASkaf7MUZw30KRA/
https://tensorboard.dev/experiment/brPrvjuPQ4uoDpYUpRhO0Q/
http://arxiv.org/abs/2104.00721
http://arxiv.org/abs/2104.06934
http://arxiv.org/abs/1706.03762
https://aclanthology.org/2020.emnlp-demos.6
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3460231.3474255
https://dl.acm.org/doi/10.1145/3477314.3507179
https://doi.org/10.1145/3301300
https://link.springer.com/10.1007/s12599-020-00645-0
https://doi.org/10.1145/3465401
http://arxiv.org/abs/1904.06690
http://arxiv.org/abs/1904.06690

TRANSFERRING LEARNED REPRESENTATIONS FOR PROCESS OUTCOME PREDICTION WITH TRANSFORMER-BASED MODELS 12

Robustly Optimized BERT Pretraining Approach,” arXiv, Tech.
Rep. arXiv:1907.11692, Jul. 2019, arXiv:1907.11692 [cs] type: article.
[Online]. Available: http://arxiv.org/abs/1907.11692

[18] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le, “XLNet: Generalized Autoregressive Pretraining
for Language Understanding,” in Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc., 2019.

[19] D. Rozado, “Using Word Embeddings to Analyze how Uni-
versities Conceptualize “Diversity” in their Online Institutional
Presence,” Society, vol. 56, no. 3, pp. 256–266, Jun. 2019. [Online].
Available: http://link.springer.com/10.1007/s12115-019-00362-9

[20] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent Neural Network Based Language Model,” p. 4, 2010.

[21] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato,
“Learning Longer Memory in Recurrent Neural Networks,”
arXiv:1412.7753 [cs], Apr. 2015, arXiv: 1412.7753. [Online].
Available: http://arxiv.org/abs/1412.7753

[22] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu, “Un-
derstanding Hidden Memories of Recurrent Neural Networks,”
in 2017 IEEE Conference on Visual Analytics Science and Technology
(VAST), Oct. 2017, pp. 13–24.

[23] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradi-
ent Flow in Recurrent Nets: the Difficulty of Learning Long-Term
Dependencies,” 2001.

[24] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE Transactions on
Neural Networks, vol. 5, no. 2, pp. 157–166, Mar. 1994.

[25] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,”
Neural computation, vol. 9, pp. 1735–80, Dec. 1997.

[26] A. Sherstinsky, “Fundamentals of Recurrent Neural Network
(RNN) and Long Short-Term Memory (LSTM) network,” Physica
D: Nonlinear Phenomena, vol. 404, p. 132306, Mar. 2020.

[27] J. Alammar, “The Illustrated Transformer.” [Online]. Available:
https://jalammar.github.io/illustrated-transformer/

[28] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
Sequence Learning with Neural Networks,” arXiv:1409.3215
[cs], Dec. 2014, arXiv: 1409.3215. [Online]. Available: http:
//arxiv.org/abs/1409.3215

[29] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation
by Jointly Learning to Align and Translate,” arXiv:1409.0473
[cs, stat], May 2016, arXiv: 1409.0473. [Online]. Available:
http://arxiv.org/abs/1409.0473

[30] M.-T. Luong, H. Pham, and C. D. Manning, “Effective
Approaches to Attention-based Neural Machine Translation,”
arXiv:1508.04025 [cs], Sep. 2015, arXiv: 1508.04025. [Online].
Available: http://arxiv.org/abs/1508.04025

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Las Vegas,
NV, USA: IEEE, Jun. 2016, pp. 770–778. [Online]. Available:
http://ieeexplore.ieee.org/document/7780459/

[32] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,”
Jul. 2016, arXiv:1607.06450 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1607.06450

[33] G. Ke, D. He, and T.-Y. Liu, “Rethinking Positional Encoding in
Language Pre-training,” arXiv:2006.15595 [cs], Mar. 2021, arXiv:
2006.15595. [Online]. Available: http://arxiv.org/abs/2006.15595

[34] L. Torrey and J. Shavlik, “Transfer Learning,” Handbook
of Research on Machine Learning Applications and Trends:
Algorithms, Methods, and Techniques, pp. 242–264, 2010,
iSBN: 9781605667669 Publisher: IGI Global. [Online]. Avail-
able: https://www.igi-global.com/chapter/transfer-learning/
www.igi-global.com/chapter/transfer-learning/36988

[35] F. Chollet, “Keras,” 2015. [Online]. Available: https://keras.io
[36] B. van Dongen, “BPI Challenge 2012,” Apr. 2012, medium: me-

dia types: application/x-gzip, text/xml Version Number: 1 Type:
dataset.

[37] ——, “BPI Challenge 2017,” Feb. 2017, medium: media types:
application/x-gzip, text/xml Version Number: 1 Type: dataset.

[38] M. M. de Leoni and F. Mannhardt, “Road Traffic Fine Management
Process,” Feb. 2015, medium: media types: application/x-gzip,
application/zip, text/xml Version Number: 1 Type: dataset.

[39] T. Developers, “TensorFlow,” May 2022. [Online]. Available:
https://zenodo.org/record/4724125

http://arxiv.org/abs/1907.11692
http://link.springer.com/10.1007/s12115-019-00362-9
http://arxiv.org/abs/1412.7753
https://jalammar.github.io/illustrated-transformer/
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://ieeexplore.ieee.org/document/7780459/
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/2006.15595
https://www.igi-global.com/chapter/transfer-learning/www.igi-global.com/chapter/transfer-learning/36988
https://www.igi-global.com/chapter/transfer-learning/www.igi-global.com/chapter/transfer-learning/36988
https://keras.io
https://zenodo.org/record/4724125

	Introduction
	Related Work
	Predictive Business Process Monitoring
	Process-outcome prediction
	Recommendation systems and model size

	Fundamentals
	Representation learning
	RNNs and LSTMs
	Transformers
	Transfer Learning

	Methodology
	Preliminaries
	Datasets
	Experimental setup
	Data preprocessing
	Training hardware
	Data split
	Overfitting
	Hyperparameters
	Reproducibility

	Experiments
	Experiment 1: Process outcome prediction
	Experiment 2: Transferring learned representations

	Results

	Discussion
	Conclusion
	References

