
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

VPN Traffic Fingerprinting

Lennert Kuypers
Scriptie ingediend tot het behalen van de graad van master in de informatica

2021
2022

PROMOTOR :

Prof. dr. Peter QUAX

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

VPN Traffic Fingerprinting

Lennert Kuypers
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Peter QUAX

Universiteit Hasselt

Masterproef voorgedragen tot het behalen van de graad
van master in de informatica

VPN Traffic Fingerprinting

Auteur :

Kuypers Lennert

Promotor :

Prof. dr. Quax Peter

Begeleider(s):

dhr. Di Martino Mariano

Academiejaar 2021-2022

Acknowledgements

I would like to thank my mentor Mariano Di Martino and promotor Prof. dr. Peter Quax for
helping me throughout the difficult process of writing this thesis. The weekly meetings were
extremely helpful and have resulted in many ideas and insights to use in my thesis, this has
been a crucial element in this thesis. Furthermore, the feedback after proofreading my thesis
for several times has had a major impact. I am extremely grateful.

Furthermore, I would like to thank my parents and my girlfriend for supporting me in stressful
times, which has been very important in order to finish this thesis.

Finally, I would like to thank my friends for occasionally providing some distraction resulting in
more energy and drive to proceed with my thesis.

2

Abstract

Virtual Private Networks (VPNs) are a popular service for protecting the privacy of Internet
users. Because of the encrypted communication a VPN provides, it is hard to deduce information
about endpoints that are using a VPN. The Onion Router (Tor) is another example of such a
privacy-enhancing service. In this thesis, we analyse methods that predict classification types
based on an encrypted traffic stream, such as a VPN or Tor traffic stream. Furthermore, we
construct our own approach to predict the operating system, web browser and traffic type
based on a VPN traffic stream without using machine learning (ML) techniques. Therefore, we
analyse traces and apply a feature discovery process with multiple experiments to determine
functional features for classification. We then implement a live classifying tool that applies our
constructed approach. Finally, we discuss possible mitigations to counter the approach. We also
follow another approach by adopting two different state-of-the-art ML classifiers to predict the
same classification types, and we compare the performances with our own approach.

3

Contents

1 Introduction 6

2 Background 8
2.1 Cryptography . 8
2.2 Tunneling . 8
2.3 Virtual Private Network (VPN) . 9

2.3.1 Use cases . 9
2.3.2 Protocols . 10

2.4 OpenVPN protocol . 11
2.4.1 Virtual network adapters . 11
2.4.2 Data and control channel . 12
2.4.3 UDP vs TCP tunnel . 13
2.4.4 Encapsulation . 13

2.5 Man in the middle attack . 14

3 Fingerprinting intercepted traffic 15
3.1 Plain text attributes . 16
3.2 VPN and Tor traffic . 17

4 Manual Approach 20
4.1 Experiment: visualising browser generated traffic 21
4.2 Matching OpenVPN packets with regular packets 24
4.3 Feature discovery . 25

4.3.1 TCP Acknowledgement . 25
4.3.2 QUIC Acknowledgement . 29
4.3.3 TLS Client Hello . 29
4.3.4 Packet rate . 33
4.3.5 IP time to live . 34
4.3.6 Maximum packet size . 34
4.3.7 Recap . 35

4.4 Classification process . 36
4.5 Evaluation . 38

4.5.1 Dataset creation . 38
4.5.2 Method . 39
4.5.3 Results & Discussion . 40

4.6 Live classifying tool . 43
4.7 Mitigations . 43

5 Machine Learning Approach 46
5.1 Method . 46
5.2 Results & Discussion . 48

4

Chapter 0: CONTENTS 5

6 Conclusion 52

Appendices 54

A Dutch Summary 55
A.1 Inleiding . 55
A.2 Achtergrond . 56
A.3 Fingerprinten van onderschept netwerkverkeer . 57
A.4 Fingerprinten van besturingssysteem, web browser en verkeer: manuele methode 58
A.5 Fingerprinten van besturingssysteem, web browser en verkeer: machine learning

methode . 60
A.6 Conclusie . 61

Chapter 1

Introduction

The internet is nowadays an indispensable part of our lives. Lots of essential sectors rely on
the internet in some way, going from hospitals and the military to schools and businesses [16].
Individuals typically require an Internet connection to complete common daily objectives such
as communicating with friends, attending a meeting for work, or ordering food. According to
Broadband Search [11], in 2021, approximately 4.93 billion people, representing 63.2% of the
world population, had access to the internet and used it frequently. Furthermore, 90.3% of North
America and 87.2% of Europe had Internet access and also used it on a daily basis. Although the
internet has numerous benefits, it unfortunately also introduces some concerns. One primary
concern involves the online privacy and security of the user. We will now elaborate on privacy
and security issues for users concerning the traffic they generate while browsing the internet.

A public hotspot is a severe threat to privacy leakage. [47]. Businesses typically create public
hotspots from wireless access points (APs) to offer their customers a simple way to connect to
the internet. It usually does not require any form of authentication, so anyone can connect to it.
Actually, even if authentication is required, it might still be possible for an adversary to decrypt
the encrypted traffic exchanged by users and the AP [41]. As a result, these hotspots are dealing
with serious security concerns. Attackers can connect to a hotspot and execute a man in the
middle (MITM) attack on users that are connected to the same hotspot. MITM will be discussed
in greater detail in Section 2.5. The MITM attack allows attackers to intercept and inspect the
internet traffic generated by the victim, which is clearly a violation of the victim’s privacy. While
connected to a private network, for instance, a typical home network, one is relatively safe from
becoming a victim of a MITM attack because credentials are required to enter a private network,
implying that an attacker needs to know these before the attack can be executed. Nevertheless,
other online privacy issues still arise when connected to a private network. A MITM needs to
perform some actions to put itself in the user’s path. On the contrary, some entities are already
in the path, and they must be in that position to ensure a working connection between the user
and some other endpoint. An ISP, for example, is such an entity because a user sends all his
traffic to his ISP, which in turn makes sure the traffic is forwarded correctly. Cafes, restaurants,
or hotels that provide internet access for their customers are also in the path of their internet
users. Although the presence of these entities in the user’s path is compulsory, they are perfectly
able to inspect the data inside the user’s traffic which is yet another privacy concern for the users.

It is clear that the user’s privacy needs to be protected from eavesdroppers. The HTTPS protocol
is the most widely used solution to this problem. HTTPS was introduced to provide confiden-
tiality and integrity to HTTP traffic by applying cryptography. It provides a means for data to
traverse the internet safely in a connection between two endpoints. This way, sensitive informa-

6

Chapter 1: Introduction 7

tion that is being exchanged, such as credentials, is safe from eavesdroppers. However, HTTPS
does not fully provide online privacy protection. While using only HTTPS, an eavesdropper can
still deduce which endpoints the user is visiting by inspecting DNS traffic and/or the destination
IP address of a TLS connection. When a user is communicating with a Facebook server over a
HTTPS connection, for example, an eavesdropper can still determine that the user is connected
to that Facebook server, implying that he is currently using Facebook. This provides enough
information for the eavesdropper to analyse the user’s browsing behaviour, which is, of course,
a privacy issue. To mitigate this, an additional layer of protection, possibly on top of HTTPS,
is necessary. One popular technology that can provide this is a Virtual Private Network (VPN),
which is discussed extensively in Section 2.3. VPN users redirect all of their traffic through a
VPN connection to a VPN server. With this technique, users can also hide the destination IP
address from eavesdroppers. Additionally, the user’s IP address remains hidden from the other
endpoint. This way, a VPN significantly hardens the user’s privacy and thus offers a solution to
the earlier discussed privacy-related problems that internet users may encounter.
Another popular alternative to VPN is the Tor (The Union Router) network. In essence, the
Tor network is a decentralized layer of independent nodes. When a Tor user sends a network
packet to some endpoint, it is first routed through a randomly selected set of Tor nodes before
being sent to the endpoint by the last Tor node in the set. Additionally, multiple layers of en-
cryption are used and each node only knows the previous and next node in the path. There is no
best-of-breed option between VPNs and Tor, each has their advantages and disadvantages [58].

This thesis aims to examine existing and discover new methods that result in privacy leakages
of a VPN. We will focus on fingerprinting techniques that reveal information about the user,
specifically the operating system, web browser, and traffic type of the user. Moreover, we will
explore the effectiveness of applying fingerprinting techniques without the help of machine learn-
ing (ML), as ML is used very frequently in the state of the art methods that will be described in
Section 3.2. This leads to two different approaches we will follow. We refer to the first approach
as the ‘manual approach’. In this approach, we try to deduce features for classification ourselves
by analysing traces. After that, we classify traces based on the features that we discovered.
We refer to the second approach as the ‘machine learning approach’. Contrarily to the manual
approach, we do not try to discover features in the machine learning approach. Instead, we
collect traces and train a ML classifier with these traces. This leads to the definition of the
following research questions:

• Is it possible to predict device characteristics of a VPN user based on the traffic that is being
exchanged with the VPN server?

