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Abstract 
The introduction of solid foods play a major role in the maturation of the gut microbiome. Both the 
microbial composition and function changes due to the introduction of solid foods. This research will 
look into these changes of the gut microbiome in a short interval at the time of solid food introduction, 
together with changes in the metabolome. In addition, the association between the microbiome and 
metabolome during this time period is being examined. The microbiome data analysis started out by 
filtering the microbial taxa (amplicon sequence variants, ASVs) using a filter based on a prevalence of 
5% and minimum relative abundance of 0.01%. The data was normalized using the centered 
logarithmic ratio, a compositional data analysis approach to account for the compositional nature of 
microbiome data. The data was analyzed using ANCOM-BC. A model containing covariates for the age 
of an infant and whether or not solid foods were given with a random effect per infant was used. 
Correction for multiple testing was done using the Benjamini-Hochberg False Discovery Rate. None of 
the microbial taxa were statistically significantly associated with solid food introduction at 𝛼𝛼 = 0.05. 
The metabolomics data was cleaned first and normalized using a natural logarithm and pareto-scaling. 
Differential abundance testing was done using a variety of methods to gain robustness in the results. 
The Wilcoxon rank-sum test was reported with a correction for multiplicity using Benjamini-Hochberg. 
None of the metabolites were found to be differentially abundant due to the introduction of solid 
foods at 𝛼𝛼 = 0.05. The rationale behind not finding any differentially abundant ASVs and metabolites 
due to the introduction of solid foods is most likely due to the fact that around the days of solid food 
introduction, these dietary changes might not be drastic enough to cause major changes or that the 
microbiome needs more time to adapt. Lastly, the association between the microbiome and 
metabolome was investigated using DIABLO. Hyperparameter tuning was done using PLS and LOOCV. 
A final model was fit using 3 principal components, a custom covariance matrix and only key 
contributors, ASVs and metabolites. A total of 119 high correlations (> 0.7 or < -0.7) were found 
between ASVs and metabolites and between metabolites. Amongst those correlations were 11 
different bacteria. Bacteroides ovatus had a total of 21 associations between 3 ASVs and 7 metabolites, 
which strengthens the proof of association. All bacteria-metabolite associations could be related back 
to metabolites produced by humans, the bacteria itself and food sources. Butyricicoccus pullicaecorum, 
Bacteroides caccae and Bacteroides ovatus were associated with histidine, a precursor metabolite for 
histamine. This proves the presence of an early-life association between the microbiome and 
metabolome not only when looking towards the processing of food but also as a key-player in the 
immune system of infants. 
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1 Introduction 
1.1 Research context 
The human microbiome is composed of bacteria, archaea, viruses and eukaryotic microbes residing in 
and on our bodies. They interact with each other and with their host. It is often referred to as the 
forgotten organ or the second genome. The microbiome composition is unique for an individual and is 
established early in life [1, 2, 3, 4]. The microbiome composition is considerably site-specific [5, 6].  

The human gut microbiome is described as all these microbes who reside in the human gut and is of 
interest given the important functionalities of the host and the high abundance of microbes in the 
human body. It has a symbiotic relationship with its human host and has key functions in the human 
body [4, 7, 8, 9]. Some of these functions are food degradation and metabolism [10]. Disturbances in 
the gut microbiome could lead to a vast number of pathologies which underlines the importance of a 
healthy microbiome [11, 12]. Early alterations in the infant gut microbiome have been linked to the 
development of chronic diseases [11, 13, 14, 15], weaker immune systems [16], vaccine responses [17] 
and drug metabolism [18]. The human gut microbiome is influenced by a variety of factors throughout 
life. Diet, antibiotics, probiotics, gender, age and disease can change the composition of the gut 
microbiota [19, 20]. The importance of the human gut microbiome is a well-established topic.  

Therefore, gaining an understanding into the changes and maturation of the infant gut microbiome 
plays a crucial role in disease prevention and a healthy development of the infant. The infant gut 
microbiome develops from a relatively simple microbiome to a microbiome of adult state during the 
first three years of life [21]. There are a lot of different factors influencing this development. It starts 
out at birth, where babies born by caesarean section are missing key microbes [22]. After this, a variety 
of factors play a key role in the development of the infants’ gut microbiome such as maternal milk 
versus infant formula feeding babies [23], probiotics [24], antibiotics [25] and the exposure to solid 
foods [26]. During this research, a focus is placed on the introduction of solid foods. This change of diet 
plays an important role in the maturation of the microbiome as different metabolites get introduced 
in the infants’ body [27, 28].  

Metabolites can be measured by metabolomics. Metabolomics is the study of the raw materials, for 
example food, and products of the body’s biochemical reactions, molecules that are smaller than most 
proteins, DNA and other macromolecules. Similarly, to the microbiome, the metabolome is unique for 
each individual [29]. The human metabolome can be influenced by several factors such as age, disease, 
drugs, environment, genetic factors, lifestyle and nutrition [30]. 

There is an association between the metabolome and the microbiome in the gut [31]. These molecules 
can be nutrients that shape the composition of the microbiome [32] or important by-products of host-
microbe nutrient co-metabolism [33, 34, 35].  Studies suggest that the faecal metabolome can be used 
to gain insight into the metabolic functions of the gut microbiome. A large cohort study in adults 
indicated that around 60% of the faecal metabolome is associated with the microbial composition and, 
on average, 67% of the variance in the metabolome can be explained by the microbiome [36, 37].  

There is only a small amount of studies focussing on the correlation between the gut microbiome and 
metabolome. Most of these studies have more spread out sampling points. This study will allow for a 
focus on a short time interval where an important event, such as the introduction of solid foods, for 
the infant gut microbiome takes place. 
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1.2 Research questions 
There is still a lot which is not yet understood regarding this topic. What drives the change in the human 
gut microbiome at the time of introduction of solid foods? Previous studies have shown a link between 
the changing ratios of fat, protein carbohydrates and fibre in the diet. Therefore, a more in-depth 
analysis of the infant gut microbiome and metabolome could provide essential information on the 
development of the microbiome at the time of introduction of solid foods. Gaining a further 
understanding of the development of the gut microbiome in infants could provide useful insights into 
the possible causation of health related problems in a later stadium. This research will focus on the 
following research questions: 

• What is the impact of the introduction of solid foods on the gut microbiome? 
• What is the impact of the introduction of solid foods on the metabolome? 
• Is there an early-life association between the gut microbiome and metabolome? 

1.3 Outline 
The research starts with the elaborating upon the data and methods in Chapter 2. A first step is 
discussing the study design and data collection in Chapter 2.1. The study design covers the study used 
to address the research questions at hand. The data collection describes the methods used to collect 
data about the microbiome and metabolome. Chapter 2.2 discusses the methods used in depth. The 
pre-processing, exploratory tools and statistical methods applied for each of the data sets. It is ended 
by discussing the method to study the association between the microbiome and metabolome. 

The results are shown in Chapter 3. The microbiome data is discussed first in Chapter 3.1, followed by 
the metabolomics data in Chapter 3.2 and the association between the microbiome and metabolome 
in Chapter 3.3. For the microbiome and metabolome data, the effects of pre-processing the data is 
illustrated, followed by exploratory tools and finished with a statistical analysis. For the association 
study, the hyper parameter tuning is addressed followed by the final results.  

The results are discussed in Chapter 4 where a relationship is made between literature and the 
obtained results. A reason is sought behind the obtained results and related back to literature. The 
advantages and drawbacks of the research are discussed. 

A final conclusion about the research is given in Chapter 5 with relation to the research questions. 
Potential future research is proposed based on the obtained results.  
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2 Data and methods 
2.1 Data 
2.1.1 Study design 
The data used for investigating the effects of solid food introduction in infants originates from the 
LucKi Gut Study. This is a sub-study of the LucKi study, a longitudinal cohort study from Maastricht in 
the Netherlands [38]. The LucKi Gut Study uses questionnaires to gather information about the birth, 
diet, medication and other exposures. In addition to the questionnaire, eligible participants will be 
asked to provide data and collect stool samples over a 14-day period. During this period, solid foods 
are introduced. Consent was given by the caregivers of the infants and data was pseudonymized. The 
LucKi Gut Study was approved by the Medical Ethics Committee Maastricht University Medical Centre 
in the Netherlands. A summary of the study can be found in Table 2 [27, 39]. 

Table 2 Descriptive summary of the study design of the LucKi-Gut Cohort study 

 LucKi Gut study 
Sample size 9 infants 
Source population South-Limburg, Netherlands 
Inclusion criteria • Full-term (> 37 weeks) 

• Singleton 
• Low risk (defined as being followed 

through Baby Welfare Clinics) 
Exclusion criteria • Caesarean section birth 

• Admission to the neonatal intensive 
care unit 

• Full weaning prior to introduction of 
solid food 

• Use of oral or IV antibiotics within 4 
weeks of introduction of solid foods 

• Parent or guardian unable to 
communicate in Dutch 

Follow-up time period A 14-day sampling period at the time of solid 
food introduction 

 

Fresh stool samples were frozen by the caregivers upon defecation. Research staff was informed by 
the caregivers to arrange sample pick-up [39].  The stool samples were used to investigate the 
microbiome and metabolome. Additionally, caregivers were asked to fill out a study diary every day. 
Caregivers were asked to report if a stool sample was collected, the consistency of the sample based 
on the Bristol Stool Chart, if the sample had contact with diaper cream, the type of diaper the sample 
was collected from, number of bower movements from the infant per day, medications the mother 
was on, time spent asleep by the infant, how many times the infant woke up during the night and the 
time spent awake during these periods, interaction with other children or animals, food consumption 
and medication [27, 39]. Many of these variables however, were not used during this research as this 
was not the scope of this topic.  

 The study consisted out of 5 male and 4 female infants. The infants had a mean age of 158 days (std. 
dev. 21.66) at the time of introduction into the study, a mean weight of 5658.88 grams (std. dev. 
1623.96) and mean height of 61.22 cm (std. dev. 6.78). All 9 infants were given breastfeeding prior to 
the introduction of solid foods. One infant initially received breastfeeding but switched to formula 
feeding at a certain point in time prior to the introduction of solid foods. The delivery mode was vaginal 
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for 8 out of 9 infants and unknown for 1 infant. One infant was subjected to antibiotics at the time of 
birth and antibiotic use was unknown for one of the infants. None of the infants were subjected to any 
probiotics (Table 3).  

Table 3 Summary of the participants in the LucKi Gut Study. 

Variable Summary statistic 
Gender   Male 
                 Female 

n = 5 
n = 4 

Mean height (cm) 61.22 (std. dev. 6.78) 
Mean weight (gram)  5658.88 (std. dev. 1623.96) 
Mean age at the time of introduction (days) 158 (std. dev. 21.66) 
Breastfeeding n = 9 
Delivery mode (vaginal) n = 8 

Antibiotics n = 1 

Probiotics None 
 

2.1.2 Data collection 
All collected faecal samples from each infant were subjected to microbiota profiling using 16S 
ribosomal RNA (rRNA) V4 hypervariable gene region sequencing, while a selection of samples were 
subjected to metabolomics using nuclear magnetic resonance spectroscopy (NMR), direct infusion-
mass spectrometry (DIMS) and ultra-performance liquid chromatography (UPLC). It was opted to have 
at least 1 and preferably 2 samples prior to the introduction of solid foods which included 
metabolomics data. After the introduction of solid foods, a maximum of 3 samples were used to 
acquire metabolomics data (Table 4). 

Table 4 Study design of the LucKi Gut Study (N = 9). 1 

Infant Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
6 

Day 
7 

Day 
8 

Day 
9 

Day 
10 

Day 
11 

Day 
12 

Day 
13 

Day 
14 

P 3 1   3 1  3       
Q 1 4 1 4 1 1 1 4 1 1 1 4   
R   4 1 4 1 1  4 1 1 1 1 4 
S 4 1 4 1 4 1 1 4 1      
T 3 12 1  4 1 1 1  4 1  4  
U 4 1 4   1 1 4 1  1   4 
V 4 1 4 1 1 1 1 4 1 1 1 1 1 4 
W  4  4 1  4   1 4    
X 4 4  1 1 1 1 4 1  1  1 4 

 
1: The red numbers denote stool samples taken before the introduction of solid foods. The green 
numbers denote stool samples taken after the introduction of solid foods. The numbers denote the 
following, 1 for samples of which only 16S rRNA sequencing has performed, 2 for samples for whom 
16s sequencing and NMR was performed, 3 for samples for whom 16s sequencing, NMR and DIMS was 
performed and lastly 4 for stool samples for which 16S rRNA sequencing, NMR, DIMS and UPLC has 
been performed. 

2: This sample was used for UPLC. There was no sample left of day 1 and it was opted to use the sample 
of day 2 instead. 
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A total of 87 samples were collected and analysed (Table 5). The majority of samples (65/87, 74,71%) 
were collected after the introduction of solid foods. Figure 1 shows a Venn-diagram of the methods 
used per sample. It is observed that only 35,63% (31/87) of the samples were measured using all 4 
measurement methods and 58.62% (51/87) only using 16S rRNA sequencing.  

Table 5 Overview of measurement times for samples with relation to solid food introduction. 

Summary N Percentage 
Pre-introduction of solid foods 22 25,29% 
Post-introduction of solid foods 65 74,71% 

Total amount of Samples 87 100,00% 
 

 

Figure 1 Venn diagrams of the methods used per sample. 

A drawback of the study is the small sample size and unbalanced design due to the fact that there isn’t 
a sample available on a daily basis of all infants, due to absence of bowel movements, and not all data 
collection methods were applied on all samples. This could cause a potential loss of power to get 
statistically significant results. The missing samples can be assumed to be missing completely at 
random (MCAR) and a complete case analysis is appropriate.  

2.1.2.1 Microbiome data 
The microbiota composition was investigated through sequencing of the 16S rRNA hypervariable V3-4 
gene region. The 16S rRNA gene sequence is used to study the bacterial phylogeny and taxonomy in 
the stool samples. This gene is the most commonly used genetic marker because it is present in almost 
all bacteria and is large enough for informatics purposes [40]. The 16s rRNA gene is a highly conserved 
region in the rRNA with variable and constant regions. The constant regions make amplification 
possible by using universal PCR primers. Meanwhile, sequencing of the variable regions allows for 
discrimination between different micro-organisms such as bacteria and archaea [41]. 
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The microbial DNA from stool samples was extracted as previously described in the article by J.C. 
Stearns et al. [42]. Amplification of the 16S rRNA gene was performed as previously described by A.K. 
Bartram et al. [43]. Sequencing was performed in the McMaster Genomics Facility in Hamilton, Canada. 
Illumina libraries were paired-end sequenced with 250bp sequencing in the forward and reverse 
directions on the Illumina MiSeq instrument. Sequencing data was processed with standard software 
[44] and amplicon sequence variants (ASVs) were inferred using the DADA2 pipeline [45].  

2.1.2.2 Metabolome data 
The metabolome was investigated through three metabolic methods. Both untargeted, DIMS and 
targeted, NMR were used to assess short chain fatty acids and other organic acids and alcohols. Both 
methods measure different metabolites. The third method used was an additional targeted method, 
namely UPLC, to quantify bile-acid profiles. All metabolic methods were performed and analysed at 
The Metabolomics Innovation Centre located at the University of Alberta, Canada.  

2.1.2.2.1 Nuclear Magnetic resonance spectroscopy 
Quantitative NMR spectroscopy was used for targeted metabolomic analysis of water-soluble 
metabolite classes including amino acids, saccharides, alcohols, organic acids, amines, tricarboxylic 
acid (TCA) cycle intermediates and short chain fatty acids (SCFAs). Total metabolites were measured 
with nuclear resonance spectrometry (NMR). All 1H-NMR spectra were collected on a 700 MHz Avance 
III (Bruker) spectrometer equipped with a 5 mm HCN Z-gradient pulsed-field gradient (PFG) cryoprobe. 
1H-NMR spectra were acquired at 25°C using the first transient of the Nuclear Overhauser Effect 
Spectroscopy (NOESY) pre-saturation pulse sequence (noesy1dpr), chosen for its high degree of 
quantitative accuracy. All free induction decays were zero-filled to 250.000 data points. The singlet 
produced by the DSS methyl groups was used as an internal standard for chemical shift referencing 
(set to 0 ppm). All 1H-NMR spectra were processed and analysed using the Chenomx NMR Suite 
Professional software package version 8.1 (Chenomx Inc., Edmonton, AB). The concentration of the 
metabolites is expressed in µmol/g.  

2.1.2.2.2 Direct Flow Injection Mass Spectrometry 
For targeted metabolomic analysis of biogenic amines, amino acids, acylcarnitines, phospholipids and 
sphingolipids, direct flow injection mass spectrometry (DIMS) was used. Untargeted metabolites were 
measured with direct flow injection mass spectrometry with an Agilent 1100 series HPLC system 
(Agilent, Palo Alto, CA) and an Agilent reversed-phase Zorbax Eclipse XDB C18 column (3.0 mm × 100 
mm, 3.5 μm particle size, 80 Å pore size) with an AB SCIEX QTRAP® 4000 mass spectrometer (AB SCIEX, 
CA, U.S.A.). The controlling software was Analyst® 1.6.2. The mass spectrometer was set to positive 
electrospray ionization with multiple reaction monitoring (MRM) mode. The concentration is 
expressed in µM. 

2.1.2.2.3 Ultra-High Performance Liquid Chromatography 
UPLC was used as a targeted metabolomic method to examine bile acids in the stool samples. Bile acids 
were measured with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC) 
on an Agilent 1290 system coupled to a 4000 QTRAP mass spectrometer. The MS instrument was 
operated in the multiple-reaction monitoring (MRM) mode with negative-ion (-) detection. A Waters 
BEH 15-cm long, 2.1-mm I.D. and C18 LC column was used, and the mobile phase was (A) 0.01% formic 
acid in water and (B) 0.01% formic acid in acetonitrile for binary-solvent gradient elution by RPLC. 
Linear regression calibration curves were constructed between analyte-to-internal standard peak area 
ratios (As/Ai) versus molar concentrations (nmol/mL). The final concentrations of the bile acids are 
expressed in nmol/g.  
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2.2 Methods 
In the methods section, the complete analysis pipeline performed is explained. Each data set was 
treated independently prior to doing an association study between the microbiome and metabolome 
data. Data pre-processing steps, exploratory tools and statistical methods are explained and 
elaborated upon. All code written in the Master thesis was written using R in RStudio version 4.2.0 
[46].  Packages and their versions are listed in the Appendix in Table 10.  

In addition to the microbiome data and the metabolome data, metadata was also provided in a csv-
format. The metadata file contains variables such as gender, height, weight, age and additional 
information collected by using the study diaries. A total of 188 variables were recorded. However, 
many of these variables carry little to no information essential to this research. Variables suspected to 
be essential based upon literature research were retained. Additionally, any identifying variables were 
further anonymized for visualizations. 

2.2.1 Microbiome data and analysis 
For the microbiome data, 87 measurements of the 9 infants were acquired by 16s rRNA sequencing. 
The data was processed using the DADA2 pipeline [45]. ASV read counts were obtained and formatted 
in a csv-file. ASVs are reads with identical sequences and an alternative to Operational Taxonomic Units 
(OTUs) which are bins of reads based upon a certain similarity threshold. ASVs have a higher sensitivity 
and specificity [47]. The raw data contains counts of 8787 different ASVs. These ASVs were identified 
up to different taxonomic ranks (Figure 2).  

 

Figure 2 The taxonomic ranks identified in the microbiome data [48]. 

These taxonomic ranks are Kingdom, Phylum, Class, Order, Family, Genus and Species. Some ASVs 
were not able to be identified up to the lowest taxonomic rank and are therefore named by the lowest 
taxonomic rank to which they were able to be classified. For instance, order instead of species. The 
taxonomic data was provided in a separate csv-file. 

2.2.1.1 Phyloseq 
A first step in the analysis was the creation of a Phyloseq object for the microbiome data. Phyloseq is 
a package used to import, store, visualise and analyse complex microbiome data [49]. It combines the 
ASV counts, taxonomic data and metadata into a single Phyloseq object. The Phyloseq object contained 
data on 8787 taxa for 87 samples and 188 metadata variables.   
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2.2.1.2 Filtering and cleaning of the microbiome data 
Prior to doing any forms of analysis, the microbiome data was filtered. Filtering is required due to the 
sparseness of the microbiome data sets. This is due to the fact that it contains a large number of rare 
taxa observed in only a small number of samples [50]. Quality control studies indicate that rare taxa 
appear due to various reasons such as sequencing artefacts [51], contamination and/or sequencing 
errors [52, 53, 54, 55]. Filtering reduces the complexity of the microbiome data by removing rare taxa 
while retaining informative taxa. This leads to a reduction of technical variability allowing for more 
reproducible and comparable results in the data analysis [50]. An additional advantage of filtering the 
microbiome data is the dimension reduction, leading up to less hypotheses tests to be conducted and 
a higher statistical power. 

Most filtering approaches are based on the rules of thumb, which vary from lab-to-lab. An important 
point to consider is that the filtering must be independent of the test statistic evaluated. This means 
that the filtering must be done across all samples and not within one group compared with another. 
Different approaches are cut-offs for the prevalence or the abundance of taxa across samples [56].  

The first filtering method used in this article was based on a hard cut-off prevalence threshold of 5%. 
Rationale behind the threshold was that the infant with the lowest number of measurements, infant 
“P”, only had 5 measurements. A total of 87 samples were present. So having 5 measurements 
amounted to 5.75% of the sample size, rounded down to 5%. This allowed for a taxon to be specific 
for all samples of a single infant.  

A second filter was applied to filter out rare taxa further. The filter applied was based on the relative 
abundances of the taxa. The relative abundances are calculated for each taxon by summing up the 
counts for each taxon and dividing by the total count of all taxa, shown in Equation 1. A hard cut-off 
value of at least a relative abundance of 0.01% was applied based on domain knowledge.  

Equation 1 Taxa specific relative abundances. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑎𝑎𝑎𝑎𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑅𝑅

× 100 

A visualization using a density plot was shown to see the distribution of the ASV counts prior and 
posterior to filtering the microbiome data. 

Additionally, upon data exploration of the microbiome data, it was observed that not all taxa were 
identified up till species rank. These were giving the lowest identified possible taxonomic rank making 
use of the MicroViz package [57]. 

2.2.1.3 Normalisation of the microbiome data 
A next step performed was the normalization of the microbiome data. Differential abundance testing 
will be performed to see which taxa change due to the introduction of solid foods. To do so, 
normalization is required because due to the varying library sizes of each sample being an obstacle for 
differential abundance testing.  Library sizes are the sum of all taxa counts in a sample. These vary 
between samples which is regarded as a technical artefact. Therefore, the counts can only be 
compared using relative abundances. Failing to normalize the data will results into a systematic bias 
that increases the false discovery rate [58].  

This introduces a challenge, as data naturally described by proportions, such as the relative 
abundances for the microbiome data, are referred to as compositional data. Proportions have a sum 
constraint of 1, shown in Equation 2. This is defined in mathematics as the Aitchison Simplex [59].  
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Equation 2 Compositional data sum constraint. For count N of  taxon j = 1 till k in sample i divided by the library size in sample 
i. 

�
𝑁𝑁𝑖𝑖𝑖𝑖
𝐿𝐿𝑖𝑖

= 1
𝑖𝑖

𝑗𝑗=1

 

There are two major problems with the compositionality of data: 

• An increase or decrease of abundance, may be the consequence of the true decrease or 
increase of the abundance of one or more other taxa. This is due to compensation of the sum 
constraint shown in Equation 2. A graphical depiction is shown in Figure 3 [60]. 

• Removing taxa may result in changes of commonly used distance measures such as the 
Euclidian distance or Bray-Curtis distance. This indicates that these distance measures are not 
sub-compositional incoherent [60]. 

 

Figure 3 Graphical depiction of the first problem with compositionality. The absolute abundance of taxon 1 is doubled. This 
influences the relative abundances of the other taxa too due to the sum constraint. 

Due to these problems with compositionality, standard statistical methods are not appropriate for 
analysing compositional data. If the compositional feature of the microbiome data is not taken into 
consideration during differential abundance analysis, the false discovery rates are inflated [58]. The 
principle of compositional data analysis or CoDa methods is circumventing the problems of 
compositionality by working with ratios instead of read counts. There are different ways of 
transforming the read counts to ratios such as additive log-ratio (ALR), centre log-ratio (CLR) or 
isometric log-ratio (ILR) [56, 60].  

