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1 Abstract

The abstract consists of the thesis’ description from the book of abstracts because it does such an excellent
job of summarising the research done in this thesis.

“Nowadays we hear a lot about artificial intelligence (AI) and machine learning (ML) as methods for
predicting outcomes. In medical and pharmaceutical sectors, these methods have also become very
popular. We will focus on prediction problems in preclinical discovery research in pharmaceutical
companies. In this stage of the drug development, no large data sets are available. That is: only a
small number of observations on a very large number of features (e.g. data on thousands of gene
expression, metabolomics, . . . . on only 10 to 50 subjects). Scientists use such datasets aiming at
finding predictors (e.g. genes) to predict disease status (diagnostics) or to identify responders to a
treatment for a disease (personalised medicine). Many of these scientists believe in the power of
AI and ML, whereas, however, the success stories of AI and ML come from big data applications
(i.e. data from thousands of subjects in the training data).
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The goal of this thesis is to study the behavior of AI and ML methods on small sample-sized
studies in early drug development. It involves the use of many ML prediction methods in small
sample-sized simulation studies. The ultimate goal is to formulate guidelines.”

2 Introduction

The advancements in sequencing technology since the Human Genome Project successfully completed in
2003 have led to sharply increased sequencing speeds at dramatic cost reductions. The advancements in
technology not only lowers the barrier for utilising sequencing in individual patients but also leads to the
possibility of sequencing additional sources of omics data. The omics field has grown in scope to include
omics such as transcriptomics (concerning the RNA expression of the genome), proteomics (related to the
proteins resulting from the RNA expression) and metabolomics (on the resulting metabolites). Whereas the
human genome consists of approximately 20-25 thousand genes, proteomics concerns the study of a number
of proteins approximating between 80-400 thousand proteins.1

(a) Omics hierarchy (source: Wikipedia) (b) Haystack (source: Winters 2013

Figure 1: A haystack of Omics data.

Referring to the expression of genes, proteins, metabolites, . . . as features, it is evident that sequencing can
provide us with a large number of features. As these features are involved in different biological processes,
which in turn can be involved in varying diseases when their function is impaired, there is an interest among
scientists to identify features related to these processes and diseases. The hope being that pharmaceuticals
could be developed that modify these pathways in such a way that these impact disease progression or reverse
malign processes (i.e. cure the disease).

Pharmaceuticals are developed in multiple stages, going from discovery in the lab, preclinical research,
clinical research, regulatory approval, to post-market safety monitoring and economic feasibility assessments.2
Focusing on early drug discovery, the aim is to find features that predict treatment effect. The data that is
available in this phase of the development of pharmaceuticals consists of few samples: typically between 15-50
samples are available for analysis. The datasets are gathered from previous experiments, where a response
was measured for a pharmaceutical, leading to a group of responders and a group of non-responders. Having
the possibility of using sequencing techniques, the goal is to gather features that can make a distinction

1While estimates, these numbers illustrate the size of potential number of features that the omics fields can supply.
2An overview can be found on https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-

process. Evidently, the process cannot be fully discussed within the scope of this thesis given the involvement of a variety of
disciplines including: medicine, biology, chemistry, ethics, legal, economics,. . .

2

https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process


between these two groups, in doing so allowing for further research into that specific feature. However, it
is known that few (if any) features may actually be predictive for a specific pharmaceutical. Given the
possibility of adding more features, a possible strategy can be to include as many features as one can in the
hopes of increasing the chance of having the predictive feature among the features that are analysed. The
idea being that adding information increases the prospects of finding a predictive biomarker.3 However, there
are downsides to this approach since it increases the number of non-predictive features in the dataset, which
means that when using selection methods like hypothesis tests, lead to a problem of multiple testing. Testing
at a certain level of significance for the many features in these datasets entails a correction that is very high,
or many hypothesis tests that are false positives, leading to a large Type I or Type II errors.

Making an analogy with the finding of a needle in the haystack, we can imagine a barn full of hay with a
few needles that we would like to find. To do this we need to take hay outside for inspection in the farm’s
courtyard. So using an appropriate agricultural vehicle we pick the desired number of bales which we then
inspect.

In this analogy the strategy described above would mean that we would take more bales from the barn to the
courtyard, which would evidently increase the probability that these bales include the needles that are in
the barn. However, this would also increase the effort required to find the needle in the courtyard, since the
amount of hay to look through is larger.

Besides developments in sequencing, another influential development is the resurgence of the machine learning
(ML) and artificial intelligence (AI) field through the success of deep learning algorithms in areas such
as image recognition, natural language processing and performance in (computer) games such as Go and
Starcraft Silver et al. (2016). Different authors, Boniolo et al. (2021), see (great) potential for applying
AI in pharmaceutical development, including the applications related to omics data and feature discovery.
However, there are several barriers for utilising AI for this purpose, one of which is the requirement of an
extensive number of samples to train the models on. However, as mentioned above, the number of samples
available in early drug discovery is very small, especially compared to datasets consisting of millions or even
billions of samples that these “successful” AI models use. Nonetheless, the aforementioned leads to questions
for statisticians involved in early drug discovery about applying AI/ML methods to the problem of feature
selections in the small sample datasets that they have available. The reasoning being that AI can deal with
adding more features and in the end lead to higher performance in this area. The question is whether the
perceived benefit of utilising AI for this purpose is realistic, and if so what the requirements are for obtaining
performance benefits in compared to more “traditional” methods.

2.1 Research objective

In this thesis the objective is to assess the above from a statistical perspective. As such, a research objective
needs to be formulated in a statistical terminology.

The omics data in early drug development consists of a small number of samples (n), but is high dimensional
(p), which means that p ≫ n. More specifically, the datasets consist of n samples in the range of 10 to 50,
with a high dimensions p in the range of 10.000 to 500.000. For this small-sized, high dimensional data we
are interested in selecting candidate genes that are predictive for a treatment effect.

As the analogy above illustrates, a higher number of features may not necessarily lead to better results.
However, it is not clear how to balance between ensuring that the selected features contain the predictive
feature and the ability of identifying such a predictive feature from the set of selected features. Related
to this there is the question of the influence of the number of predictive features in the dataset. Is the
ratio of the total number of features over the number of predictive features indicative of performance or is
the absolute number of predictive features a better indicator for success. While it is often not feasible to
substantially increase sample sizes, it is of interest to assess whether there is a difference in performance over
the range of sample sizes that are feasible. In addition, public omics data could provide further information

3A predictive biomarker is “[a] characteristic that is objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention [. . . ] that forecasts the likely response
to a specific treatment”(Buyse et al. 2010, 310).
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on features in the study. This information would be integrated into the study through a method called ‘data
integration.’ There are different methods to identify predictive features. Since the expectations concerning
AI/ML methods are high, a comparison between such methods with other (traditional and contemporary)
methods is of interest.

2.1.1 Guidelines for feature selection in small-sample, high-dimensional, datasets

The above leads to the following overall aim, which is to

formulate guidelines for the use of different methods in small sample-sized, high
dimensional studies in early drug development.

The guidelines will be on the influence on the performance of selecting predictive features by the following
elements:

• the total number of features,
• the number of (expected) predictive features,
• the effect size of these predictive features,
• the sample size of both the responders and non-responders groups, and
• the feasibility of using data integration to pre-select candidate features through the use of existing

(public) information on the feature in question.

3 Methods

To formulate guidelines we use simulations to obtain datasets where the predictive features and responders
are known. Next, we use a range of methods for their ability to identify the predictive features. This section
describes the method of simulating the data, the metrics used to score the results and the different methods
that are used to identify predictive features. Further, the data integration method is explained, which
attempts to use pre-existing data available (in this case this is also simulated data).

3.1 Simulating the sequencing data

The reason for performing a simulation is that simulation studies allow for controlling the elements of interest,
which are relevant in formulating the guidelines.

The simulated data represents sequencing data, which can be the result of next generation sequencing
techniques. Because the interest is in higher number of features, the interest lies in not only genomic features
but also transcriptomics. For that reason, RNA-sequencing data is simulated using one of the packages
available on Bioconductor. First however, the methods are applied to a more theoretical source of simulated
data, namely a shifted 2 component Gaussian mixture distribution.

The resulting datasets are stored as Parquet files in separate folders. The metadata is kept in a SQL database,
which includes the random seed, number of the generation run, the type of method used for the simulation
and the descriptive information of the generated study. The information consists of the following parameters:

• the number of predictive features (npred),
• the number of features (nt = npred + nnon_pred),
• the shift in mean between non-predictive and predictive features (µpred),4
• the variance of the predictive features (s2

pred), and
4For the SPsimSeq package the meaning of this parameter changes given the differences in the underlying method
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• the group size for non-responders (n1) and responders (n2).

The parameters are iteratively changed to focus on an area of interest.5 This means that for example, to
assess the effect of the total number of genes, only that variable can be varied over a range with a choice of
steps, while keeping other parameter values constant.

3.1.1 Simulations using normal distributions

This method generates the data as depicted in Table 1 where the distribution for the specific predictive
feature (P) and non-predictive feature (NP) for responders (R) and non-responders (NR) are depicted.

Table 1: A schematic representation of the distributions per feature in the non-responder (NR) and responder
(R) groups and for the non-predictive (NP) and predictive (P) features.

NP1 . . . NPnt−npred
P1 . . . Pnpred

R1 N(0, 1) . . . N(0, 1) N(µpred, s2
pred) . . . N(µpred, s2

pred)
...

...
. . . N(0, 1)

...
. . .

...
Rn2 N(0, 1) . . . N(0, 1) N(µpred, s2

pred) . . . N(µpred, s2
pred)

NR1 N(0, 1) . . . N(0, 1) N(0, 1) . . . N(0, 1)
...

...
. . .

...
...

. . .
...

NRn1 N(0, 1) . . . N(0, 1) N(0, 1) . . . N(0, 1)

The most basic simulation method involves a location shift of the value of the predictive features for the
response group.6 The data are generated using the following steps:

1. generate a matrix of n1 + n2 rows and nt columns sampled from a standard Normal
distribution,

2. replace n1 rows and npred columns with samples from N(µpred, s2
pred) corresponding to the

predictive features in the response group, and
3. shuffle the resulting columns (i.e. shuffle the features).