– Is this possible by using a manual approach?

– Is this possible by using a machine learning approach?

– How does a manual approach perform compared to a machine learning approach?

• What can VPN users do to protect themselves against the techniques applied in the prediction
process?

Chapter 2

Background

This chapter introduces some key aspects that are used throughout this thesis. First, the
concepts of cryptography and tunneling are explained, which are essential aspects in the context
of a VPN. VPNs will be discussed next and are also the main subject of this thesis. The notion
of a man-in-the-middle attack is also crucial because this technique is sometimes necessary to
intercept the traffic exchanged inside a VPN connection.

2.1 Cryptography

Cryptography refers to techniques for secure communication and information exchange between
two entities. The goal of cryptography is for two endpoints to exchange information safely with-
out in-between third parties being able to compromise that information. Cryptography is said to
enable Integrity and Confidentiality: two fundamental properties of the CIA triad [23]. Integrity
ensures that unauthorised parties can not modify the exchanged information without the two
communicating parties being aware of it. Confidentiality ensures the prevention of disclosure
of information to unauthorised parties. Cryptography achieves these properties by applying
encryption and decryption. Encryption is the process of encoding information in which the orig-
inal representation, known as plaintext, is transformed to the encoded representation, called the
ciphertext. Decryption is the opposite of encryption; it converts the ciphertext back to plaintext.

There are two main types of cryptography. The first one is symmetric-key cryptography. This
method uses the same key to encrypt and decrypt information. This means that both the sender
and receiver uses only one key. A popular symmetric-key algorithm is the Advanced Encryption
Standard (AES) [20]. The second type is asymmetric-key cryptography, also known as public-
key cryptography. The sender and receiver each have a unique pair of keys: a public key and
a private key. Only a private key can decrypt the information that was encrypted with the
corresponding public key and vice versa. If an entity wants to send an encrypted message to a
recipient, it needs the recipient’s public key to encrypt the message. This way, the recipient can
decrypt the message successfully with its private key. Note that a private key should never be
exchanged with other parties, i.e. it should remain private. A widely used system for public-key
cryptography is Rivest-Shamir-Adleman (RSA). [61].

2.2 Tunneling

Tunneling is the process of moving data across a network that separates two networks that want
to communicate. It is also often referred to as creating a ‘tunnel‘ across a network. A tunnel is
created by applying encapsulation. An encapsulated packet is a packet within another packet;

8

Chapter 2: Background 9

this means that the header and payload of the encapsulated packet are contained within the
payload section of the outer packet. Tunneling has multiple useful applications. One includes
creating secure network connections by encrypting the packet that contains sensitive information
and encapsulating it. VPNs use this method to interconnect private networks across a public
or shared network (often the internet) over a secure tunnel. VPNs will be discussed in greater
detail in Section 2.3. Tunneling can also be helpful when the network does not support specific
protocols. IP in IP tunneling [3], for example, allows two networks using IPv6 to communicate
across an IPv4 network by encapsulating the IPv6 packet in an IPv4 packet. Finally, bypassing
firewalls is sometimes possible by using tunneling. In Section 2.4, we will show that the ability
to bypass firewalls using a tunnel can be of importance.

2.3 Virtual Private Network (VPN)

A VPN extends a private network across a shared or public network. It enables devices to com-
municate as if they were connected to the same private network. This is achieved by tunneling
the traffic of the VPN user through the public network to its destination, which is the desired
private network. Note that to reach this private network, the only possibility is to traverse the
shared or public network. When a user connects to a VPN, a secure tunnel is created between
the user and the VPN server to exchange traffic over the public internet. Cryptography is used
to encrypt and decrypt the traffic sent over the tunnel.

2.3.1 Use cases

From the definition, it is clear that the original use case of a VPN is to connect remotely to an
internal private network. Today this is still an important reason for using a VPN, especially in a
corporate environment. In the past, being physically present at the office was typically required
for employees to perform their jobs. The internet has made it possible and even fairly easy
to work remotely, which is generally referred to as ‘teleworking’. Teleworking is very different
from the traditional approach and has its advantages and disadvantages. It is generally more
productive and flexible [8], but unfortunately, it can introduce more stress and isolation [9]. Re-
gardless whether or not teleworking is superior, it became mandatory for a significant amount
of staff at the start of the COVID-19 pandemic. In nearly a few days, millions of employees
had no choice but to shift to teleworking. This obviously resulted in the increased popularity
of teleworking, clearly with the COVID-19 pandemic acting as the main cause [50]. During
teleworking, a commonly occurring problem is that certain resources may be only available at
the physical work site. For example, an employee might need some files that are available only
on a file server in the internal office network. VPN technology provides a way to access remote
firewall-protected resources securely and is typically used to solve this problem. This indicates
that the gain in popularity for teleworking is expected to cause a gain in VPN usage too. This
was demonstrated by [24]. They studied the evolution of VPN traffic rates in Europe during
the first year of the COVID-19 pandemic. Figure 2.1 shows the observed changes in VPN traf-
fic rates across different months in the year 2020. It is clear that, especially during working
hours, VPN traffic rates have increased since the start of the pandemic. They argue that the
main causal factor is the higher demand for VPN solutions to access firewall-protected resources
hosted in internal company networks.

Nowadays, VPNs are actually being used for many other purposes as well. [64] conducted a study
to get an overview of VPN consumer usage. Among other things, they asked the participants
to specify why they used a VPN. The main reasons for VPN usage, as a result of the study, are
shown in Figure 2.2. Note that the participants were allowed to choose more than one option.

Chapter 2: Background 10

Figure 2.1: VPN traffic evolution during the COVID-19 pandemic [24]

We can observe that VPNs nowadays are used a lot for privacy reasons, including anonymity.
This is an interesting finding because VPNs were not originally intended to provide anonymity
and/or privacy. Furthermore, a common misconception nowadays is that the word “private” in
the VPN initialism refers to privacy, rather than to an internal private network [55]. Although
privacy is one of the most popular reasons to use a VPN, the privacy of the user is not always safe
from attackers, as we will discuss further in this thesis. A commercial VPN actually introduces
an additional privacy concern. All of the user’s traffic is forwarded to a VPN server node,
controlled by the VPN provider. An important purpose of a VPN is hiding traffic for entities
(e.g. an ISP) in the user’s path. On the other hand, however, using a VPN actually exposes the
plain traffic to the VPN server node, which also represents a central organisation, i.e. the VPN
provider, in case of commercial use. This means that users have to trust the VPN provider
not to tamper with or log any of their traffic. Many popular providers tackle this issue by
guaranteeing a secure infrastructure and no-logs policy. However, in [38] the authors find that
this is not always the reality. They analysed 62 commercial VPN services and found that the
VPN ecosystem is highly opaque, partly by the lack of practical tools or independent research
that audits these claims.
As opposed to a VPN, the Tor network is decentralised, meaning no central organisation is
involved. Only the exit node of the Tor network can observe the plain text traffic originally sent
by the user, but this node in fact does not know who this traffic belongs to, hence maintaining
the user’s privacy. Therefore, one could argue that Tor might provide an additional layer of
privacy and provides a solution to the central organisation concern of commerical VPNs.
Besides using a VPN for privacy, we can see that it is also popular for security in context of
public Wi-Fi as discussed in Section 1, online shopping, and accessing geographically restricted
content, i.e. bypassing geo-blocking.

2.3.2 Protocols

VPN protocols are necessary for a VPN to create and manage the secure tunnel for exchanging
information safely between two endpoints. In other words, a VPN protocol is responsible for
ensuring a secure tunnel between the user and the VPN server. A lot of different VPN protocols
exist. We only discuss the most common ones. One of the first available and widely used pro-
tocols is the Point to Point Tunneling Protocol (PPTP) [78]. Plenty of security vulnerabilities
have been discovered, and the used encryption protocols have become easy to break [33, 63].
This means that PPTP should not be used for security or privacy. It is, however, easy to use,
highly compatible, and fast. Therefore it is still in use these days by entities that are less con-
cerned with privacy and security. Besides, PPTP is also still in use in legacy systems that have
not been changed. [37]. Another protocol is Internet Key Exchange Version 2 (IKEv2) [22].
IKEv2 establishes shared security attributes (i.e. keys in this case) between remote entities so
these attributes can be used later for secure communication; this is called Security Association.
IKEv2 typically uses Internet Protocol Security (IPSec) to tunnel data between devices securely.
IPSec is a protocol suite that provides secure encrypted communication at layer 3. It needs to
be implemented partly in the kernel, so to be able to use IPSec, one needs to verify that the
kernel supports it. The Layer 2 Tunneling Protocol (L2TP) [72] creates a layer 2 tunnel between
an L2TP Access Concentrator (LAC) and an L2TP Network Server (LNS). The tunnel encap-

Chapter 2: Background 11

Figure 2.2: The main reasons for using a VPN [64]

sulates L2TP frames in UDP packets. Note that L2TP does not provide any kind of security
attributes, so in order to make the tunnel secure, one needs to use L2TP in combination with
other protocols, typically IPSec. IKEv1 or IKEv2 is often used for Security Assocation. The
Secure Socket Tunneling Protocol (SSTP) uses a TLS channel over port 443. The advantage of
this method is that the tunnel traffic can pass through basically all firewalls because port 443
(HTTPS) is very rarely blocked.