During the exploratory data analysis of the microbiome data, it was opted to choose for the centred 
log ratio approach. The centred log-ratio transformation is a CoDa approach using the geometric mean 
of the read counts of all taxa within a sample as the denominator for that sample [56, 60]. The formula 
is shown in Equation 3. It was opted to choose for the CLR due to disadvantages of the other methods. 
The ALR transformation requires a reference taxon as denominator. However, this choice is arbitrary 
as the results are dependent on the choice of reference taxon [61, 62]. The ILR transformation has the 
disadvantage that there is no one-to-one relationship between the original components and the 
transformed variables [60]. 
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Equation 3 Centred Log-Ratio. 

𝑎𝑎𝑅𝑅𝑐𝑐�𝑁𝑁𝑖𝑖𝑗𝑗� = log
𝑁𝑁𝑖𝑖𝑗𝑗
𝑔𝑔(𝑁𝑁𝑖𝑖)

  𝑤𝑤ℎ𝑅𝑅𝑐𝑐𝑅𝑅 𝑔𝑔(𝑁𝑁𝑖𝑖) = (�𝑁𝑁𝑖𝑖𝑗𝑗

𝑝𝑝

𝑗𝑗=1

)1/𝑝𝑝   

 

During the hypotheses testing for differentially abundant taxa, a different normalisation method was 
used. This is elaborated upon in Chapter 2.2.1.6. 

2.2.1.4 Variable selection 
The selection of variables to investigate was based on literature and by consulting experts with domain 
knowledge. These variables were shortly discussed and elaborated upon on why they were in- or 
excluded during the statistical analysis.  

Gender is known to play a significant role in affecting the gut microbiome composition. This is due to 
several of reasons. A first major factor is gender specific hormones affecting the microbiome. The 𝛼𝛼-
diversity becomes significantly different between males and females after puberty [63]. Gender 
however was not included in to statistical analysis. The rationale being that the infants included in the 
study don’t produce any gender-specific hormones yet. Therefore, their microbiomes were not yet 
altered by it. Gender was investigated during the exploratory data analysis. 

Another major factor influencing the gut microbiome is the delivery mode of the infant. The microbiota 
differ between caesarean born and vaginally delivered infant over the first year of life. Previous studies 
show that vaginally born children show an enrichment of Bifidobacterium spp. and reduction of 
Enterococcus and Klebsiella spp. [64]. As the study design excluded any infants born through a 
caesarean section, it is not possible to include this during the analysis.  

The same conclusion was given for breastfeeding. Breastfeeding shapes the gut microbiota in early life, 
both by directly exposing the infant to milk microbiota and indirectly through maternal milk factors 
that affect bacterial growth and metabolism [23, 65].  As all infants in the study were breastfed prior 
to the introduction of solid food, no data was available on formula-fed babies and was not further 
investigated. 

Other variables such as antibiotics and probiotics were not used prior or during the study and not 
included in the models. Yet they play a major role. Antibiotics cause a decrease in abundance in the 
gut microbiome, probiotics cause an increase [19]. However, there was some form of data available 
on the disease status of the infants. This data was free text describing the general state of the infant 
such as a weeping nose, fever, coughs and snotty eyes. Due to the sparse data, all disease states were 
generalized into a binary covariate. It has to be taken into consideration that neither of these 
symptoms might describe an actual infection. This was further investigated during the exploratory data 
analysis.  

A final variable considered was the age of the infant. The gut microbiome changes rapidly during the 
first three years of infancy [19, 20]. A glance was given during the exploratory data analysis at simple 
demographics such as weight and length. However, it is unknown if these truly affect the gut 
microbiome. For instance, the BMI is known to affect the gut microbiome [66]. However, the 
measuring of the length of infants is inaccurate and was therefore only considered during the 
exploratory data analysis.   
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2.2.1.5 Exploratory data analysis of the microbiome data 
A first step during the exploratory data analysis was performing a principal component analysis (PCA) 
on the filtered and normalised microbiome data. PCA is a technique which reduces the dimensionality 
of datasets, increases the interpretability, and minimizes the loss of information. This is done by 
creating principal components which are uncorrelated and maximize the variance present in the data 
[67]. PCA is particularly useful to gain insight into data by introducing different colours and shapes for 
variables of interest in order to reveal potential clusters happening within the data. Another way of 
observing clustering is by constructing a heat map. In the present study, the heat map for the 
microbiome data was based on the Aitchison distance, which is simply the Euclidean distance between 
the CLR-normalised data. The linkage to calculate the grouping was based on Ward’s minimum 
variance method [68].  In Ward’s minimum variance method, the distance between two clusters is the 
Analysis of Variance (ANOVA, [69]) sum of squares between the two clusters added up over all the 
variables. 

A final step in this part of the exploratory data analysis was the creation of bar plots based on their 
relative abundance. This was done at family rank to make the visualizations more interpretable. In the 
filtered dataset, only 19 families are present. The disadvantage of visualizing at family rank is that 
increasing or decreasing abundances for certain species is unobserved. A general example may be that 
Enterobacter cloacae might increase but Enterobacter aerogenes might decrease. This causes the 
entire family of Enterobacter spp. to remain steady. The bar plots will give a first indication of 
potentially differentially abundant taxa.  

2.2.1.5.1 Alpha diversity measures 
A set of 𝛼𝛼-diversity measures were calculated from the filtered microbiome data to visualise different 
variables of interest. The 𝛼𝛼-diversity summarizes the structure of the gut microbiota with respect to 
its richness and evenness. The richness is the number of taxonomic groups, the evenness describes the 
deviation of the abundances from the uniform distribution [70].  The principle is shown in Figure 4. 

 

Figure 4 Alpha diversity conceptualized. As the amount of different species in the sample increases, so does the richness. The 
evenness increases as the distribution of the abundances of species becomes more uniformly distributed. Reference [71]. 

Different alpha-diversity measures are considered: 

• The observed richness is a count of the different ASVs occurring at least once in a sample. 
There is no correction for taxa not observed in the sample but present in the microbiome. The 
formula is shown in Equation 4. 
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• The inverse Simpson index is a measure for the evenness of the microbiome and the inverse 
of the classical Simpson diversity estimator. The classical Simpson diversity estimator is the 
probability that two randomly selected micro-organisms belong to the same taxon. It is a 
measure of un-evenness. By taking the inverse, it becomes a measure for evenness [72]. The 
formula is shown in Equation 5. 

• The Shannon-index or Shannon entropy is the uncertainty or entropy associated with the 
prediction of a randomly sampled taxon. High values for the Shannon-index indicate a diverse 
ecosystem [73]. The formula is shown in Equation 6. 

Equation 4 Observed richness. Where R denotes the richness and S0 denotes the number of taxa observed at least once in a 
sample. 

𝑅𝑅 = 𝑆𝑆0 

Equation 5 Inverse Simpson. Where λi denotes the Simpson index for sample i and Pij the proportion of taxon j in sample i 
computed by dividing the abundance of taxon j in sample i by the library size of sample i. 

1
𝜆𝜆𝑖𝑖

=
1

∑ 𝑃𝑃𝑖𝑖𝑗𝑗2𝑅𝑅
𝑗𝑗=1

 

Equation 6 Shannon-index. Where Hi denotes the Shannon-index in sample i and Pij the proportion of taxon j in sample i 
computed by dividing the abundance of taxon j in sample i by the library size of sample i.  

𝐻𝐻𝑖𝑖 = −� 𝑃𝑃𝑖𝑖𝑗𝑗𝑅𝑅𝑎𝑎(𝑃𝑃𝑖𝑖𝑗𝑗)
𝑅𝑅

𝑗𝑗=1
 

The alpha diversity indices were used during the exploratory data analysis for a variety of purposes. 
They were used to visualize whether an increase of alpha diversity had taken place after the 
introduction of solid food, longitudinal trends and as a summary statistic for other potential covariates 
described in Chapter 2.2.1.4.  

2.2.1.6 Statistical analysis for differentially abundant ASVs 
The first main scope of this research was finding if the introduction of solid foods affected the 
microbiome. The interest was finding if there were any ASVs differentially abundant after the 
introduction of solid food. To test for differentially abundant ASVs, analysis of compositions of 
microbiomes with bias correction or ANCOM-BC was performed [74].  

ANCOM-BC is based on Aitchison’s methodology which considers the compositional nature of 
microbiome data. The relative abundances are used to do inference about the absolute abundances. 
Based on simulation studies, ANCOM-BC performs well in controlling the False Discovery Rate (FDR) 
while maintaining a high power. However, it requires a sample size of at least 5 per group, which is 
satisfied for the LucKi gut Cohort [75, 74]. 

To perform ANCOM-BC, the filtered, non-normalized microbiome data was used. This is due to the fact 
of ANCOM-BC having a built-in normalization step. ANCOM-BC assumes that the sample is an unknown 
fraction of the entire system. It accounts for a sampling fraction by introducing an offset term in a 
linear regression framework. This offset term is estimated from the observed data and also serves as 
the bias correction. The linear regression framework in the logarithmic scale is equivalent to the log-
ratio transformation to account for the compositional nature of the microbiome data. The models 
identify taxa that are differentially expressed [74].  

ANCOM-BC allows for the specification of several settings. The formula used to model the data 
included covariates for the age of the infants in days and whether or not solid foods were given. Due 
to the clustering within infants, it was opted to allow for grouping of the data within infants. This can 
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be regarded as a random effect. Filters provided by ANCOM-BC based on prevalence and library sizes 
were specified to avoid any further exclusion of the taxa still present in the filtered data set. It was 
opted not to search for structural zeros in the data as this could also lead to exclusion of taxa. As 
ANCOM-BC uses the Expectation-Maximization algorithm, convergence was set at 1 × 10−5 with a 
maximum number of iterations at 100. Lastly, ANCOM-BC allows for global tests of significance for the 
parameters. This was disabled since the absence of taxa in some samples didn’t allow for this global 
test. The correction for multiplicity was done using the Benjamini-Hochberg procedure. This is less 
conservative in comparison to other methods to correct for multiplicity and control the FDR at a 
significance level 𝛼𝛼 = 0.05 [76].  The log-linear modelling framework makes several assumptions such 
as a linear relationship between the outcome and the covariates, normality of the error term, 
homoscedasticity, or constant variance and little to no multicollinearity between covariates. The 
hypothesis of interest is shown in Equation 7. The results are shown using volcano plots.  

Equation 7 Hypothesis test for differentially abundant ASVs for ASV i. 

𝐻𝐻𝑜𝑜: 𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑎𝑎𝑅𝑅 𝐶𝐶𝐸𝐸 𝑅𝑅𝑎𝑎𝑅𝑅𝑐𝑐𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅𝐶𝐶𝑎𝑎 𝐶𝐶𝐸𝐸 𝑠𝑠𝐶𝐶𝑅𝑅𝑅𝑅𝑎𝑎 𝐸𝐸𝐶𝐶𝐶𝐶𝑎𝑎𝑠𝑠𝑖𝑖  = 𝑅𝑅𝑎𝑎𝑠𝑠𝑅𝑅𝑔𝑔𝑎𝑎𝑅𝑅𝐸𝐸𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎𝑅𝑅 
𝐻𝐻𝑡𝑡: 𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑎𝑎𝑅𝑅 𝐶𝐶𝐸𝐸 𝑅𝑅𝑎𝑎𝑅𝑅𝑐𝑐𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑅𝑅𝐶𝐶𝑎𝑎 𝐶𝐶𝐸𝐸 𝑠𝑠𝐶𝐶𝑅𝑅𝑅𝑅𝑎𝑎 𝐸𝐸𝐶𝐶𝐶𝐶𝑎𝑎𝑠𝑠𝑖𝑖  = 𝑠𝑠𝑅𝑅𝑔𝑔𝑎𝑎𝑅𝑅𝐸𝐸𝑅𝑅𝑎𝑎𝑅𝑅𝑎𝑎𝑅𝑅 

2.2.2 Metabolomics data 
Metabolomics data was gathered through three different methods. Two methods, NMR and DIMS, are 
untargeted methods to identify metabolites such as fatty acids and other organic acids and alcohols. 
UPLC was specifically used to identify bile-acids. The number of metabolites are shown in the Venn-
diagram in Figure 5. Each method identified a unique set of metabolites, no metabolite was identified 
by more than 1 method. NMR identified 41 metabolites in 35 samples, DIMS identified 116 metabolites 
in 35 samples and UPLC identified 75 metabolites in 32 samples.  

 

Figure 5 Venn diagram of the metabolites identified per method. 

2.2.2.1 Data cleaning 
Prior to starting any analysis, the data sets were screened to see whether or not all data was valid and 
if any data cleaning was needed. Several cleaning steps were performed.  

All methods expressed the metabolite concentrations in different units. These were recalculated to 
have the same units, namely µmol/gram. Next, was the removal of several observations. All three data 
sets contained data from time points measured outside of the LucKi Gut cohort intensive sampling 
study. These data points were removed as they are not eligible for the association study performed. 
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Also, in the DIMS data, 49 data points were below the level of detection of the method (LOD). There 
are different approaches to deal with these observations. Literature suggests different approaches 
based on the LOD, such as replacing it with a value equal to half of the LOD. However, the level of 
detection is unknown for the used method and devices. A different approach suggests replacing these 
values with 0. This approach was also used during this research.   

Lastly, in the UPLC data set, 5 metabolites were removed due to being completely absent. The 
following bile-acids were removed: 

• 6,7-Diketolithocholic acid: A bile-acid derived from lithocholic acid. It plays a role as a bacterial 
metabolite produced by Bacillus species [77]. Bacillus species was absent in the faecal samples 
(Figure 9). 

• Glycodehydrocholic acid: A bile-acid glycine conjugate [77].   
• Lithocholic acid-3-Glucuronide: A bile-acid found in human urine samples [77].  
• Lithocholic acid-24-Glucuronide: A bile-acid found in human urine samples [77]. 
• Taurodeoxycholic acid-3-sulfate: A bile-acid taurine conjugate [77].  

After the data cleaning procedures, the metabolite data sets are ready for data normalization. 

2.2.2.2 Data normalization 
Prior to conducting any exploratory data analysis or statistical analysis, the metabolomics data was 
normalized. The benefits and purpose of normalizing microbiome data have been discussed during 
Chapter 2.2.1.3. For metabolome data, other factors play a role into normalising data [78]: 

• There are differences in orders of magnitudes between measured metabolites. Highly 
abundant metabolites like ATP for example are not necessarily more important than those 
present at low concentrations. Normalizing will rescale all metabolites to the same order of 
magnitude. 

• There are differences in fold changes in metabolite concentrations due to induced variation. 
Metabolites from the central metabolism are generally relatively constant. Metabolites from 
secondary metabolism tend to show larger fluctuations in concentrations depending on the 
environmental conditions.  

• Sometimes metabolites show large fluctuations under identical experimental conditions, this 
phenomenon is called uninduced biological variation.  

• Technical variation due to sampling, isolation techniques, measurement errors. 
• Heteroscedasticity.  

There are several normalization methods of dealing with this unwanted variation in the field of 
metabolomics [78].  

• Centring: Centring converts all the concentrations to fluctuate around zero instead of around 
the mean of the metabolite concentrations. This way, it removes the offset in the data. 
However, it does not remove any heteroscedasticity in the data. It is quite often combined 
with data scaling and transformations.  

• Scaling: Scaling methods normalize the data by dividing each variable by a factor, a scaling 
factor. Which differs for each variable. The main aim is to adjust for the differences in fold 
changes between the different metabolites. The undesirable effect however is an inflation of 
small values. There are two subclasses of scaling, measures of data dispersion and size 
measures.  
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• Transformations: Transformations are non-linear transformations of the data like a 
logarithmic or power transformations. They are generally applied to correct for 
heteroscedasticity and to make skewed distributions more symmetric [79]. 

It was opted to use two normalization steps. A first normalization step was performing a natural 
logarithmic transformation on the abundances. The logarithmic transformation corrects for 
heteroscedasticity present in the data. However, it reduces large values in the data set relatively more 
than small values. The transformation has a pseudo scaling effect as differences between large and 
small values in the data are reduced. Due to the pseudo scaling effect of the logarithmic 
transformation, it is rarely sufficient to fully adjust for the magnitude differences. So applying a scaling 
method together with a logarithmic transformation can be beneficial. One problem with the 
logarithmic scaling is the inability to deal with zeros as they are transformed to minus infinity. This is 
solved by adding 1 to the abundances. The rationale of adding 1 is that metabolites that had an 
abundance of 0 in an infant will become zero again after the logarithmic transformation. The formula 
is shown in Equation 8 [78]. 

Equation 8 Logarithmic transformation.  Where 𝑥𝑥�𝑖𝑖𝑗𝑗 is the natural log-transformed metabolite abundance of metabolite i in 
infant j and 𝑥𝑥𝑖𝑖𝑗𝑗 is the non-normalized metabolite abundance of metabolite i in infant j. 

𝑥𝑥�𝑖𝑖𝑗𝑗,𝑙𝑙𝑜𝑜𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙 = log (𝑥𝑥𝑖𝑖𝑗𝑗 + 1) 

A second step was performing Pareto scaling [80]. Pareto scaling is a form of scaling based on the data 
dispersion. It uses the square root of the standard deviation as the scaling factor. The formula is shown 
in Equation 9 and also includes centring the abundances around 0 by subtracting the mean per 
metabolite. It reduces the relative importance of large values but keeps the data structure partially 
intact. Large fold changes are decreased more than small fold changes, which makes them less 
dominant [78].  

Equation 9 Pareto scaling.  Where 𝑥𝑥�𝑖𝑖𝑗𝑗,𝑙𝑙𝑜𝑜𝑙𝑙−𝑝𝑝𝑡𝑡𝑙𝑙𝑝𝑝𝑡𝑡𝑜𝑜 is the normalized metabolite abundance of metabolite i in infant j, 
𝑥𝑥�𝑖𝑖𝑗𝑗,𝑙𝑙𝑜𝑜𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑙𝑙  is the logarithmic transformed metabolite abundance of metabolite i in infant j, 𝑥𝑥𝑖𝑖 the mean abundance of 
metabolite i and 𝑠𝑠𝑖𝑖  the standard deviation of metabolite i. . 

𝑥𝑥�𝑖𝑖𝑗𝑗,𝑙𝑙𝑜𝑜𝑙𝑙−𝑝𝑝𝑡𝑡𝑙𝑙𝑝𝑝𝑡𝑡𝑜𝑜 =
𝑥𝑥� 𝑖𝑖𝑗𝑗,𝑙𝑙𝑜𝑜𝑙𝑙𝑡𝑡𝑙𝑙𝑖𝑖𝑡𝑡ℎ𝑙𝑙𝑖𝑖𝑙𝑙 − �̅�𝑥𝑖𝑖

�𝑠𝑠𝑖𝑖
 

 

The effects for the normalization were shown during the exploratory data analysis. 

2.2.2.3 Exploratory data analysis 
Prior to performing any statistical analysis, an exploratory data analysis was conducted. This was done 
to gain an insight into the data and decide upon the statistical analysis used to find differentially 
expressed metabolites. A set of visualization techniques were used.  

The first visualizations made were the effects of the normalizations using boxplots per sample for each 
of the data sets prior and after normalization. 

Next, a PCA was conducted [67]. If clustering within children takes place, this has to be accounted for 
during the statistical analysis. Additionally, a biplot was constructed for the UPLC data to see which 
metabolites carry a lot of information. A biplot overlays the PCA plot where the vectors are the 
projected variables.  
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This clustering was further investigated by constructing a heat map with dendrograms. The distances 
were calculated using the Euclidean distance and linkage was based on Ward’s minimum variance 
method [68]. The dendrograms resemble the clustering of metabolites and samples.  

2.2.2.4 Statistical analysis for differentially abundant metabolites 
Literature proposes a wide variety of tests to find differentially abundant metabolites ranging from 
simple tests to more complex models such as parametric, semi-parametric and non-parametric 
approaches. The parametric methods make distributional assumptions whom have to be met in order 
to be valid. The semi-parametric and non-parametric methods are robust to these distributional 
assumptions but require a larger amount of samples per group of 10 to 15 samples per group. 
Literature suggests that the best approach is using a wider variety of methods and compare if the 
results are similar to make the inference more robust [81]. A selection of techniques were applied such 
as a Wilcoxon rank-sum test [82], two-sample t-test, ANOVA [69] and a linear mixed model. Similar 
results were obtained and one method was reported.  

The Wilcoxon rank-sum test was elaborated upon during the report due to the fact that during the 
exploratory data analysis, highly skewed metabolite distributions were observed. Unlike the 
microbiome data, no clustering of infants was present. The Wilcoxon rank-sum test is a non-parametric 
test equivalent to a t-test. Due to the Wilcoxon rank-sum test being a non-parametric test, it makes no 
distributional assumptions. This solves the problem of the skewed distributions and sparseness in the 
metabolomics data. It is used to compare two independent groups. In this case, the abundance of 
metabolites before the introduction of solid food and after the introduction of solid. The test is based 
solely on the order in which the observations from the two samples fall. Each observation is ordered 
and ranked from smallest to largest. The ranks for each sample is summed and an exact p-value is 
calculated. The hypothesis is given in Equation 10. 

Equation 10 Hypothesis test for differentially abundant metabolites. Where before means the sum of ranks before the 
introduction of solid food and after means the sum of ranks after the introduction of solid food. Done for each metabolite j.  

𝐻𝐻𝑜𝑜: 𝐵𝐵𝑅𝑅𝐸𝐸𝐶𝐶𝑐𝑐𝑅𝑅𝑗𝑗 = 𝐴𝐴𝐸𝐸𝑅𝑅𝑅𝑅𝑐𝑐𝑗𝑗 
𝐻𝐻𝑡𝑡: 𝐵𝐵𝑅𝑅𝐸𝐸𝐶𝐶𝑐𝑐𝑅𝑅𝑗𝑗 ≠ 𝐴𝐴𝐸𝐸𝑅𝑅𝑅𝑅𝑐𝑐𝑗𝑗 

A disadvantage of using a non-parametric test such as the Wilcoxon rank-sum test is that they are 
usually less powerful compared to their parametric counterparts. However, as mentioned before, the 
parametric assumptions must hold for those tests to be used. But due to the lower power, it is less 
likely to reject hypotheses. In order for the non-parametric test to be valid, a sample size of 10 to 15 
per group is required. This requirement was satisfied for each of the metabolomics data sets.  

The change in abundance of metabolites was deemed to be significant based on a significance level 
𝛼𝛼 = 0.05. Correction for multiplicity and to control the false discovery rate was done using the 
Benjamini-Hochberg procedure [76]. Results were visualized using volcano plots.  

2.2.3 Association study between the microbiome and metabolome 
2.2.3.1 Principle 
A correlation analysis was performed in order to investigate the association between the microbiome 
and metabolome. This was done using Data Integration Analysis for Biomarker discovery using Latent 
cOmponents (DIABLO). DIABLO is a multi-omics methods that identifies key omics variables during the 
integration process and discriminate phenotypic groups [83]. 

DIABLO is an extension of the sparse Generalized Canonical Correlation Analysis (sGCCA) to a 
classification or supervised framework. sGCCA is a multivariate dimension reduction technique using 
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the singular value decomposition, selecting correlated variables from several omics datasets. sGCCA 
maximizes the covariance between linear combinations of variables and projects it into a smaller 
dimensional space, spanned by the components. The selection of correlated variables is done using a 
L1-penalty. A L1-penalty will minimize the residual sum of squares while setting many of the 
parameters equal to zero, shown in  Equation 11 [83, 84]. 

Equation 11 L1-penalty. 

𝑚𝑚𝑅𝑅𝑎𝑎𝑅𝑅𝑚𝑚𝑅𝑅𝑚𝑚𝑅𝑅 ��𝑌𝑌𝑖𝑖 − 𝛽𝛽0 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗
𝑗𝑗

�

2𝑛𝑛

𝑖𝑖=1

𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑅𝑅𝑎𝑎𝑅𝑅 𝑅𝑅𝐶𝐶 � |𝛽𝛽𝑗𝑗|
𝑗𝑗

≤ 𝑅𝑅 𝑤𝑤𝑅𝑅𝑅𝑅ℎ 𝑅𝑅 ≥ 0 

DIABLO is an extension of sGCCA to the classification framework and can also be referred to as 
multiblock sparse Partial Least Squares Discriminant Analysis (sPLS-DA). sPLS-DA performs a variable 
selection and classification in a one-step procedure using the L1-penalty from Equation 11 [83, 84]. 
Partial Least Squares (PLS) is a supervised alternative for dimension reduction. It identifies a new set 
of features 𝑍𝑍1, … ,𝑍𝑍𝑀𝑀 that are linear combinations of the original ASVs or metabolites. A linear model 
is fit via least squares using these M new features. It is a supervised approach as it identifies the ASVs 
or metabolites correlated the most to the response, the introduction of solid foods. The equation to 
compute these new features is given in Equation 12. PLS computes the first direction 𝑍𝑍1 by setting 
each 𝜙𝜙𝑗𝑗1 in Equation 12 equal to the coefficient from the simple linear regression of Y onto 𝑋𝑋𝑗𝑗, which 
is proportional to the correlation between Y and 𝑋𝑋𝑗𝑗  [85]. DIABLO requires hyperparameter tuning such 
as a covariance matrix, the amount of principal components and the optimal amount of features, 
namely ASVs and metabolites. 