Shuffling is required for some methods that consider multiple genes in parallel. Such methods could exploit
an artificial structure. For example when all the predictive features are in the bottom-right corner of the
matrix, the method may become a predictor for that location in the matrix instead of the predictive features.

The result is a two component Gaussian mixture distribution where one component corresponds to the
standard Normal distribution and the other to N(µpred, s2

pred).

3.1.2 Simulating RNA sequencing data using SPsimSeq

The method using the normal distributions described above is unlikely to encompass the complexity and
dependencies in a realistic dataset. Therefore, the second simulation method uses the SPsimSeq package
(Assefa et al. 2021). The package allows for simulating new datasets based on the estimated marginal
distributions of an existing RNA sequencing dataset using Gaussian-copulas to retain the dependence between
genes using the distribution of gene expression levels from real RNA sequencing data. The latter means
that unlike the ‘normal’ simulation method, it possible to reflect the correlations between features that are
involved in a specific biological process.

5The generation number is kept in the database of the results.
6See the code snippet in section A.1.1.
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The package includes a subset of real RNA sequencing data that comes from an article by (Zhang et al. 2015),
which is referred to as the “Zhang data” in the package’s documentation and this thesis. The ability to use
any real (RNA) sequencing data as a source offers the potential to use a range of data sources. However, for
convenience this thesis uses the included Zhang dataset.

Similar to the ‘normal’ method, the predictive features can be created by adding a certain offset to the counts
of the relevant features for the responder group. As the data is normalised, it is important to consider whether
to add the offset before or after normalising. When done after normalisation, the mean and variance of the
predictive features change, which could be used to create a perfect predictor. Evidently this is undesirable
but does not preclude the use of such a method when the methods make no use of that specific information.
This means that it is preferable to add the offset before normalising.7

An alternative is to set a threshold for the log-fold change for predictive features, using the lfc.thrld option.
However, this entails that features not meeting this threshold are not included in the dataset. Another
possibility is to use the package’s functionality of specifying a list of features from the ‘template’ dataset that
are differentially expressed.8 The detractor for these options is that it is harder to control the effect size
and total number of features (since the threshold can result in features being dropped from the dataset). In
essence, it is convenient for using datasets where the predictive features are known and methods of feature
selection need to be assessed for their effectiveness on a predictive feature with those characteristics. This is
slightly different from the objective in this thesis of simulating over a range of parameters that may effect the
performance of the methods of feature selection.

As such, we use the following steps to simulate the RNA-sequencing datasets using the SPsimSeq package.

1. For each study s, call the SPsimSeq function with the following study parameters:

• s.data with the object’s name of the count data of the existing RNA sequencing data,
• group a vector containing the group to which a sample belongs,
• pDE the proportion of predictive features over the total number of features,
• group.config the desired group composition in the simulated dataset,
• n.genes the number of features to simulate,
• tot.samples the desired number of samples, and
• lfc.thrld indicating the minimal log-fold change for predictive features, which was set to a low value

to ensure that the predictive features are not left out.

2. Add the location shift to a feature for the response group by using the mean value of that feature, which
is multiplied by the µpred,s value to obtain a higher value for the predictive features for the responder
group and

3. normalise the data (using the R function scale).

Because this simulation method is central to this thesis an excerpt from the R code with the implementation
of these three steps is given here.

# Step 1
sim.data.bulk <- SPsimSeq(n.sim = 1, s.data = zhang.counts,

group = MYCN.status, n.genes = study$ngenes,
batch.config = 1,
pDE = study$pgenes / study$ngenes,
group.config = c(study$n0 / (study$n0 + study$n1),

study$n1 / (study$n0 + study$n1)),
tot.samples = study$n0 + study$n1,

7As described in the results section, because a relatively large number of simulations ran where the offset was added after
normalising, the results for those method were used despite this caveat.

8By providing a lists of null and non-null feature names to the cand.DE.genes argument of the SPsimSeq function.
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lfc.thrld = 0.001)
# copy the data of interest from the object
df <- as.data.frame(sim.data.bulk$sim.data.list[[1]]$counts)

# Step 2
predictive <- sim.data.bulk$sim.data.list[[1]]$rowData$DE.ind
responder <- sim.data.bulk$sim.data.list[[1]]$colData$Group == '1'
# Add an effect to the predictive features in the responder group
df[predictive, responder] <- df[predictive, responder] +

rowMeans(df[predictive,]) * study$mu_predictive

# Step 3
df <- as.data.frame(t(apply(df, 1, scale))) %>% replace(is.na(.), 0)

3.2 Performance metrics

The performance metrics should ideally provide a single value that represents the performance of a method
of feature selection. These metrics should be usable for comparing the methods of feature selection in the
context of early drug discovery.

There are a variety of metrics that could be used given that we are dealing with a binary classification
problem. As such the basic elements of any performance metric are the true positives (TP), false positives
(FP), true negatives (TN) and the false negatives (FN). Because we know the actual number of positives
(P) and negative (N) in the dataset and each method of feature selection of predicts whether a feature is
positive (PP) or negative (PN), we can combine these measures in different ways to form measures such as
the sensitivity, specificity, negative/positive predictive values, false discovery rate (FDR), . . . As all these
measures can be reconstructed from the four basic elements mentioned above, these are stored as the results
for every study and method of feature selection.

In the context of providing an indication of how likely a certain method is, under simulated circumstances, in
properly selecting predictive features the precision and sensitivity are the most relevant measures.

The precision: T P
T P +F P is the metric that indicates the expected number of true positives when selecting the

top x genes (xtop = TP + FP ). The precision is the same as 1 − FDR, the FDR is often used in this context.
However, it seems that in machine learning the combination of precision and recall (i.e. sensitivity) is often
used, which makes it a matter of preference.

The sensitivity T P
P provides a measurement of the number of predictive features discovered over the number

of predictive features actually in the dataset (P = npred).

The precision and sensitivity are complementary measures. While they both look at the true discovery of
predictive features, the precision indicates the performance including the selection method (i.e. the choice of
x in the top x features). Instead, the sensitivity provides a measure incorporating the number of predictive
features that we know are actually in the data.

3.3 Metrics of feature selection

Before discussing the methods used for feature selection, the metrics that are the result outcome of the
different methods for feature selection need to be discussed. Herein there are two categories of values: the
results of hypothesis tests, and other values that can be used to classify the features.
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3.3.1 Hypothesis test metrics

Classical hypothesis testing involves the formulation of a null and alternative hypothesis, the latter which can
be one-/two-sided, leading to the calculation of a test statistic and which is based on assumptions on the
underlying distribution leads to the well-known and omnipresent p-value (Bijma, Jonker, and van der Vaart
2018, 123).

Statistical significance and p-values are closely related. Taking a p-value of p = 0.05 means that there is a
5% chance of falsely rejecting the null hypothesis (Bijma, Jonker, and van der Vaart 2018, 153). However,
when multiple tests are conducted simultaneously this can lead to the multiple testing problem, where
the probability of one incorrect rejections becomes much higher that the 0.05 probability of a false rejection
of the null hypothesis for a single test. This can become a problem when this problem is not recognized as
such, leading to false rejections of the null hypothesis.

3.3.1.1 Correcting for multiple testing There are different methods of correcting the p-values for
multiple simultaneous tests, such as the well-known Bonferroni correction (Bijma, Jonker, and van der Vaart
2018, 153–54). However, especially for larger numbers of tests this correction can be overly conservative.

The issue is that it corrects for probability of at least one type 1 error. This may be too ambitious, especially
for large scale hypothesis testing with a large number of simultaneous tests being performed (Efron and Hastie
2016, 271). The False Discovery Rate (FDR) instead aims at correcting at a proportion of the falsely rejected
hypotheses among the rejected hypotheses. The Benjamini-Hochberg procedure can be used to control for the
FDR by (i) ordering the p-values according to size, (ii) reject the null hypotheses corresponding to a jth order
statistic and (iii) also reject null hypothesis with a p-value below that of the null hypotheses rejected in step
ii. However, at a level where the proportion of correct null hypothesis is close to 1, the Benjamini-Hochberg
procedure is also conservative (Bijma, Jonker, and van der Vaart 2018, 155).

The implications of the different procedures of correcting for multiple testing is that it results in a variable
number of rejected null hypotheses. There is a balance between rejecting too many null hypotheses when
taking the p-values at face value and too few rejections by being overly conservative in correcting for multiple
testing. While there is evidently some middle ground to be found, it may be worthwhile to the consider the
constraints resulting from the problem’s context in which we use hypothesis testing.

3.3.2 SHAP metric for non-hypothesis test based metrics

In a realistic setting it is unknown whether a feature is predictive. However, it is known which samples
correspond to responders. As such, we require a method that provides an insight into what features contribute
to the classification outcome of a model, i.e. whether a set of features indicates a responder or non-responder
and which subset of features is the most relevant for doing that.

The method we use in this thesis to “explain” the models are SHAP (SHapley Additive exPlanations) values
(Scott M. Lundberg and Lee 2017). SHAP values are based on Shapley values, which are values used in
game-theory that represent the contribution of a ‘player’ to a ‘total payout.’ A more formal definition is that

“[t]he Shapley value is the average marginal contribution of a feature value across all possible
coalitions.”

In this definition, “coalitions” refers to the different set of features that can have different values. According
to (Scott M. Lundberg and Lee 2017) the Shapley values are calculated by

ϕi =
∑
S⊆F

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i})) − fS(xS)]
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where S is a subset of features and F a set of all features, fS∪{i} is a model trained with the feature i present
and fS is trained without that feature present.

The effect of withholding a feature depends on the other features in the subset. Using a sporting analogy, the
contribution of a player in a team depends both on the other players in the team, but also on the position
a player plays.9 In other words, the SHAP values average the player’s contribution to the team’s score by
putting the player in the different positions in a team and averaging over the team’s result (e.g. the number
of goals scored). The contribution of players can depend whether they are able to work as a ‘team.’ The idea
being that a team can be more than a sum of its parts or that a player can rise above him/herself in the
right team.