Finally, there is the OpenVPN protocol [52] which is the focus of this thesis. We will discuss
this protocol in great detail in Section 2.4.

2.4 OpenVPN protocol

OpenVPN [52] is a very popular open-source VPN protocol with over 50 million downloads [52].
In the security context, its open-source characteristics allow people (especially security experts)
across the globe to contribute to keeping it as secure as possible. OpenVPN uses the OpenSSL
library 1 and TLS protocol to apply cryptography. It fully runs in user space and uses a virtual
network adapter as an interface between the OpenVPN software and the operating system.
As a result, any operating system that is compatible with a virtual network adapter can run
OpenVPN [17]. Additionally, the installation of OpenVPN client software is required to use the
OpenVPN protocol.

2.4.1 Virtual network adapters

The traffic flow of OpenVPN data within the VPN client machine is visualised in Figure 2.3.
First, an application triggers the kernel to send a packet. The kernel adds the network head-
ers in the networking stack and passes the constructed network packet to the virtual network

1https://www.openssl.org/ (accessed on 20-05-2022)

Chapter 2: Background 12

Figure 2.3: Local traffic flow via OpenVPN

adapter. A virtual adapter is essentially a software application, managed by the kernel, sim-
ulating a physical network adapter; it is often used to pass received network packets back to
specific software applications (in this case the OpenVPN software) instead of sending it over
an outgoing link. Generally there are two types of virtual network interfaces. The first one is
the TUN interface, which operates at the IP level (layer 3). A TUN interface only accepts IP
packets. The second one is the TAP interface, which operates at the Ethernet level (layer 2).
Both can be used for specific use cases of a VPN. If one needs to connect two remote LANs
using a VPN connection, a TAP interface needs to be used because layer 2 traffic, such as the
Address Resolution Protocol (ARP), must be passed across the LANs. On the other hand, if a
VPN is used to browse the internet privately, the TUN interface is the better alternative because
it does not pass unnecessary layer 2 traffic over the VPN connection resulting in better efficiency.

In the specific case of OpenVPN, the virtual network adapter passes the received network packet
to the OpenVPN software, i.e. back to user space. The OpenVPN software then encrypts the
entire packet and triggers the kernel to send the result as payload to the IP address of the
VPN server, hence passing the payload through the networking stack to the physical Network
Interface Card (NIC). Finally, the received packet is put onto the outgoing data link and thus
leaves the host machine.

2.4.2 Data and control channel

OpenVPN uses two communication channels during a session: the control channel and the data
channel. The control channel utilises a TLS connection to handle authentication, key negotia-
tion, and configuration between two OpenVPN endpoints. TLS Crypt, which applies symmetric
encryption using pre-shared keys, is used on top of the TLS connection for an extra layer of
security as protection against TLS-level attacks. The data channel handles the secure tunnel in
which the actual network packets are transported. Furthermore, the control channel provides

Chapter 2: Background 13

the Security Association for the data channel to encrypt the packets. OpenVPN supports a wide
range of symmetric encryption ciphers and hashing algorithms available from the OpenSSL li-
brary. The purpose of the encryption ciphers is to encrypt some payload while a HMAC function
utilises the hashing algorithms to authenticate packets. The data channel encryption cipher used
for encrypting the network packets can be chosen freely from the available ciphers. However,
client and server both need to support and allow the chosen cipher. The latest OpenVPN version
recommends and defaults to the AES-256-GCM symmetric cipher [62] for the data channel 2

3.

2.4.3 UDP vs TCP tunnel

An OpenVPN packet is encapsulated in the payload at the transport layer level. Two transport
layer protocols are supported for this purpose: TCP and UDP. The Internet Assigned Numbers
Authority (IANA) has assigned port 1194 to OpenVPN for both UDP and TCP [34]. This port
is considered the default port for UDP, but the TCP port for OpenVPN defaults to 443. Note
that OpenVPN can be configured manually to run on any port if one wishes to omit the default
ports.
When using OpenVPN, one must select either TCP or UDP for the tunnel. A TCP tunnel is the
obvious choice for bypassing firewalls if default ports are used since HTTPS also runs on port
443. Besides, it is relatively easy to block OpenVPN over UDP because it uses a port specifically
dedicated to OpenVPN as mentioned earlier. Note that the encryption used by OpenVPN over
TCP is not exactly the same as the encryption used by HTTPS, so it is possible to distinguish
these two by applying Deep Packet Inspection. Whilst TCP is better for bypassing firewalls,
it also has a significant disadvantage: when a TCP tunnel is transporting a TCP connection
inside it, one can possibly experience a network slowdown. This is called the TCP Meltdown
problem [15]. The network slowdown can occur when both of the stacked TCP connections are
retransmitting packets, but the outer connection is slower (higher timeouts) than the inner con-
nection. This causes the inner connection to queue up more retransmissions than the outer layer
can handle, resulting in a significant latency increase. A performance comparison between TCP
and UDP tunnel connections was conducted in [14]. They found that a UDP tunnel utilises the
link more efficiently and yields improved transfer times and speed compared to a TCP tunnel.
They also confirmed that a TCP connection in a UDP tunnel provides better latency than in
a TCP tunnel. The unreliable nature of UDP is clearly beneficial for OpenVPN in terms of
performance. Furthermore, using a UDP tunnel for OpenVPN is not problematic for ensuring
reliability: if reliability is required, the tunneled TCP connection will take care of it.
We conclude that, considering performance, UDP seems to be the better option. It is, however,
relatively easy for firewalls to block a UDP tunnel. That is why most entities, including the
OpenVPN team itself [51], advise first to try UDP and to switch to TCP if any firewall is-
sues arise. Furthermore, the connection profiles downloaded from the official OpenVPN Access
Server 4 are by default configured to first try UDP.

2.4.4 Encapsulation

When a regular network packet is passed to the OpenVPN software, the software encrypts it
with a symmetric-key cipher, as discussed in Section 2.4.2. Note that, when we use the term
‘regular packet’, we refer to a network packet that has not (yet) been encapsulated or encrypted
by a privacy-enhancing technology like a VPN or Tor. After the software has encrypted the

2https://community.openvpn.net/openvpn/wiki/CipherNegotiation (accessed on 20-05-2022)
3https://openvpn.net/vpn-server-resources/change-encryption-cipher-in-access-server/ (accessed on 20-05-

2022)
4https://openvpn.net/access-server/ (accessed on 20-05-2022)

Chapter 2: Background 14

Figure 2.4: OpenVPN (UDP tunnel) encapsulation of regular TCP packet

regular packet, the encrypted packet is encapsulated by adding the necessary headers to create
a new packet, i.e. the encrypted packet is used as payload in a new, encapsulating packet. In de-
tail, Ethernet, IP, UDP, and OpenVPN headers are added to create the final OpenVPN packet,
assuming that OpenVPN is using an UDP tunnel. Figure 2.4 contains a visualisation of a regular
TCP packet and its corresponding encapsulated OpenVPN packet. The final OpenVPN packet
is a representation of the packets that are being transmitted by the OpenVPN client machine.
Therefore, it also represents the traffic that can be observed by a MITM between the OpenVPN
client and server. For clarification, as indicated in Figure 2.4, the headers that were added to
create the encapsulation packet are not encrypted, hence visible to a MITM. On the contrary,
the encapsulated packet is encrypted, hence not visible to a MITM.