Equation 12 Partial Least Squares feature equation. 

𝑍𝑍1 =  �𝜙𝜙𝑗𝑗1𝑋𝑋𝑗𝑗

𝑝𝑝

𝑗𝑗=1

 

Even though DIABLO doesn’t make any assumptions about the distributions of the microbiome and 
metabolome data, it still requires the data to be normalized and pre-processed prior to performing 
DIABLO. The appropriate field-specific methods can be used. Hence, the microbiome data was filtered 
and CLR-transformed. The metabolome data was transformed using the natural logarithm 
transformation and pareto scaling. Additionally, each ASV and metabolite was centred and scaled 
internally [83]. The outcome is denoted by Y, the introduction of solid foods being either before or 
after. DIABLO can only work with samples where all methods were applied. This means that only 31 
samples were used as shown in Figure 1. Infant “P” was excluded from the association study and infant 
“T” had no measurement before the introduction of solid food.  

2.2.3.2 Hyperparameter tuning 
2.2.3.2.1 Covariance matrix 
A covariance matrix C had to be specified with the dimensions of the amount of data sets used in the 
analysis. In the case of the current research, this was a 4 x 4 matrix. The values of the covariance matrix 
C range from 0 to 1 indicating the association between the data sets. A null and full design of the 
covariance matrix is shown in Equation 13. The covariance matrix C can be determined using either 
prior knowledge or a data-driven approach. A correlation between the microbiome-metabolome has 
been investigated earlier and described in literature [36, 37]. However, neither of these studies were 
performed during infancy at the time of introduction of solid foods with intensive sampling such as the 
LucKi-Gut study. This was the motivation to choose the data-driven approach. The data driven 
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approach is done using PLS that models the pairwise association between each of the omics datasets 
and looking at the correlation between the first component of each of the omics data sets [86]. The 
diagonal was set equal to 0 in order to make sure the algorithm doesn’t compute a relationship for a 
data set to itself.  

Equation 13 Examples of covariance matrices for DIABLO. 

 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = �

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 = �

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

� 

Based on the results of the correlations between the first components, of each omics dataset, an 
appropriate covariance matrix was determined.  

2.2.3.2.2 Principal component tuning 
An initial blocked sparse PLS-DA was fitted afterwards using an arbitrary amount of principal 
components, 25. To evaluate the most optimal amount of principal components, cross-validation (CV) 
techniques can be used. DIABLO offers two CV options. The first option would be to use Leave One Out 
Cross-Validation (LOOCV). LOOCV is a cross-validation approach where just a single sample is held out 
for validation while all other samples are used for training. This is done by iterating over each sample. 
The final result is then calculated by taking the mean of all the individual evaluations. LOOCV tends to 
have a higher bias towards the dataset used to build the model. This can be relativised by the fact that 
the model will not be used for prediction and the goal is to find the best possible relationships between 
the ASVs and metabolites present in the data set. The second option would be to use repeated K-fold 
CV. During repeated K-fold CV, a different split of the data set into K-folds can be implemented and 
repeated over a set amount of times. A large amount of repeats is required because the results vary 
largely based on the splits. With a large amount of repeats, this allows for a better generalization of 
the model. Since only a small data set is available (n = 31), the repeated K-fold CV requires a very large 
amount of repeats in order to give consistent results. DIABLO requires a large amount of computational 
power and using a large amount of repeats ends up costing a considerable amount of time in order to 
evaluate the model. It was chosen to use the LOOCV to evaluate the performance of the model using 
different amounts of principal components. This was also advised by the creators of the package when 
using small data sets.  

Different distance measures were used in order to assign the classes, either before or after the 
introduction of solid foods, of the test observations during the LOOCV.  

• The maximum distance: The maximum distance assigns the class with the largest predicted 
score. It performs quite well when using only a single data set. This is an important point to 
consider since 4 data sets are used in the current setting.  

• The centroid distance: The centroid distance computes the centroid (𝐺𝐺𝑘𝑘) per component for 
each class K using the training samples belonging to that class. Afterwards, for each prediction 
the Euclidean distance to  𝐺𝐺𝑘𝑘 is calculated. The centroid of the class that minimizes this 
Euclidean distance is assigned to that sample. It is more robust compared to the maximum 
distance and less susceptible towards outliers in the training data.  

• The Mahalanobis distance: The Mahalanobis distance is similar to the centroids distance. 
Instead of using the Euclidean distance, the Mahalanobis distance is used. This distance 
measure takes into account the correlation between the components [87].  

The performance was measured via the overall misclassification error rate (ER) and balanced error rate 
(BER). BER is more appropriate in case of an unbalanced number of samples per class. It calculates the 
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average proportion of wrongly classified samples in each class. This is weighted by the number of 
samples in each class. In the current research setting, these classes will be either before or after the 
introduction of solid foods.  The BER is less biased towards the class containing most samples [88]. The 
performance of the model is visualized in order to properly evaluate the most optimal amount of 
principal components. All distance measures and both error rate measures were included. 

2.2.3.2.3 Feature selection 
A final hyperparameter being tuned is the amount of features, ASVs or metabolites being kept in the 
model. This was done by performing a grid search over all microbiome and metabolome datasets 
selecting the key contributors. The process was done for each of the principal components selected 
during the principal component tuning. This yields a significant amount of models to be fit. To speed 
up the process, the grid search started with taking larger steps to filter out most of the insignificant 
ASVs and metabolites contributing less information. Afterwards, the grid search was done in smaller 
steps to select the final important features. To evaluate the different combinations of features, LOOCV 
or repeated K-fold CV can be used again. Similarly to the principal component tuning, LOOCV was 
chosen. 

The algorithm will identify the key contributor ASVs and metabolites per principal component. A final 
DIABLO model was ran and results were visualized.  

2.2.3.3 Results 
A first visualization made was at a sample level using a correlation plot. The nth principal component 
of each data set was plotted against each other containing the samples. The samples were coloured 
based on the introduction of solid foods, either before or after the introduction of solid foods. 
Additionally, 95% confidence ellipses were added to visualize if the principal components are able to 
discriminate between both categories of solid food introduction. This was done for all principal 
components.  

Next, visualizations were made at feature level. A first visualization was made by creating a circos plot. 
A circos plot can be used to gain an idea on how the selected features from each data set relate to 
each other. This was done for all principal components simultaneously. Each data set has its own 
colour. A threshold for the correlation between features was set and are located within the circular 
plot. On the outside, lines were added, showing the expression of that feature for both before and 
after the introduction of solid foods [89]. A second and final visualization was a heatmap of the 
correlations between the different metabolites and ASVs selected by the final DIABLO model. The 
Euclidean distance was used to compute the distances.  

3 Results 
The results are discussed methodically for each of the data sets separately followed up by the results 
of the correlation analysis between the microbiome and metabolome. 

3.1 Microbiome data 
3.1.1 Exploratory data analysis 
A first step in the exploratory data analysis was oriented towards the effects of filtering. A first filter 
being applied was based on the prevalence of the taxa. A taxon had to be present in at least 5% of the 
samples in order to not be filtered out. This narrowed down the original 8787 taxa to 168 taxa, which 
corresponded to 1.91% of the original amount of taxa. A second filter being applied was a filter based 
on the relative abundances of the taxa. A taxon had to have a relative abundance of 0.01% in order to 
not be filtered out. This resulted in a final number of 121 taxa that were retained for analysis, equal to 
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1.38% of the original amount of taxa. The effects of filtering were visualized using density plots 
displaying the distributions of the library sizes (Figure 6). The distribution of the filtered library sizes 
are shown in blue, the results of the unfiltered library sizes are shown in red. An unwanted effect of 
filtering would be a major shift of the filtered library sizes towards the left of the plot or towards the 
smaller library sizes. However, results show that the distribution of the filtered library sizes remained 
almost identical to the distribution of the unfiltered library sizes. This indicated that while more than 
98% of the taxa were removed, only a very limited amount of data were removed (i.e., only very sparse 
taxa were removed). 

 

Figure 6 Effects of filtering displayed using density plots.  Red shows the distribution of the unfiltered library sizes and blue the 
distribution of the filtered library sizes. 

A first start in exploring the filtered, normalized microbiome data was performing a principal 
component analysis. The principal component analysis uses the Aitchison distance as distance 
measure. A scree plot was provided in the appendix (Figure 23) to illustrate the variance explained by 
each principal component. The first principal component explained 22.4% of the variance present in 
the entire normalized and filtered microbiome data set. The second principal component explained 
15.1% of the variance, adding up to a total of 37.5% (Figure 7). Colours denote the different infants in 
the Lucki Gut study and shapes the introduction of solid foods. It is observed that samples from the 
same infants cluster together strongly and are different from each other. A second observation made 
is that sample before and after the introduction of solid food were mixed within an infant. This 
indicated that, using a PCA, samples before and after the introduction of solid foods were not able to 
be separated. A last observation made was that the ellipses from the PCA from before and after the 
introduction of solid food almost overlapped. Making differentiation between both food types not 
possible.  
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Figure 7 Principal component analysis of the microbiome data. The distance measure used is the Aitchison distance. Colours 
denote the different infants present in the Lucki Gut study. Shapes denote before and after the introduction of solid food.  

Identically to the PCA, a heat map showed that samples from infants cluster together (Figure 8). This 
was illustrated by the dendrograms which identified 9 clusters that were linked to the 9 individual 
children. The heat map added an additional layer of information. A block-like structure was observed 
within infants, showing ASVs specific to each infant. There were also a set of taxa present in all infants. 
The bar plot indicating the sampling times with relation to the introduction of solid foods showed the 
same mixed pattern as observed in the PC, i.e., no clear separation was visible based on the 
introduction of solid foods within an infant and/or between all infants.  
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Figure 8 A heatmap of the normalized microbiome data. Rows indicate the different taxa, columns indicate the different 
samples. Clustering with the dendrograms is done using the Aitchison distance and Ward’s minimum variance method. The 
bar plot at the bottom indicates the sampling times, either before (blue) or after (red) the introduction of solid foods. 

When examining the relative abundance at the family level (Figure 9, Figure 24 - Figure 32), several 
observations were made. There were a set of dominant families which were commonly present both 
before and after the introduction of solids foods. Among these families were Bacteroidaceae, 
Bifidobacteriaceae, Enterobacteriaceae. Veillonellaceae was a family commonly present at lower 
abundances in a large proportion of the samples and seemed to increase slightly after the introduction 
of solid foods. It was also observed that in some infants the gut microbiome composition changed after 
the introduction of solid foods. In infant “S”, an increase of Lachnospiraceae was observed. In infant 
“R”, an increase of Porphyromonadaceae was also apparent. Lastly, in infant “V”, a slight increase of 
Clostridiaceae was seen. Most other families remained somewhat constant within an infant before and 
after the introduction of solid foods. No systematic trends of increasing or decreasing families was 
observed. 
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Figure 9 Bar plot of the relative abundances in samples at family rank. Stratified over the introduction of solid foods.  

Lastly, alpha diversity measures were calculated in order to visualize other covariates of interest. The 
observed richness, inverse Simpson index and Shannon index were used. No increasing trends were 
witnessed for any of the alpha diversity indices (Figure 10). However, for some individual infants 
increasing trends could be witnessed for the alpha diversity indices with increasing age (Figure 11). 
This could be observed for infants “R”, “S”, “U” and “W”. However, decreasing trends were also 
observed such as in infant “P”. Other children oscillated around the same values of the alpha diversity 
indices. Other covariates such as gender (Figure 33), length (Figure 34), weight (Figure 35) and disease 
status (Figure 36) were also explored. Gender showed that female infants had higher alpha diversities 
compared to males. The length, weight and disease status showed no increasing or decreasing trends.   
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Figure 10 Longitudinal trends of alpha diversities of time per infant. The different colours resemble different infants. 

 

 

 

Figure 11 Alpha diversity indices in function of age per infant. The different colours resemble the different infants. The 
different shapes denote the sampling times.  
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3.1.2 Statistical analysis for differentially abundant ASVs 
The statistical analysis of the differentially abundant ASVs for solid food introduction resulted in 7 
(5.79%) statistically significant ASVs prior to any correction for multiple hypothesis testing. ASVs for 
Haemophilus parainfluenza, Streptococcus luteciae, SMB53 sp., Streptococcus sp., Enterobacter 
cloacae, Staphylococcus aureus and Sutterella sp. were found to be differentially abundant prior to 
correction for multiple testing. After correction for multiple hypothesis testing, no statistically 
significant results were found (Figure 12).  For the age of infants, 69 differentially abundant ASVs were 
found prior to correction for multiple hypothesis testing. After correction for multiplicity, 60 ASVs 
(49.59%) were found to be differentially abundant (Figure 37).  The full summary of the results can be 
found in the Appendix (Table 11). 

 

Figure 12 Results for the introduction of solid foods of the microbiome data  after adjustment of multiplicity. The x-axis 
denotes the test statistic for the introduction of solid food and the y-axis the negative logarithmic transformed p-values 
after adjustment of multiplicity. Colours denote the significance of the results, red being insignificant. The size of the dots 
denote the standard error of the test statistic.  
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3.2 Metabolomics data 
3.2.1 Exploratory data analysis 
The metabolite distributions per sample for the NMR metabolites prior to any normalization steps 
were highly skewed (Figure 13). Metabolites with a different order of magnitude were observed. 
Potential technical and experimental variation might be present between the different samples. 
Similar figures can be found for the DIMS (Figure 38) and UPLC metabolites (Figure 39) in the Appendix. 
For each of the metabolite detection methods, the same distributions were observed.  

 

Figure 13 Non-normalized metabolite distributions per sample for NMR metabolites. The colours indicate the sampling 
times, either before (blue) or after (red) the introduction of solid foods. 

Upon a natural logarithm and pareto scaling, the NMR metabolite distributions per sample no longer 
showed any large outliers and were approximately centred around 0 (Figure 14). The normalization 
accounted for the metabolites with different orders of magnitude as no large abundances were 
observed. Potential technical and experimental variation was removed. The data was properly 
normalized for the exploratory and statistical data analysis. The results for the normalization of the 
DIMS (Figure 40) and UPLC (Figure 41) metabolites are shown in the Appendix and were similar to the 
results of the NMR metabolites. 
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Figure 14 Normalized metabolite distributions for NMR metabolites after a logarithmic-pareto normalization. The colours 
indicate the sampling times, either before (blue) or after (red) the introduction of solid foods. 

A first step in the exploratory data analysis was conducting a PCA for each of the metabolome data 
sets. For the NMR data, the first two principal components described 34.7% of the total variability in 
the data set (Figure 15). Based on the variability, there was no real distinction between samples before 
or after the introduction of solid foods. A second observation was that samples from the same infant 
do not cluster together unlike in the microbiome data. The results for the PCA of the DIMS (Figure 42) 
and UPLC (Figure 43) metabolites are shown in the Appendix. For the DIMS data, the first two principal 
components explained 47.2% of the total variability in the data. It could be observed that based on the 
variability, samples after the introduction of solid foods seemed to cluster together, while samples 
before the introduction of solid foods seemed to have a higher variability. Similar to the NMR data, the 
samples from the same infants did not cluster together. For the UPLC data, 37.3% of the total variability 
was explained by the first two principal components. Here, the opposite was seen. The samples before 
the introduction of solid foods seemed to cluster together while the samples after the introduction of 
solid foods had a higher variability. Again, samples from the same infant did not cluster together. The 
PCA on the UPLC data showed 4 samples with a lot of variability in the first principal component 
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towards the left. This was to rationale to construct a biplot of the UPLC data to know which metabolites 
drive this variability.  

 

Figure 15 PCA of the NMR metabolome data set. Colours denote samples from the same patient. The ellipses and shape of 
the dots describe the data from either before or after the introduction of solid foods. 

A biplot was constructed in order to find the metabolites causing a set of observations to be shifted to 
a large negative value of the first principal component of the UPLC data. The biplot shows the top 5 
metabolites (Figure 16). The metabolites identified were: 

• Taurocholic acid: A bile-acid taurine conjugate of cholic acid that usually occurs as the 
sodium salt of bile. It is involved in the emulsification of fats [77]. 

• Glycoursodeoxycholic acid-3-sulfate: A bile-acid glycine conjugate derived from 
ursoodeoxycholic acid. It is associated with neuroprotective properties [77].  

• Tauroallocholic acid: A bile-acid taurine conjugate [77].  
• Glycodeoxycholic acid-3-sulfate: A bile-acid glycine conjugate [77]. 
• Glycoallocholic acid 
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Figure 16 Biplot of the UPLC data with the top 5 metabolites. The colours denote the sampling times, before the introduction 
of solid foods being red and after the introduction of solid foods being blue. 

A final exploratory tool used for each of the metabolite data sets were the construction of heatmaps. 
The results are shown for the NMR data set (Figure 17). Similar heatmaps were constructed for the 
DIMS data set (Figure 44) and UPLC data set (Figure 45) in the Appendix. Several conclusions could be 
drawn for each of the data sets. Samples from within an infant did not cluster together, they were 
mixed with each other. Similar conclusions were drawn from the PCA. The observations from before 
the introduction of solid foods and after the introduction of solid foods were mixed. Hence, there were 
no large changes in metabolite concentrations observed due to the introduction of solid foods. And 
particularly for the DIMS and UPLC data sets, only a key set of metabolites were present in the infants. 
Finally, a peculiar observation was made for the NMR data set. For infant “T”, the metabolites lactate, 
acetate and succinate were almost completely absent while this infant did receive breast feeding prior 
to the introduction of solid foods. Infant “T” did however have a higher abundance of pyruvate in 
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comparison to the other infants. A similar pattern was observed for infant “R”, who had a lower 
abundance for lactate and a higher abundance for succinate.  

 

Figure 17 Heatmap of the NMR data set. The normalized counts are shown. Dendrograms show the clustering of metabolites 
in the rows and samples in the columns. A barplot is constructed to indicate the sample period, before (blue) or after (red) 
the introduction solid foods.  

3.2.2 Statistical analysis for differentially abundant metabolites 
The Wilcoxon rank-sum test was used to test for differentially abundant metabolites. Prior to 
adjustment for multiplicity, several metabolites in each of the data sets were found to be differentially 
abundant (Table 6). There were 4 differentially abundant metabolites in the NMR data (9.76%), 12 
differentially abundant metabolites in the DIMS data (10.34%) and 13 differentially abundant 
metabolites in the UPLC data (18.57%). After adjustment for multiple hypothesis testing, no 
metabolites were found to be differentially abundant in either of the data sets based on the 
introduction of solid foods. The raw and adjusted p-values for each metabolite are provided in the 
Appendix (Table 12 - Table 14). The volcano plot for the NMR data showed no differentially abundant 
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metabolites (Figure 18). The volcano plots for the DIMS (Figure 46) and UPLC (Figure 47) data sets are 
shown in the Appendix. Neither of the plots showed any significant results.  

Table 6 Wilcoxon rank-sum test results for differentially abundant metabolites after solid food introduction. 

 NMR DIMS UPLC 
Amount of metabolites 41 116 70 

Amount of significant metabolites 
before adjustment for multiplicity 4 (9.76%) 12 (10.34%) 13 (18.57%) 

Amount of significant metabolites 
after adjustment for multiplicity 0 (0.00%) 0 (0.00%) 0 (0.00%) 

 

 

Figure 18 Results for the differentially abundant metabolites after the introduction of solid foods in the NMR data. Results 
are shown after adjustment for multiplicity. The x-axis denotes the test statistic for the introduction of solid food and the y-
axis the negative logarithmic transformed p-values after adjustment of multiplicity. Colours denote the significance of the 
results, red being insignificant. 
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3.3 Association study between the microbiome and metabolome 
3.3.1 Hyperparameter tuning 
3.3.1.1 Covariance matrix 
A covariance matrix was constructed by fitting a PLS model between each of the data sets and 
computing the correlation between the first principal components. The covariance matrix shown in 
Table 7 was constructed using this technique. The highest correlations were observed between the 
Microbiome and UPLC data sets (0.866391) and between the NMR and DIMS data sets (0.8399946). 
The lowest correlations were observed between the Microbiome and DIMS data sets (0.6923896) and 
between the NMR and UPLC data sets (0.6672782).  

Table 7 Covariance matrix for the final DIABLO model. 

 Microbiome NMR DIMS UPLC Outcome 
Microbiome 0 0.8241704 0.6923896 0.866391 1 
NMR 0.8241704 0 0.8399946 0.6672782 1 
DIMS 0.6923896 0.8399946 0 0.7526392 1 
UPLC 0.866391 0.6672782 0.7526392 0 1 
Outcome 1 1 1 1 0 

 

3.3.1.2 Principal component tuning 
LOOCV was used in order to find the most optimal amount of principal components to use in the 
DIABLO model. The results were visualized in Figure 19. The centroids distance achieved the lowest 
classification error rates for both the normal error rate and the balanced error rate using 7 principal 
components. A larger amount of principal components could also be used as the same error rate was 
achieved. However, for computational purposes it was better to choose the lowest amount of principal 
components. In the essence of those computational purposes, it was chosen to select 3 principal 
components as the difference in error rates between 3 and 7 principal components was only minimal.   

3.3.1.3 Feature selection tuning 
Feature selection was used in order to select the key contributors, ASVs and metabolites, of each data 
set. The covariance matrix in Table 7 was used with 3 principal components. LOOCV was used in order 
to evaluate model. After several grid searches, the key contributors in each data set were narrowed 
down. Table 8 summarizes the amount of key contributors or features per data set and principal 
component. Noteworthy was the large amount of metabolites in the second principal component 
measured through DIMS (60) selected. All other data sets required a relatively small amount of 
features per principal component.  

Table 8 Key contributors or features per data set and principal component. 

Data set Principal component 1 Principal component 2 Principal component 3 
Microbiome 10 8 5 

NMR 19 21 5 
DIMS 13 60 13 
UPLC 7 8 6 
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Figure 19 Hyperparameter tuning of the principal components for the DIABLO model. The 3 distance measures are visualized 
with the maximum distance in blue, centroids distance in orange and Mahalanobis distance is grey. The solid lines is the 
classification error rate and the dotted line the balanced error rate.  

3.3.2 Results 
A first visualization made was the correlation plot at sample level where the principal components for 
each data set were plotted against each other. The samples are coloured based on the introduction of 
solid foods, either before (red) or after (blue) the introduction of solid foods. Figure 20 shows the first 
principal component of each data set. Two combinations of data sets reached a correlation higher 0.8. 
The highest correlation of 0.82 was reached between the microbiome and NMR data. Between the 
NMR and DIMS data, a correlation of 0.8 was achieved. The lowest correlation of 0.67 was found 
between the first principal components of the DIMS and UPLC data. Based on the ellipses, it could be 
observed that a distinction is present between the samples from both groups, with an overlap always 
being present. For the first principal components of the microbiome and DIMS data, the ellipse of 
samples after the introduction of solid foods were located completely within the ellipse of samples 
before the introduction of solid foods. A correlation plot of the second principal component is shown 
in the Appendix (Figure 48). Only the correlation of the second principal component between the 
microbiome and DIMS data achieved 0.80. While all correlations with the UPLC data achieved a 
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correlation lower than 0.70. It could also be observed that the ellipses were mostly overlapping 
between both groups of the introduction of solid foods. Lastly, the correlation plot between the third 
principal components was constructed and found in the Appendix (Figure 49). A large correlation was 
found between the microbiome and DIMS data (0.89) and between the DIMS and UPLC data (0.86). 
Only between the NMR and UPLC data, a correlation lower than 0.7 was observed (0.69). The ellipses 
of both groups always completely overlapped. However, it could be noted that in the third principal 
component, the ellipses of the group after the introduction of solid foods were larger compared to 
before the introduction of solid foods indicating a larger variability for the samples after the 
introduction of solid foods. 

 

Figure 20 Correlation plot of the correlation between the first principal component of each data set. Dots denote samples 
and the colour shows the sampling time, either before the introduction of solid foods (red) or after (blue). 95% confidence 
ellipses were added. 