The formula above implies a large number of computations because of repeated retraining. However, through
the use of sampling, Shapley sampling values can be used to explain the model and avoid having to retrain
a model for every feature combination (i.e. fewer than 2|F | times). There are specific variants that further
reduce the computational requirements. As far as relevant for this thesis there is DeepSHAP for neural
networks (Scott M. Lundberg and Lee 2017) and for tree-based ML models there is SHAP variant called
TreeSHAP (Scott M. Lundberg et al. 2020). For the scope of this thesis it suffices that these methods use
different optimized approximations to fit an explanation model, resulting in a outcome similar to that given
by the formula above.

The SHAP values have some interesting properties making them a convenient method for interpreting
prediction models. These are (i) local accuracy (ii) missingness and (iii) consistency. These properties are
only satisfied if ϕi are Shapley values.

Local accuracy entails that the explanation model matches the original model for a simplified input that
corresponds to the original input. That is “the best explanation of a simple model is the model itself” (Scott
M. Lundberg and Lee 2017).

The missingness property ensures that missing data has no attributed impact on the value given to that
missing feature by the explanation model, i.e. ϕi = 0 for i missing.

Consistency means that if the value of the model f ′ for a feature i is equal or higher than that of f for the
same feature that value attributed by the explanation model ϕi is also equal or higher.

These properties mean that SHAP is more convenient compared to predecessors from which it borrows
some of the concepts, e.g. from the local linear explanation models (LIME) that interpret prediction by
approximating the model around that give prediction (Ribeiro, Singh, and Guestrin 2016). However, as
illustrated in the paper LIME has to violate the consistency property.

The choice for SHAP values as a method to get an insight into the influence of individual features on the
prediction was made because it can be applied to all the prediction methods that are delineated below, i.e. the
classifications trees and the neural networks.

3.3.3 Selection strategy

As discussed above, the hypothesis test metric allow for a threshold of a false discovery rate of for example
5%. However, the SHAP values don’t have such an interpretation. As such, the threshold would have to be
determined differently between this two categories of methods. This makes it more difficult to perform an
apples to apples comparison. Therefore, the choice for this thesis is to look at taking the top x genes based
on the respective scoring methods for further assessment. The exception here is the LIMMA method that
would have to be changed significantly to allow for this.

Selecting features for further assessment can be done by selecting the top x genes, varying x between 1 and
15.10 The reason is that, as we have mentioned above, not all methods return the same type of measure,
which would allow selection through a uniform threshold measure such as the FDR. Also the context of
feature selection in early drug discovery is that the features that are selected require further lab testing to

9That is that the Belgian footballer Lukaku will be more appreciated by his team as a striker than as a goalkeeper.
10This higher upper limit is unlikely to be feasible in practice due to the anticipated low cost-effectiveness.
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assess there potency as a predictor for response to a pharmaceutical compound. There is a cost involved in
the assessment of each predictor, which may be an important constraint in the number of features that can
be selected. A top x strategy would keep the cost constant and known upfront. Considering the above, we
use the strategy of selecting the top $n$ genes for further assessment.11

3.4 Statistical methods for feature selection

The models for feature selection are both classical methods thath already used in the field and some machine
learning methods for comparison. An Empirical Bayes (EB) correction is applied to all methods except for
the neural networks using Tweedie’s formula.

3.4.1 Methods based on hypothesis testing

3.4.1.1 T-test The t-test is the traditional method for testing a hypothesis. In this case we are using a
two-sample t-test, assuming independent observations. A t-test assumes that the data are (approximately)
normal distribution with an unknown variance. The test uses the mean and variance of both groups for
assessing the two-sided hypothesis of equal means among the groups against the alternative of different means.
Under the assumption of normality the t-test is known to be the most powerful test (Thas 2010, 231).

For the particular problem at hand, we assume unequal variance between the responder and non-responder
groups for predictive features. As such, Welch’s t-test, or the unequal variances t-test, is the test that we use.
The formula for the test statistic is provided below. There are tables and software available to obtain the
corresponding p-value.12

T = X̄1 − X̄2√
s1√
n1

2 + s2√
n2

2

where X̄1 is the average in the non-responder group, X̄2 is the average in the responder group, s2
1 the sample

variance in the non-responder group, s2
2 the sample variance in the responder group, n1 the size of the

non-responder group, and n2 the size of the responder group (Bijma, Jonker, and van der Vaart 2018, 134–36).

Our implementation of this test is done in Python using Jax (“Google/Jax: Composable Transformations of
Python+NumPy Programs: Differentiate, Vectorize, JIT to GPU/TPU, and More” n.d.) to allow vectorise
the operations for faster execution.13 As discussed in section 3.3.3, the top x scores are used. Therefore, the
test-statistic is sufficient. Making it unnecessary to implement the p-value calculations.

The reason for including this specific hypothesis test is to provide a baseline to compare other method to.
The t-test is a well established and widely used method for assessing a difference among groups. As such, it
is still a valid testing method for differential expression for sequencing data when controlling for multiple
testing.

3.4.1.2 Area Under the Curve (AUC) The idea of using AUC is that instead of using two parameters
(the mean and variance) to describe the data, each data point in one group is compared to all data points in
the other group. In doing so using more of the information enclosed in the distribution of the data. This
potentially allows for a more accurate test when the data deviates from a normal distribution (e.g. due
to skewness, variance heterogeneity,. . . ) where Welch’s t-test is not necessarily the most optimal test to
use (Fagerland and Sandvik 2009). Contrary, the absolute relative efficiency of the WMW for normal data
approaches the t-test for normal data and can be higher for other distributions (Thas 2010, 232). It is known
that sequencing data are not normally distributed (Thas 2010, 306).

11See discussion on effect and alternative methods.
12See section 3.3.1 on the problem of large-scale hypothesis testing.
13See section A.1.2 for the corresponding Python code.
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The AUC value represents the probability that X1 ≤ X2, which can be calculated for very small sample size
by checking the equation for all the combinations in the data. However, this quickly becomes computationally
intractable. Fortunately, the Mann Whitney (or Wilcoxon) test statistic is an estimator (π̂) for the AUC (π).
Conveniently, this test is available in standard statistical software. The implementation used in this thesis is
from the (“Statsmodels/Statsmodels: Statsmodels: Statistical Modeling and Econometrics in Python” n.d.),
a python library.

As will become clear in subsection 3.4.1.3 where empirical Bayes correction is discussed, we require (an
estimate of) the variance of the AUC to be able to use Tweedie’s formula. The variance calculation is given
by (Thas 2010, 233–34), which provides the following formulas for estimating the variance of the AUC.

V ar{π̂} = 1
n1n2

π(1 − π)[1 + (n1 − 1)ρ1 + (n2 − 1)ρ2]

with n1 and n2 the size of the respective groups, and where the estimators for the ρ are given by:

ρ̂i = p̂i − π̂2

π̂ − π̂2

with i = 1, 2 where

p1 = 1
n1n2(n1 − 1)

n1∑
h̸=i=1

n2∑
j=1

IijIhj

where Iij = I(X1i ≤ X2j with i = 1, . . . , n1 and j = 1, . . . , n2.

p2 = 1
n1n2(n2 − 1)

n1∑
i=1

n2∑
k ̸=j=1

IijIik

The calculation of the variance of the AUC is partly implemented in the programming language C because
the calculations require running a loop that considers the inequality in the

∑
of the formulas for calculating

p̂i, which is known to be slow in native Python.14 The EB correction for the AUC are based on the per
feature variance. Contrary to the t-test it was thought prudent not to add the constant variance as another
method to the comparison.

The reason for including this non-parametric test in the comparison is that we expect that for the simulation
methods that lead to more realistic datasets that these will not necessarily be normally distributed. Therefore,
we expect that the AUC will perform better on the more realistic datasets. Whereas the t-test is expected to
exceed the performance of the other methods for the normally distributed data.15

Another reason for using the AUC is because the AUC has the convenient and meaningful interpretation
as an effect size parameter. It gives Pr(X1 ≤ X2), which is equal to 1

2 under the null hypothesis of equal
distributions for X1 and X2. This means that when the value of the AUC is further away from 0.5 that it
is (much) more likely that there is a difference between the groups (Thas 2010, 226). In casu this entails
that the closer AUC is to either 0 or 1, the more likely it is that the feature is a good candidate for being a
predictive feature.

14Loops in Python are known to be slow, a C implementation provides a speed-up in the order of a 100-1000x.
15Although not necessarily by much given the high relative efficiency of the WMW test compared to the t-test: ARE ≥ 0.864

(Thas 2010, 233)
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3.4.1.3 Empirical Bayes correction for selection bias using Tweedie’s formula The selection bias
as referred to by (Efron 2011) as the tendency of the mean µi of the features (i = 1, ..., nt) that are selected
(e.g. by the top x features as candidate predictive features) to actually be closer to the mean of the other,
that is less extreme, than their sampled value. In other words, the actual location shift would be smaller
for these selected features meaning that it is more likely that the features have become this outlying due to
randomness.

One way of correcting for selection bias, is to use EB methods as a shrinkage estimator (Efron and Hastie
2016, 411). In contrast to full Bayesian methods, where the prior is determined prior to observing the data,
EB uses the data to estimate the prior distribution. EB approximates a hierarchical (full) Bayes model where
the hyperparameters are set at their most likely values instead of being integrated out (Lesaffre and Lawson
2012, 238–39). Sufficient subjects need to be available to ensure that the approximation is accurate enough.
This is because the influence of individual datapoints on the prior becomes negligible for a larger number of
datapoints. Fortunately, the large number of features in our data allow for an accurate approximation.

There are multiple EB estimation strategies (Efron and Hastie 2016, 421). In this thesis we use the so-called
Tweedie’s formula method as described in (Efron 2011).

E{µ|z} = z + σ2 d

dz
logf(z)

which assumes that σ2 is known (which is why the estimators for the variance were introduced in the previous
sections) and where z is a vector of observed values for i = 1, 2, . . . , N . It possible to estimate the µi by using
the EB version of this formula:

µ̂i ≡ Ê{µi|zi} = zi + σ2 l̂′(zi)

The advantage of this method is that it works directly with the marginal density and all observations can be
used to obtain a smooth estimate of l̂(z). The method does require a smoothed differentiable estimate of
l(z) = logf(z). To obtain such a function, Lindsey’s method can be applied, which uses a Poisson regression
by assuming that f(z) is of a Jth-degree polynomial.

f(z) = exp{
J∑

j=0
βjzj}

having a canonical parameter vector β = (β0, β1, β2, ..., βJ) with β0 used to fulfil the requirement that f(z)
integrates to 1 over the family’s sample space Z, which can be determined by partition over the range of
Z into K bins and computing the counts for each bin: yk =#{ zi in kth bin} with k = 1, 2, · · · , K. Next
Poisson regression can be used taking the model: yk

ind∼ Poi(vk).