2.5 Man in the middle attack

A man in the middle (MITM) is an entity that has inserted itself in the connection path between
at least two endpoints that are communicating. These endpoints are typically not aware of the
presence of the MITM, but this is not necessarily the case. An internet service provider (ISP),
for example, could also act as a MITM, but it is evident that our Internet traffic passes through
our ISP. There are numerous methods available for an attacker to obtain a MITM position; a
few possibilities include ARP poisoning and setting up a rogue access point.
A MITM can generally behave either as a passive MITM or an active MITM. The former only
eavesdrops on the network traffic of the target connection without altering it in any way. The
latter actively manipulates the packet stream by changing, dropping, or adding packets. An
active MITM approach is often used to pretend to be one of the endpoints, meaning that the
other endpoints are actually communicating with the MITM without knowing it.
A MITM is most destructive when the endpoints communicate via protocols that do not apply
cryptography. In that case, data is sent in plain text over the internet, which is generally a
terrible idea. For instance, if a passive MITM is eavesdropping an HTTP connection between a
client and a server, the MITM can easily obtain sensitive information (e.g. passwords). Likewise,
an active MITM can easily pretend to be another entity without the endpoints being aware of it
if no cryptography mechanism is used. This clearly indicates that encryption should be applied
to data exchanged between endpoints, making it substantially harder for a MITM to obtain
valuable/sensitive information or tamper with the communication. For instance, when using
a VPN for privacy or security reasons, the data in the secure tunnel is encrypted to prevent
MITM entities, such as an ISP, from tracking what the user is doing.

Chapter 3

Fingerprinting intercepted traffic

The internet was not built to be secure; its initial purpose was to connect many people around
the globe [56]. Consequently, the most common protocols are not designed with security in mind.
The HTTP protocol, for example, sends all data in plain text over the internet even if it contains
sensitive information such as credentials, making it extremely easy for an entity in the connec-
tion path to gather sensitive information about the user. Cryptography is a well-known method
to counter this. If two endpoints use cryptography to encrypt their communication data, it
will be more rigid for eavesdroppers to derive sensitive information from the observed encrypted
traffic. Nonetheless, there are still techniques available to gather interesting information from an
encrypted traffic stream by entities that are not able to remove the encryption layer. A popular
technique among these is fingerprinting. Fingerprinting allows an adversary to obtain additional
information about the sender of a traffic stream, often encrypted, by applying pattern recogni-
tion. Fingerprinting can be performed in lots of different ways. One can, for example, simply
look at plain text attributes of the intercepted traffic and, solely based on this, deduce informa-
tion about the user. On the other hand, there are much more complex methods of fingerprinting,
e.g. only considering packet sizes of encrypted traffic and applying ML. The specific information
that an adversary wants to obtain by applying fingerprinting techniques is usually in the form of
some classification. A frequently encountered classification category is Website Fingerprinting
(WF). The main objective of WF is to identify which webpage a user is visiting based on an
encrypted traffic stream that the user is generating. Thus, WF aims to classify webpages. More
specifically, WF typically aims to either classify multiple webpages of one specific website or
classify multiple websites by considering at least one webpage per website. Another popular
classification category is traffic categorization. Traffic classification can be categorized based on
different purposes. Some options include protocol encapsulation (e.g. VPN vs HTTPS), specific
applications (e.g. YouTube, Vimeo), and general application type (e.g. Streaming, Browsing).
Additional less frequently occurring categories are operating systems (e.g. Windows, Linux)
and web browsers (e.g. Chrome, Firefox). Note that web browser classification is not to be con-
fused with ‘browser fingerprinting’ [28,36,45], which is a technique that websites (as endpoints)
use to establish a unique fingerprint of each user’s browser in order to track users across sessions.

This chapter focuses on fingerprinting techniques to derive classification-based information about
the user deduced from a traffic stream on which some privacy-enhancing technology is applied,
such as HTTPS, a VPN, or Tor. The used technology affects the set of fingerprinting techniques
necessary to determine some piece of information, as well as their effectiveness. For instance,
HTTPS and even a VPN in some scenarios reveal plain text attributes in traffic that can be
used for certain classifications, as will be discussed in Section 3.1. To summarize, the selection
of fingerprinting techniques, if necessary, to determine some piece of information about the user

15

Chapter 3: Fingerprinting intercepted traffic 16

(e.g. visited domains, browser type) depends on what privacy-enhancing technology is being
used.
In the upcoming sections, we will discuss state-of-the-art (fingerprinting) techniques used to
reveal information about the user of some privacy-enhancing technology.

3.1 Plain text attributes

Sometimes, the desired information about a user can be deduced simply by only considering
plain text attributes of the intercepted traffic. In this section, we will discuss some examples
that use this approach to perform fingerprinting attacks.

HTTPS only encrypts the application layer (HTTP protocol) of HTTP traffic and a client using
only HTTPS directly communicates to the destination server. If HTTPS is used, some plain text
attributes that can be valuable for classification are available. For instance, the actual domains
can be deducted directly from the client’s traffic by inspecting DNS packets or the Server Name
Indication (SNI) field in the TLS Client Hello, assuming these are sent in plain text. Actually,
even if the domain name is not directly deductible because DNS and TLS Client Hello packets
are hardened with DNS over HTTPS [32] and Encrypted SNI [59], there still exist fingerprinting
methods [18] that can deduce the domain name by considering the plain text destination IP ad-
dress. Of course, if the domain is leaked in plain text to a MITM, there is no need to use more
sophisticated fingerprinting techniques to determine the visited domains. As a result, one can
deduce the domain names from the user’s traffic by considering plain text elements residing in
the traffic and use this for classification of domain names [27,42]. Moreover, domain names can
also possibly be used for other classifications, such as OS classification by looking for domains
that correspond to update services for some specific OS.

Several methods have been proposed to classify OSes based on plain text header values. Aksoy
et al. [4] targeted packet headers of TCP, IP, and UDP sections. The considered OSes include
Raspberry OS, Xubuntu 14.04, Windows 7, Windows 8, Mac OSX Elcapitan and Mac OSX Lion.
Genetic algorithm feature subset selection is used to determine relevant packet header features.
The remaining features are then used to train the following ML algorithms: J48, RandomForest,
OneR, and ZeroR. Anderson et al. [7] focus on TLS, TCP, IP, and HTTP headers and include
different versions of Windows OS and OS X. Chen et al. [13] focused on TCP and IP headers
and Windows, iOS, and Android OSes. Considering individual features, they found the IP time
to live (TTL), TCP timestamp, and TCP window size scale factor to be the most accurate ones.

Althouse et al. created a method for TLS fingerprinting called JA3 [6]. It focuses on plain text
fields in TLS negotiation packets, more specifically the TLS Client Hello and TLS Server Hello.
JA3 then creates an MD5 hash for both sets of attributes, yielding unique hashes representing
the sender (origin of Client Hello) and receiver (origin of Server Hello). From the TLS Client
Hello, JA3 specifically collects the TLS version, accepted ciphers, extensions list, elliptic curves,
and elliptic curve formats. From the TLS Server Hello, the collected attributes include TLS
version, accepted ciphers, and extensions list. JA3 can be used to detect malware applications,
because the malware client and command/control servers will always communicate in exactly
the same way, hence generating the same unique hashes. Furthermore, the client side hash can
also be used to detect web browser client type because different client types typically do not
specify the attributes in exactly the same manner; specifying the available ciphers in another
order is sufficient to generate a different hash.

Chapter 3: Fingerprinting intercepted traffic 17

Contrarily to HTTPS, VPNs and Tor encrypt all of the user’s traffic and redirect it to one or
multiple nodes before sending the traffic to the actual destination specified by the user. This
clearly provides a higher level of privacy/anonymization and the encryption of basically all of
the user’s traffic should not expose any valuable plain text information to deduce information
about the user. However, especially for VPNs, some VPN clients still leak (plain text) data
that can be used for classification, often caused by implementation errors. It was found that
VPN implementations sometimes do not manipulate the IPv6 routing table of the client, hence
not redirecting IPv6 traffic through the VPN tunnel or blocking IPv6 traffic if the VPN client
does not support IPv6; besides, leakage of DNS traffic is also possible. [29,35,54,74]. [39] tested
43 VPN services for IPv6 and DNS leakage, they found that 2 services leaked DNS traffic and
a remarkable amount of 12 services leaked all IPv6 traffic. This leakage of this data can be a
severe issue, especially if the main goal of the user is obtaining privacy/anonymity. An ISP,
for instance, can inspect the leaked IPv6 and/or DNS traffic and determine the domains the
user is visiting or create a unique fingerprint with JA3 based on the TLS Client Hello packets
(sent over IPv6), as discussed earlier in this section. This clearly violates the desired the pri-
vacy/anonymity of the user.