Next, a circos plot was created (Figure 21). The circos plot shows all key contributors selected from 
each data set for all 3 principal components. Each data set is shown in a different colour. Inside the 
circle are lines present. These lines show the correlations larger than 0.7 or smaller than -0.70. On the 
outside of the circle, there are also two lines present. These lines show the expression level of that 
metabolite or ASV for both groups of the introduction of solid foods. It could be observed that there 
was a difference in expression levels for a portion of the selected features for both groups of the solid 
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food introduction. Due to the large amount of key contributors selected by the DIABLO algorithm, the 
labels of the key contributors are hard to read. Therefore, all key contributors with correlations > 0.7 
or < -0.7 are summarized in Table 15, amounting to a total of 119 strong associations between ASVs 
and metabolites or between metabolites. It could be seen that a set of ASVs were positively correlated 
with metabolites. One bacteria may be present multiple times in Table 15. This is due to the fact that 
different ASVs of that bacteria were associated with the same metabolite. As the main focus was the 
association of ASVs with metabolites, the associations between different metabolites were currently 
not looked into. Bacteroides ovatus had the largest amount of associations (21) with metabolites 
(Table 9, Table 15). Other associations between bacteria and metabolites were also investigated. 
Noteworthy associations were between:  

• Streptococcus infantis and Beta-muricholic acid 
• Butyricicoccus pullicaecorum, Bacteroides caccae and Bacteroides ovatus and histidine.  

 

 

Figure 21 A circos plot of the final DIABLO model for the LucKi Gut Study. Each data set is shown in a different colour with 
the microbiome data in purple, the NMR data in red, the DIMS data in green and UPLC data in yellow. Inside the circle, the 
blue lines show the positive correlations > 0.7 and the red lines the negative correlations < -0.7. The lines outside the circle 
show the expression of that metabolite or ASV for both groups of solid food introduction. Before in orange and after in blue.  
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Table 9 Amount of associations between ASVs and metabolites per bacteria. 

Bacteria Associations 
Bacteroidaceae Bacteroides ovatus 21 

Ruminococcaceae Butyricicoccus pullicaecorum 7 
Bacteroidaceae Bacteroides caccae 7 

Ruminococcaceae Ruminococcus sp. 6 
Erysipelotrichaceae 6 

Veillonellaceae Veillonella dispar 5 
Lachnospiraceae [Ruminococcus] gnavus 5 

Enterobacteriaceae Proteus 5 
Streptococcaceae Streptococcus infantis 4 

Bifidobacteriaceae Bifidobacterium sp. 3 
Bifidobacteriaceae Bifidobacterium bifidum 2 

 

Figure 22 is a heat map of the correlations between all 159 metabolites and ASVs selected by the final 
DIABLO model. The Euclidean distance was used as a distance measure. A blocky structure could be 
observed between the different metabolites and ASVs used in the DIABLO model which indicated the 
grouping of metabolites and ASVs.  

  

Figure 22 Heat map of the correlations from the circos plot. 
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4 Discussion 
Within the present project, the effects of the introduction of solid foods on the gut microbiome and 
metabolome were investigated. A second scope of the study was to examine the association between 
the gut microbiome and metabolome. To this end, a selection of 9 infants from the LucKi Gut study 
who were intensively sampled during a 14-day period at the time of introduction of solid foods were 
used [39].  

The impact of solid food introduction on the gut microbiome was investigated first. The microbiome 
data was filtered, removing 98% of the taxa. Afterwards, the counts were normalized using a CLR-
transformation to account for the compositionality of the microbiome data  [59]. The effects of solid 
food introduction and other potential covariates were explored using multiple exploratory tools. The 
introduction of solid foods showed no influence on the microbial composition or on individual 
microbial taxa. It was observed that the microbiome could be regarded as a unique fingerprint for each 
individual, which corresponds to literature [1, 2, 3, 4, 90]. The age of the infants was shown to influence 
the alpha diversity. Formal testing for differentially abundant ASVs due to solid food introduction was 
done using ANCOM-BC and the Benjamini-Hochberg procedure to account for multiple hypotheses 
testing [58, 74, 76]. Prior to adjustment for multiple hypotheses testing, 7 significant ASVs (5.79%) 
were found to be differentially abundant prior to the introduction of solid foods. These ASVs were all 
known gut commensals [91]. After adjusting for the multiple hypotheses testing, no significant results 
were found for the introduction of solid foods. This indicated that the abundances of the ASVs didn’t 
change significantly under the introduction of solid foods. Literature suggests that the gut microbiome 
is able to respond rapidly to dietary changes, even within the order of hours and days [92]. However, 
at the time of introduction of solid foods, these dietary changes are not as drastic as changing a 
complete diet. The infants were still breastfed after the introduction of solid foods most of the time 
and received only small amounts of simple foods like fruit and porridges once or several times a day 
to substitute the breast milk. Consequently, the microbiome is likely still mainly adapted to the 
degradation of human milk oligosaccharides present in breast milk. For age however, the abundances 
of ASVs did show statistically significant results after adjustment for multiple hypotheses testing in 60 
out of 121 ASVs (49.59%). This corresponds nicely with previous findings showing that age is an 
important factor in the maturation of the gut microbiome [19, 20]. This provides an interesting insight 
into the rapid diet-independent development of the gut microbiome with age.  

Next, the metabolome was investigated. Prior to performing any analysis, the data was cleaned and 
normalized using a natural logarithm and pareto scaling. An exploratory data analysis was conducted 
afterwards. Both the PCA and heatmaps yielded similar conclusions. Visually, there was no distinct 
separation of the samples that were collected before and after the introduction of solid foods. In 
contrary to the microbiome data, samples from the same infant did not cluster together. This might 
be explained by the fact that, in contrast to the microbiota composition, the metabolome is more 
directly influenced by the food that was recently consumed. Since all infants followed a highly similar 
diet consisting mostly out of breastfeeding, a clear distinction between infants may not yet be present. 
An additional biplot was constructed for the UPLC data. The top 5 metabolites were visualized and 
showed a large amount of variability for 4 samples after the introduction of solid foods. The 
metabolites were all bile-acid taurine and glycine conjugates present in larger abundances compared 
to other samples. These 4 samples were also clustered together on the heatmap for the UPLC data. 
However, no patterns related to the microbiome or foods digested were discovered. The heatmap for 
the NMR data showed almost complete absence of lactate for infant “T” while receiving breastfeeding. 
A potential reason for this could be the high abundance of Bacteroidaceae. Previous studies have 
proven a higher abundance of Bacteroidaceae causes a lower abundance of lactate [93]. In infant “R”, 
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lactate was also only present in low abundances while succinate had a higher abundance compared to 
other infants. The lower lactate levels may have a similar reason as observed in infant “T”, which was 
due to the high abundance of Bacteroidaceae [93]. A potential reason for the high succinate abundance 
could be due to the high abundance of Porphyromonadaceae in infant “R”. This family is involved in 
the succinate pathway which yields succinate as the end-product [32]. Several methods such as a 
Wilcoxon rank-sum test, two sample t-test, ANOVA and linear mixed model were used to test for 
differentially abundant metabolites. Each of the methods yielded the same conclusions and the 
Wilcoxon rank-sum test was reported [82]. The Benjamini-Hochberg procedure was used to correct for 
multiplicity [76]. Prior to any adjustment for multiple hypotheses testing, several metabolites were 
found to be differentially abundant. The 4 differentially abundant metabolites in the NMR data prior 
to accounting for multiple testing were Galactose, Butyrate, 5-Aminopentanoate and Xylose. The 12 
differentially abundant metabolites in the DIMS data prior to adjustment were part of the fatty-acid 
metabolism, central carbon metabolism and choline metabolism. For the UPLC data, these 13 
differentially abundant bile-acids were taurine and glycine conjugates. In particular, the galactose is 
interesting as galactose is a part of lactose. Galactose had an average normalized abundance of 0.345 
before the introduction of solid foods and -0.230 after the introduction of solid foods. This potentially 
indicates the reduction of milk in the diet of infants after solid food introduction. After correction for 
multiple hypothesis testing, no differentially abundant metabolites were found. A same reasoning can 
be given for the metabolomics results as for the microbiome results. The introduction of solid foods is 
a slow process, replacing breast milk once or several times a day by simple foods such as fruit porridge 
while still receiving breast milk most of the day. Which causes only a small shift of metabolites in the 
beginning. An alternative explanation could be due to the fact that a low sample size, large amount of 
metabolites and large variation between individuals leads up to very little power to retain significant 
associations after correcting for multiple hypotheses testing.   

The final analysis was conducting an association study between the microbiome and metabolome data 
at the time of introduction of solid foods. DIABLO was used to perform this association study [83].  
DIABLO required the tuning of several hyperparameters such as the covariance matrix, the number of 
principal components used and the amount of ASVs and metabolites used in the final model. The 
results for the final DIABLO model were first shown at sample level using a correlations plot between 
each of the nth principal component of each data set. In the correlation plots of the first principal 
components, the 95% confidence ellipses of both groups of solid food introduction were only partially 
overlapping. This indicated that separation between both groups was possible up to a certain height. 
For the second and third principal component correlation plots, this separation was no longer as 
straightforward. This was most likely due to the fact that the first principal components explained most 
of the variability in the data. The fact that separation between both groups of solid food introduction 
might not be entirely possible could be due to the fact that no differentially abundant ASVs or 
metabolites were found during the data analysis. Yet when comparing these results to the PCA 
performed for the microbiome or metabolome separately, the separation between both groups had 
significantly increased. This could indicate that using both microbiome and metabolome data 
combined, a distinguishment between both groups could be easier. A next step in the association study 
was looking into the results at feature level, either ASV or metabolite, using a circos plot. The circos 
plot had a filter where only correlations > 0.70 or < -0.70 were shown. A total of 119 bacteria-
metabolite and metabolite-metabolite associations were found. There were 11 different bacteria 
present with metabolite associations. All bacteria-metabolite associations could be related back to 
metabolites produced by humans, the bacteria itself and from food sources [77, 94]. All of these 
bacteria were commensals of the gut microbiome. Bacteroides ovatus stood out with 3 ASVs 
associating with 7 different metabolites amounting to a total of 21 associations. This was due to the 
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fact that multiple ASVs of Bacteroides ovatus were positively associated with the same set of 
metabolites. This strengthens the proof of an association between Bacteroides ovatus and these 
metabolites. Bacteroides sp. is a beneficial bacterium responsible for the metabolization of 
polysaccharides, oligosaccharides, providing nutrition and vitamins to the host and other intestinal 
microbial residents. Bacteroides ovatus is also associated with breaking down insulin [95]. An 
interesting finding was the bacteria-metabolite association between Streptococcus infantis and Beta-
muricholic acid. Beta-muricholic acid is a bile-acid synthesized by mice while humans synthesize cholic 
acid [96]. A direct rationale could not be found behind the presence of this metabolite and its 
association the with Streptococcus infantis. Another interesting finding was an association between 
Butyricicoccus pullicaecorum, Bacteroides caccae and Bacteroides ovatus and histidine. The 
associations between both Bacteroides sp. and histidine have been described in literature, as both 
bacteria are involved in the histidine metabolism [97]. A link between Butyricicoccus pullicaecorum 
and histidine has not yet been established. Histidine is an essential amino-acid and a precursor 
metabolite to histamine. Histamine is a compound involved in multiple physiological processes such 
as gastric acid secretion and as a vital inflammatory agent in immune responses and allergic reactions 
[77]. A final visualization provided was a heat map of the correlations between the different 
metabolites and ASVs present in the final DIABLO model. A blocky structure was observed indicating 
higher correlations between different metabolites and ASVs. This showed that different metabolites 
and ASVs clustered together and potentially were related with each other. The associations found 
using DIABLO showed an early-life association between the gut microbiome and metabolome was 
present not only concerning the digestion of food but also as a key player in the immune system of 
infants.  

The major strength of this study was the focus on looking into the influences of solid food introduction 
on a short, intensively sampled time-interval. Previous studies only looked into this over a larger period 
of time which didn’t allow for a focus on the rapidly occurring changes in the microbiome and 
metabolome during infancy. The association study showed associations present between the gut 
microbiome and metabolome during this short time-interval. It opens new questions for future 
research and reach more knowledge about the development of the gut microbiome during infancy.  

The major shortcoming of this study was the low amount of samples available. The low amount of 
samples caused a lower statistical power. This caused a low sensitivity to find differentially abundant 
ASVs and metabolites. This was also the case for the association study, which was done with even less 
samples. A larger sample size would yield more statistically robust results. A second shortcoming was 
the limited sampling time. Some infants only had samples of a few days, which could potentially be 
too short for the microbiome and metabolome to change significantly under the effects of solid food 
introduction.  

5 Conclusion 
This thesis focused at the changes in the microbiome and metabolome taking placing at the time of 
solid food introduction using an intensively sampling study. An additional topic was the association 
between the microbiome and metabolome at the time of solid food introduction. ANCOM-BC was used 
to test for differential abundance of ASVs. No differentially abundant ASVs were found due to the solid 
food introduction after correction for multiplicity. The age of infants was a second covariate in the 
model. There were 60 differentially abundant ASVs based on the age of infants after correction of 
multiplicity. A Wilcoxon rank-sum test, two sample t-test, ANOVA and linear mixed model was used to 
test for differentially abundant metabolites and the Wilcoxon rank-sum test was reported. No 
differentially abundant metabolites were identified after correction for multiplicity. A potential reason 
for not finding any differentially abundant ASVs and metabolites is due to the fact that the dietary 
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changes at the time of solid food introduction may not be as drastic to cause any large changes in gut 
microbiome and metabolome compositions. The differentially abundant ASVs for the age of an infant 
corresponds with previous findings where the microbiome is affected by age. The final focus was the 
studying the association between the microbiome and metabolome. This was done using DIABLO. A 
set of associations were identified between different bacteria and metabolites. These metabolites 
could all be related back to metabolites produced by the infants, by the bacteria itself and from food 
sources. A set of bacteria were also associated to histidine, a precursor metabolite for histamine which 
is responsible for gastric acid secretion and immune responses. This research confirms an association 
between the gut microbiome and metabolome in the digestion of food but also as a key player for the 
immune response of infants at an early-life. This research provided a valuable insight into the gut 
microbiome during infancy and its functions. This study could lead up to a further knowledge about 
the development of the gut microbiome and potential health-related issues whom are related to the 
gut microbiome. 

As future research, a proposal would be looking into the metabolites found to be associated with 
bacteria. One way of doing this would be by cultivating the bacteria on agars and adding the metabolite 
to the agar. If it affects the growth of the bacteria, this confirms a relationship between the metabolites 
and bacteria. The correlations were found on a data driven method and this would confirm their 
relationship in a laboratory setting. A second proposal would be increasing the sample size of the study 
as a larger sample size would potentially reveal biologically relevant changes in the gut microbiome 
and metabolome. A third proposal would be to collect samples from these infants after the breast 
feeding has completely stopped. This might provide more insight into the effects of solid food 
introduction and breast feeding.  
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Appendices 
R packages 
Table 10 R packages used with their corresponding versions. 

R package Version 
ANCOMBC 1.6.0 

Biobase 2.56.0 
BiocGenerics 0.42.0 

BiocParallel 1.30.0 
Biostrings 2.64.0 

ComplexHeatmap 2.12.0 
data.table 1.14.2 

dplyr 1.0.9 
DT 0.23 

factoextra 1.0.7 
forcats 0.5.1 

GenomeInfoDb 1.32.2 
ggplot2 3.3.6 

ggridges 0.5.3 
ggtext 0.1.1 
ggven 0.1.9 
IMIFA 2.1.8 

IRanges 2.30.0 
lattice 0.20-45 

lme4 1.1-29 
MASS 7.3-57 

Matrix 1.4-1 
matrixStats 0.62.0 

MESS 0.5.7 
metagMisc 0.0.4 

microbiome 1.18.0 
microViz 0.9.0 

mixOmics 6.20.0 
nlme 3.1-157 
oligo 1.60.0 

oligoclases 1.58.0 
phyloseq 1.40.0 

purrr 0.3.4 
readr 2.1.2 

S4Vectors 0.34.0 
skimr 2.1.4 

stringr 1.4.0 
tibble 3.1.7 

tidyr 1.2.0 
tidyverse 1.3.1 

Viridis 0.6.2 
viridisLite 0.4.0 

XVector 0.36.0 
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Addendum 

 

Figure 23 Scree plot of the microbiome PCA shown in Figure 7. 
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Figure 24 Bar plot of the relative abundances in samples of infant "P" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 25 Bar plot of the relative abundances in samples of infant "Q" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 26 Bar plot of the relative abundances in samples of infant "R" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 27 Bar plot of the relative abundances in samples of infant "S" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 28 Bar plot of the relative abundances in samples of infant "T" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 29 Bar plot of the relative abundances in samples of infant "U" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 30 Bar plot of the relative abundances in samples of infant "V" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 31 Bar plot of the relative abundances in samples of infant "W" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 32 Bar plot of the relative abundances in samples of infant "X" at family rank. Stratified over the introduction of solid 
foods. 
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Figure 33 Alpha diversity indices in function of gender. The colours denote the different genders with female in red and male 
in blue. Summarized for different alpha diversity statistics. 

 

Figure 34 Alpha diversity indices in function of length per infant. Coloured by infant and shapes denote the sampling times, 
either before (cubes) or after (circles) the introduction of solid foods. Summarized for different alpha diversity statistics. 
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Figure 35 Alpha diversity indices in function of weight per infant. Coloured by infant and shapes denote the sampling times, 
either before (cubes) or after (circles) the introduction of solid foods. Summarized for different alpha diversity statistics. 

 

 

Figure 36 Alpha diversity indices in function of disease status. The colours denote the disease status with “No” in red and 
“Yes”  in blue. Summarized for different alpha diversity statistics. 
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Figure 37 Results for the age (in days) of the microbiome data after adjustment for multiplicity. The x-axis denotes the test 
statistic for the age in days and the y-axis the negative logarithmic transformed p-values after adjustment of multiplicity. 
Colours denote the significance of the results, red being insignificant and blue significant. The size of the dots denote the 
standard error of the test statistic. 

Table 11 P-values for age and solid food introduction using ANCOM-BC. 

ASV 
Age (in 
days) p-

value 

Solid 
foods p-

value 

Age (in days) 
adjusted p-

value 

Solid foods 
adjusted p-

value 
f__Pasteurellaceae_g__Haemophil

us_s__parainfluenzae_22 0,611 0,006 0,698 0,594 

f__Streptococcaceae_g__Streptoco
ccus_s__luteciae_1 0,542 0,011 0,637 0,594 

f__Clostridiaceae_g__SMB53_s___
12 0,175 0,017 0,249 0,594 

f__Streptococcaceae_g__Streptoco
ccus_s___67 0,000 0,026 0,001 0,594 
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f__Enterobacteriaceae_g__Enterob
acter_s__cloacae_9 0,290 0,027 0,385 0,594 

f__Staphylococcaceae_g__Staphylo
coccus_s__aureus_3 0,005 0,029 0,011 0,594 

f__Alcaligenaceae_g__Sutterella_s
___75 0,937 0,040 0,976 0,687 

f__Lachnospiraceae_g__Blautia_s_
__49 0,130 0,057 0,197 0,714 

f__Enterobacteriaceae_g__Klebsiell
a_s___17 0,001 0,058 0,003 0,714 

f__Lachnospiraceae_g__[Ruminoco
ccus]_s__gnavus_48 0,339 0,063 0,432 0,714 

f__Turicibacteraceae_g__Turicibact
er_s___3 0,165 0,065 0,237 0,714 

f__Streptococcaceae_g__Streptoco
ccus_s__infantis_2 0,014 0,076 0,030 0,717 

f__Streptococcaceae_g__Streptoco
ccus_s___66 0,000 0,081 0,000 0,717 

f__Pasteurellaceae_g__Haemophil
us_s__parainfluenzae_26 0,000 0,083 0,001 0,717 

f__Coriobacteriaceae_g__Collinsell
a_s__aerofaciens_3 0,000 0,099 0,000 0,802 

f__Lachnospiraceae_g__Lachnospir
a_s___23 0,028 0,113 0,054 0,834 

f__Alcaligenaceae_g__Sutterella_s
___66 0,794 0,117 0,858 0,834 

f__Veillonellaceae_g__Veillonella_s
__dispar_52 0,003 0,134 0,009 0,902 

f__Enterococcaceae_g__Enterococc
us_s___60 0,420 0,179 0,513 0,966 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s__longum_63 0,286 0,182 0,385 0,966 

f__Enterococcaceae_g__Enterococc
us_s___69 0,678 0,188 0,759 0,966 

f__Enterococcaceae_g__Enterococc
us_s___27 0,000 0,194 0,000 0,966 

f__Lachnospiraceae_g__[Ruminoco
ccus]_s___4 0,809 0,196 0,866 0,966 

f__Lachnospiraceae_g__[Ruminoco
ccus]_s__gnavus_22 0,033 0,202 0,060 0,966 

f__Lachnospiraceae_g___s___184 0,510 0,203 0,617 0,966 
f__Clostridiaceae_g__Sarcina_s___

1 0,984 0,226 0,984 0,966 

f__Bacteroidaceae_g__Bacteroides
_s__fragilis_14 0,000 0,239 0,000 0,966 

f__Pasteurellaceae_g__Haemophil
us_s__parainfluenzae_21 0,087 0,244 0,141 0,966 

f__Coriobacteriaceae_g___s___34 0,001 0,263 0,003 0,966 
f__Bacteroidaceae_g__Bacteroides

_s__caccae_4 0,003 0,264 0,008 0,966 



Page | 56  
 

f__Lachnospiraceae_g___s___290 0,000 0,270 0,002 0,966 
f__Enterobacteriaceae_g__Trabulsi

ella_s___14 0,000 0,295 0,001 0,966 

f__Lactobacillaceae_g__Lactobacill
us_s__zeae_19 0,004 0,312 0,010 0,966 

f__Gemellaceae_g___s___6 0,000 0,319 0,000 0,966 
f__Enterococcaceae_g__Enterococc

us_s___61 0,604 0,341 0,696 0,966 

f__Clostridiaceae_g__Clostridium_s
__celatum_18 0,674 0,341 0,759 0,966 

f__Peptostreptococcaceae_NA_NA
_1 0,283 0,343 0,385 0,966 

f__Lachnospiraceae_g__Dorea_s__
formicigenerans_8 0,000 0,346 0,002 0,966 

f__Enterobacteriaceae_g__Enterob
acter_s__cloacae_11 0,575 0,352 0,669 0,966 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s___5 0,526 0,352 0,630 0,966 

f__Clostridiaceae_g__SMB53_s___
47 0,351 0,364 0,443 0,966 

f__Lactobacillaceae_g__Lactobacill
us_s__zeae_10 0,000 0,367 0,000 0,966 

f__Porphyromonadaceae_g__Para
bacteroides_s___41 0,001 0,371 0,003 0,966 

f__Pasteurellaceae_g__Haemophil
us_s__parainfluenzae_20 0,121 0,379 0,188 0,966 

f__Veillonellaceae_g__Veillonella_s
___29 0,000 0,380 0,000 0,966 

f__Enterobacteriaceae_g__Citrobac
ter_s___17 0,117 0,387 0,184 0,966 

f__Alcaligenaceae_g__Sutterella_s
___43 0,009 0,390 0,020 0,966 

f__Staphylococcaceae_g__Staphylo
coccus_s__epidermidis_4 0,007 0,392 0,017 0,966 

f__Bacteroidaceae_g__Bacteroides
_s__fragilis_15 0,000 0,398 0,000 0,966 

f__Bacteroidaceae_g__Bacteroides
_s___151 0,020 0,412 0,042 0,966 

f__Streptococcaceae_g__Streptoco
ccus_s__luteciae_3 0,001 0,423 0,003 0,966 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s___95 0,262 0,439 0,364 0,966 

f__Bacteroidaceae_g__Bacteroides
_s__ovatus_10 0,001 0,442 0,004 0,966 

f__Alcaligenaceae_g__Sutterella_s
___17 0,416 0,443 0,513 0,966 

f__Bacteroidaceae_g__Bacteroides
_s___149 0,000 0,444 0,000 0,966 

f__Veillonellaceae_g__Veillonella_s
___22 0,132 0,451 0,197 0,966 
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f__Enterobacteriaceae_g__Escheric
hia_s__coli_26 0,876 0,463 0,929 0,966 

f__Enterobacteriaceae_NA_NA_39 0,000 0,467 0,002 0,966 
f__Clostridiaceae_g__Clostridium_s

__neonatale_5 0,541 0,471 0,637 0,966 

f__Clostridiaceae_g__Clostridium_s
__perfringens_19 0,003 0,481 0,009 0,969 

f__Veillonellaceae_g__Veillonella_s
__dispar_49 0,061 0,500 0,102 0,991 

f__Enterobacteriaceae_NA_NA_66 0,001 0,509 0,003 0,993 
f__Bacteroidaceae_g__Bacteroides