As mentioned before, and evident from Tweedie’s formula, is that an estimate of the variance is necessary.
As such, to be able to apply this method, the formula’s for the variance are needed for methods to which
it is applied. As shown above there are formulas for estimating the variance for the methods based on
hypothesis testing, specifically the t-test and AUC. However, for the prediction methods below the formula of
the variance is not known, meaning that it is set to 1 because the data are normalised.

Furthermore, assuming that there is a difference between the variance of the predictive features compared
to the other features, it may be of interest to adjust the EB correction based on the specific variance of a
feature.16 Therefore, there we use two methods of calculating the variance: (i) determining σ for the whole
set at once, and (ii) determining σ per feature with σ = (σ1, σ2, . . . , σn) where n is the number of features.
This is more computationally intensive, which can be mitigated by parallel computations, and as said will
hopefully provide more accurate corrections.

16A more extreme form of the mean-variance trend that is used in the LIMMA package that is used to correct for the
sequencing technologies reliability at lower intensities (Ritchie et al. 2015)
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3.4.1.4 LIMMA The LIMMA package (LIMMA: Linear Models for Microarray Data) offers a relatively
popular method for assessing differential expression in sequence data. While the package offers multiple
function, in this thesis we use the limFit function to fit a linear model to the data and the eBayes to perform
EB correction on that linear model fit.

Thus, the method consists of fitting a linear model to each row of data, which corresponds to a feature.
It also uses the parallel nature of genomic data to borrow strength between these separate models for the
genes (Ritchie et al. 2015). The latter step, what the authors call “information borrowing” is done using
EB methods(Ritchie et al. 2015). More specifically it concerns a robust EB method, which reduces the
probability of selecting variable features based on spurious differences (Phipson et al. 2016).

This way of using the LIMMA package is similar to the t-test with EB correction in the sense that the method
consists of a linear model (in which the coefficients undergo a modified t-test) and an EB correction (Phipson
et al. 2016, 951). Because it is conceptually somewhat similar to one of the other methods, and given its
wider use, we apply this method to assess whether there is a difference between the implementations.

3.4.2 Prediction methods

The following methods don’t use hypothesis testing, but instead are prediction models that aim to predict
the most likely class. These are the so-called machine learning and AI methods.

3.4.2.1 Xgboost: boosted classification trees A method of predicting a classification are classification
trees, see Figure 2,17 where the parameters are used as splitting variables. In other words, by following the
path along the tree the parameters determine which direction to take, which when followed to the root (or
leaf depending on your perspective on trees) leads to a certain classification. Evidently there is a balance
between the size of the tree in relation to its tendency to under-/overfit(Hastie, Tibshirani, and Friedman
2009, 307).

Figure 2: An example of a classification tree.

Classification trees have a high variance because the hierarchical splits and the influence of small changes
thereon lead to very different trees (Hastie, Tibshirani, and Friedman 2009, 312). Meaning that classification
trees (like regression trees) are so-called “weak learners” or weak classifiers because their error rate is only
slightly better than random guessing. Weak learners can be combined into a higher performance model through
the use of boosting, which reduces variance by averaging over many (weak) learners (Hastie, Tibshirani, and
Friedman 2009, 337).

17Image source: https://bookdown.org/tpinto_home/Beyond-Additivity/)
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It is infeasible to calculate the best partitioning of a tree in terms of the minimum sum of squares because
of the computational complexity this entails (Hastie, Tibshirani, and Friedman 2009, 307). Consequently,
different algorithms are used to approximate the “optimal” tree including gradient boosting. Gradient
boosting uses the numerical optimization procedure of gradient descent to ascertain the gradient in which to
‘travel’ the model’s parameters to reduce the loss function (Hastie, Tibshirani, and Friedman 2009, 358; Efron
and Hastie 2016, 348). It is beyond the scope of the thesis to reiterate the boosting algorith and gradient
descent since there are good textbooks on those topics, e.g. (Hastie, Tibshirani, and Friedman 2009, 361).

For this thesis we use the implementation of boosted classification trees in the Xgboost package(Chen and
Guestrin 2016). Using n_estimators=10 for 10 boosting rounds, eval_metric='mlogloss suitable for a
binary classification problem and 12 simultaneous jobs for exploring the tree through n_jobs=12.

To ensure more robust results we use 5-fold cross-validation to balance variance with computational feasibility
(Hastie, Tibshirani, and Friedman 2009, 242). This means that the nt features are split into 5 datasets,
leaving one out as a test-set. The SHAP values are calculated on that test-set, meaning that the SHAP values
are calculated on unseen data within the context of a fold. This should ensure that a correct cross-validation
is done as described in (Hastie, Tibshirani, and Friedman 2009, 245–46).

3.4.2.2 Neural networks Given the popularity of deep learning in big data applications, we will assess
the performance of a neural network for feature selection.

Neural networks are two-stage regression or classifications models that can be represented by a network
diagram, or a graph (Hastie, Tibshirani, and Friedman 2009, 392). The neural network can be made into a
classification model by adding a softmax layer as the final layer (Hastie, Tibshirani, and Friedman 2009, 393).
There are several parameters that can be changed or tuned in a neural network. The number, type, size of
(hidden) layers can be determined with little constraints. The topology of the network is very flexible where the
connection between different layers can be (completely) specified. There are a variety of activation functions
for the neurons in the network. There is also the exact method of gradient descent and its hyperparameters
such as the learning rate that can be tuned (Yu and Zhu 2020).

We will not bother with tuning all these parameters and use the default parameters in Tensorflow. This
is because the competing methods of feature selection require very little effort in terms of tuning. The
reasoning behind this choice is that it would be difficult in practice to perform further tuning given the limited
availability of data, a lack of understanding of how robust hyperparamaters are across different datasets, and
would substantially complicate the comparison between the methods of feature selection.

The only tuning we change in the model is using an increasing number of hidden layers until overfitting
becomes problematic and reduce the number of iterations (epochs) to a subjective level of not overfittting.
This choice was made because overfitting is an issue in using neural networks (Hastie, Tibshirani, and
Friedman 2009, 359), which becomes more likely when adding depth to the network. There are two major
interventions possible against overfitting: reducing the size and number of layers, and using drop out layers.
The latter is a layer type that randomly drops, or resets, the values of neurons in the network to prevent the
model from relying on such nexuses. We use the rectified linear unit (ReLU) as the activation function.

Because the neural network will be trained to classify into responders and non-responders, an additional step
is required to obtain a measure that can be used to identify predictive features. The SHAP values, using the
DeepSHAP variant that is conceptually similar to the TreeSHAP mentioned above, are calculated and used
to identify predictive features.

We did an initial exploration into two implementations for creating the neural network model: Tensorflow and
Jax. The latter is a newer, more low-level, library that would allow for parallel training of smaller networks.
However, this comes at the cost of support in other packages. In the end in proved to be technically infeasible
to create a efficient SHAP value implementation for Jax within the context of this thesis (i.e. this would
require low-level coding in both packages to implement). Therefore, we use Tensorflow given it is directly
supported by the SHAP package. Unfortunately, there is no straightforward way to do parallel training of
neural networks in Tensorflow, which was consequently abandoned.
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3.5 Data integration (DI)

Data integration (DI) allows the use of earlier measurements of the same feature(set) to be informative on
whether a feature deviates from the wild-type, which is hypothesised to increase the probability of it being
a predictive feature. To assess this, the dataset resulting from the simulation method described above are
used. However, the predictive features are shuffled in the set as to not coincide with the predictive features
in the ‘original study’ dataset. The reasoning being that in reality the “response” is unknown for datasets
available for data integration and that in public sets there is no differential expression that is hypothesised for
the predictive features. The underlying assumption for the data integration method that we use is that the
wild-type variance of a feature differs from the variance of a predictive feature. Essentially, this assumption
revolves around the idea that the influence of a compound on the expression levels and a response is unlikely
to be found in the wild, i.e. in publicly available datasets. In essence this is the concept of the filter methods
as described in (Kuhn and Johnson 2013, 499).

Revisiting the analogy of the needle in the haystack, the idea of data integration is that we are able to remove
part of the haystack of which we are relatively sure that it contains no needle. Thinking of Figure 1b this
is similar to using a tool (e.g. the magnet in the figure above) to guess whether the needle is in some well
defined part of the hay.

The method used for this thesis is the following for a specific study:

1. Select a random sample of size npub = 10 of other simulated studies with the same number of genes
2. Shuffle the predictive features in the ‘integration’ dataset
3. Use a hypothesis test (see below) to assess genes that differ between the ‘study’ dataset and the

‘integration’ dataset
4. Select those features that have a value below a certain (subjective) threshold.

Two hypothesis tests were used in step 3: a test for equal means and equal variance.

3.5.1 Based on the mean

Initially, the data integration was based on the mean. For this, the hypothesis test that we use is the Mann
Whitney U test statistic given it is more efficient when the data is not normally distributed. The resulting
p-value was used for filtering of the features below a (pre-determined) threshold of p ≤ 0.65 feature selection.
This is a subjective cut-off point as there is no obvious way to select an objective cut-off point.(Kuhn and
Johnson 2013, 499)

3.5.2 Based on variance

Another method do the filtering is based on the (difference in) variance. To assess the difference based on the
variance there are a couple of tests that we can use: F-test for equal variance, Bartlett’s test, the Levene
(Levene 1960) and Brown-Forsythe (Brown and Forsythe 1974) tests (the latter is an extension of the Levene
test using the median instead of the mean). Because the F-test and Bartlett’s test do not work well on
non-normal data and we use the Brown-Forsythe test, which is recommended for skewed distributions.18

The null hypothesis is that all variances are equal, H0 : σ2
1 = σ2

2 = · · · = σ2
k. The alternative hypothesis is

that at least one pair of variances (e.g. i and j) that is different, Ha : σ2
i ̸= σ2

j . The test statistic is defined as
follows, based on (Guthrie 2020).