3.2 VPN and Tor traffic

In the previous section, we discussed that in some scenarios it is possible to apply fingerprinting
simply by considering plain text attributes. In this section, contrarily, we only consider VPN
and Tor traffic streams, thereby assuming that no plain text elements are available in the traf-
fic to help with the classification process. As a result, we are forced to perform classification
by analysing the encrypted content of the packet, hence applying more complex fingerprinting
techniques. We will focus specifically on techniques that involve the use of ML models, which is
commonly used in the state of the art. Assuming that we cannot decrypt the encrypted content
as a MITM, there is only a limited set of useful features to work with. Some features that
can be derived from an encrypted stream include packet arrival times, packet sizes, direction
of the packets (if both directions of communication are considered), and amount of packets.
Optionally, one can also choose not to extract any features at all manually and just use the
raw traffic trace. We will now discuss the current state of the art of performing classification
solely based on the encrypted part of the intercepted traffic stream. Note that most research of
this kind mainly focuses on website fingerprinting and traffic type fingerprinting, meaning that
there exists little work for other classification types. The discussed research is also summarised
in Table 3.1

Gerard-Gil et al. [30] propose a classification method to characterize VPN traffic and possibly
other types of encrypted traffic. Only time-related features are used, hence ignoring packet size
features. They generated and published the ISCX VPN-nonVPN dataset (ISCXVPN2016) 1,
containing 7 categories of internet traffic, captured over a regular session as well as over a Open-
VPN (UDP tunnel) session, including Email, Chat, Streaming, File transfer, VoIP, and P2P.
The C4.5 Decision Tree and K-Nearest Neighbors (KNN) machine learning algorithms are used
on the generated dataset to perform traffic classification. Additionally, a similar method was
used to characterize Tor traffic instead of VPN traffic. The Tor-nonTor dataset (ISCXTor2016)
2 was created containing the same traffic types as the VPN dataset. Concerning the choice of
ML algorithms, two extra algorithms were considered, namely Zero R and Random Forest. The
most important contribution of the authors is the provision of extensive datasets for VPN and

1https://www.unb.ca/cic/datasets/vpn.html (accessed on 20-05-2022)
2https://www.unb.ca/cic/datasets/tor.html (accessed on 20-05-2022)

Chapter 3: Fingerprinting intercepted traffic 18

Tor traffic, which is crucial to perform classification with ML.

Source Traffic Features Classification ML algorithm

Gerard-Gil et al. (2016) VPN Timing Application type
C4.5 Decision Tree
K-Nearest Neighbors

Gerard-Gil et al. (2016) Tor Timing Application type

C4.5 Decision Tree
K-Nearest Neighbors
Zero R
Random Forest

Shapira et al. (2019) VPN
Timing
Size

Application type LeNet-5

Rimmer et al. (2018) Tor Raw trace Webpage
Stacked Denoising Autoencoder
Convolutional Neural Network
Long-Short Term Memory

Bhat et al. (2019) Tor

Raw trace
Timing
Direction
Cumulative statistical features

Webpage Var-CNN (ResNet-18 architecture)

Table 3.1: Comparison of current state of the art

Shapira et al. [65, 66] use the ISCX VPN-nonVPN dataset together with an additional small
packet capture to perform traffic classification. They apply a remarkable pre-processing method
to the data by converting it to a picture; they name the resulting picture a ‘FlowPic’. Specifically,
the picture is a two dimensional 1500x1500 histogram in which the X-axis and Y-axis are defined
by packet arrival time and packet size features respectively. The maximum packet size is chosen
to be 1500 bytes, which is the Ethernet MTU value, hence limiting the Y-axis value to 1500.
The packet arrival times are normalized by substracting the time of arrival of the first packet
in the flow. To obtain a square, for simplicity, the maximum X-axis value is also set to 1500.
This requires a second normalization step for the packet arrival times in which the initial range
is mapped to the desired [0, 1500] range. The conversion to pictures allows the authors to take
advantage of known image classification deep learning techniques, typically including Convolu-
tional Neural Networks (CNNs). More specifically, they choose a LeNet-5 style architecture [46].

Rimmer et al. [60] perform WF on Tor traffic with multiple Deep Neural Networks (DNNs):
Stacked Denoising Autoencoder (SDAE), CNN, and Long-Short Term Memory (LSTM). They
emphasize the importance of feature engineering, which includes the process of selecting what
hyperparameters to use for a certain ML algorithm. To evaluate their approach, they created a
dataset, both for the closed and open world scenario, in a very comprehensive manner. For the
closed world scenario, dataset contains a total of 900 monitored sites, each with 2,500 traces.
In the open world case, approximately half a million additional unmonitored sites were added,
each with just 1 trace of the home page visit. All pages were extracted from the Alexa list of
most popular sites. Alexa unfortunately ended its service. Whilst feature engineering is typi-
cally performed manually, they choose a different approach by automating this process. They
first choose a representative subsample of the dataset and a set of possible hyperparameters for
the ML algorithm. Then, these are fed to an automated hyperparameter tuning process which
selects the best combination of hyperparameters based on performance on the specified subsam-
ple. They compared their approach’s performance with the state-of-the-art performances at the
time. The SDAE had better results for their largest closed world dataset and both the SDAE
and CNN performed slightly better in the open world scenario. It is remarkable that the raw
traces are used as input for the ML algorithms, hence feature extraction is not performed.

Another WF attack was performed by Bhat et al. [10]. A Var-CNN is created to perform classifi-
cation. Var-CNN’s base architecture uses ResNets [31], which are state-of-the-art convolutional

Chapter 3: Fingerprinting intercepted traffic 19

neural networks (CNNs) for image classification purposes. For this use case, specifically ResNet-
18 is chosen, which is the smallest version of ResNet with 18 layers. Hyperparameter tuning is
also applied, similar to the process described in the work of Rimmer et al. which we discussed
earlier in this section. An interesting choice of the authors is the combining of automated feature
extraction of the raw trace with manually deduced timing, direction, and cumulative statistical
features such as total amount of incoming & outgoing packets and ratio of incoming to total
packets. They show that combining these sets of features yields the best performance. Tests
were performed on the dataset created by Rimmer et al. They conclude that their approach
achieves over 1% better true positive rate (TPR) and four times lower false positive rate (FPR)
than prior state of the art in open-world settings with large amounts of data. Furthermore, they
argue that Var-CNNs perform even better in low-data scenarios.

Chapter 4

VPN operating system, browser, and
traffic type fingerprinting: manual
approach

The state-of-the-art techniques discussed in Chapter 3 all rely on some form of machine learning.
This chapter proposes an approach to fingerprint encrypted traffic without utilising any machine
learning techniques. This strategy also allows us to examine the feasibility of fingerprinting en-
crypted traffic without using machine learning. We will focus specifically on encrypted traffic
that is sent over a VPN tunnel. The threat model is shown in Figure 4.1. Supporting the threat
model, we make the following assumptions to define the situation we are targeting:

• A VPN client is connected to a VPN server and redirects its traffic through the VPN
connection to browse the internet using a desktop web browser.

• The VPN client only uses one type of browser at a time.

• the VPN client is not generating a significant amount of irrelevant background traffic.

• An attacker is in a MITM position and is able to intercept the encrypted traffic that the
VPN client and VPN server are exchanging.

• The attacker can only observe the intercepted encrypted traffic, i.e. the attacker does not
have any additional information to work with.

From Chapter 3, we can see that traffic and webpage classification are popular classification
choices for fingerprinting. Unfortunately, relatively few sources have made an effort to classify
web browsers and operating systems. Concerning web browsers, however, research has been
done to analyse the effect of web browser type on the accuracy of website fingerprinting at-
tacks [5,76,77]. These studies show that the choice of web browser type affects the results of the
fingerprinting attack. We consider this an indication that differences between web browsers can
be observed during fingerprinting attacks, hence making it possible to classify web browsers.

Our goal is to classify the web browser, operating system, and traffic type solely based on the
intercepted encrypted traffic. We choose Google Chrome, Microsoft Edge, and Mozilla Firefox
as web browser classification items. According to StatCounter Global Stats, Chrome, Edge, and
Firefox respectively represented 64.91%, 9.61%, and 9.47% (all together 83.99%) of worldwide
desktop browser market share in February 2022 [1].