_s___150 0,009 0,517 0,020 0,993 

f__Lachnospiraceae_g__Blautia_s_
__109 0,028 0,548 0,054 0,997 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s___10 0,005 0,552 0,011 0,997 

f__Ruminococcaceae_g__Ruminoco
ccus_s___171 0,014 0,585 0,029 0,997 

f__Pasteurellaceae_g__Haemophil
us_s__parainfluenzae_23 0,031 0,586 0,057 0,997 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s__bifidum_3 0,004 0,596 0,011 0,997 

f__Peptostreptococcaceae_g__Pept
ostreptococcus_s__anaerobius_1 0,003 0,614 0,008 0,997 

f__Veillonellaceae_g__Veillonella_s
__dispar_94 0,693 0,621 0,769 0,997 

f__Enterobacteriaceae_g__Klebsiell
a_s___15 0,705 0,626 0,775 0,997 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s__longum_5 0,000 0,638 0,001 0,997 

f__Ruminococcaceae_g__Oscillospi
ra_s___272 0,980 0,657 0,984 0,997 

f__Porphyromonadaceae_g__Para
bacteroides_s__distasonis_11 0,094 0,661 0,149 0,997 

f__Bacteroidaceae_g__Bacteroides
_s__ovatus_72 0,001 0,662 0,004 0,997 

f__Veillonellaceae_g__Veillonella_s
__dispar_11 0,026 0,667 0,052 0,997 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s___11 0,326 0,677 0,420 0,997 

f__Veillonellaceae_g__Veillonella_s
___21 0,032 0,680 0,058 0,997 

f__Enterococcaceae_g__Enterococc
us_s___26 0,314 0,690 0,408 0,997 

f__Streptococcaceae_g__Streptoco
ccus_s___65 0,000 0,692 0,001 0,997 

f__Lactobacillaceae_g__Lactobacill
us_s__zeae_3 0,000 0,707 0,000 0,997 

f__Bacteroidaceae_g__Bacteroides
_s__ovatus_71 0,002 0,713 0,006 0,997 



Page | 58  
 

f__Porphyromonadaceae_g__Para
bacteroides_s__distasonis_10 0,035 0,716 0,062 0,997 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s___7 0,001 0,717 0,003 0,997 

f__Veillonellaceae_g__Megamonas
_s___2 0,029 0,728 0,054 0,997 

f__Enterobacteriaceae_g__Enterob
acter_s__cloacae_8 0,006 0,730 0,014 0,997 

f__Bacteroidaceae_g__Bacteroides
_s__ovatus_73 0,001 0,731 0,004 0,997 

f__Erysipelotrichaceae_g___s___50 0,082 0,738 0,134 0,997 
f__Veillonellaceae_g__Veillonella_s

___26 0,004 0,746 0,010 0,997 

f__Bacteroidaceae_g__Bacteroides
_s___152 0,035 0,750 0,062 0,997 

f__Enterobacteriaceae_g__Proteus
_s___1 0,122 0,766 0,188 0,997 

f__Veillonellaceae_g__Veillonella_s
__dispar_26 0,272 0,783 0,375 0,997 

f__Streptococcaceae_g__Streptoco
ccus_s___20 0,057 0,807 0,099 0,997 

f__Enterobacteriaceae_NA_NA_61 0,002 0,811 0,006 0,997 
f__Bifidobacteriaceae_g__Bifidoba

cterium_s___6 0,981 0,821 0,984 0,997 

f__Veillonellaceae_g__Veillonella_s
__dispar_50 0,232 0,824 0,326 0,997 

f__Enterobacteriaceae_g__Escheric
hia_s__coli_25 0,000 0,829 0,000 0,997 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s__longum_6 0,067 0,837 0,111 0,997 

f__Bacteroidaceae_g__Bacteroides
_s__caccae_3 0,002 0,838 0,006 0,997 

f__Pasteurellaceae_g__Haemophil
us_s__parainfluenzae_24 0,024 0,848 0,048 0,997 

f__Clostridiaceae_g__Clostridium_s
__neonatale_22 0,001 0,853 0,003 0,997 

f__Veillonellaceae_g__Veillonella_s
___25 0,149 0,859 0,219 0,997 

f__Bacteroidaceae_g__Bacteroides
_s___131 0,738 0,869 0,804 0,997 

f__Veillonellaceae_g__Veillonella_s
__dispar_87 0,950 0,872 0,976 0,997 

f__Clostridiaceae_g__Clostridium_
NA_6 0,022 0,883 0,044 0,997 

f__Clostridiaceae_g__Clostridium_s
__perfringens_32 0,001 0,893 0,003 0,997 

f__Bifidobacteriaceae_g__Bifidoba
cterium_s___47 0,929 0,900 0,976 0,997 

f__Enterobacteriaceae_g__Klebsiell
a_s___16 0,000 0,905 0,001 0,997 



Page | 59  
 

f__Bacteroidaceae_g__Bacteroides
_s__ovatus_29 0,058 0,909 0,099 0,997 

f__Veillonellaceae_g__Veillonella_s
__dispar_23 0,000 0,920 0,003 0,997 

f__Clostridiaceae_g__Clostridium_s
__neonatale_23 0,307 0,924 0,404 0,997 

f__Enterobacteriaceae_g__Trabulsi
ella_s___3 0,001 0,925 0,003 0,997 

f__Enterobacteriaceae_g__Klebsiell
a_s___14 0,000 0,942 0,000 0,997 

f__Lachnospiraceae_g___s___353 0,002 0,978 0,006 0,997 
f__Ruminococcaceae_g__Oscillospi

ra_s___268 0,153 0,979 0,222 0,997 

f__Clostridiaceae_g__Clostridium_s
__neonatale_7 0,007 0,980 0,017 0,997 

f__Ruminococcaceae_g__Oscillospi
ra_s___269 0,409 0,983 0,510 0,997 

f__Lachnospiraceae_g__Epulopisciu
m_s___2 0,002 0,984 0,007 0,997 

f__Enterobacteriaceae_g__Escheric
hia_s__coli_20 0,001 0,993 0,003 0,997 

f__Clostridiaceae_g__Clostridium_s
__perfringens_13 0,951 0,997 0,976 0,997 

f__Ruminococcaceae_g__Butyricico
ccus_s__pullicaecorum_36 0,001 0,997 0,003 0,997 
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Figure 38 Non-normalized metabolite distributions per sample for DIMS metabolites. The colours indicate the sampling 
times, either before (blue) or after (red) the introduction of solid foods. 
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Figure 39 Non-normalized metabolite distributions per sample for UPLC metabolites. The colours indicate the sampling 
times, either before (blue) or after (red) the introduction of solid foods. 
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Figure 40 Normalized metabolite distributions for DIMS metabolites after a logarithmic-pareto normalization.  The colours 
indicate the sampling times, either before (blue) or after (red) the introduction of solid foods. 

. 
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Figure 41 Normalized metabolite distributions for UPLC metabolites after a logarithmic-pareto normalization.  The colours 
indicate the sampling times, either before (blue) or after (red) the introduction of solid foods. 
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Figure 42 PCA for the DIMS data set. Colours denote samples from the same patient. The ellipses and shape of the dots 
describe the data from either before or after the introduction of solid foods. 
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Figure 43 PCA for the UPLC data set.  Colours denote samples from the same patient. The ellipses and shape of the dots 
describe the data from either before or after the introduction of solid foods. 
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Figure 44 Heatmap of the DIMS data set. The normalized counts are shown. Dendrograms show the clustering of 
metabolites in the rows and samples in the columns. A bar plot is constructed to indicate the sample period, before (blue) or 
after (red) the introduction solid foods.  
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Figure 45 Heatmap of the UPLC data set. The normalized counts are shown. Dendrograms show the clustering of 
metabolites in the rows and samples in the columns. A barplot is constructed to indicate the sample period, before (blue) or 
after (red) the introduction solid foods. 

Table 12 Results for the differential abundance testing of NMR metabolites. 

Metabolite Unadjusted P-value Adjusted P-value 
Galactose 0,007 0,237 
Butyrate 0,012 0,237 

5-Aminopentanoate 0,038 0,393 
Xylose 0,038 0,393 
Uracil 0,072 0,562 

Lactate 0,083 0,562 
?-Alanine 0,099 0,562 

Propionate 0,110 0,562 
Acetate 0,143 0,651 

Isobutyrate 0,213 0,816 
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2-Oxoisocaproate 0,219 0,816 
myo-Inositol 0,289 0,894 

Methanol 0,304 0,894 
Isovalerate 0,354 0,894 

Cytosine 0,390 0,894 
Dimethylamine 0,409 0,894 

Glycerol 0,429 0,894 
Tyramine 0,459 0,894 
Acetoin 0,469 0,894 

3-Hydroxyisovalerate 0,469 0,894 
Fucose 0,469 0,894 

phenylacetic acid 0,511 0,894 
Fumarate 0,533 0,894 

Propylene glycol 0,533 0,894 
Ethanol 0,556 0,894 

Succinate 0,567 0,894 
Methylamine 0,590 0,896 

4-Aminobutyrate 0,625 0,916 
Aspartate 0,724 0,984 

N-Acetylglutamate 0,788 0,984 
Trimethylamine 0,827 0,984 

Malonate 0,827 0,984 
Pyroglutamate 0,827 0,984 

Valerate 0,827 0,984 
Xanthine 0,880 0,984 

Cadaverine 0,880 0,984 
4-Hydroxyphenylacetate 0,933 0,984 

Citrate 0,960 0,984 
Isopropanol 0,960 0,984 

Pyruvate 0,960 0,984 
Formate 1,000 1,000 

 

Table 13 Results for the differential abundance testing of DIMS metabolites. 

Metabolite Unadjusted P-value Adjusted P-value 
LYSOC14:0 0,004 0,286 
C18:1OH 0,005 0,286 
PC40:1AA 0,020 0,368 
LYSOC26:0 0,021 0,368 

C5MDC 0,022 0,368 
PC38:0AA 0,023 0,368 
LYSOC20:3 0,027 0,368 
PC40:6AA 0,034 0,368 
PC32:2AA 0,035 0,368 
PC40:6AE 0,038 0,368 
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C14 0,045 0,368 
C18:2 0,049 0,368 

PC40:2AA 0,051 0,368 
C4:1 0,053 0,368 
C16 0,053 0,368 

Asparagine 0,057 0,368 
LYSOC28:1 0,057 0,368 

C18:1 0,057 0,368 
C16:2OH 0,064 0,386 

C18 0,066 0,386 
Glucose 0,072 0,386 

C16:1 0,077 0,386 
C12 0,077 0,386 

LYSOC28:0 0,080 0,386 
PC36:0AA 0,089 0,401 
PC36:6AA 0,095 0,401 
C16:1OH 0,096 0,401 

C5OH 0,099 0,401 
C12:1 0,110 0,401 

LYSOC26:1 0,110 0,401 
C0 0,110 0,401 

LYSOC17:0 0,117 0,401 
LYSOC18:0 0,117 0,401 

C14:1 0,117 0,401 
20:2SM 0,125 0,415 

Methylhistidine 0,143 0,461 
C16:2 0,152 0,465 

C2 0,152 0,465 
C6:1 0,157 0,468 

22:2SMOH 0,167 0,485 
LYSOC16:1 0,189 0,519 

Glycine 0,195 0,519 
C14:1OH 0,195 0,519 

Putrescine 0,207 0,519 
Methionine 0,207 0,519 

C16OH 0,213 0,519 
Threonine 0,219 0,519 

Diacetylspermine 0,219 0,519 
PC36:0AE 0,219 0,519 

C5DC 0,232 0,537 
LYSOC18:1 0,245 0,558 
C14:2OH 0,252 0,563 

LYSOC20:4 0,259 0,568 
Serotonin 0,274 0,577 
Creatinine 0,274 0,577 
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C10 0,289 0,598 
LYSOC16:0 0,297 0,599 

C14:2 0,304 0,599 
24:1SMOH 0,304 0,599 

Leucine 0,337 0,608 
C3OH 0,345 0,608 

Trimethylamine N-oxide 0,349 0,608 
C3 0,354 0,608 

Glutamic acid 0,354 0,608 
C12DC 0,363 0,608 

Glutamine 0,363 0,608 
Tryptophan 0,372 0,608 

Proline 0,372 0,608 
Tyrosine 0,372 0,608 
18:1SM 0,372 0,608 

22:1SMOH 0,372 0,608 
Phenylalanine 0,400 0,644 

C5:1DC 0,409 0,650 
C7DC 0,429 0,663 

PC38:6AA 0,429 0,663 
Taurine 0,439 0,669 

14:1SMOH 0,459 0,672 
Methionine-sulfoxide 0,469 0,672 

Serine 0,469 0,672 
Betaine 0,469 0,672 

16:1SMOH 0,469 0,672 
Acetyl-Ornithine 0,489 0,692 

C10:1 0,511 0,715 
Histidine 0,556 0,747 
16:1SM 0,556 0,747 
18:0SM 0,556 0,747 

Kynurenine 0,567 0,747 
C4 0,567 0,747 

Alanine 0,578 0,752 
trans-hydroxy-Proline 0,590 0,752 

C9 0,590 0,752 
C3:1 0,601 0,758 

Valine 0,625 0,780 
Ornithine 0,649 0,793 
16:0SM 0,649 0,793 

LYSOC24:0 0,674 0,814 
Choline 0,724 0,865 

Citrulline 0,749 0,878 
Creatine 0,749 0,878 

C6 0,775 0,899 
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Isoleucine 0,814 0,900 
Spermine 0,814 0,900 

Asymmetric dimethylarginine 0,814 0,900 
C8 0,827 0,900 

LYSOC18:2 0,827 0,900 
C4OH 0,840 0,900 
C5:1 0,840 0,900 

Arginine 0,853 0,900 
Total dimethylarginine 0,853 0,900 

C5 0,853 0,900 
Spermidine 0,920 0,949 
Sarcosine 0,920 0,949 

Aspartic acid 0,933 0,949 
Lysine 0,933 0,949 

alpha-Aminoadipic acid 0,946 0,954 
C10:2 0,960 0,960 

 

Table 14 Results for the differential abundance testing of UPLC metabolites. 

Metabolite Unadjusted P-value Adjusted P-value 
Lithocholic acid 0,014 0,252 

Tauroallocholic acid 0,024 0,252 
Taurocholic acid 0,027 0,252 

Ursodeoxycholic acid-24-Glucuronide 0,028 0,252 
Nordeoxycholic acid 0,034 0,252 

Glycoursodeoxycholic acid 0,035 0,252 
Beta-Muricholic acid 0,038 0,252 

Isolithocholic acid-3-sulfate 0,038 0,252 
Glycoursodeoxycholic acid-3-sulfate 0,039 0,252 

Glycohyocholic acid 0,042 0,252 
7-Ketodeoxycholic acid 0,042 0,252 

Tauroursodeoxycholic acid/Taurohyodeoxycholic acid 0,046 0,252 
Tauro-alpha-muricholic acid 0,047 0,252 
Taurochenodeoxycholic acid 0,066 0,328 

Isolithocholic acid 0,077 0,361 
Omega-Muricholic acid 0,091 0,365 

Deoxycholic acid-3-Glucuronide 0,094 0,365 
Allocholic acid 0,099 0,365 

Ursodeoxycholic acid-3-sulfate 0,099 0,365 
Glycoallocholic acid 0,111 0,386 

Chenodeoxycholic acid-3-Glucuronide 0,116 0,386 
Glycochenodeoxycholic acid-3-sulfate 0,123 0,390 

Glycochenodeoxycholic acid 0,135 0,409 
Deoxycholic acid 0,145 0,422 

Glycodeoxycholic acid 0,161 0,450 
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Deoxycholic acid-3-sulfate 0,167 0,450 
Taurochenodeoxycholic acid-3-sulfate 0,179 0,464 

7-Ketolithocholic acid 0,192 0,480 
Taurohyocholic acid 0,233 0,532 

Lithocholic acid-3-sulfate 0,234 0,532 
Apocholic acid 0,239 0,532 

Glycocholic acid-3-sulfate 0,249 0,532 
Glycolithocholic acid 0,252 0,532 
Taurolithocholic acid 0,261 0,532 

Glycocholic acid 0,266 0,532 
Norursodeoxycholic acid 0,274 0,534 

Tauroursodeoxycholic acid-3-sulfate 0,283 0,535 
Ursocholic acid 0,300 0,553 

Chenodeoxycholic acid-3-sulfate 0,337 0,597 
Murocholic acid 0,357 0,597 

GlycoLithocholic acid-3-sulfate 0,368 0,597 
Tauro-omega-muricholic acid 0,376 0,597 

Norcholic acid 0,378 0,597 
Ursodeoxycholic acid-3-Glucuronide 0,382 0,597 

3-Dehydrocholic acid 0,399 0,597 
Glycohyodoxycholic acid-3-sulfate 0,401 0,597 

Taurolithocholic acid-3-sulfate 0,401 0,597 
12-Ketolithocholic acid 0,417 0,608 
Dehydrolithocholic acid 0,445 0,636 
Taurodeoxycholic acid 0,554 0,776 

Glycodeoxycholic acid-3-sulfate 0,612 0,830 
Tauro-beta-muricholic acid 0,617 0,830 

Glycoallocholic acid-3-sulfate 0,645 0,852 
Hyodeoxycholic acid 0,687 0,890 

12-Ketochenodeoxycholic acid 0,701 0,892 
Chenodeoxycholic acid 0,759 0,922 

Taurodehydrocholic acid 0,762 0,922 
Dehydrocholic acid 0,764 0,922 

Alloisolithocholic acid 0,779 0,924 
Glycohyodeoxycholic acid 0,800 0,928 

Deoxycholic acid-24-Glucuronide 0,809 0,928 
Isodeoxycholic acid 0,832 0,939 

Dioxolithocholic acid 0,878 0,944 
Lambda-Muricholic acid 0,878 0,944 
Allocholic acid-3-sulfate 0,878 0,944 

Chenodeoxycholic acid-24-Glucuronide 0,890 0,944 
Cholic acid 0,939 0,981 

Cholic acid-3-sulfate 0,969 0,998 
Alpha-Muricholic acid 1,000 1,000 
Ursodeoxycholic acid 1,000 1,000 



Page | 73  
 

 

 

Figure 46 Results for the differentially abundant metabolites after the introduction of solid foods in the DIMS data. Results 
are shown after adjustment for multiplicity. The x-axis denotes the test statistic for the introduction of solid food and the y-
axis the negative logarithmic transformed p-values after adjustment of multiplicity. Colours denote the significance of the 
results, red being insignificant. 
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Figure 47 Results for the differentially abundant metabolites after the introduction of solid foods in the UPLC data. Results 
are shown after adjustment for multiplicity. The x-axis denotes the test statistic for the introduction of solid food and the y-
axis the negative logarithmic transformed p-values after adjustment of multiplicity. Colours denote the significance of the 
results, red being insignificant. 
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Figure 48 Correlation plot of the correlation between the second principal component of each data set. Dots denote samples 
and the colour shows the sampling time, either before the introduction of solid foods in red or after in blue. 95% confidence 
ellipses are added. 
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Figure 49 Correlation plot of the correlation between the third principal component of each data set. Dots denote samples 
and the colour shows the sampling time, either before the introduction of solid foods in red or after in blue. 95% confidence 
ellipses are added. 
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Table 15 All correlations computed by DIABLO higher than 0.7 or lower than -0.7. 

Feature 1 Feature 2 Correlation 
C16:1 Beta-Muricholic acid -0,88769203 
C16:1 7-Ketodeoxycholic acid -0,882213841 
C18:1 Beta-Muricholic acid -0,870726108 
PC36:6AA Beta-Muricholic acid -0,869141362 
PC36:6AA 7-Ketodeoxycholic acid -0,862738085 
C18:1 7-Ketodeoxycholic acid -0,862125096 
C14 Beta-Muricholic acid -0,860232182 
C18:2 Beta-Muricholic acid -0,854848119 
C14 7-Ketodeoxycholic acid -0,850418315 
C18:2 7-Ketodeoxycholic acid -0,846520871 
C16:1OH Beta-Muricholic acid -0,824894444 
C16:2 Beta-Muricholic acid -0,824215993 
C16:1OH 7-Ketodeoxycholic acid -0,821744379 
C18:1OH Beta-Muricholic acid -0,821296233 
C16:2 7-Ketodeoxycholic acid -0,820452509 
C18:1OH 7-Ketodeoxycholic acid -0,815386147 
C0 Beta-Muricholic acid -0,814648621 
C0 7-Ketodeoxycholic acid -0,80836201 
C16:2OH Beta-Muricholic acid -0,802497806 
C16:2OH 7-Ketodeoxycholic acid -0,798966732 
Veillonellaceae Veillonella dispar ?-Alanine -0,789317942 
Lachnospiraceae [Ruminococcus] 
gnavus 

?-Alanine -0,789317942 

Enterobacteriaceae Proteus ?-Alanine -0,789317942 
C5OH Beta-Muricholic acid -0,776994913 
C10:1 Beta-Muricholic acid -0,774338219 
C10:1 7-Ketodeoxycholic acid -0,772491425 
C5OH 7-Ketodeoxycholic acid -0,768206613 
Ruminococcaceae Ruminococcus Taurohyocholic acid -0,767399389 
Erysipelotrichaceae Taurohyocholic acid -0,765364663 
Veillonellaceae Veillonella dispar Uracil -0,762794531 
Lachnospiraceae [Ruminococcus] 
gnavus 

Uracil -0,762794531 

Enterobacteriaceae Proteus Uracil -0,762794531 
C16OH Beta-Muricholic acid -0,753138986 
C16OH 7-Ketodeoxycholic acid -0,750543155 
PC32:2AA Beta-Muricholic acid -0,749937238 
Creatinine Beta-Muricholic acid -0,746142098 
PC32:2AA 7-Ketodeoxycholic acid -0,745112136 
Creatinine 7-Ketodeoxycholic acid -0,738308935 
C7DC Beta-Muricholic acid -0,722354549 
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Veillonellaceae Veillonella dispar Cadaverine -0,71930027 
Lachnospiraceae [Ruminococcus] 
gnavus 

Cadaverine -0,71930027 

Enterobacteriaceae Proteus Cadaverine -0,71930027 
C7DC 7-Ketodeoxycholic acid -0,717466922 
Bifidobacteriaceae Bifidobacterium Taurohyocholic acid -0,717297256 
C8 Beta-Muricholic acid -0,714560717 
C8 7-Ketodeoxycholic acid -0,712845839 
LYSOC20:4 Beta-Muricholic acid -0,70798938 
22:2SMOH Beta-Muricholic acid -0,705149839 
22:2SMOH 7-Ketodeoxycholic acid -0,702468005 
Streptococcaceae Streptococcus 
infantis 

Beta-Muricholic acid -0,70236118 

?-Alanine Taurohyocholic acid -0,702266986 
Ruminococcaceae Ruminococcus Tauro-omega-muricholic acid -0,701966348 
C2 Beta-Muricholic acid -0,701779805 
Erysipelotrichaceae Tauro-omega-muricholic acid -0,701311202 
Isobutyrate Aspartic acid 0,700023239 
Bifidobacteriaceae Bifidobacterium 
bifidum 

C4:1 0,70188278 

Streptococcaceae Streptococcus 
infantis 

C0 0,702560254 

Isobutyrate Dehydrolithocholic acid 0,70314199 
Streptococcaceae Streptococcus 
infantis 

PC36:6AA 0,705699271 

Histidine Dehydrolithocholic acid 0,707736847 
Veillonellaceae Veillonella dispar Tauro-omega-muricholic acid 0,707762079 
Lachnospiraceae [Ruminococcus] 
gnavus 

Tauro-omega-muricholic acid 0,707762079 

Enterobacteriaceae Proteus Tauro-omega-muricholic acid 0,707762079 
Bifidobacteriaceae Bifidobacterium Uracil 0,710321949 
Ruminococcaceae Ruminococcus Uracil 0,716377456 
Streptococcaceae Streptococcus 
infantis 

C16:1 0,717215246 

Erysipelotrichaceae Uracil 0,719442528 
Erysipelotrichaceae Cadaverine 0,721798187 
Ruminococcaceae Butyricicoccus 
pullicaecorum 

C4OH 0,722147489 

Ruminococcaceae Ruminococcus Cadaverine 0,723421631 
Erysipelotrichaceae Tyramine 0,725244397 
Bifidobacteriaceae Bifidobacterium 
bifidum 

C3OH 0,728653604 

Bifidobacteriaceae Bifidobacterium ?-Alanine 0,732051047 
Isobutyrate Murocholic acid 0,735927157 
Bacteroidaceae Bacteroides caccae C4OH 0,737804245 
Ruminococcaceae Ruminococcus Tyramine 0,738471544 
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Putrescine Isolithocholic acid 0,739839138 
Bacteroidaceae Bacteroides ovatus C4OH 0,740276092 
Ruminococcaceae Butyricicoccus 
pullicaecorum 