W = (N − k)
k − 1

∑k
i=1 Ni(Z̄i. − ¯Z..)2∑k

i=1
∑Ni

j=1(Zij − ¯Zi.)2

18See the Scipy documentation, https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html
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where Zij = |Yij | − Ỹi with Ỹi the median of the i-th subgroup, Z̄i. the mean of the i-th subgroup, Z.. the
overall mean.

The corresponding p-value can be calculated using the F distribution: W > Fα,k−1,N−k where k − 1 and
N − k indicate the degrees of freedom and α the significance level.

We use the implementation in (Virtanen et al. 2020) of the Levene test and filter the features that have a
p-value resulting in p ≤ 0.65. The threshold is again subjective.

4 Results

The results start with the outcome of the data simulation, describing what data was generated in the end.
Next, the different aspects relevant for the guidelines are discussed, being: number of features, number of
predictive features, effect-size of the predictive features, and sample size. There is a specific section focusing
on the performance of the EB correction using Tweedie and an assessment of the performance of the data
integration.

4.1 Data simulations

While the intention was to use the steps in simulating the data as described in section 3.1.2, small coding
errors led to unexpected study data. However, these studies were still usable for specific analyses and therefore
kept for further analysis.

The result of the simulation is a dataset that encompasses 1.5 TB, for around ~100.000 studies in total, see
Table 2 for an indication of the size of the different simulation generations. Because of time and computational
constraints not every simulation run was completed, which is shown by a difference in the generated studies
and the number of studies. Consequently, there may be missing combinations of parameters, e.g. there may
not be a study for a specific number of features with all the other combinations that are available for another
number of features in that same run.19

Table 2: Description of the (approximate) number of studies simulated.

Generation Size Generated studies Number of studies
Normal 63.7 GB 52518 52518
Zhang-1 328.8 GB 13167 13167
Zhang-2 762.6 GB 21339 21339
Zhang-2-di-mean 9.2 GB 17770 21339
Zhang-2-di-var 24.9 GB 8800 21339
Zhang-3 323.5 GB 3467 5629

Table 2 shows that there were multiple generations of data simulations. The first generation made use of the
simulations method described in section 3.1.1, which consists of the studies generated through the location
shifted Gaussian mixture model.

The other methods are using the SPsimSeq package, with differences in the way the location shift to the
predictive features for the responders group was applied.

The Zhang-1 set is the initial SPsimSeq version the location shift was applied after scaling. Consequently,
there is variance of 1 for all but the predictor features (i.e. the variance would be a perfect classifier). The
t-test with EB based on the variance is probably affected by this mistake because there the correction term
in Tweedie’s formula is based on the variance of the individual features. For this method and combined with
the Zhang-1 generation means that there is a disproportionate correction for predictive features because

19This is known not to be ideal, see the limitations in the discussion for elaboration on this.
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the location shift in that generation influences the variance. For larger µpred that means there can be an
overcorrection to the opposite extreme for those features. For this reason the studies in Zhang-1 generation
are not valid for the t-test (EB, variance) method of feature selection. Because the other methods do not
seem to be overly affected by this mistake the generation was kept as a whole.

The second generation is Zhang-2, which would have been the final version except that due to a coding error
the minimal effect size was always a µpred of 1, leading to effect sizes that were larger than desired. The last
generation Zhang-3 was mainly used for the assessment of the Xgboost method since there was no appreciable
decrease in performance at µpred ≥ 1. Because the Zhang-2 and Zhang-2 are otherwise identical, these
generations were combined, where they were not needed separately, by correcting the Zhang-2 generation by
increasing the metadata by 1 for the µpred.

Zhang-2-di-mean and Zhang-2-di-var are the results of the DI methods of using the mean and the variance
respectively. As their names imply the DI uses the Zhang-2 generation as the underlying datasource.

There are three complications that arise from how the simulations were done.

1. Some generations are incomplete for some analyses, meaning that checks are needed to ensure a sufficient
number of studies per (combination of) variable(s). To be specific, there may be fewer results for the
Xgboost and Neural network models since these are more computationally demanding.20

2. The iterative development process and resource constraints entail that not all analyses are applied to
every generation. This specifically concerns the LIMMA and the neural network methods of feature
selection.21

3. Most importantly, within a generation there are multiple ‘runs’ that are balanced within, but not
balanced between. For the normal data this was identified by the time of the calculation of the result,
for the Zhang data by a meta_run identifier. However, these proved to be unwieldy in practice because
repetitions of runs with different seed value also have a different number, so it remains largely unused.

4.2 Influence of number of features

The expectation is that increasing the number of features is the equivalent to adding more hay to a haystack,
i.e. it will make it more difficult to find predictive features. Consequently, an increase in the number of
features with all other variables constant is expected to reduce performance.

For the ‘normal’ data the results in Figure 3 show a small, but consistent, decrease in performance when
the number of features increases. The exception is the neural network, which is both remarkable in that it
performs better on more features as well as the lack of difference between the group sizes. There is variability
in the performances that originates from the different effect sizes that are in a generation, which are not
balanced over the number of features.22

Figure 5 shows the effect of the number of features on the precision in the Zhang-1 and Zhang-2 simulated sets.
Depending on the method of feature selection there is a downward trend, although for some combinations of
the method of feature selection and the number of predictive features this is not the case. The variability in
the results are likely a result of the variance of the precision estimate and the number of samples since the
larger number of samples per number of features in the Zhang-1 set is less variable.

One evident result shown in Figure 5 is the very poor performance of the neural network.

First, looking at the overall effect of the number of total features, there is a clear drop in the performance
with higher number of features as shown in Figure 4.

Figure 5 shows the effect of the number of features for the different methods of feature selection, applied
to all the SPsimSeq simulations. The variability in these results led to the choice of binning into 4 groups
based on the number of features. The results in these groups are averaged showing that for most studies

20These are also implemented separately from the hypothesis test based methods.
21LIMMA is not applied to the normal generation, whereas the neural networks were not used in data integration.
22This results from doing more runs per simulation generation with slightly differen parameters.
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Figure 3: The effect on the precision (a) and sensitivity (b) of number of features in the normal data. The
points indicate the mean precision with the solid lines are the linear regression line for a lower effect size and
a larger effect size.

0.0

0.1

0.2

0.3

0.4

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05
Number of Features

P
re

ci
si

on

Figure 4: The precision and sensitivity for the Zhang generations, which are averaged over the other
parameters. The linear regression line is in blue.
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there is a decrease in performance. For the t-test methods there is an increase around the 500.000 features,
which may be the result of chance since the number of studies for that group is limited. Of note is that the
neural networks with a single hidden layer started overfitting even at very low epochs, meaning that the
performance became very poor. Therefore, it was decided to be economical in the use of compute time for
that method and to not further consider larger networks.
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(b) Effect on the sensitivity

Figure 5: The effect of the number of features on larger group sizes for the Zhang generations. The solid line
and black dots show the mean precision and sensitivity.

4.3 Number of predictive features

To asses the influence of the number of predictive features on the precision and sensitivity, we look into
the effect of the number predictive features for a range of selection strategies using the absolute number of
predictive features. After this, the fraction of predictive features in the total number of features is assessed
( npred

nt
).

4.3.1 Effect of the absolute number of predictive features

Figure 6a suggests that having a larger number of predictive features increases the precision, which is rather
unremarkable. What is notable is that the sensitivity, as show in Figure 6b, drops when there are more
predictive features in the data. There are two possible reasons for this. The first is that the top x selection
strategy is a limiting factor for selecting the larger number of predictive features. For larger number of
predictive features a more liberal selection strategy may be required. In the context of early drug discovery
such a situation would be unlikely since the expected number of predictive features is not that high. The
second is that it becomes increasingly difficult to select additional predictive features. Given that the features
are ranked it makes sense that lower ranked predictive features are more similar to non-predictive features.

4.3.2 Effect of the relative number of predictive features

Figure 7a shows the precision for the fraction of predictive features in the total number of genes
( npred

npred+nnon_pred
). The points in the figure indicate the mean precision for that specific fraction The precision

increases when there are relatively more predictive features in the dataset, regardless of the selection strategy.
The sensitivity is more constant compared to the precision, with the mean sensitivity when selecting only the
top 1 feature declines at higher fractions. The reason for this is that a higher fraction either requires more
(than 1) predictive features or a lower number of total features. The former affects the sensitivity because it
declines with an increased number of predictive features when keeping the selection strategy constant.
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Figure 6: The precision (a) and sensitivity (b) for different numbers of predictive features. The black line is
the mean of all methods, which are the coloured lines that show the precision and sensitivity per method of
feature selection.
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Figure 7b shows the sensitivity for the fraction of predictive features in the total number of features ( npred

nt
),

similar to the figure of the precision above. Overall the sensitivity is relatively constant over the range of
proportions in the simulated studies. For the top x = 1, 2 strategies the decrease can be explained because a
higher proportion in our simulated set requires more predictive features, since there are few low dimensional
studies being simulated. Therefore, these strategies do not perform well because of the inability to select all
these predictive features.

Top 3 features Top 4 features

Top 1 feature Top 2 features

0e+00 5e−05 1e−04 0e+00 5e−05 1e−04

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

npred ÷ nt

P
re

ci
si

on

a

Top 3 features Top 4 features

Top 1 feature Top 2 features

0e+00 5e−05 1e−04 0e+00 5e−05 1e−04

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

npred ÷ nt

S
en

si
tiv

ity

b

Figure 7: The dots indicate the mean precision (a) and sensitivity (b) for the relative number of predictive
features, which means the number of prective features divided by the total number of features.

Figure 8 shows the results for the LIMMA method. These results are presented separately because it doesn’t
use a top x selection method. Unsurprisingly, for LIMMA there is a benefit of having a higher proportion
of predictive features in the data too for the precision. The sensitivity gets lower with a higher fraction of
predictive features. In conjunction with the higher performance for the precision, it can be concluded that
the reason for this is that the simulations with a higher fraction have a higher absolute number of predictive
features, where the sensitivity is reduced by selecting lower number of the top x features. This again confirms
that a selection strategy must be adapted to the specific context to ensure high precision and sensitivity.