20

Chapter 4: Manual Approach 21

Figure 4.1: Threat model

Web browser Operating system Traffic type VPN

Google Chrome
Microsoft Edge
Mozilla Firefox

Windows 10
Ubuntu 20.0 LTS

Browsing
YouTube (on-demand)
Twitch (live)

OpenVPN (UDP)

Table 4.1: Overview of chosen parameters

We choose Windows 10 and Ubuntu 20.04 LTS (Linux) for the operating systems. Note that
in the remaining part of this thesis, we will refer to the latter operating system as linux. Stat-
Counter indicates that the Windows and Linux OS represent 74.79% and 2.49% respectively of
the worldwide OS market share [2]. Although Linux only represents a relatively small share, it
still has the third biggest share; only OS X has a bigger share. However, because we are not in
possession of an OS X compatible device, we choose to use Linux instead. Ubuntu 20.04 LTS
was specifically chosen because it is currently the latest Ubuntu version and Ubuntu is one of
the most popular available Linux distributions.
The traffic types include browsing, YouTube, and Twitch. With the term ‘browsing’, we include
visiting (random) websites and navigating through the webpages by often clicking a random link
available on the webpage. Additionally, we will consider streaming in the context of the client
receiving a video stream; therefore, our client is not the generator of the stream. Moreover, we
will use on-demand streaming for YouTube and live streaming for Twitch. YouTube and Twitch
are specifically chosen because YouTube uses an HTTP/3 (together with the QUIC transport
protocol) approach for streaming. In contrast, Twitch uses a lower HTTP version approach
(TCP transport protocol), yielding an interesting comparison in the difference of generated net-
work packets. We will go into further detail in Section 4.3.1.
Considering the VPN protocol, we will use OpenVPN over UDP as OpenVPN currently is one
of the most widely used protocols and UDP is clearly preferred to use for OpenVPN as discussed
in Section 2.4. A summary of the chosen parameters is shown in Table 4.1.

4.1 Experiment: visualising browser generated traffic

We start with an experiment in which we generate and analyse traces for all possible com-
binations of options of different classification types (e.g. Windows-Chrome-Browsing). The
experiment aims to get a better understanding of the traces and observe differences between
classifications. We use automated web crawlers implemented with the Selenium 1 library to
generate traffic traces for all combinations while using an OpenVPN connection. For the web
browsers Chrome, Edge, and Firefox, the used versions are 97.0.4692, 97.0.1072.62, and 96.0.1

1https://www.selenium.dev/ (accessed on 20-05-2022)

Chapter 4: Manual Approach 22

Traffic Instructions

Browsing

1. Start capture
2. Open uhasselt.be
3. Follow some pre-defined links
4. Stop capture

YouTube

1. Open a pre-defined video on youtube.com
2. Wait 5 seconds
3. Start capture
4. Wait 60 seconds
5. Stop capture

Twitch

1. Open a pre-defined livestream on twitch.tv
2. Wait 5 seconds
3. Start capture
4. Wait 60 seconds
5. Stop capture

Table 4.2: Instructions used for web crawlers

respectively. The instructions applied by the web crawlers to generate traces for the different
types of traffic are shown in Table 4.2. We represent the traces visually by adopting the pre-
processing approach ‘FlowPic’ used by [65] as discussed in Section 3.2. Figure 4.2 shows the
produced visualisations.

First of all, we see that, generally, the visualisations of corresponding traces across the OSes are
very similar, indicating that it is not trivial to distinguish between the OSes based on time and
size-related features alone. However, this is still an initial exploration, and we will later argue
that there are some features we can deduce from the traces to distinguish between the OSes.
Focusing on the different web browsers, we notice some notable differences. The visualisation of
Edge looks denser compared to Chrome and Firefox. This is an observation that we can further
analyse by, for example, considering the packet rate of the traces. Additionally, in particular for
YouTube and Twitch traffic, Edge contains significantly more packets around the size level of
200 bytes than Chrome and Firefox. Considering the boundaries of the packet sizes, when look-
ing at the browsing and YouTube traffic visualisations in particular, an interesting observation
is that the largest encountered packet size for Firefox is clearly more significant than the value
for Chrome and Edge. For Twitch traffic, this is not visible. By further analysing the maximum
packet sizes of the browsing and YouTube traces, we find that the maximum values for Firefox,
Chrome, and Edge are 1451 bytes, 1444 bytes, and 1444 bytes respectively. Note that these are
the sizes of the outgoing OpenVPN packets. This is an interesting observation that we will use
later on in Section 4.3.
We see pronounced differences between the traces when analysing the different traffic types. The
visualisations of browsing traffic show more scattered packet sizes than the ones for YouTube
and Twitch; the packet sizes vary over time for browsing traffic while they remain relatively
similar over time for YouTube and Twitch traffic.

https://www.uhasselt.be
https://www.youtube.com
https://www.twitch.tv

Chapter 4: Manual Approach 23

(a) Windows - Browsing

(b) Windows - Twitch

(c) Windows - YouTube

(d) Linux - Browsing

(e) Linux - Twitch

(f) Linux - YouTube

Figure 4.2: FlowPic visualisations of web crawler traces

Chapter 4: Manual Approach 24

4.2 Matching OpenVPN packets with regular packets

In this section, we discuss a critical observation that is crucial for the further process of feature
discovery. This observation includes that the difference in length, expressed in bytes, between
a regular packet and its corresponding OpenVPN packet is a constant value. With this in-
formation, we can determine the length of the regular packet that was encapsulated, given its
OpenVPN packet. We now elaborate on how this is possible and under what circumstances our
claim holds.

In Section 2.4.1, we show how the plain traffic, generated by some application, is passed to
OpenVPN software which applies encryption and encapsulation. Recalling Figure 2.4 (in Sec-
tion 2.4.4), we describe the process of encrypting the regular packet and encapsulating it in
greater detail. For the encapsulation part, concretely, an Ethernet, IP, UDP, and OpenVPN
header is added to create the OpenVPN packet. These headers have constant lengths of 14
bytes, 20 (IPv4) or 40 (IPv6) bytes, 8 bytes, and 4 bytes respectively. Note that the IP layer
can either be IPv4 or IPv6. In the case of IPv6, the header length will always be 40 bytes.
When IPv4 is used, the header length is not fixed because multiple options might be included
on top of the 20 required bytes of essential information. However, based on our observations,
the options are for specific use cases and are often mitigated, resulting in a header length of 20
bytes. Our OpenVPN tunnel uses IPv4 to transport tunnelled packets. We will not consider
the possibility that the IPv4 header length might be larger because we rarely encountered oc-
currences of options usage while performing tests.
From Section 2.4.2, we know that, currently, the default config file of the OpenVPN Access
Server specifies using the AES-256-GCM symmetric-key cipher for encryption of the regular
packet. This cipher is also used in our OpenVPN setup. An essential characteristic of GCM
(Galois Counter Mode) is the fact that it does not apply padding [48], implying that the cipher
text has the same length as the plain text. In other words, when encrypting a regular packet,
the length will not change. Additionally, the GCM encryption algorithm adds an authentication
tag with a fixed length of 6 bytes to the cipher text.

With this knowledge, we can infer that all of the headers, together with the GCM authentication
tag, added to the encrypted regular packet (to create the OpenVPN packet) have fixed lengths,
all adding up to a total of 52 bytes. Therefore, we can obtain the length of the encrypted
regular packet by subtracting 52 bytes from the total length of the OpenVPN packet. Addi-
tionally, the length of the encrypted regular packet is equal to the length of the non-encrypted
regular packet; thus, we have found the length of the corresponding regular packet. We confirm
our claim by performing tests with our setup. We capture the regular traffic, which is sent
to the OpenVPN software, as well as the outgoing OpenVPN traffic. We compare the corre-
sponding packets based on arrival time and calculate the differences in length. We find that the
differences are always equal to the fixed value of 52 bytes. A visualisation is shown in Figure 4.3.

If we would change the configuration of our setup to use the IPv6 protocol instead of IPv4,
our claim would still be valid. However, the fixed difference in length would be 20 bytes larger,
i.e. 72 bytes, due to the difference in header lengths as discussed earlier. On the contrary,
the choice of symmetric-key cipher algorithm can possibly break our claim. As with GCM, an
algorithm is necessary that preserves the length of the plain text, hence not applying padding.
Our claim, therefore, is not specific to the GCM algorithm, but it is to algorithms that preserve
the length of the plain text. For instance, the AES-256-CBC [25] algorithm currently acts as the
default fallback cipher for OpenVPN 2 and, therefore, might be used in setups where one of the

2https://openvpn.net/vpn-server-resources/change-encryption-cipher-in-access-server/ (accessed on 20-05-

Chapter 4: Manual Approach 25

Figure 4.3: Length differences between regular packets and their corresponding OpenVPN
packets

endpoints does not support GCM. CBC (Cipher Block Chain) mode applies padding, meaning
that our claim would not be valid when a fallback to AES-256-CBC occurs.

4.3 Feature discovery

The previous section discussed how the length of encapsulated regular packets can be deduced
from OpenVPN traffic packets. We will now show how this observation can lead to discovering
usable features to perform classification. Furthermore, we elaborate on some observations in
Section 4.1. The traces that were analysed for feature discovery are an extended version of the
web crawler traces used in Section 4.1. The web crawler process is executed two more times,
hence yielding three traces per combination of OS, web browser, and traffic type. This extension
aims to limit the effect of random noise in (some of) the traces. This way, the probability that
random noise affects our findings significantly decreases. This section discusses the discovered
features we can use to perform classification. The values that will be reported for a particular
combination of classification options are always averaged over the three traces that were cap-
tured for that combination.