Aspartic acid 0,740963338 

Bacteroidaceae Bacteroides ovatus C4OH 0,741976235 
Bacteroidaceae Bacteroides ovatus Isobutyrate 0,746515642 
Bacteroidaceae Bacteroides ovatus C4OH 0,75247486 
Bacteroidaceae Bacteroides ovatus Isobutyrate 0,752752909 
Bacteroidaceae Bacteroides caccae Aspartic acid 0,756204061 
Bacteroidaceae Bacteroides ovatus Aspartic acid 0,758230455 
Bacteroidaceae Bacteroides ovatus Dehydrolithocholic acid 0,759832374 
Bacteroidaceae Bacteroides ovatus Aspartic acid 0,759876152 
Erysipelotrichaceae ?-Alanine 0,76082977 
Ruminococcaceae Ruminococcus ?-Alanine 0,760938006 
Bacteroidaceae Bacteroides ovatus Dehydrolithocholic acid 0,761011879 
Bacteroidaceae Bacteroides caccae Isobutyrate 0,763906616 
Veillonellaceae Veillonella dispar Taurohyocholic acid 0,764620733 
Lachnospiraceae [Ruminococcus] 
gnavus 

Taurohyocholic acid 0,764620733 

Enterobacteriaceae Proteus Taurohyocholic acid 0,764620733 
Isobutyrate Putrescine 0,764811128 
Ruminococcaceae Butyricicoccus 
pullicaecorum 

Isobutyrate 0,765340698 

Bacteroidaceae Bacteroides ovatus Isobutyrate 0,767140866 
Ruminococcaceae Butyricicoccus 
pullicaecorum 

Dehydrolithocholic acid 0,768685196 

Bacteroidaceae Bacteroides ovatus Aspartic acid 0,771347441 
Bacteroidaceae Bacteroides ovatus Dehydrolithocholic acid 0,773190982 
Bacteroidaceae Bacteroides caccae Dehydrolithocholic acid 0,780218175 
Histidine Isolithocholic acid 0,790448713 
Bacteroidaceae Bacteroides ovatus Isolithocholic acid 0,81319899 
Bacteroidaceae Bacteroides ovatus Isolithocholic acid 0,817977192 
Isobutyrate Histidine 0,820963253 
Ruminococcaceae Butyricicoccus 
pullicaecorum 

Putrescine 0,822471693 

Bacteroidaceae Bacteroides ovatus Isolithocholic acid 0,828928165 
Ruminococcaceae Butyricicoccus 
pullicaecorum 

Isolithocholic acid 0,832302718 

Bacteroidaceae Bacteroides ovatus Putrescine 0,836633228 
Isobutyrate Isolithocholic acid 0,836857337 
Bacteroidaceae Bacteroides caccae Putrescine 0,838642035 
Bacteroidaceae Bacteroides ovatus Putrescine 0,83872407 
Bacteroidaceae Bacteroides caccae Isolithocholic acid 0,839877831 
Bacteroidaceae Bacteroides ovatus Putrescine 0,846225341 
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Ruminococcaceae Butyricicoccus 
pullicaecorum 

Histidine 0,860613214 

Bacteroidaceae Bacteroides ovatus Histidine 0,871923142 
Bacteroidaceae Bacteroides ovatus Histidine 0,874901277 
Bacteroidaceae Bacteroides caccae Histidine 0,876022024 
Bacteroidaceae Bacteroides ovatus Histidine 0,882641746 
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Addendum R-code 
Microbiome data analysis 
# Libraries and colour palette 
library(tidyverse) 
library(phyloseq) 
library(skimr) 
library(data.table) 
library(microbiome) 
library(ggridges) 
library(microViz) 
library(ggtext) 
library(matrixStats) 
library(metagMisc) 
library(lme4) 
library(nlme) 
library(ANCOMBC) 
library(DT) 
library(MESS) 
ColourPalette <- c("#FB0000", "#1CFC00", "#1C0DFA", "#F9C8C8", "#FF0DDF", 
"#00D1FB", "#F0E816", "#0D7222", "#FC8D00", "#5D3581", "#BB005A", 
"#35FDDA", "#D06CFE", "#7F3B1C", "#FF95E5", "#668C92", "#AAF580", 
"#819BFE", "#948626", "#D8C7FF", "#CBE7BD", "#FE8D88", "#E74738", 
"#922663", "#FFC24F", "#FC0DAD", "#A2009F", "#584242", "#2271A6", 
"#0DFA98", "#98EEF5", "#5C2EB9", "#FB007C", "#B17DA2", "#9F2A00", 
"#FE7AB2") 
 
# Reading the data 
Metadata <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metadata/Metadata.csv", sep = ";", row.names = 1) 
MicrobiomeData <- read.csv(file = 
"C:/Users/Gebruiker/Documents/School/Master of Statistics - Bioinformatics 
(2021-2022)/Master Thesis Bioinformatics/Data/Microbiome 
data/Code_LucKi_mergtab_nochim_LucKi_v34_transposed_ISS.csv", sep = ";", 
row.names = 1) 
TaxaData <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Microbiome data/taxa.csv", sep = ";", row.names = 1) 
 
# Summarizing the data 
##Skimming the data 
skim(Metadata) 
## Selecting the most important variables (According to me) 
Metadata %>% 
  group_by(Infant.nr) %>% 
  dplyr::select(Infant.nr, PID, PID_Day, Sex.F.M, Length_cm, Weight_gramm, 
Age_days_SF_intro) %>% 
  summarise(mean_length = mean(Length_cm), 
            mean_weight = mean(Weight_gramm), 
            mean_age_intro = mean(Age_days_SF_intro)) -> Metadata_summary 
Metadata_summary 
table(Metadata$Infant.nr) 
table(Metadata$Sex.F.M) 
mean(Metadata_summary$mean_length) 
sd(Metadata_summary$mean_length) 
mean(Metadata_summary$mean_weight) 
sd(Metadata_summary$mean_weight) 
mean(Metadata_summary$mean_age_intro) 
sd(Metadata_summary$mean_age_intro) 
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# Microbiome data 
## Phyloseq object creation 
###Looking into making a phyloseq object first 
# Selecting a taxa indicator first 
#TaxaInf <- TaxaData[1:7] 
# Transforming the metadata before - after 
Metadata %>% mutate(across(Time, factor, levels=c("Before","After"))) -> 
Metadata 
# Transforming into matrices for Phyloseq 
MicrobiomeInf <- as.matrix(MicrobiomeData) 
TaxaInf <- as.matrix(TaxaData) 
MetaInf <- as.matrix(Metadata) 
 
# Creating Phyloseq objects 
ASV <- otu_table(MicrobiomeInf, taxa_are_rows = TRUE) 
TAX <- tax_table(TaxaInf) 
SampleData <- sample_data(Metadata) 
PhySeqObj <- phyloseq(ASV, TAX, SampleData) 
 
# Testing 
PhySeqObj 
 
## Missing taxa case 
###Only 8330 taxa present? Original taxa data contained data on 9313 ASV 
and microbiome data had 8787 rows/ASV 
# Reason 
Count_ASVs <- data.frame(rownames(MicrobiomeData)) 
Taxa_ASVs <- data.frame(rownames(TaxaData)) 
# Look at the length of the intersect 
Intersection <- intersect(Count_ASVs$rownames.MicrobiomeData., 
Taxa_ASVs$rownames.TaxaData.) 
length(Intersection) 
# This indicates that there isn't any taxonomic information on 457 ASVs 
present in the original original dataset so Phyloseq filters them out.  
# Identify the taxa! 
Unidentified_Taxa <- setdiff(Count_ASVs$rownames.MicrobiomeData., 
Intersection) 
# Check their counts in the original count data 
Microbiome_2 <- MicrobiomeData 
Microbiome_2$ASVs <- rownames(Microbiome_2) 
Microbiome_2 %>% filter(ASVs %in% Unidentified_Taxa) -> Microbiome_2 
Microbiome_2$Sums <- rowSums(Microbiome_2[1:87]) 
# Amount of non-zers 
Microbiome_2 %>% filter(Sums != 0) -> Microbiome_2 
# Contains 31 samples 
openxlsx::write.xlsx(Microbiome_2, file = 
"C:/Users/Gebruiker/Documents/School/Master of Statistics - Bioinformatics 
(2021-2022)/Master Thesis Bioinformatics/Data/Microbiome 
data/Microbiome_2.xlsx") 
 
## Filtering 
# Filter based on prevalence 
PhySeqObjFiltered_1 <- phyloseq_filter_prevalence(PhySeqObj, prev.trh = 
0.05, abund.trh = NULL) 
# Filter based on relative abundance = 0.01% 
minTotRelAbun = 1e-4 
x = taxa_sums(PhySeqObjFiltered_1) 
keepTaxa = (x / sum(x)) > minTotRelAbun 
PhySeqObjFiltered = prune_taxa(keepTaxa, PhySeqObjFiltered_1) 
PhySeqObjFiltered 
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### Effects of filtering 
# Extract the abundances 
Abundances_unfiltered <- abundances(PhySeqObj) 
Abundances_filtered <- abundances(PhySeqObjFiltered) 
# Transpose them to calculate the library sizes per sample 
Abundances_unfiltered_transposed <- data.frame(t(Abundances_unfiltered)) 
Abundances_filtered_transposed <- data.frame(t(Abundances_filtered)) 
# Library sizes 
Abundances_unfiltered_transposed %>%  
  mutate(LibrarySizes = rowSums(Abundances_unfiltered_transposed)) %>% 
  dplyr::select(LibrarySizes) -> Abundances_unfiltered_LibSizes 
Abundances_filtered_transposed %>%  
  mutate(LibrarySizes = rowSums(Abundances_filtered_transposed)) %>% 
  dplyr::select(LibrarySizes) -> Abundances_filtered_LibSizes 
# Indicator variables 
Abundances_unfiltered_LibSizes$Filter <- "Unfiltered" 
Abundances_unfiltered_LibSizes$Sample <- 
row.names(Abundances_unfiltered_LibSizes) 
Abundances_filtered_LibSizes$Filter <- "Filtered" 
Abundances_filtered_LibSizes$Sample <- 
row.names(Abundances_filtered_LibSizes) 
# Merge all 
Abundances_total <- Abundances_unfiltered_LibSizes 
Abundances_total <- rbind(Abundances_total, Abundances_filtered_LibSizes) 
# Plot 
Abundances_total %>% 
  ggplot(aes(x = LibrarySizes, fill = Filter)) + 
  geom_density(alpha = 0.5) + 
  scale_fill_manual(values = c("mediumblue", "red2")) + 
  theme_minimal() + 
  xlab("Library sizes") 
 
### Fixing the taxa 
PhySeqObjFiltered %>% tax_fix(min_length = 4) -> PhySeqObjFiltered 
 
## Family level object 
# Create a family Phyloseq object 
Family <- tax_glom(PhySeqObjFiltered, taxrank = "Family") 
PhySeqObjFam <- Family 
PhySeqObjFam 
 
## Exploratory data analysis 
###Also calculating relative abundances to make comparisons possible 
# TSS 
PhySeqObjFilteredRA <- transform_sample_counts(PhySeqObjFiltered, 
function(x) { x/sum(x)}) 
PhySeqObjFamRA <- transform_sample_counts(PhySeqObjFam, function(x) { 
x/sum(x)}) 
# CLR transformation 
PhySeqObjFilteredRA_CLR <- transform(PhySeqObjFiltered, "clr") 
PhySeqObjFamRA_CLR <- transform(PhySeqObjFam, "clr") 
 
### PCA Using CoDa 
####Scree-plot 
# PCA via phyloseq 
ord_clr <- phyloseq::ordinate(PhySeqObjFilteredRA_CLR, "RDA") 
#Plot scree plot 
plot_scree(ord_clr) +  
  geom_bar(stat="identity", fill = "blue") + 
  labs(x = "\nPrincipal component", y = "Proportion of Variance\n") + 
  theme_minimal() + 
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  theme(axis.text.x = element_text(angle = 90, size = 6)) 
#Examine eigenvalues and % prop. variance explained 
head(ord_clr$CA$eig) 
sapply(ord_clr$CA$eig[1:5], function(x) x / sum(ord_clr$CA$eig)) 
#### PCA-plot 
clr1 <- ord_clr$CA$eig[1] / sum(ord_clr$CA$eig) 
clr2 <- ord_clr$CA$eig[2] / sum(ord_clr$CA$eig) 
plot_ordination(PhySeqObjFilteredRA_CLR, ord_clr, type="samples", 
color="PID", shape = "Time") +  
  geom_point(size = 2) + 
  coord_fixed(clr2 / clr1) + 
  theme_minimal() + 
  stat_ellipse(aes(group = Time, linetype = Time)) + 
  scale_colour_manual(values = ColourPalette) 
 
 
### Alpha diversities 
#At ASV level 
plot_richness(PhySeqObjFiltered, measures=c("Observed", "Shannon", 
"InvSimpson"), x="Time", color = "PID") + 
  theme_minimal() + 
  scale_colour_manual(values = ColourPalette) 
#### Further alpha diversity research 
# Extract all richness estimates 
Richness_PhySeq <- estimate_richness(PhySeqObjFiltered, 
measures=c("Observed", "Shannon", "InvSimpson")) 
Rownames_Richness_Physeq <- rownames(Richness_PhySeq) 
Richness_PhySeq$ID <- Rownames_Richness_Physeq 
# Extract meaningful variables from Metadata 
Rownames_Metadata <- rownames(Metadata) 
Metadata$ID <- Rownames_Metadata 
Metadata %>% dplyr::select(ID, Infant.nr, PID, PID_Day, Sex.F.M, Age_days, 
Time, Substudy_timepoint_days, Length_cm, Weight_gramm, 
Additional_comments) -> Metadata_Small 
merge(Richness_PhySeq, Metadata_Small) -> Metadata_New 
# Transform additional comments 
Metadata_New %>% 
  mutate(Disease = if_else(Additional_comments == "None", 0, 1)) -> 
Metadata_New 
Metadata_New %>% gather(key = "Alpha Diversity", value = "Value", Observed, 
Shannon, InvSimpson) -> Metadata_New 
##### Longitudinal trends 
Metadata_New %>% 
  ggplot(aes(x = Substudy_timepoint_days, y = Value, group = PID, colour = 
PID)) + 
  geom_line() +  
  theme_minimal() + 
  scale_colour_manual(values = ColourPalette) + 
  facet_wrap(.~`Alpha Diversity`, scales = "free") + 
  xlab("Timepoint (in days)") 
##### Age 
Metadata_New %>% 
  ggplot(aes(x = Age_days, y = Value, group = PID, colour = PID)) + 
  geom_point(aes(shape = Time)) + 
  geom_smooth(se = FALSE) + 
  theme_minimal() + 
  scale_colour_manual(values = ColourPalette) + 
  scale_shape_manual(values=c(15, 16)) + 
  facet_wrap(.~`Alpha Diversity`, scales = "free") + 
  xlab("Age (in days)") 
##### Length (in cm) 
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Metadata_New %>% 
  ggplot(aes(x = Length_cm, y = Value, group = PID, colour = PID)) + 
  geom_point(aes(shape = Time)) + 
  theme_minimal() + 
  scale_colour_manual(values = ColourPalette) + 
  scale_shape_manual(values=c(15, 16)) + 
  facet_wrap(.~`Alpha Diversity`, scales = "free") + 
  xlab("Length (in cm)") 
##### Weight (in gramm) 
Metadata_New %>% 
  ggplot(aes(x = Weight_gramm, y = Value, group = PID, colour = PID)) + 
  geom_point(aes(shape = Time)) + 
  theme_minimal() + 
  scale_colour_manual(values = ColourPalette) + 
  scale_shape_manual(values=c(15, 16)) + 
  facet_wrap(.~`Alpha Diversity`, scales = "free") + 
  xlab("Weight (in gram)") 
##### Gender 
Metadata_New %>% 
  ggplot(aes(x = Sex.F.M, y = Value, fill = Sex.F.M)) + 
  geom_boxplot(alpha = 0.75) + 
  scale_fill_manual(name = "Gender", labels = c("Female", "Male"), values = 
c("red2", "mediumblue")) + 
  theme_minimal() + 
  facet_wrap(.~`Alpha Diversity`, scales = "free") + 
  xlab("Gender") 
##### Disease 
Metadata_New %>% 
  ggplot(aes(x = as.factor(Disease), y = Value, fill = as.factor(Disease))) 
+ 
  geom_boxplot(alpha = 0.75) + 
  scale_fill_manual(name = "Diseased", labels = c("No", "Yes"), values = 
c("red2", "mediumblue")) + 
  theme_minimal() + 
  facet_wrap(.~`Alpha Diversity`, scales = "free") + 
  xlab("Diseased") + 
  scale_x_discrete(labels = c("0" = "No", "1" = "Yes")) 
### MicroViz visualizations 
#### Barplots 
PhySeqObjFiltered %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant P 
PhySeqObjFiltered %>% 
  ps_filter(PID == "P") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
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  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant Q 
PhySeqObjFiltered %>% 
  ps_filter(PID == "Q") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant R 
PhySeqObjFiltered %>% 
  ps_filter(PID == "R") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant S 
PhySeqObjFiltered %>% 
  ps_filter(PID == "S") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant T 
PhySeqObjFiltered %>% 
  ps_filter(PID == "T") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant U 
PhySeqObjFiltered %>% 
  ps_filter(PID == "U") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
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    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant V 
PhySeqObjFiltered %>% 
  ps_filter(PID == "V") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant W 
PhySeqObjFiltered %>% 
  ps_filter(PID == "W") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### Infant X 
PhySeqObjFiltered %>% 
  ps_filter(PID == "X") %>% 
  comp_barplot( 
    tax_level = "Family",  
    n_taxa = 19, 
    palette = distinct_palette(n = 19, add = "grey90"), 
    merge_other = FALSE,  
    bar_outline_colour = "darkgrey", 
    label = "PID_Day") + 
  coord_flip() + 
  facet_wrap(vars(Time), nrow = 1, scales = "free") + 
  theme(axis.text.y = element_text(size = 5)) 
##### heatmap ASV lvl 
cols <- c("mediumblue", "red2") 
names(cols) <- c("Before", "After") 
htmp_asv <-  
  PhySeqObjFiltered %>% 
  ps_mutate(Time = as.character(Time)) %>% 
  tax_transform("clr") %>% 
  comp_heatmap( 
    taxa = tax_top(PhySeqObjFiltered, n = 121), 
    grid_col = NA,  
    name = "CLR", 
    sample_names_show = TRUE, 
    colors = heat_palette(palette = viridis::turbo(n = 121), sym = TRUE), 
    show_row_names = FALSE, 
    row_dend_side = "right", 
    row_labels = "PID_Day", 
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    sample_side = "bottom", 
    sample_anno = sampleAnnotation( 
      Time = anno_sample("Time"), 
      col = list(Time = cols), 
      border = FALSE 
    ) 
  )  
ComplexHeatmap::draw( 
  object = htmp_asv, annotation_legend_list = attr(htmp_asv, 
"AnnoLegends"), 
  merge_legends = TRUE 
) 
 
 
# Statistical analysis plan 
## Differential abundance ASVs 
Results <- ancombc(phyloseq = PhySeqObjFiltered,  
                   formula = "Age_days + Time",  
                   p_adj_method = "BH",  
                   zero_cut = 0.95,  
                   lib_cut = 0,  
                   group = "Infant.nr",  
                   struc_zero = FALSE, 
                   neg_lb = FALSE, 
                   tol = 1e-5, 
                   max_iter = 100,  
                   conserve = TRUE,  
                   alpha = 0.05,  
                   global = FALSE) 
 
Results_extracted <- Results$res 
## Coefficients 
Coefficients <- Results_extracted$beta 
Col_name <- c("Age (in days)", "Time") 
colnames(Coefficients) <- Col_name 
### Standard errors 
SE <- Results_extracted$se 
colnames(SE) <- Col_name 
### Test Statistic 
TS <- Results_extracted$W 
colnames(TS) <- Col_name 
### p-values 
PValue <- Results_extracted$p_val 
colnames(PValue) <- Col_name 
PValue %>% 
  ggplot(aes(x = Time)) + 
  geom_histogram(fill = "red2", alpha = 0.75, binwidth = 0.05) + 
  xlab("Unadjusted p-values for the introduction of solid foods") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
PValue %>% 
  ggplot(aes(x = `Age (in days)`)) + 
  geom_histogram(fill = "red2", alpha = 0.75, binwidth = 0.05) + 
  xlab("Unadjusted p-values for age (in days)") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
### Adjusted p-values 
PValueAdj <- Results_extracted$q_val 
colnames(PValueAdj) <- Col_name 
PValueAdj %>% 
  ggplot(aes(x = Time)) + 
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  geom_histogram(fill = "mediumblue", alpha = 0.75, binwidth = 0.05) + 
  xlab("Adjusted p-values for time of introduction of solid foods") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
PValueAdj %>% 
  ggplot(aes(x = `Age (in days)`)) + 
  geom_histogram(fill = "mediumblue", alpha = 0.75, binwidth = 0.05) + 
  xlab("Adjusted p-values for age (in days)") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
####  Significant age taxa 
sum(PValueAdj$`Age (in days)` < 0.05) 
### Differentially abundant taxa 
DiffAbbTax <- Results_extracted$diff_abn 
colnames(DiffAbbTax) <- Col_name 
## Volcano plot 
# Add the SE to the adjust p-values 
PValueAdj$SE_Age <- SE$`Age (in days)` 
PValueAdj$SE_Time <- SE$Time 
# Add test statistic to the adjusted p-values 
PValueAdj$Stat_Age <- TS$`Age (in days)` 
PValueAdj$Stat_Time <- TS$Time 
# Plot 
PValueAdj %>% 
  mutate(Significance = if_else(`Age (in days)` < 0.05, "Significant", 
"Insignificant")) %>% 
  ggplot(aes(x = Stat_Age, y = -log(`Age (in days)`))) + 
  geom_point(aes(size = SE_Age, colour = Significance), alpha = 0.5) + 
  theme_minimal() + 
  xlab("Test statistic for age (in days)") + 
  scale_colour_manual(values = c("red2", "mediumblue")) + 
  ylab("-log of the p-values of Age (in days)") 
PValueAdj %>% 
  mutate(Significance = if_else(Time < 0.05, "Significant", 
"Insignificant")) %>% 
  ggplot(aes(x = Stat_Time, y = -log(Time))) + 
  geom_point(aes(size = SE_Time, colour = Significance), alpha = 0.5) + 
  theme_minimal() + 
  xlab("Test statistic for the introduction of solid food") + 
  scale_colour_manual(values = c("red2", "mediumblue")) + 
  ylab("-log of the p-values of the introduction of solid food") 
 
#### Looking into the differentially abundant taxa for age 
DiffAbbTax %>% select(`Age (in days)`) %>% filter(`Age (in days)` == TRUE) 
-> DiffAbbTaxAge 
DiffAbbTaxAge <- rownames(DiffAbbTaxAge) 
TaxaDataFiltered <- as.data.frame(tax_table(PhySeqObjFiltered)) 
TaxaDataFiltered$ASV <- row.names(TaxaDataFiltered) 
TaxaDataFiltered %>% filter(ASV %in% DiffAbbTaxAge) -> TaxaAge 
TaxaAge %>% 
  ggplot(aes(x = Family)) + 
  geom_bar(fill = "mediumblue", alpha = 0.75) + 
  theme_minimal() + 
  theme(axis.text.x = element_text(angle = 90)) + 
  xlab("Family") + 
  ylab("Significant ASVs") 
 
## Extract all p-values to create the final results table 
# Raw p-values 
Final_table <- Results_extracted$p_val 
colnames(Final_table) <- c("Age (in days) p-value", "Time p-value") 
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# Adjusted p-values 
Final_table2 <- Results_extracted$q_val 
colnames(Final_table2) <- c("Age (in days) p-value adj.", "Time p-value 
adj.") 
# Create 1 large table 
Final_table <- merge(x = Final_table, y = Final_table2, by = "row.names") 
# Set row names correct again 
row.names(Final_table) <- Final_table$Row.names 
Final_table %>% dplyr::select(-c(Row.names)) -> Final_table 
# Set row names to taxonomic names 
TaxaData2 <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Microbiome data/taxa_LUC1-897_v34_gg2013.csv", sep = 
";", row.names = 1) 
TaxaData2 %>% dplyr::select(Family_genus_species_ASV, X.2) -> TaxaData2 
TaxaData2$Concatenated <- paste(TaxaData2$Family_genus_species_ASV, 
TaxaData2$X.2, sep = "_") 
TaxaData2 %>% dplyr::select(Concatenated) -> TaxaData2 
Final_table <- merge(x = Final_table, y = TaxaData2, by = "row.names") 
row.names(Final_table) <- Final_table$Concatenated 
Final_table %>% dplyr::select(-c(Row.names, Concatenated)) -> Final_table 
openxlsx::write.xlsx(Final_table, file = 
"C:/Users/Gebruiker/Documents/School/Master of Statistics - Bioinformatics 
(2021-2022)/Master Thesis Bioinformatics/Data/Microbiome 
data/Final_table.xlsx", colNames = TRUE, rowNames = TRUE) 
 