4.4 Effect size

The previous sections have already hinted at the importance of the effect size, consisting of the location shift
and the variance of the predictive features, on the performance of the different methods of feature selection.

The results for the effect size in the Zhang dataset in Figure 9. The results for the normal generation are not
shown, but consist of similar results, albeit with more variation due to the higher number of combinations in
the normal generation.23

23The results for the normal dataset are more variable as a result from using more combinations of parameters in the
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Figure 8: Precision (equal to the sensitivity here) for the LIMMA method for the fraction of predictive
features in the total number of features.

Figure 9 shows that the Xgboost method outperforms the other methods of feature selection, especially at
lower effect sizes. A notable difference compared to the results on the normal simulation method is that
the AUC is now outperforming the t-test. Since the SPsimSeq package simulates more realistic, that is non
normal, datasets this is in line with the theory discussed above in the method section.

Figure 10 shows that the sensitivity gets higher with a larger location shift. Because the average is taken
over the different predictive features, the maximum sensitivity when selecting the top gene is 1+ 1

2 + 1
3

3 ≈ 0.61.
All but the Xgboost method show a slow steady, albeit variable, rise in sensitivity with increased location
shift. The AUC method is another good performer, which quickly increases in performance at lower location
shifts. Because these results are rather noisy due to the influence of all other parameters, a GAM smoother
was used for assessing the trends for the different methods of feature selection.

To assess the limits of the Xgboost method, another simulation run: “Zhang-3” was done, which has lower
effect size because of the different ways in which the calculations were done in software. Figure 11 shows that
the Xgboost method too has a lower threshold for the effect size that it needs to perform with high precision.
A loess smoother is applied to the results to better depict the transition point for the increase in performance
of the Xgboost method at a location shift of µpred in the range of 0.4-0.5.

4.5 Sample size

The size of the responder group is influential on the ability of the different methods to achieve a high precision.
The expectation is that balanced groups with larger sample sizes perform best.

There is some variability over the different number of features, resulting from unequal average effect sizes
because these come from different runs. Therefore, a linear regression line was used to provided a more
convenient picture for comparison. The normal dataset shows clear difference between the group sizes where
the larger sample sizes outperform smaller group sizes, see Figure 12. The unbalanced groups are mostly
similar over the different methods, with the exception of the neural network, where there is a clear difference.
This may be because neural networks do not necessarily work per individual feature, which could partly
explain why the larger responder groups performs better using that method of feature selection. When
considering the non predictive features as noise, there is more signal available when there are more responders
vs. non responders. The results could be better in part because the network could incorporate differences
within the responder group as well.
simulations. It can be seen in the Dashboard.
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Figure 9: The influence of the location shift on the average sensitivity for the different methods of analyses in
the Zhang-1 generation.
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Figure 12: The effect of sample size and balance of groups on the precision of selecting predictive features for
the normal dataset.
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The same figure, but for the whole Zhang dataset is given in Figure 13 for the range of 20 to 40 thousand
features. The effect of the sample size is less clear here. While the largest sample size (n1 = n2 = 40)
generally outperforms the other methods, there are exceptions. A strange phenomenon is the difference in
performance for the unbalanced groups in multiple methods. The peculiar very low performance for the
n1 = 40, n2 = 15 group suggests an implementation error since there is little theoretical reason to suggest
such an effect. A thorough check of the implementation provided no evident reason of an error, making this
surprising and unexplained result particularly in light of not observing such an effect in the normal data.
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Figure 13: The effect of sample size and balance of groups on the precision of selecting predictive features for
the Zhang datasets.

4.6 EB correction using Tweedie

The use of the specific EB correction using Tweedie’s formula warrant a further look into how it affects
performance in the context of this thesis. While there is no obvious, across the board, performance benefit,
there is some suggestion of an effect in the previous results. Although the direction of the effect depends on
the specific method of feature selection.

For this section we make the comparison between the performance of the EB correction on the normal dataset
and the combination of the Zhang-2 and Zhang-3 datasets. The figures are so called dumbbell plots that
show two coloured points connected by a line for easy comparison. The colours of the points indicate whether
it corresponds to a EB or non-EB corrected result.24

Table 3 gives the average precision and sensitivity for the normal generation and the Zhang-* generations for
the analysis that include an EB correction. The main interest in these two tables is to compare the relative
performance of the different methods of feature selection for a specific simulation method (normal vs. Zhang).

24Of note is that the LIMMA method was not applied to the normal dataset and as a consequence is missing in this comparison.
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Table 3: Averaged precision and sensitivity per analysis.

Normal Zhang
Analysis Precision Sensitivity Precision Sensitivity
auc 0.35 0.56 0.270 0.44
nn-mcp-1-layer-256 0.34 0.54 0.076 0.12
t-test 0.44 0.69 0.190 0.28
tweedie_auc 0.31 0.48 0.140 0.22
tweedie_t-test 0.44 0.69 0.150 0.23
tweedie_t-test-var 0.45 0.72 0.150 0.23
tweedie_xgboost 0.21 0.40 0.300 0.53
xgboost 0.32 0.49 0.330 0.56

While the t-test based methods perform better for the normal data, the performance for the other methods
of feature selection perform relatively better for the more realistic Zhang data.

Figure 14 shows the performance difference for the precision for the t-test versus the EB corrected t-test with
the variance calculated for each feature.25 There is a small, consistent performance benefit for the normal
data. For the Zhang data it reduces performance.
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Figure 14: Comparison of the precision of the T-test vs T-test (EB, individual variance), where the EB
improves the precision on the normal data.

The AUC method and Xgboost result are shown in figure 15. These are shown together because the conclusions
on the effect of EB correction are the same for both: it reduces the precision.

Looking into the different methods of feature selection in more detail, reveals a consistent pattern of the
Tweedie formula not having a performance benefit, but actually performing worse in all but the EB correction
for the t-test. As such there is a very narrow area of applications for this method of correcting for selection
bias, namely on a normally distributed dataset, when the method of feature selection is a t-test. However, in
none of the more realistic simulations using SPsimSeq was there any substantial benefit. To the contrary,

25Using the variance per feature has a slight performance benefit, which is why the t-test using the overall variance for EB
correction is not shown.
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(b) The Xgboost and Xgboost with Tweedie corrections.

Figure 15: The effect of EB correction on the precision for the AUC and Xgboost method shows no benefit.

there was a consistent loss in performance with incidental gains. As such, these results imply that it is not a
particularly useful method in practice.

4.7 Data integration

In this section we compare the result on the analysis on the ‘complete’ Zhang-2 dataset with those that were
‘reduced’ through the two DI methods. The reason being that the calculations on all datasets would be too
time consuming and are unlikely to provide novel insights.

Just like for the section on the results of EB corrections, dumbbell plots are used to compare the results (i.c.
the precision) of the data integration compared to the original dataset for both methods.

Figure 16 shows the results of the mean-based method. Overall there does not seem to be a benefit in using
this type DI, with the exception of the LIMMMA method where it has a benefit for higher numbers of features.
As discussed in the methods section, using a hypothesis test based on the mean is not the recommended
option. For one, it requires that there is not a variation of the mean resulting from other sources (e.g. due to
variability in the sequencing technology). Besides a lower performance, this specific implementation has no
other benefits such as tangible improvements in computation times. Also it requires extra steps meaning an
added layer of complexity, which is acceptable only when there are performance benefits.

The results for variance-based method in Figure 17 show a more promising result for using DI. Meaning that
it shows consistent benefit for LIMMA. Still, for the other methods the precision is reduced when the precision
is already higher. However, when the precision for the original method is low, there does seem to be a benefit
of DI. There is an important caveat with this results, namely that the DI was not run to completion, which
can affect some methods more than others. Also, there is a problem of the average precision being exactly
zero for groups with > 100 studies. This is unlikely and would indicate an error in scoring. However, if that
were the case it would show up more consistently because while Xgboost method is mostly implemented
separately, the EB-corrected AUC method is implemented together with the other methods.

On the whole, considering the caveats above, the DI show a picture of a sort of shrinkage of the precision.
Meaning that except for LIMMA there is a tendency of the direction of the effect of DI to be away from the
extremes. This could be the consequence of the results being too variable, however.
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Figure 16: A comparison of the precision for the original datasets and the mean-based DI method. The
Zhang-2 is shown in red and the DI in blue.
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Figure 17: A comparison of the precision for the original datasets and the variance-based DI method. The
colours indicate the Original and DI. A caveat in this figure are that there are analyses with a result of
exactly zero, which is unlikely.
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5 Discussion

The results show that the number of features, the number of predictive features and the sample size affect
the precision and sensitivity of the different methods of feature selection. Not all results were completely
and unequivocally as expected. In the discussion the limitations of the (results of this) thesis are given,
followed by a comparison of the different methods discussing the reasons for the difference in performance,
the reasoning behind the results of the data integration methods and possible areas of further research.

5.1 Limitations

Within the scope of a thesis there are limitations on what is feasible. The important limitations were: the
computational resources available, the selection strategy may not be optimal, and there are limitations specific
to the simulations methods.

5.1.1 Computational resources

For this thesis that involves the computation time available to perform the simulations and subsequent
methods. As the results show, it was not always feasible, and also probably not fruitful, to assess every
method for each type of simulation. Furthermore, it limited the granularity with which the simulations could
run. This has been specifically clear for the number of features, where it was not feasible to perform many
iterations at higher numbers, and for sample sizes, where it would take significant computation time to assess
more samples per groups and more combinations of responder and non-responder group sizes.

This limitation was the result of having a single node, which became a particularly limiting factor with the
generation of more realistic datasets because of RAM limitations. It also meant that it was not feasible to
‘redo’ the simulations to get a completely balanced result across all analyses and

To solve this multiple nodes in either a cluster (HPC) or cloud environment could be used to have more
computational resources available. The reason why this was not used for this thesis was the problem of the
additional complexity as a result of having to program for a HPC environment, which would be necessary
to make full use of the cluster. A cloud environment would have been prohibitively expensive given the
computation and storage requirements. Also, while the cloud environment would be immediately available, it
is architecturally different from a HPC, meaning that a rewrite would have been required when converting to
the cheaper HPC option (for scientific purposes).