4.3.1 TCP Acknowledgement

TCP Acknowledgement (ACK) packets can be used to classify traffic types. First, we need a
method to identify TCP ACK packets in the stream of OpenVPN packets. To achieve this, we
take advantage of our observation in Section 4.2; if we know the length of regular TCP ACK
packets, we can identify these within OpenVPN packets. A problem occurs in this situation: a

2022)

Chapter 4: Manual Approach 26

Figure 4.4: TCP ACK percentage of web crawler traces

TCP ACK packet can contain a payload of unknown length, making it difficult to match TCP
ACK packets that do carry payload with a certain length. Therefore, we will only focus on the
packets that do not carry any payload. These packets, in particular, thus only consist of a set
of headers, which have fixed lengths if no additional options are used. Specifically, a TCP ACK
without payload and no additional header options will have a length of either 54 bytes or 74
bytes, depending on the used IP protocol (IPv4 or IPv6). However, during analysing regular
traffic, we also encounter TCP ACKs without payload containing an additional option with
the timestamp in the TCP header. Fortunately, this additional option has a fixed length of 12
bytes. Therefore, we can also consider this specific type of TCP ACK, which will have a length
of either 66 bytes or 86 bytes. Knowing that OpenVPN packets are precisely 52 bytes larger,
we identify OpenVPN packets with a length of 106 bytes and 126 bytes as TCP ACK packets
without payload or options. Similarly, we identify OpenVPN packets with lengths of 118 bytes
and 138 bytes as TCP ACK packets without payload but with 12 bytes of options containing
the timestamp.

We will now show how the identification of these TCP ACK packets can be used to classify
the type of traffic in a trace. More specifically, we will use this mainly to distinguish between
YouTube streaming and Twitch streaming traffic. Later in Section 4.3.3, we will show a different
approach to differentiate between these two options and browsing.
YouTube utilises an Adaptive Bitrate (ABR) streaming algorithm with the Quick UDP Internet
Connection (QUIC) protocol [44,68] on top of UDP for on-demand streaming, unless the client
does not support QUIC. When analysing the generated packet stream of our client while stream-
ing YouTube videos, we observe a flow of QUIC traffic, hence confirming that YouTube applies
QUIC/UDP streaming also for our setup. Note that QUIC utilises the transport protocol UDP,
which is sometimes blocked by middleboxes. To cope with this issue, QUIC implements a fallback
to TCP when the setup of the QUIC connection fails [44]. Consequently, YouTube’s streaming
algorithm falls back to an alternative version using TCP/TLS instead of QUIC/UDP [12]. Our
approach will not take into account this fallback possibility and assumes that the client supports
QUIC.
On the other hand, Twitch uses HTTP Live Streaming (HLS) with HTTP/1.1 to deliver the

Chapter 4: Manual Approach 27

Figure 4.5: TCP ACK, only with extra timestamp option, percentage of web crawler traces

live stream to the viewers [67]. Consequently, this streaming protocol makes use of the TCP
transport layer protocol. The essence is that our client generally will be generating QUIC traffic
when streaming YouTube and TCP traffic when streaming Twitch.

As mentioned at the start of this chapter, the client is the receiver of the stream, hence gener-
ating acknowledgements for the received data of the incoming stream. In Figure 4.4, we show,
for every combination of classifications, how many packets in the trace were identified as our
targeted TCP ACK (without payload) packets. We represent this fraction as a percentage. We
choose to represent it as a percentage rather than an absolute count because the total amount
of packets can differ significantly across traces, mainly due to the time span of the trace and the
type of generated traffic in the trace.
Clearly, the difference in values between Twitch and YouTube is tremendous. Consequently, we
can choose a value that will act as a separation limit for YouTube and Twitch traffic. Based on
the figure, we choose the value of 50% as a separation limit; if the observed value is below the
limit, we classify the trace as YouTube, otherwise as Twitch. We will thus use this parameter
as a feature to separate Twitch traffic from YouTube traffic. Note that, analysing the figure,
we can also try to include browsing, hence differentiating between the three traffic classification
options using two limits: one limit, say 20%, to separate browsing from YouTube, and another
limit, say 90%, to distinguish between browsing and Twitch. However, we think this may intro-
duce more classification errors because the difference between browsing and Twitch is generally
not too obvious. Furthermore, the statistics of browsing traffic depend heavily on the executed
browsing actions, which can variate a lot. Therefore, we do not implement this additional option.

Besides using TCP ACKs to predict traffic types, we can also use this parameter to make a
distinction between the OSes in our setup. Earlier in this section, we mentioned that we occa-
sionally encountered many TCP ACKs including an extra timestamp option in the TCP header.
More specifically, this was usually the case when analysing traffic generated by the Linux client.
Therefore, we now research if we can use this parameter to separate traffic generated by a Linux
client from traffic generated by a Windows client. In Figure 4.5, we show how many TCP ACKs

Chapter 4: Manual Approach 28

Figure 4.6: TCP ACK, only without extra timestamp option, percentage of web crawler
traces

with the extra timestamp option were present for every combination, expressed in percentage
compared to the total amount of encountered packets. The difference between this figure and
Figure 4.4, which was used earlier in this section, includes that the former only contains the TCP
ACKs without payload but with the additional timestamp option, while the latter contains the
TCP ACKs without payload both with and without the extra timestamp option. Nonetheless,
we see a clear difference between Windows and Linux when looking at the percentages for the
TCP ACK with extra timestamp options packet types. This clearly confirms our belief that these
packets occur more frequently when using Linux, compared to using Windows. However, the
figure shows that the percentage of this packet type for YouTube traffic is significantly smaller
than the other traffic types. While the difference between Windows and Linux for YouTube
traffic is still substantial, it will be hard to distinguish between Linux and Windows if YouTube
traffic is generated, but we are not aware of that since we are focusing on the OSes. One (partial)
possible solution to solve this issue includes classifying traffic types prior to classifying OSes.
This way, we do know the traffic type prediction, and we can use this to support the OS classifi-
cation. However, it is very likely that the prediction will not always be correct, so the additional
information used for the classification of OSes may actually be false/misleading. Therefore, we
choose to classify traces with a relatively high percentage as Linux, specifically with a threshold
of 15%, deduced from the figure.

Contrarily to only considering TCP ACKs with the extra timestamp included, we can also look
at only TCP ACKs without this option included. While the former was mainly interesting for
detecting the Linux OS, we may be able to use the latter to detect the Windows OS. In Figure
4.6, we show how many TCP ACKs without the extra timestamp option were present for every
combination, expressed in percentage compared to the total amount of encountered packets. We
find that, indeed, we can use this parameter to separate Windows because we observe that only
Windows contains values above the threshold of 70%. As a result, we classify traces as Windows
if the value of this parameter exceeds the identified threshold.

Chapter 4: Manual Approach 29

Our classification approach for the OSes does not cover all scenarios; it is perfectly possible that
we can not separate the Linux OS considering TCP ACKs with the extra option nor separate
the Windows OS considering TCP ACKs without the extra option. Because there is no obvious
way to classify traces in such a scenario, we choose not to classify them at all, hence using
an ’Unknown’ classification option. The idea behind this is that if we classified traces in this
scenario, we would be making guesses without any relatively strong indication of the correct
classification. However, we can use another feature to possibly distinguish between the OSes,
which will be discussed in Section 4.3.3. Thus, if our classification of OS remains unknown after
considering TCP ACKs, it is still possible that we reconsider this classification after analysing
the feature in Section 4.3.3.

4.3.2 QUIC Acknowledgement

Similar to analysing the percentage of TCP ACKs in a trace, targeting (and afterwards con-
firming) the assumption that this value will be significant for Twitch traffic, we can also analyse
the percentage of QUIC ACKs because we assumed that this type of network packets would
mostly occur in YouTube traffic. We found that lengths of either 81, 82, or 83 bytes can identify
an IPv4 QUIC ACK packet without payload, yielding OpenVPN packets of lengths 133, 134,
and 135 bytes respectively. Analogously, we need to add the value of 20 bytes to find the same
packet types when IPv6 is used instead of IPv4.