Metabolome data analysis 
NMR data  
# Libraries and data 
## Settings 
knitr::opts_chunk$set(warning = FALSE, message = FALSE)  
## Libraries 
library(tidyverse) 
library(factoextra) 
library(ComplexHeatmap) 
library(viridis) 
library(oligo) 
library(nlme) 
library(IMIFA) 
## Data 
Metadata <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metadata/Metadata.csv", sep = ";", row.names = 1) 
NMR <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metabolomics data/NMR.csv", sep = ";", check.names = 
FALSE, row.names = 1) 
## Colourpalette 
ColourPalette <- c("#FB0000", "#1CFC00", "#1C0DFA", "#F9C8C8", "#FF0DDF", 
"#00D1FB", "#F0E816", "#0D7222", "#FC8D00", "#5D3581", "#BB005A", 
"#35FDDA", "#D06CFE", "#7F3B1C", "#FF95E5", "#668C92", "#AAF580", 
"#819BFE", "#948626", "#D8C7FF", "#CBE7BD", "#FE8D88", "#E74738", 
"#922663", "#FFC24F", "#FC0DAD", "#A2009F", "#584242", "#2271A6", 
"#0DFA98", "#98EEF5", "#5C2EB9", "#FB007C", "#B17DA2", "#9F2A00", 
"#FE7AB2") 
## Select meaningfull columns 
Metadata %>% dplyr::select(Other_Sample_ID_Stearns, PID, PID_Day, Time) -> 
Metadata_New 
Metadata_New %>% filter(Other_Sample_ID_Stearns %in% colnames(NMR)) -> 
Metadata_New 
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# Data prep 
# #Prepare data 
NMR <- as.data.frame(t(NMR)) 
NMR$Other_Sample_ID_Stearns <-row.names(NMR) 
NMR <- left_join(x = NMR, y = Metadata_New, by = "Other_Sample_ID_Stearns") 
row.names(NMR) <- NMR$PID_Day 
NMR %>% 
  dplyr::select(-c(Other_Sample_ID_Stearns, PID, PID_Day, Time)) -> NMR 
NMR <- as.data.frame(t(NMR)) 
 
# Data normalization 
## Before normalization 
NMR %>% 
  mutate(Metabolite = row.names(NMR)) %>% 
  gather(key = "PID_Day", value = "Abundances", -Metabolite) -> NMR_Long 
NMR_Long <- left_join(x = NMR_Long, y = Metadata_New, by = "PID_Day") 
NMR_Long %>% 
  ggplot(aes(x = PID_Day, y = Abundances, fill = Time, )) + 
  geom_boxplot(alpha = 0.75) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red2", "mediumblue")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("Sample") 
## Normalization 
NMR_Norm_Pareto <- as.data.frame(pareto_scale(t(log(NMR + 1)), centering = 
TRUE)) 
NMR_Norm_Pareto_Wide <- as.data.frame(t(NMR_Norm_Pareto)) 
### After normalization 
NMR_Norm_Pareto_Wide %>% 
  mutate(Metabolite = row.names(NMR_Norm_Pareto_Wide)) %>% 
  gather(key = "PID_Day", value = "Abundances", -Metabolite) -> NMR_Long2 
NMR_Long2 <- left_join(x = NMR_Long2, y = Metadata_New, by = "PID_Day") 
NMR_Long2 %>% 
  ggplot(aes(x = PID_Day, y = Abundances, fill = Time, )) + 
  geom_boxplot(alpha = 0.75) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red2", "mediumblue")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("Sample") 
 
# PCA 
## Scree plot 
NMR_Norm_Pareto_PCA <- prcomp(NMR_Norm_Pareto, scale. = TRUE) 
fviz_eig(NMR_Norm_Pareto_PCA, addlabels = TRUE) 
## PCA 
PCA_Results <- as.data.frame(NMR_Norm_Pareto_PCA$x) 
PCA_Results$PID_Day <- row.names(PCA_Results) 
PCA_Results <- left_join(x = PCA_Results, y = Metadata_New, by = "PID_Day") 
PCA_Results %>% 
  ggplot(aes(x = PC1, y = PC2, colour = PID, shape = Time)) + 
  geom_point() + 
  theme_minimal() + 
  stat_ellipse(aes(group = Time, linetype = Time)) + 
  xlab("Principal component 1 (21.0%)") + 
  ylab("Principal component 2 (13.7%)") + 
  scale_colour_manual(values = ColourPalette) 
 
# Heatmap 
## Prepare data 
NMR_Norm_Pareto$PID_Day <-row.names(NMR_Norm_Pareto) 
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NMR_Norm_Pareto <- left_join(x = NMR_Norm_Pareto, y = Metadata_New, by = 
"PID_Day") 
## Heatmap 
col = list(Time = c("Before" = "mediumblue", "After" = "red2")) 
ha <- HeatmapAnnotation(Time = NMR_Norm_Pareto$Time, col = col) 
colnames(NMR_Norm_Pareto_Wide) <- as.vector(NMR_Norm_Pareto$PID_Day) 
Heatmap(as.matrix(NMR_Norm_Pareto_Wide),  
        name = "Normalized counts", 
        col = turbo(35), 
        top_annotation = ha, 
        show_row_names = TRUE,  
        row_dend_side = "right", 
        row_names_side = "left") 
 
# Differential abundance testing 
## Make back-up 
NMR_Norm_Pareto_Wilc <- NMR_Norm_Pareto 
## Transformation of the data set 
NMR_Norm_Pareto_Wilc <- gather(NMR_Norm_Pareto_Wilc, key = "Metabolite", 
value = "Abundance", -c("Other_Sample_ID_Stearns", "PID", "PID_Day", 
"Time")) 
## Testing 
Metabolite_names <- as.vector(unique(NMR_Norm_Pareto_Wilc$Metabolite)) 
Results <- data.frame() 
Results2 <- data.frame() 
Results3 <- data.frame() 
Results4 <- data.frame() 
for(metabolite in Metabolite_names){ 
  NMR_Norm_Pareto_Wilc %>% filter(Metabolite == metabolite) -> 
Temp_NMR_Data 
  wilcox <- wilcox.test(Abundance ~ Time, exact = FALSE, data = 
Temp_NMR_Data) 
  Results[metabolite, 1] <- metabolite 
  Results[metabolite, 2] <- wilcox$statistic[[1]] 
  Results[metabolite, 3] <- wilcox$p.value[[1]] 
  t.test <- t.test(Abundance ~ Time, data = Temp_NMR_Data) 
  Results2[metabolite, 1] <- metabolite 
  Results2[metabolite, 2] <- t.test$statistic[[1]] 
  Results2[metabolite, 3] <- t.test$p.value[[1]] 
  anova_temp <- aov(Abundance ~ Time, data = Temp_NMR_Data) 
  Results3[metabolite, 1] <- metabolite 
  Results3[metabolite, 2] <- summary(anova_temp)[[1]][["F value"]][1] 
  Results3[metabolite, 3] <- summary(anova_temp)[[1]][["Pr(>F)"]][1] 
  lmm <- lme(Abundance ~ Time ,random=~1|PID, data = Temp_NMR_Data) 
  Results4[metabolite, 1] <- metabolite 
  Results4[metabolite, 2] <- anova(lmm)[2,3] 
  Results4[metabolite, 3] <- anova(lmm)[2,4] 
  print(metabolite) 
} 
colnames(Results) <- c("Metabolite", "Statistic", "P-Value") 
Results$p.adjusted <- p.adjust(Results$`P-Value`, method = "fdr") 
colnames(Results2) <- c("Metabolite", "Statistic", "P-Value") 
Results2$p.adjusted <- p.adjust(Results2$`P-Value`, method = "fdr") 
colnames(Results3) <- c("Metabolite", "Statistic", "P-Value") 
Results3$p.adjusted <- p.adjust(Results3$`P-Value`, method = "fdr") 
colnames(Results4) <- c("Metabolite", "Statistic", "P-Value") 
Results4$p.adjusted <- p.adjust(Results4$`P-Value`, method = "fdr") 
 
## Visualizations 
Results %>% 
  ggplot(aes(x = `P-Value`)) + 
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  geom_histogram(fill = "red2", alpha = 0.75, binwidth = 0.05) + 
  xlab("P-values for the change in abundance before and after the 
introduction of solid foods") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
Results %>% 
  ggplot(aes(x = p.adjusted)) + 
  geom_histogram(fill = "mediumblue", alpha = 0.75, binwidth = 0.05) + 
  xlab("Adjusted p-values for the change in abundance before and after the 
introduction of solid foods") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
Results %>% 
  mutate(Significance = if_else(p.adjusted < 0.05, "Significant", 
"Insignificant")) %>% 
  ggplot(aes(x = Statistic, y = -log(p.adjusted))) + 
  geom_point(aes(colour = Significance), alpha = 0.5) + 
  theme_minimal() + 
  xlab("Test statistic for the introduction of solid foods") + 
  scale_colour_manual(values = c("red2", "mediumblue")) + 
  ylab("-log of the p-values for introduction of solid foods") 
 
## Final table 
openxlsx::write.xlsx(x = Results, file = "Final_tableNMR.xlsx", colNames = 
TRUE) 
 

DIMS data 
# Libraries and data 
# Settings 
knitr::opts_chunk$set(warning = FALSE, message = FALSE)  
# Libraries 
library(tidyverse) 
library(factoextra) 
library(ComplexHeatmap) 
library(viridis) 
library(oligo) 
library(nlme) 
library(IMIFA) 
# Data 
Metadata <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metadata/Metadata.csv", sep = ";", row.names = 1) 
DIMS <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metabolomics data/DIMS.csv", sep = ";", check.names = 
FALSE, row.names = 1) 
# Colourpalette 
ColourPalette <- c("#FB0000", "#1CFC00", "#1C0DFA", "#F9C8C8", "#FF0DDF", 
"#00D1FB", "#F0E816", "#0D7222", "#FC8D00", "#5D3581", "#BB005A", 
"#35FDDA", "#D06CFE", "#7F3B1C", "#FF95E5", "#668C92", "#AAF580", 
"#819BFE", "#948626", "#D8C7FF", "#CBE7BD", "#FE8D88", "#E74738", 
"#922663", "#FFC24F", "#FC0DAD", "#A2009F", "#584242", "#2271A6", 
"#0DFA98", "#98EEF5", "#5C2EB9", "#FB007C", "#B17DA2", "#9F2A00", 
"#FE7AB2") 
# Data prep 
# Prepare data 
DIMS <- as.data.frame(t(DIMS)) 
DIMS$Other_Sample_ID_Stearns <-row.names(DIMS) 
DIMS <- left_join(x = DIMS, y = Metadata_New, by = 
"Other_Sample_ID_Stearns") 
row.names(DIMS) <- DIMS$PID_Day 
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DIMS %>% 
  dplyr::select(-c(Other_Sample_ID_Stearns, PID, PID_Day, Time)) -> DIMS 
DIMS <- as.data.frame(t(DIMS)) 
 
# Data normalization 
## Boxplot before normalization 
DIMS %>% 
  mutate(Metabolite = row.names(DIMS)) %>% 
  gather(key = "PID_Day", value = "Abundances", -Metabolite) -> DIMS_Long 
DIMS_Long <- left_join(x = DIMS_Long, y = Metadata_New, by = "PID_Day") 
DIMS_Long %>% 
  ggplot(aes(x = PID_Day, y = Abundances, fill = Time, )) + 
  geom_boxplot(alpha = 0.75) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red2", "mediumblue")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("Sample") 
 
## Normalization 
DIMS_Norm_Pareto <- as.data.frame(pareto_scale(t(log(DIMS + 1)), centering 
= TRUE)) 
DIMS_Norm_Pareto_Wide <- as.data.frame(t(DIMS_Norm_Pareto)) 
 
 
## Boxplots after normalization 
DIMS_Norm_Pareto_Wide %>% 
  mutate(Metabolite = row.names(DIMS_Norm_Pareto_Wide)) %>% 
  gather(key = "PID_Day", value = "Abundances", -Metabolite) -> DIMS_Long2 
DIMS_Long2 <- left_join(x = DIMS_Long2, y = Metadata_New, by = "PID_Day") 
DIMS_Long2 %>% 
  ggplot(aes(x = PID_Day, y = Abundances, fill = Time, )) + 
  geom_boxplot(alpha = 0.75) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red2", "mediumblue")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("Sample") 
 
# PCA 
## Scree plot 
DIMS_Norm_Pareto_PCA <- prcomp(DIMS_Norm_Pareto, scale. = TRUE) 
fviz_eig(DIMS_Norm_Pareto_PCA, addlabels = TRUE) 
 
## PCA 
PCA_Results <- as.data.frame(DIMS_Norm_Pareto_PCA$x) 
PCA_Results$PID_Day <- row.names(PCA_Results) 
PCA_Results <- left_join(x = PCA_Results, y = Metadata_New, by = "PID_Day") 
PCA_Results %>% 
  ggplot(aes(x = PC1, y = PC2, colour = PID, shape = Time)) + 
  geom_point() + 
  theme_minimal() + 
  stat_ellipse(aes(group = Time, linetype = Time)) + 
  xlab("Principal component 1 (32.8 %)") + 
  ylab("Principal component 2 (14.4 %)") + 
  scale_colour_manual(values = ColourPalette) 
 
# Heatmap 
# Prepare data 
DIMS_Norm_Pareto$PID_Day <-row.names(DIMS_Norm_Pareto) 
DIMS_Norm_Pareto <- left_join(x = DIMS_Norm_Pareto, y = Metadata_New, by = 
"PID_Day") 
# Heatmap 
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col = list(Time = c("Before" = "mediumblue", "After" = "red2")) 
ha <- HeatmapAnnotation(Time = DIMS_Norm_Pareto$Time, col = col) 
colnames(DIMS_Norm_Pareto_Wide) <- as.vector(DIMS_Norm_Pareto$PID_Day) 
Heatmap(as.matrix(DIMS_Norm_Pareto_Wide),  
        name = "Normalized counts", 
        col = turbo(35), 
        top_annotation = ha, 
        show_row_names = FALSE,  
        row_dend_side = "right", 
        row_names_side = "left") 
 
# Statistical testing 
# Make back-up 
DIMS_Norm_Pareto_Wilc <- DIMS_Norm_Pareto 
# Transformation of the data set 
DIMS_Norm_Pareto_Wilc <- gather(DIMS_Norm_Pareto_Wilc, key = "Metabolite", 
value = "Abundance", -c("Other_Sample_ID_Stearns", "PID", "PID_Day", 
"Time")) 
# Statistical testing 
Metabolite_names <- as.vector(unique(DIMS_Norm_Pareto_Wilc$Metabolite)) 
Results <- data.frame() 
Results2 <- data.frame() 
Results3 <- data.frame() 
Results4 <- data.frame() 
for(metabolite in Metabolite_names){ 
  DIMS_Norm_Pareto_Wilc %>% filter(Metabolite == metabolite) -> 
Temp_DIMS_Data 
  wilcox <- wilcox.test(Abundance ~ Time, exact = FALSE, data = 
Temp_DIMS_Data) 
  Results[metabolite, 1] <- metabolite 
  Results[metabolite, 2] <- wilcox$statistic[[1]] 
  Results[metabolite, 3] <- wilcox$p.value[[1]] 
  t.test <- t.test(Abundance ~ Time, data = Temp_DIMS_Data) 
  Results2[metabolite, 1] <- metabolite 
  Results2[metabolite, 2] <- t.test$statistic[[1]] 
  Results2[metabolite, 3] <- t.test$p.value[[1]] 
  anova_temp <- aov(Abundance ~ Time, data = Temp_DIMS_Data) 
  Results3[metabolite, 1] <- metabolite 
  Results3[metabolite, 2] <- summary(anova_temp)[[1]][["F value"]][1] 
  Results3[metabolite, 3] <- summary(anova_temp)[[1]][["Pr(>F)"]][1] 
  lmm <- lme(Abundance ~ Time ,random=~1|PID, data = Temp_DIMS_Data) 
  Results4[metabolite, 1] <- metabolite 
  Results4[metabolite, 2] <- anova(lmm)[2,3] 
  Results4[metabolite, 3] <- anova(lmm)[2,4] 
  print(metabolite) 
} 
colnames(Results) <- c("Metabolite", "Statistic", "P-Value") 
Results$p.adjusted <- p.adjust(Results$`P-Value`, method = "fdr") 
colnames(Results2) <- c("Metabolite", "Statistic", "P-Value") 
Results2$p.adjusted <- p.adjust(Results2$`P-Value`, method = "fdr") 
colnames(Results3) <- c("Metabolite", "Statistic", "P-Value") 
Results3$p.adjusted <- p.adjust(Results3$`P-Value`, method = "fdr") 
colnames(Results4) <- c("Metabolite", "Statistic", "P-Value") 
Results4$p.adjusted <- p.adjust(Results4$`P-Value`, method = "fdr") 
 
## Visualizations 
Results %>% 
  ggplot(aes(x = `P-Value`)) + 
  geom_histogram(fill = "red2", alpha = 0.75, binwidth = 0.05) + 
  xlab("P-values for the change in abundance before and after the 
introduction of solid foods") + 
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  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
Results %>% 
  ggplot(aes(x = p.adjusted)) + 
  geom_histogram(fill = "mediumblue", alpha = 0.75, binwidth = 0.05) + 
  xlab("Adjusted p-values for the change in abundance before and after the 
introduction of solid foods") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
Results %>% 
  mutate(Significance = if_else(p.adjusted < 0.05, "Significant", 
"Insignificant")) %>% 
  ggplot(aes(x = Statistic, y = -log(p.adjusted))) + 
  geom_point(aes(colour = Significance), alpha = 0.5) + 
  theme_minimal() + 
  xlab("Test statistic for the introduction of solid foods") + 
  scale_colour_manual(values = c("red2", "mediumblue")) + 
  ylab("-log of the p-values for introduction of solid foods") 
 
## Final table 
openxlsx::write.xlsx(x = Results, file = "Final_tableDIMS.xlsx", colNames = 
TRUE) 
 

UPLC data 
# Libraries and data 
 
# Settings 
knitr::opts_chunk$set(warning = FALSE, message = FALSE)  
# Libraries 
library(tidyverse) 
library(factoextra) 
library(ComplexHeatmap) 
library(viridis) 
library(oligo) 
library(nlme) 
library(IMIFA) 
# Data 
Metadata <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metadata/Metadata.csv", sep = ";", row.names = 1) 
UPLC <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metabolomics data/UPLC.csv", sep = ";", check.names = 
FALSE, row.names = 1) 
# Colourpalette 
ColourPalette <- c("#FB0000", "#1CFC00", "#1C0DFA", "#F9C8C8", "#FF0DDF", 
"#00D1FB", "#F0E816", "#0D7222", "#FC8D00", "#5D3581", "#BB005A", 
"#35FDDA", "#D06CFE", "#7F3B1C", "#FF95E5", "#668C92", "#AAF580", 
"#819BFE", "#948626", "#D8C7FF", "#CBE7BD", "#FE8D88", "#E74738", 
"#922663", "#FFC24F", "#FC0DAD", "#A2009F", "#584242", "#2271A6", 
"#0DFA98", "#98EEF5", "#5C2EB9", "#FB007C", "#B17DA2", "#9F2A00", 
"#FE7AB2") 
# Data transformation 
# Select meaningfull columns 
Metadata %>% select(Other_Sample_ID_Stearns, PID, PID_Day, Time) -> 
Metadata_New 
Metadata_New %>% filter(Other_Sample_ID_Stearns %in% colnames(UPLC)) -> 
Metadata_New 
# Transform UPLC data 
UPLC_colnames <- colnames(UPLC) 
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UPLC[UPLC_colnames] <- lapply(UPLC[UPLC_colnames], gsub, pattern = ",", 
replacement = ".") 
UPLC %>% mutate(across(1:32, as.numeric)) -> UPLC 
# Remove zero columns 
UPLC <- UPLC[ rowSums(UPLC)!=0, ] 
# Transformations 
UPLC_Long <- UPLC 
UPLC_Long$Metabolite <- row.names(UPLC_Long) 
UPLC_Long %>% gather(key = "Infant", value = "Value", -Metabolite) -> 
UPLC_Long 
is.numeric(UPLC_Long$Value) 
# Data prep 
# Prepare data 
UPLC <- as.data.frame(t(UPLC)) 
UPLC$Other_Sample_ID_Stearns <-row.names(UPLC) 
UPLC <- left_join(x = UPLC, y = Metadata_New, by = 
"Other_Sample_ID_Stearns") 
row.names(UPLC) <- UPLC$PID_Day 
UPLC %>% 
  dplyr::select(-c(Other_Sample_ID_Stearns, PID, PID_Day, Time)) -> UPLC 
UPLC <- as.data.frame(t(UPLC)) 
 
 
# Data transformation 
## Boxplots before normalization 
UPLC %>% 
  mutate(Metabolite = row.names(UPLC)) %>% 
  gather(key = "PID_Day", value = "Abundances", -Metabolite) -> UPLC_Long 
UPLC_Long <- left_join(x = UPLC_Long, y = Metadata_New, by = "PID_Day") 
UPLC_Long %>% 
  ggplot(aes(x = PID_Day, y = Abundances, fill = Time, )) + 
  geom_boxplot(alpha = 0.75) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red2", "mediumblue")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("Sample") 
# Normalization 
UPLC_Norm_Pareto <- as.data.frame(pareto_scale(t(log(UPLC + 1)), centering 
= TRUE)) 
UPLC_Norm_Pareto_Wide <- as.data.frame(t(UPLC_Norm_Pareto)) 
## Boxplots after normalization 
UPLC_Norm_Pareto_Wide %>% 
  mutate(Metabolite = row.names(UPLC_Norm_Pareto_Wide)) %>% 
  gather(key = "PID_Day", value = "Abundances", -Metabolite) -> UPLC_Long2 
UPLC_Long2 <- left_join(x = UPLC_Long2, y = Metadata_New, by = "PID_Day") 
UPLC_Long2 %>% 
  ggplot(aes(x = PID_Day, y = Abundances, fill = Time, )) + 
  geom_boxplot(alpha = 0.75) + 
  theme_minimal() + 
  scale_fill_manual(values = c("red2", "mediumblue")) + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  xlab("Sample") 
 
# PCA 
## Scree plot 
# Biplot prep 
UPLC_Norm_Pareto_PCA_Prep <- UPLC_Norm_Pareto 
UPLC_Norm_Pareto_PCA_Prep$PID_Day <-row.names(UPLC_Norm_Pareto_PCA_Prep) 
UPLC_Norm_Pareto_PCA_Prep <- left_join(x = UPLC_Norm_Pareto_PCA_Prep, y = 
Metadata_New, by = "PID_Day") 
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row.names(UPLC_Norm_Pareto_PCA_Prep) <- 
as.vector(UPLC_Norm_Pareto_PCA_Prep$PID_Day) 
# PCA 
UPLC_Norm_Pareto_PCA <- prcomp(UPLC_Norm_Pareto_PCA_Prep[, 1:70], scale. = 
TRUE) 
fviz_eig(UPLC_Norm_Pareto_PCA, addlabels = TRUE) 
## PCA 
PCA_Results <- as.data.frame(UPLC_Norm_Pareto_PCA$x) 
PCA_Results$PID_Day <- row.names(PCA_Results) 
PCA_Results <- left_join(x = PCA_Results, y = Metadata_New, by = "PID_Day") 
PCA_Results %>% 
  ggplot(aes(x = PC1, y = PC2, colour = PID, shape = Time)) + 
  geom_point() + 
  theme_minimal() + 
  stat_ellipse(aes(group = Time, linetype = Time)) + 
  xlab("Principal component 1 (21.6%)") + 
  ylab("Principal component 2 (15.7%)") + 
  scale_colour_manual(values = ColourPalette) 
## Biplot 
fviz_pca_biplot(UPLC_Norm_Pareto_PCA,  
                repel = TRUE, 
                col.ind = UPLC_Norm_Pareto_PCA_Prep$Time, 
                label = "var", 
                legend.title = "Introduction of solids", 
                palette = c("mediumblue", "red2"), 
                select.var = list(contrib = 5) 
                ) 
 