5.1.2 Selection strategy

The selection strategy of top x features is unlikely to be cost-optimal when many databases have
0 predictive features.

The selection strategy using the top x features can be sub-optimal when the number of predictive features is
hard to estimate. The result could be too conservative in selecting features resulting in a lower cost of the
further assessment of the features, but also an increase in the probability of missing a predictive feature. In
addition, a strategy that always select x features may waste resources in case there are many datasets that
have no predictive features.

If it is known that these datasets regularly contain no predictive features, a threshold based method may
allow to not select any features for further assessment. Conversely, it may also select too many features to
assess further in which case the top x method would still have to be used.
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5.1.3 Limitations of the simulated datasets

Lack of balance at the level of the whole simulated dataset

In relation to the computational limitations is the issue of balancing the simulations of a generations to
ensure that every stratum is composed equally. Balancing the simulations ensures that comparison are more
straightforward.

No full simulation of interactions in the datasets that result from biological pathways

Biological pathways are not really considered. An approach that could amend this is through the use of a
package like SeqNet.(Grimes and Datta 2021) However, this adds another simulation method and is unlikely
to be computationally feasible. Besides, this method focuses more on the connection aspect between genes
than on the differential expression in location-shift of a few predictive features.

Only a subset of the features in the Zhang data is used for SPsimSeq

Of note is that the package uses a subset of 5000 genes, which is important in the context of the computational
load of using the packages (specifically high memory use for larger feature sets). The reason being the memory
requirements for larger template datasets exceeding the capacity of the hardware available (32GB RAM).

Limits on the granularity of exploring the parameter space due to computation times

Number of genes especially lead to longer compute times. Cloud/cluster based computing adds complexity in
implementing the methods, i.e. distributed systems are harder to develop. In addition, the storage (0.5 TB)
and computation requirements (weeks of runtime on single node) are not insignificant. In short, a single node
system was used for the analyses, limiting the number of simulations that were possible.

We have not considered batch effects or other steps in a practical sequencing workflow

A sequencing workflow includes steps related to the normalization of data, accounting for batch effect, . . .
In this thesis these were not considered. However, the SPsimSeq package does offer the functionality to
incorporate this should this be desirable in further studies.

5.2 Comparison of methods of feature selection

The results have compared the precision and sensitivity of a series of methods of feature selection. We limit
the discussion to those findings that are relevant or surprising. While LIMMA is often used, it seems to
perform at about the same level as a t-test on our simulated data. It is easily outperformed by the AUC
method and Xgboost. Where the AUC provides a convenient balance between high performance and low
computational requirements. The Xgboost combined with the feature selection using SHAP works quite
well in this context, especially at lower effect sizes. The method could be further improved by looking at
alternatives to the K-fold cross validation.

5.2.1 Tweedie

The Tweedie method has a sound theoretical basis and is shown to work for larger number of predictive
features.(Efron 2011) However, while there is a small benefit when using t-test hypothesis testing on simulated
data based on normal distributions, under the more realistic simulations in this thesis there was no indication
of any benefit of this method over the respective uncorrected alternatives. The conclusion is that EB correction
using Tweedie did not produce sufficient evidence to consider this method in the context of small sampled
sequencing data.
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5.2.2 Using AI, the potential of neural networks?

The relatively simple neural networks already suffered from overfitting. This comes as no surprise given the
limited sample size of the datasets that were used. Even considering that the underlying correlations of
biological pathways expressed in the sequencing data may not have been fully kept because of the subset
of the Zhang dataset that was used for simulation, the neural networks severely underperformed all other
methods despite being more difficult to set up and taking longer to compute.

The idea of using neural networks in this context is not strange however. Given that sequencing is quite
comparable in its output to regular images. That is a two dimensional grid of values. Similar to regular
images where there is a spatial between pixels based on their location in the grid (e.g. along the borders of an
object), there are correlations between the measurements in sequencing data. This is based in the biological
processes that result from the expression profiles of different genes and their expression. This is by no means
intended as an exhaustive comparison nor a full motivation of the transferability of methods used in image
recognition to the analysis of sequencing data. However, it does give rise to the idea that if the underlying
biological process could identified by the neural network, this could benefit the performance of the neural
network as a prediction model for predictive features. It is clear, however, that similar to image recognition
that this requires much more data to train such models than is available. Some author (e.g. (Azuaje 2019))
have suggested transfer learning in this context, which is routinely used in image recognition. It remains
unclear how that should be done for small sampled datasets.

5.2.3 Data integration

There was a general performance reduction when using data integration. This is contrary to the idea that
increasing the fraction of predictive features increases performance, the latter which was something that the
data integration did accomplish. However, there were features removed so it may be that those features that
were removed to eagerly, or that it removed to few of the non-predictive features for an appreciable effect. It
is also important that some features could have gone undetected by the method of feature selection while
being kept in the dataset and vice versa. The latter would be problematic for the performance.

Another caveat is that only a single, subjective, threshold of p ≤ 0.65 was used. This is by no means the
optimal threshold. As such, there is room for improvement in data integration.
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6 Guidelines

This thesis set out to provide guidelines on five aspects of the statistical analysis of sequencing data. Based
on the results of this thesis, considering the limitations as discussed above, the following guidelines are
formulated.

On the number of (predictive) features

Adding more total features is like adding more hay when trying to find a needle in a haystack. A higher
number of total features does not improve performance.

Having more predictive features does improve performance. This is only true however when the relative
number of predictive features in the total number of features increases, see Figure 7. Therefore, every
reasonable effort should be put into reducing the number of features. Features should only be added when
it is likely that these increase the fraction of predictive features in the datasets. However, should that be
possible, there should be reflection on why that specific data was not used from the outset. Using the haystack
analogy, the hay that is added should contain more needles than the hay already under scrutiny.

The effect size of the predictive features

As there is no influencing the effect size, the main recommendation in this regard is to select the method
with the highest precision. While our simulations show that specific methods work better for higher effect
sizes, it seems that these are unrealistically large in practices. Therefore, it is preferable to use the method
most sensitive at lower effect-sizes. Methods such as the AUC and especially Xgboost perform better for
lower effect sizes, which we would therefore recommend among the methods used in this thesis.

The sample size of both the response and non-response group

Unfortunately, it remains unclear why there is a difference between unbalanced groups of the same total size
and why this differs per method of feature selection, it is not possible to provide guidance on whether a
certain balance is preferable.

What is clear is that sample size and whether the groups are balanced affects the performance of the methods
of feature selection. Overall, a higher number of samples in balanced groups has the highest
performance.

Data integration

The first point of guidance stresses the importance of a higher fraction of predictive features. As such, it
seems logical that look at data integration to improve that fraction by removing non-predictive features.
Based on the results in this thesis there was no clear gain in using data integration. However, there were
exceptions and improvements could be made to the methods used. Therefore, there is no clear guidance on
whether data integration is beneficial in this context.

7 Further research

Use larger, but more complex, data for training the neural networks
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Of note is that the popular applications for neural networks are in imaging and text analysis. Where there is
a clear spatial correlation between pixels and words respectively. The spatial and/or biological correlations
were not considered in the simulation study. As a result the performance of neural networks may be lacking.
Using the package SPsimSeq more extensively or SeqNet to simulate networks behind gene expression may
improve performance for neural networks.

However, to fit such complex data more samples are needed. Would these be available, it could potentially
become more feasible to look at transfer learning to apply these mostly pre-trained networks to smaller
sample datasets.

Bootstrap the models for reducing uncertainty by considering the distribution of the results.
Specifically, bootstrap many small neural networks in parallel.

A technical barrier stood in the way of using bootstrapped neural networks because of the lack of specific
support for Jax in the Shap package. This would have meant long computation times because of the use of
the more generally applicable, but slower, methods in the SHAP package. It would be of interest to have a
user friendly way of working with Jax for neural network modelling and obtaining the SHAP values to be able
to combine bootstrapping neural networks and SHAP values for the interpretation of the resulting model.

Data integration

A single threshold was used in this thesis. Further research could explore the effect of different thresholds on
the precision and sensitivity using a constant dataset (e.g. the Zhang-2 used in this thesis).

Sample size simulations are not very fine-grained nor balanced

Simulating in a more fine-grained manner over the group sizes can further clarify the influence of sample
size. Also simulating larger sample sizes than would be reasonable for the context could allow for making the
guidelines more precise.

35



8 References
Assefa, Alemu Takele, Olivier Thas, Joris Meys, and Stijn Hawinkel. 2021. SPsimSeq: Semi-Parametric

Simulation Tool for Bulk and Single-Cell RNA Sequencing Data (version 1.2.0). Bioconductor version:
Release (3.13). https://doi.org/10.18129/B9.bioc.SPsimSeq.

Azuaje, Francisco. 2019. “Artificial Intelligence for Precision Oncology: Beyond Patient Stratification.” Npj
Precision Oncology 3 (1, 1): 1–5. https://doi.org/10.1038/s41698-019-0078-1.

Bijma, Fetsje, Marianne Jonker, and A. W. van der Vaart. 2018. An Introduction to Mathematical Statistics.
Amsterdam University Press.

Boniolo, Fabio, Emilio Dorigatti, Alexander J. Ohnmacht, Dieter Saur, Benjamin Schubert, and Michael
P. Menden. 2021. “Artificial Intelligence in Early Drug Discovery Enabling Precision Medicine.” Expert
Opinion on Drug Discovery 0 (0): 1–17. https://doi.org/10.1080/17460441.2021.1918096.

Brown, Morton B., and Alan B. Forsythe. 1974. “Robust Tests for the Equality of Variances.” Journal of the
American Statistical Association 69 (346): 364–67. https://doi.org/10.2307/2285659.

Buyse, Marc, Daniel J. Sargent, Axel Grothey, Alastair Matheson, and Aimery de Gramont. 2010. “Biomarkers
and Surrogate End Points—the Challenge of Statistical Validation.” Nature Reviews Clinical Oncology 7
(6): 309–17. https://doi.org/10.1038/nrclinonc.2010.43.

Chen, Tianqi, and Carlos Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.” Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August,
785–94. https://doi.org/10.1145/2939672.2939785.

Efron, Bradley. 2011. “Tweedie’s Formula and Selection Bias.” Journal of the American Statistical Association
106 (496): 1602–14. https://www.jstor.org/stable/23239562.

Efron, Bradley, and Trevor Hastie. 2016. Computer Age Statistical Inference: Algorithms, Evidence, and
Data Science. Institute of Mathematical Statistics Monographs. New York, NY: Cambridge University
Press.

Fagerland, Morten W., and Leiv Sandvik. 2009. “Performance of Five Two-Sample Location Tests for
Skewed Distributions with Unequal Variances.” Contemporary Clinical Trials 30 (5): 490–96. https:
//doi.org/10.1016/j.cct.2009.06.007.

“Google/Jax: Composable Transformations of Python+NumPy Programs: Differentiate, Vectorize, JIT to
GPU/TPU, and More.” n.d. GitHub. Accessed August 24, 2021. https://github.com/google/jax.

Grimes, Tyler, and Somnath Datta. 2021. “SeqNet: An R Package for Generating Gene-Gene Networks and
Simulating RNA-Seq Data.” Journal of Statistical Software 98 (1, 1): 1–49. https://doi.org/10.18637/jss.
v098.i12.

Guthrie, William F. 2020. “NIST/SEMATECH e-Handbook of Statistical Methods (NIST Handbook 151).”
National Institute of Standards and Technology. https://doi.org/10.18434/M32189.

Hastie, Trevor, Robert Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. 2nd ed. Springer Series in Statistics. New York, NY: Springer.

Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. New York, NY: Springer New York.
https://doi.org/10.1007/978-1-4614-6849-3.

Lesaffre, Emmanuel, and Andrew Lawson. 2012. Bayesian Biostatistics. Statistics in Practice. Chichester:
Wiley.

Levene, H. 1960. In Contributions to Probability and Statistics; Essays in Honor of Harold Hotelling., by
Ingram Olkin, 278–92. Stanford, Calif.: Stanford University Press.

Lundberg, Scott M., Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit
Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. “From Local Explanations to Global
Understanding with Explainable AI for Trees.” Nature Machine Intelligence 2 (1, 1): 56–67. https:
//doi.org/10.1038/s42256-019-0138-9.

Lundberg, Scott M, and Su-In Lee. 2017. “A Unified Approach to Interpreting Model Predictions.” In
Advances in Neural Information Processing Systems, edited by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc. https:
//proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

Phipson, Belinda, Stanley Lee, Ian J. Majewski, Warren S. Alexander, and Gordon K. Smyth. 2016.
“Robust Hyperparameter Estimation Protects Against Hypervariable Genes and Improves Power to Detect
Differential Expression.” The Annals of Applied Statistics 10 (2): 946–63. https://doi.org/10.1214/16-

36

https://doi.org/10.18129/B9.bioc.SPsimSeq
https://doi.org/10.1038/s41698-019-0078-1
https://doi.org/10.1080/17460441.2021.1918096
https://doi.org/10.2307/2285659
https://doi.org/10.1038/nrclinonc.2010.43
https://doi.org/10.1145/2939672.2939785
https://www.jstor.org/stable/23239562
https://doi.org/10.1016/j.cct.2009.06.007
https://doi.org/10.1016/j.cct.2009.06.007
https://github.com/google/jax
https://doi.org/10.18637/jss.v098.i12
https://doi.org/10.18637/jss.v098.i12
https://doi.org/10.18434/M32189
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1214/16-AOAS920
https://doi.org/10.1214/16-AOAS920


AOAS920.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “"Why Should I Trust You?": Explaining

the Predictions of Any Classifier.” August 9, 2016. http://arxiv.org/abs/1602.04938.
Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon K. Smyth.

2015. “Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies.”
Nucleic Acids Research 43 (7): e47–47. https://doi.org/10.1093/nar/gkv007.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, et al. 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search.”
Nature 529 (7587, 7587): 484–89. https://doi.org/10.1038/nature16961.

“Statsmodels/Statsmodels: Statsmodels: Statistical Modeling and Econometrics in Python.” n.d. GitHub.
Accessed August 10, 2021. https://github.com/statsmodels/statsmodels.

Thas, Olivier. 2010. Comparing Distributions. Springer Series in Statistics. New York, NY: Springer New
York. https://doi.org/10.1007/978-0-387-92710-7.

Vamathevan, Jessica, Dominic Clark, Paul Czodrowski, Ian Dunham, Edgardo Ferran, George Lee, Bin Li, et
al. 2019. “Applications of Machine Learning in Drug Discovery and Development.” Nature Reviews. Drug
Discovery 18 (6): 463–77. https://doi.org/10.1038/s41573-019-0024-5.

Vinyals, Oriol, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, et al. 2019. “Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement
Learning.” Nature 575 (7782, 7782): 350–54. https://doi.org/10.1038/s41586-019-1724-z.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.”
Nature Methods 17: 261–72. https://doi.org/10.1038/s41592-019-0686-2.

Yu, Tong, and Hong Zhu. 2020. “Hyper-Parameter Optimization: A Review of Algorithms and Applications.”
March 12, 2020. http://arxiv.org/abs/2003.05689.

Zhang, Wenqian, Ying Yu, Falk Hertwig, Jean Thierry-Mieg, Wenwei Zhang, Danielle Thierry-Mieg, Jian
Wang, et al. 2015. “Comparison of RNA-Seq and Microarray-Based Models for Clinical Endpoint
Prediction.” Genome Biology 16 (1). https://doi.org/10.1186/s13059-015-0694-1.

37

https://doi.org/10.1214/16-AOAS920
https://doi.org/10.1214/16-AOAS920
http://arxiv.org/abs/1602.04938
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/nature16961
https://github.com/statsmodels/statsmodels
https://doi.org/10.1007/978-0-387-92710-7
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41592-019-0686-2
http://arxiv.org/abs/2003.05689
https://doi.org/10.1186/s13059-015-0694-1


A Appendix

A.1 Selected code

A.1.1 Code for Normal simulation method

arr_non_pred = jax_normal(key=key, mu=0, sigma=1,
shape=(int((n0 + n1) * int(n_t)-int(n_pred)),))

arr_pred = jnp.array([])

for i in range(int(n_pred)):
arr_pred = jnp.append(arr_p,

np.append(
jax_normal(key=key + i,

mu=meta.mu_non_predictive,
sigma=0,
shape=(int(n0),)),

jax_normal(key=key + i,
mu=mu_pred,
sigma=jnp.sqrt(s_2_pred),
shape=(int(n1),))

)
)

A.1.2 Welch’s t-test

from jax import vmap, jit
import jax.numpy as jnp

@jit
def welch_ttest(x1, x2):

x_1 = x1.mean()
x_2 = x2.mean()
s1 = jnp.sqrt(x1.var())
s2 = jnp.sqrt(x2.var())
n1 = len(x1)
n2 = len(x2)
return (x_2 - x_1) / (jnp.sqrt(s1 ** 2 / n1 + s2 ** 2 / n2))

t = vmap(welch_ttest)(g0, g1)

A.1.3 Variance calculation of the AUC

Variance calculation is implemented in the calc_auc_var function in tweedie.py. The calculation of p is in
the C file calc_rho.c.

def calc_auc_var(pi, x_1, x_2):
n_1 = x_1.shape[1]
n_2 = x_2.shape[1]
n_genes = x_2.shape[0]
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# Load C functions
lib = cdll.LoadLibrary('calc_rho.so')
calc_p_1 = lib.calc_p_1
calc_p_1.restype = ndpointer(dtype=c_double, shape=(n_genes,))
calc_p_2 = lib.calc_p_2
calc_p_2.restype = ndpointer(dtype=c_double, shape=(n_genes,))
# Prepare data
x_1_np = np.asarray(x_1)
x_1_np = np.require(x_1_np, float, ['CONTIGUOUS', 'ALIGNED'])
x_2_np = np.asarray(x_2)
x_2_np = np.require(x_2_np, float, ['CONTIGUOUS', 'ALIGNED'])
# Call functions
p_1 = calc_p_1(c_void_p(x_1_np.ctypes.data), c_void_p(x_2_np.ctypes.data),

c_int(n_1), c_int(n_2),
c_int(n_genes))

p_2 = calc_p_2(c_void_p(x_1_np.ctypes.data), c_void_p(x_2_np.ctypes.data),
c_int(n_1), c_int(n_2),
c_int(n_genes))

# Complete the calculation
pi = np.where(pi == 0, 1e-3, pi) # to prevent numerical issues due to estimated probability of 0
rho_1 = (p_1 - pi**2) / (pi - pi**2)
rho_2 = (p_2 - pi**2) / (pi - pi**2)
# Replace 0 with atom of probability to prevent dividing by 0 leading to NaN in calculation
v = n_1 * n_2 / ((1+(n_1-1)*rho_1)/(1-1/n_2) + (1+(n_2-1)*rho_2)/(1-1/n_1))
auc_var = (pi*(1-pi)) / v
C = 1.96/jnp.sqrt(v)
low = (1/(1+C)) * (pi + .5*C - jnp.sqrt(C*(pi*(1-pi) + C/4)))
high = (1/(1+C)) * (pi + .5*C + jnp.sqrt(C*(pi*(1-pi) + C/4)))
return {'variance': auc_var, 'ci_low': low, 'ci_high': high}

C-code for calculating p1

double * calc_p_1(const double * x_1, const double * x_2, int n_1, int n_2, int n_genes){
double * pointer_p_1 = (double *)malloc(sizeof(double) * n_genes);
for (int index=0; index <n_genes; index++){

int index_1 = index * n_1;
int index_2 = index * n_2;
pointer_p_1[index] = 0;
for (int h=0; h<n_1; h++){

for (int i=0; i<n_1; i++){
for (int j=0; j<n_2; j++){

if (h != i) {
if ((x_1[index_1 + i] <= x_2[index_2 + j]) &&
(x_1[index_1 + h] <= x_2[index_2 + j])){

pointer_p_1[index] += 1;
} } } } }

pointer_p_1[index] = pointer_p_1[index] / (n_1 * n_2 * (n_1 - 1));
}
return pointer_p_1;

}
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