# Heatmap 
# Prepare data 
UPLC_Norm_Pareto$PID_Day <-row.names(UPLC_Norm_Pareto) 
UPLC_Norm_Pareto <- left_join(x = UPLC_Norm_Pareto, y = Metadata_New, by = 
"PID_Day") 
# Heatmap 
col = list(Time = c("Before" = "mediumblue", "After" = "red2")) 
ha <- HeatmapAnnotation(Time = UPLC_Norm_Pareto$Time, col = col) 
colnames(UPLC_Norm_Pareto_Wide) <- as.vector(UPLC_Norm_Pareto$PID_Day) 
Heatmap(as.matrix(UPLC_Norm_Pareto_Wide),  
        name = "Normalized counts", 
        col = turbo(35), 
        top_annotation = ha, 
        show_row_names = FALSE,  
        row_dend_side = "right", 
        row_names_side = "left") 
 
 
# Statistical testing 
# Make back-up 
UPLC_Norm_Pareto_Wilc <- UPLC_Norm_Pareto 
# Transformation of the data set 
UPLC_Norm_Pareto_Wilc <- gather(UPLC_Norm_Pareto_Wilc, key = "Metabolite", 
value = "Abundance", -c("Other_Sample_ID_Stearns", "PID", "PID_Day", 
"Time")) 
# Testing 
Metabolite_names <- as.vector(unique(UPLC_Norm_Pareto_Wilc$Metabolite)) 
Results <- data.frame() 
Results2 <- data.frame() 
Results3 <- data.frame() 
Results4 <- data.frame() 
for(metabolite in Metabolite_names){ 
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  UPLC_Norm_Pareto_Wilc %>% filter(Metabolite == metabolite) -> 
Temp_UPLC_Data 
  wilcox <- wilcox.test(Abundance ~ Time, exact = FALSE, data = 
Temp_UPLC_Data) 
  Results[metabolite, 1] <- metabolite 
  Results[metabolite, 2] <- wilcox$statistic[[1]] 
  Results[metabolite, 3] <- wilcox$p.value[[1]] 
  t.test <- t.test(Abundance ~ Time, data = Temp_UPLC_Data) 
  Results2[metabolite, 1] <- metabolite 
  Results2[metabolite, 2] <- t.test$statistic[[1]] 
  Results2[metabolite, 3] <- t.test$p.value[[1]] 
  anova_temp <- aov(Abundance ~ Time, data = Temp_UPLC_Data) 
  Results3[metabolite, 1] <- metabolite 
  Results3[metabolite, 2] <- summary(anova_temp)[[1]][["F value"]][1] 
  Results3[metabolite, 3] <- summary(anova_temp)[[1]][["Pr(>F)"]][1] 
  lmm <- lme(Abundance ~ Time ,random=~1|PID, data = Temp_UPLC_Data) 
  Results4[metabolite, 1] <- metabolite 
  Results4[metabolite, 2] <- anova(lmm)[2,3] 
  Results4[metabolite, 3] <- anova(lmm)[2,4] 
  print(metabolite) 
} 
colnames(Results) <- c("Metabolite", "Statistic", "P-Value") 
Results$p.adjusted <- p.adjust(Results$`P-Value`, method = "fdr") 
colnames(Results2) <- c("Metabolite", "Statistic", "P-Value") 
Results2$p.adjusted <- p.adjust(Results2$`P-Value`, method = "fdr") 
colnames(Results3) <- c("Metabolite", "Statistic", "P-Value") 
Results3$p.adjusted <- p.adjust(Results3$`P-Value`, method = "fdr") 
colnames(Results4) <- c("Metabolite", "Statistic", "P-Value") 
Results4$p.adjusted <- p.adjust(Results4$`P-Value`, method = "fdr") 
 
## Visualizations 
Results %>% 
  ggplot(aes(x = `P-Value`)) + 
  geom_histogram(fill = "red2", alpha = 0.75, binwidth = 0.05) + 
  xlab("P-values for the change in abundance before and after the 
introduction of solid foods") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
Results %>% 
  ggplot(aes(x = p.adjusted)) + 
  geom_histogram(fill = "mediumblue", alpha = 0.75, binwidth = 0.05) + 
  xlab("Adjusted p-values for the change in abundance before and after the 
introduction of solid foods") + 
  theme_minimal() + 
  scale_x_continuous(breaks = seq(0, 1, 0.10), expand = c(0,0)) 
Results %>% 
  mutate(Significance = if_else(p.adjusted < 0.05, "Significant", 
"Insignificant")) %>% 
  ggplot(aes(x = Statistic, y = -log(p.adjusted))) + 
  geom_point(aes(colour = Significance), alpha = 0.5) + 
  theme_minimal() + 
  xlab("Test statistic for the introduction of solid foods") + 
  scale_colour_manual(values = c("red2", "mediumblue")) + 
  ylab("-log of the p-values for introduction of solid foods") 
 
## Final table 
openxlsx::write.xlsx(x = Results, file = "Final_tableUPLC.xlsx", colNames = 
TRUE) 
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Association study 
# Libraries 
library(tidyverse) 
library(phyloseq) 
library(microbiome) 
library(IMIFA) 
library(metagMisc) 
library(microViz) 
library(mixOmics) 
library(BiocParallel) 
library(matrixStats) 
library(viridis) 
set.seed(1996) 
 
 
# Data and preparation 
## Microbiome 
### Reading the data 
Metadata <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metadata/Metadata.csv", sep = ";", row.names = 1) 
MicrobiomeData <- read.csv(file = 
"C:/Users/Gebruiker/Documents/School/Master of Statistics - Bioinformatics 
(2021-2022)/Master Thesis Bioinformatics/Data/Microbiome 
data/Code_LucKi_mergtab_nochim_LucKi_v34_transposed_ISS.csv", sep = ";", 
row.names = 1) 
TaxaData <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Microbiome data/taxa.csv", sep = ";", row.names = 1) 
### PhySeq 
#### Transforming into matrices for Phyloseq 
MicrobiomeInf <- as.matrix(MicrobiomeData) 
TaxaInf <- as.matrix(TaxaData) 
MetaInf <- as.matrix(Metadata) 
#### Creating Phyloseq objects 
ASV <- otu_table(MicrobiomeInf, taxa_are_rows = TRUE) 
TAX <- tax_table(TaxaInf) 
SampleData <- sample_data(Metadata) 
PhySeqObj <- phyloseq(ASV, TAX, SampleData) 
### Filtering 
#### Filter based on prevalence 
PhySeqObjFiltered <- phyloseq_filter_prevalence(PhySeqObj, prev.trh = 0.05, 
abund.trh = NULL) 
#### Filter based on relative abundance = 0.01% 
minTotRelAbun = 1e-4 
x = taxa_sums(PhySeqObjFiltered) 
keepTaxa = (x / sum(x)) > minTotRelAbun 
PhySeqObjFiltered = prune_taxa(keepTaxa, PhySeqObjFiltered) 
### Fixing the taxa 
PhySeqObjFiltered %>% tax_fix(min_length = 4) -> PhySeqObjFiltered 
### Normalization 
PhySeqObjFiltered_CLR <- transform(PhySeqObjFiltered, "clr") 
## NMR 
### Reading data 
NMR <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metabolomics data/NMR.csv", sep = ";", check.names = 
FALSE, row.names = 1) 
### Normalization 
NMR_Norm_Pareto <- as.data.frame(pareto_scale(t(log(NMR + 1)), centering = 
TRUE)) 
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## DIMS 
### Reading data 
DIMS <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metabolomics data/DIMS.csv", sep = ";", check.names = 
FALSE, row.names = 1) 
### Normalization 
DIMS_Norm_Pareto <- as.data.frame(pareto_scale(t(log(DIMS + 1)), centering 
= TRUE)) 
## UP-LC 
### Reading data 
UPLC <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Metabolomics data/UPLC.csv", sep = ";", check.names = 
FALSE, row.names = 1) 
### Transform UPLC data 
UPLC_colnames <- colnames(UPLC) 
UPLC[UPLC_colnames] <- lapply(UPLC[UPLC_colnames], gsub, pattern = ",", 
replacement = ".") 
UPLC %>% mutate(across(1:32, as.numeric)) -> UPLC 
### Remove zero columns 
UPLC <- UPLC[ rowSums(UPLC)!=0, ] 
### Normalization 
UPLC_Norm_Pareto <- as.data.frame(pareto_scale(t(log(UPLC + 1)), centering 
= TRUE)) 
## Setting all variables correct 
### Creating analysis data sets 
Microbiome_analysis <- as.data.frame(t(abundances(PhySeqObjFiltered_CLR))) 
NMR_analysis <- NMR_Norm_Pareto 
DIMS_analysis <- DIMS_Norm_Pareto 
UPLC_analysis <- UPLC_Norm_Pareto 
### Setting name variables right for microbiome data 
#### Setting sample names rights 
Metadata %>% 
  dplyr::select(PID_Day) -> Metadata_microbiome 
Microbiome_analysis <- merge(Microbiome_analysis, Metadata_microbiome, by = 
"row.names") 
Microbiome_analysis <- 
Microbiome_analysis[order(Microbiome_analysis$PID_Day),] 
row.names(Microbiome_analysis) <- Microbiome_analysis$PID_Day 
Microbiome_analysis %>% 
  dplyr::select(-c(Row.names, PID_Day)) -> Microbiome_analysis 
#### Setting ASVs with shorter names 
TaxaData2 <- read.csv(file = "C:/Users/Gebruiker/Documents/School/Master of 
Statistics - Bioinformatics (2021-2022)/Master Thesis 
Bioinformatics/Data/Microbiome data/taxa_LUC1-897_v34_gg2013.csv", sep = 
";", row.names = 1) 
TaxaData2 %>% dplyr::select(Family_genus_species_ASV, X.2) -> TaxaData2 
TaxaData2$Concatenated <- paste(TaxaData2$Family_genus_species_ASV, 
TaxaData2$X.2, sep = "_") 
TaxaData2 %>% dplyr::select(Concatenated) -> TaxaData2 
Microbiome_analysis <- as.data.frame(t(Microbiome_analysis)) 
Microbiome_analysis <- merge(x = Microbiome_analysis, y = TaxaData2, by = 
"row.names") 
row.names(Microbiome_analysis) <- Microbiome_analysis$Concatenated 
Microbiome_analysis %>% dplyr::select(-c(Row.names, Concatenated)) -> 
Microbiome_analysis 
Microbiome_analysis <- as.data.frame(t(Microbiome_analysis)) 
### Setting name variables right for NMR data 
NMR_analysis$Other_Sample_ID_Stearns <- row.names(NMR_analysis) 
Metadata %>% 
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  dplyr::select(Other_Sample_ID_Stearns, PID_Day) -> Metadata_NMR 
NMR_analysis <- left_join(NMR_analysis, Metadata_NMR, by = 
"Other_Sample_ID_Stearns") 
NMR_analysis <- NMR_analysis[order(NMR_analysis$PID_Day),] 
row.names(NMR_analysis) <- NMR_analysis$PID_Day 
NMR_analysis %>% 
  dplyr::select(-c(Other_Sample_ID_Stearns, PID_Day)) -> NMR_analysis 
### Setting name variables right for DIMS data 
DIMS_analysis$Other_Sample_ID_Stearns <- row.names(DIMS_analysis) 
Metadata %>% 
  dplyr::select(Other_Sample_ID_Stearns, PID_Day) -> Metadata_DIMS 
DIMS_analysis <- left_join(DIMS_analysis, Metadata_DIMS, by = 
"Other_Sample_ID_Stearns") 
DIMS_analysis <- DIMS_analysis[order(DIMS_analysis$PID_Day),] 
row.names(DIMS_analysis) <- DIMS_analysis$PID_Day 
DIMS_analysis %>% 
  dplyr::select(-c(Other_Sample_ID_Stearns, PID_Day)) -> DIMS_analysis 
### Setting name variables right for UPLC data 
UPLC_analysis$Other_Sample_ID_Stearns <- row.names(UPLC_analysis) 
Metadata %>% 
  dplyr::select(Other_Sample_ID_Stearns, PID_Day) -> Metadata_UPLC 
UPLC_analysis <- left_join(UPLC_analysis, Metadata_UPLC, by = 
"Other_Sample_ID_Stearns") 
UPLC_analysis <- UPLC_analysis[order(UPLC_analysis$PID_Day),] 
row.names(UPLC_analysis) <- UPLC_analysis$PID_Day 
UPLC_analysis %>% 
  dplyr::select(-c(Other_Sample_ID_Stearns, PID_Day)) -> UPLC_analysis 
### Filtering for common samples  
Microbiome_samples <- row.names(Microbiome_analysis) 
NMR_samples <- row.names(NMR_analysis) 
DIMS_samples <- row.names(DIMS_analysis) 
UPLC_samples <- row.names(UPLC_analysis) 
Uniques <- intersect(Microbiome_samples, NMR_samples) 
Uniques <- intersect(Uniques, DIMS_samples) 
Uniques <- intersect(Uniques, UPLC_samples) 
Microbiome_analysis <- subset(Microbiome_analysis, 
row.names(Microbiome_analysis) %in% Uniques) 
NMR_analysis <- subset(NMR_analysis, row.names(NMR_analysis) %in% Uniques) 
DIMS_analysis <- subset(DIMS_analysis, row.names(DIMS_analysis) %in% 
Uniques) 
UPLC_analysis <- subset(UPLC_analysis, row.names(UPLC_analysis) %in% 
Uniques) 
### Creating outcome 
Metadata %>% 
  filter(PID_Day %in% Uniques) %>% 
  dplyr::select(PID_Day, Time) -> Outcome 
Outcome <- Outcome[order(Outcome$PID_Day),] 
row.names(Outcome) <- Outcome$PID_Day 
Outcome %>% 
  dplyr::select(Time) -> Outcome 
Outcome <- Outcome$Time 
### Creating a dataset 
data <- list(Microbiome = as.matrix(Microbiome_analysis), 
             NMR = as.matrix(NMR_analysis), 
             DIMS = as.matrix(DIMS_analysis), 
             UPLC = as.matrix(UPLC_analysis)) 
### Selecting ASVs and metabolites 
Microbiome_ASVs <- colnames(Microbiome_analysis) 
NMR_metabolites <- colnames(NMR_analysis) 
DIMS_metabolites <- colnames(DIMS_analysis) 
UPLC_metabolites <- colnames(UPLC_analysis) 
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## Cleaning the environment 
rm(MicrobiomeData, MicrobiomeInf, ASV, PhySeqObj, PhySeqObjFiltered, 
PhySeqObjFiltered_CLR, TaxaData, TaxaInf, TAX, keepTaxa, minTotRelAbun, x, 
NMR, NMR_Norm_Pareto, MetaInf, Metadata_microbiome, Metadata_NMR, 
SampleData, DIMS, DIMS_Norm_Pareto, Metadata_DIMS, UPLC, UPLC_colnames, 
UPLC_Norm_Pareto, Metadata_UPLC, Uniques, DIMS_samples, Microbiome_samples, 
NMR_samples, UPLC_samples, Metadata, TaxaData2) 
# Correlation analysis 
## Hyperparameter tuning 
### Covariance matrix 
pls1 <- spls(Microbiome_analysis, NMR_analysis, ncomp = 1) 
pls2 <- spls(Microbiome_analysis, DIMS_analysis, ncomp = 1) 
pls3 <- spls(Microbiome_analysis, UPLC_analysis, ncomp = 1) 
pls4 <- spls(NMR_analysis, DIMS_analysis, ncomp = 1) 
pls5 <- spls(NMR_analysis, UPLC_analysis, ncomp = 1) 
pls6 <- spls(DIMS_analysis, UPLC_analysis, ncomp = 1) 
cor(pls1$variates$X, pls1$variates$Y)  
cor(pls2$variates$X, pls2$variates$Y) 
cor(pls3$variates$X, pls3$variates$Y) 
cor(pls4$variates$X, pls4$variates$Y) 
cor(pls5$variates$X, pls5$variates$Y) 
cor(pls6$variates$X, pls6$variates$Y) 
design <- matrix(0, nrow = length(data), ncol = length(data), dimnames = 
list(names(data), names(data))) 
design[1,2] <- 0.8241704 
design[2,1] <- 0.8241704 
design[1,3] <- 0.6923896 
design[3,1] <- 0.6923896 
design[1,4] <- 0.866391 
design[4,1] <- 0.866391 
design[2,3] <- 0.8399946 
design[3,2] <- 0.8399946 
design[2,4] <- 0.6672782 
design[4,2] <- 0.6672782 
design[3,4] <- 0.7526392 
design[4,3] <- 0.7526392 
### Principal components 
# form basic DIABLO model 
basic.diablo.model = block.splsda(X = data, Y = Outcome, ncomp = 25, design 
= design) 
# run component number tuning with repeated CV 
perf.diablo2 = perf(basic.diablo.model, validation = "loo", progressBar = 
TRUE)  
plot(perf.diablo2) # plot output of tuning 
### Feature selection 
#### Done in steps 
# set grid of values for each component to test 
Grid = list (Microbiome = seq(5, 121, 30),  
             NMR = seq(5, 41, 10), 
             DIMS = seq(5, 116, 30), 
             UPLC = seq(5, 70, 20)) 
Clusters <- BiocParallel::SnowParam(progressbar = TRUE) 
# run the feature selection tuning 
tune.DIABLO1 <- tune.block.splsda(X = data,  
                               Y = Outcome,  
                               ncomp = 3,  
                               test.keepX = Grid,  
                               design = design,  
                               validation = "loo", 
                               progressBar = TRUE) 
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list.keepX = tune.DIABLO1$choice.keepX # set the optimal values of features 
to retain 
list.keepX 
# set grid of values for each component to test 
Grid2 = list (Microbiome = seq(5, 65, 15),  
             NMR = seq(5, 35, 5), 
             DIMS = seq(5, 100, 15), 
             UPLC = seq(5, 10, 1)) 
 
Clusters <- BiocParallel::SnowParam(progressbar = TRUE) 
# run the feature selection tuning 
tune.DIABLO2 <- tune.block.splsda(X = data,  
                               Y = Outcome,  
                               ncomp = 3,  
                               test.keepX = Grid2,  
                               design = design,  
                               validation = "loo", 
                               progressBar = TRUE) 
list.keepX = tune.DIABLO2$choice.keepX # set the optimal values of features 
to retain 
list.keepX 
# set grid of values for each component to test 
Grid3 = list (Microbiome = seq(5, 30, 4),  
             NMR = seq(5, 21, 4), 
             DIMS = seq(5, 70, 10), 
             UPLC = seq(5, 10, 1)) 
Clusters <- BiocParallel::SnowParam(progressbar = TRUE) 
# run the feature selection tuning 
tune.DIABLO3 <- tune.block.splsda(X = data,  
                               Y = Outcome,  
                               ncomp = 3,  
                               test.keepX = Grid3,  
                               design = design,  
                               validation = "loo", 
                               progressBar = TRUE) 
list.keepX = tune.DIABLO3$choice.keepX # set the optimal values of features 
to retain 
list.keepX 
# set grid of values for each component to test 
Grid4 = list (Microbiome = seq(5, 15, 2),  
             NMR = seq(5, 25, 4), 
             DIMS = seq(5, 55, 5), 
             UPLC = seq(5, 10, 1)) 
Clusters <- BiocParallel::SnowParam(progressbar = TRUE) 
# run the feature selection tuning 
tune.DIABLO4 <- tune.block.splsda(X = data,  
                               Y = Outcome,  
                               ncomp = 3,  
                               test.keepX = Grid4,  
                               design = design,  
                               validation = "loo", 
                               progressBar = TRUE) 
list.keepX = tune.DIABLO4$choice.keepX # set the optimal values of features 
to retain 
list.keepX 
# set grid of values for each component to test 
Grid5 = list (Microbiome = seq(5, 10, 1),  
             NMR = seq(5, 25, 2), 
             DIMS = c(seq(5, 23, 2), seq(25,60,5)), 
             UPLC = seq(5, 10, 1)) 
Clusters <- BiocParallel::SnowParam(progressbar = TRUE) 
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# run the feature selection tuning 
tune.DIABLO5 <- tune.block.splsda(X = data,  
                               Y = Outcome,  
                               ncomp = 3,  
                               test.keepX = Grid5,  
                               design = design,  
                               validation = "loo", 
                               progressBar = TRUE) 
list.keepX = tune.DIABLO5$choice.keepX # set the optimal values of features 
to retain 
list.keepX 
list.keepX <- list(Microbiome = c(10, 8, 5), 
                   NMR = c(19, 21, 5), 
                   DIMS = c(13, 60, 13), 
                   UPLC = c(7, 8, 6)) 
                    
                    
# set the optimised DIABLO model 
final.diablo.model = block.splsda(X = data, Y = Outcome, ncomp = 3,  
                          keepX = list.keepX, design = design) 
## Plotting the principal components for the final diablo model 
plotDiablo(final.diablo.model,  
           ncomp = 1, 
           col = c('mediumblue', 'red2')) 
plotDiablo(final.diablo.model,  
           ncomp = 2, 
           col = c('mediumblue', 'red2')) 
plotDiablo(final.diablo.model,  
           ncomp = 3, 
           col = c('mediumblue', 'red2')) 
 
## Circos plots per component and full circos plot 
circosPlot(final.diablo.model, cutoff = 0.75, line = TRUE, 
           color.blocks= c('darkorchid', 'brown1', 'lightgreen', "yellow"), 
           color.cor = c("chocolate3","grey20"),  
           size.labels = 1.5, 
           size.variables = 0.5, 
           comp = 1) 
circosPlot(final.diablo.model, cutoff = 0.75, line = TRUE, 
           color.blocks= c('darkorchid', 'brown1', 'lightgreen', "yellow"), 
           color.cor = c("chocolate3","grey20"),  
           size.labels = 1.5, 
           size.variables = 0.5, 
           comp = 2) 
circosPlot(final.diablo.model, cutoff = 0.75, line = TRUE, 
           color.blocks= c('darkorchid', 'brown1', 'lightgreen', "yellow"), 
           color.cor = c("chocolate3","grey20"),  
           size.labels = 1.5, 
           size.variables = 0.5, 
           comp = 3) 
circosPlot(final.diablo.model, cutoff = 0.7, line = TRUE, 
           color.blocks= c('darkorchid', 'brown1', 'lightgreen', "yellow"), 
           color.cor = c("mediumblue","red2"),  
           size.labels = 1.5, 
           size.variables = 0.5, 
           comp = 1:3) 
### Extracting correlations for the final table 
circosPlot(final.diablo.model, cutoff = 0.7, line = TRUE, 
           color.blocks= c('darkorchid', 'brown1', 'lightgreen', "yellow"), 
           color.cor = c("mediumblue","red2"),  
           size.labels = 1.5, 
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           size.variables = 0.5, 
           comp = 1:3) -> Correlations 
heatmap(Correlations, col = turbo(152)) 
Correlations[lower.tri(Correlations, diag = TRUE)] <- NA 
Correlations <- as.data.frame(Correlations) 
Correlations$"Feature 1" <- row.names(Correlations) 
Correlations <- gather(data = Correlations, key = "Feature 2", value = 
"Correlation", -"Feature 1") 
Correlations %>% na.omit() -> Correlations 
Filtered_correlations <- matrix(ncol = 3, nrow = 0) 
# Loop to build table 
for(i in 1:nrow(Correlations)){ 
  Feature1 <- Correlations[i, 1] 
  Feature2 <- Correlations[i, 2] 
  Correlation <- Correlations[i, 3] 
  if(Feature1 %in% Microbiome_ASVs & Feature2 %in% Microbiome_ASVs){ 
    return 
  } else if(Feature1 %in% NMR_metabolites & Feature2 %in% NMR_metabolites){ 
    return 
  } else if(Feature1 %in% DIMS_metabolites & Feature2 %in% 
DIMS_metabolites){ 
    return 
  } else if(Feature1 %in% UPLC_metabolites & Feature2 %in% 
UPLC_metabolites){ 
    return 
  } else if(abs(Correlation) >= 0.7){ 
    temp <- c(Feature1, Feature2, Correlation) 
    Filtered_correlations <- rbind(Filtered_correlations, temp) 
  } 
} 
Filtered_correlations <- as.data.frame(Filtered_correlations) 
colnames(Filtered_correlations) <- c("Feature 1", "Feature 2", 
"Correlation") 
writexl::write_xlsx(Filtered_correlations, path = 
"C:/Users/Gebruiker/Documents/School/Master of Statistics - Bioinformatics 
(2021-2022)/Master Thesis Bioinformatics/Data/Correlations.xlsx") 
 
## Building the final heatmap 
circosPlot(final.diablo.model, cutoff = 0, line = TRUE, 
           color.blocks= c('darkorchid', 'brown1', 'lightgreen', "yellow"), 
           color.cor = c("mediumblue","red2"),  
           size.labels = 1.5, 
           size.variables = 0.5, 
           comp = 1:3) -> Correlations2 
ComplexHeatmap::Heatmap(matrix = Correlations2,  
                        col = turbo(100), 
                        show_row_names = FALSE, 
                        show_column_names = FALSE, 
                        heatmap_legend_param = list(title = "Correlation")) 
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