In Figure 4.7, we show, for every combination of classifications, how many packets in the trace
were identified as our QUIC ACK (without payload) packets. Clearly, there are significant dif-
ferences across the traffic types. Furthermore, our assumption that YouTube traffic generated by
the client contains the most significant percentage of QUIC ACKs compared to Twitch is with
this confirmed. Actually, the percentage of QUIC ACKs in the Twitch traces is consistently very
close to zero. This is no surprise because the trace should only contain Twitch streaming traffic
(apart from some possible background noise) which does not use the QUIC protocol. Because
we have found a clear difference between YouTube and Twitch traffic for this parameter, we will
use this parameter in our classification process to separate YouTube and Twitch traffic. One
could argue that we already use the percentage of TCP ACKs to distinguish between these two,
as explained in Section 4.3.1. However, we aim to use this parameter to establish confluence:
if both the TCP ACKs and QUIC ACKs parameters yield the same classification result, the
confidence that the classification is correct increases. On the contrary, if both yield a different
classification result, we can keep in mind that this trace has no obvious classification result,
hence a decrease in confidence. Based on the figure, we can also differentiate between brows-
ing and YouTube traffic. We could use this observation in our decision process. However, as
discussed earlier, we have to keep in mind that browsing traffic can vary greatly. For example,
if we are, by chance, mainly browsing websites that use the QUIC protocol, the percentage of
QUIC ACKs in the trace could increase significantly. We can identify browsing traffic based on
another feature discussed in Section 4.3.3, which we believe is a better option.

4.3.3 TLS Client Hello

In Section 4.3.1 and Section 4.3.2, we discussed our approach to separate between streaming
YouTube and Twitch. However, our traffic classification contains an additional option: brows-
ing. We still need a way to distinguish between browsing and streaming either YouTube or
Twitch. We will now show our approach to tackling this.

Chapter 4: Manual Approach 30

Figure 4.7: QUIC ACK percentage of web crawler traces

When a client connects to a certain domain via HTTPS, a TLS handshake is performed between
the client and the server of that domain. This handshake is initiated with the TLS Client Hello
(CH) packet sent by the client. We will not go into further detail concerning the TLS handshake
since that would be out of context. The critical part here is that every time a client initiates a new
HTTPS connection, this handshake is performed, hence sending a TLS CH to the corresponding
server. If we are able to identify TLS CH packets in a stream of OpenVPN traffic, we can
get an idea of how many distinct HTTPS connections the client is initiating. We can use that
information to predict the traffic type that is being generated, more specifically to distinguish
between browsing and either streaming YouTube or Twitch. The rationale behind this idea
is that when a client is streaming YouTube or Twitch, it generally exchanges data over an
already established connection with the server that is delivering the stream, hence initiating few
new (HTTPS) connections with other domains. Contrarily, when a client is browsing and thus
frequently accessing new webpages or websites, it repeatedly establishes HTTPS connections
with new domains to retrieve resources required by the accessed webpages. This impression
allows us to differentiate browsing from streaming YouTube or Twitch by considering the amount
of generated TLS CH packets sent by the client. We will now show how to identify TLS CH
packets in an OpenVPN packet stream and analyse the statistics of sent TLS CH packets per
type of traffic, verifying our claim.

To identify TLS CH packets in the OpenVPN stream, we will again utilise our observation in
Section 4.2. Therefore, we need to match specific packet lengths with TLS CH packets. Only the
TLS layer of the packet is considered when calculating the length of TLS CH. At first glance, the
length of a TLS CH seems complicated to determine because it usually contains many different
extensions that vary across different TLS CH packets. Still, one key characteristic allows us to
match a considerable amount of TLS CH packets with specific sizes. This characteristic includes
that if the length of the TLS CH is between 256 and 511 bytes (inclusive), a padding extension
is used to extend the length of the packet to at least 512 bytes [43]. This padding extension is
being used by all considered web browsers 3 4. A visualisation of the padding extension is shown

3https://bugzilla.mozilla.org/show bug.cgi?id=944157 (accessed on 25-05-2022)
4https://codereview.chromium.org/62103003 (accessed on 25-05-2022)

Chapter 4: Manual Approach 31

Figure 4.8: TLS Client Hello padding example

Figure 4.9: TLS Client Hello requests of web crawler traces

in Figure 4.8. The extension is implemented because some TLS implementations running on
servers incorrectly interpret TLS CH messages between 256 and 511 bytes as an SSLv2 connec-
tion and therefore interrupting the connection [26]. As a result, the padded TLS CH packets
will have a length of 512 bytes, allowing us to use this size to identify TLS CH packets in the
OpenVPN stream. Clearly, this will only allow us to identify the TLS CH packets that initially
had a length between 256 and 512 bytes, so we will only be able to spot this part of generated
TLS CH packets. Still, we will show that this is a very interesting observation that we can use
for traffic classification prediction. Five more bytes of header values are added to complete the
TLS layer section of the packet. Additionally, to complete the full network packet, a set of TCP,
IP, and Ethernet headers is added. Consequently, the complete regular TLS CH that we are
targeting will have a length of 571 bytes for IPv4 and 591 bytes for IPv6, yielding OpenVPN
packet lengths of 623 and 643 bytes respectively.

To measure the amount of TLS CH packets in a trace, we choose to count the number of packets
and normalize this for 1 minute instead of using percentages because we observed that the per-
centage values for this packet type are generally very low. The duration of 1 minute will be the
time period of every trace in our dataset upcoming in Section 4.5.1; we discuss this in further

Chapter 4: Manual Approach 32

Figure 4.10: TLS Client Hello requests, only with extra timestamp option, of web crawler
traces

Figure 4.11: TLS Client Hello requests, only without extra timestamp option, of web
crawler traces

detail in that upcoming section. In Figure 4.9, we show, for every combination of classifications,
how many packets in the trace were identified as TLS CH packets. For every combination of OS
and web browser, the number of TLS CH packets is significantly higher for browsing than for
streaming YouTube and Twitch, hence confirming our claim that browsing traffic generates the
most TLS CH packets. Therefore, we can use this parameter to separate browsing traffic from
streaming YouTube and Twitch. Based on Figure 4.9, we choose a threshold of 15 packets to
separate browsing from Twitch & YouTube.

Chapter 4: Manual Approach 33

A TLS CH packet is constructed using TCP as the transport layer protocol. Therefore, as
extensively discussed in Section 4.3.1, we can also examine the presence and absence of the
extra timestamp option in the TCP header for TLS CH packets to predict the OS. Contrarily to
TCP ACKs, we will use absolute counts for TLS CH packets with and without the extra option.
Figure 4.10 and Figure 4.11 show the number of TLS CH packets with the extra option and the
number of TLS CH packets without the extra option respectively. For both figures, we see clear
differences between the OSes. However, the differences are only significant when the traffic type
is browsing, as expected since we argued earlier that a high number of TLS CH packets only
occurs for the browsing traffic type. Based on the figures, we classify the OS as Linux if at least
a normalized number of 5 TLS CH packets with timestamp options are detected. Similarly, we
classify the OS as Windows if at least a normalized amount of 20 TLS CH packets are detected
without a timestamp option.

4.3.4 Packet rate

Another parameter we will use as a feature is the packet rate of the trace. We express the packet
rate of a trace as the average number of packets per minute of that trace. The packet rate is
shown in Figure 4.12 for every combination. We can deduce from the figure that there is no
obvious difference between the OS or web browser classifications. However, we do see a consider-
able difference between the traffic types, mostly between Twitch and YouTube. We thus can use
this feature to separate YouTube and Twitch traffic. Looking at the figure, we decide to use the
value of 6,000 packets per minute as a threshold to differentiate between these two options. We
choose this value because it is clearly both significantly higher than the highest YouTube value
and significantly lower than the lowest Twitch value. Note that this is not the exact value the
threshold needs to be; one could argue that 5,000 or 7,000 is a better choice. For this classifica-
tion to be useful, we first need an indication that the captured traffic is streaming traffic rather
than browsing. We can achieve this by first considering the TLS CH feature as discussed in Sec-
tion 4.3.3. Moreover, how we will exactly benefit from this feature will be covered in Section 4.4.

Figure 4.12: Packet rate of web crawler traces

Chapter 4: Manual Approach 34

4.3.5 IP time to live

When thoroughly inspecting the OpenVPN network packets sent by the client, we notice that
the time to live (TTL) value of the IP header differs between the two OSes. Note that this
was observed for the IPv4 protocol. The IPv6 protocol header contains a similar field named
‘hop limit’. This field serves exactly the same purpose as the IPv4 TTL field. Therefore, when
mentioning the IP TTL value, we refer to the IPv4 TTL as well as the IPv6 hop limit. As
discussed in Section 2.4.4, an eavesdropper can inspect these header contents because only the
application layer payload (i.e. the encrypted regular packet) of the outer packet is encrypted.
We find TTL values of 128 and 64 for Windows and Linux respectively, indicating that the TTL
value may depend on the OS. From Section 2.4.1, we can confirm that the OS is responsible
for adding the packet headers of the outer packet, including specifying the TTL value in the IP
header. Moreover, we find that the specific Windows and Linux OSes used in our setup have
different default value settings for the TTL value. This can be confirmed by looking at the
settings, online documentation (Windows) 5 6 or even the source code (Linux) 7 8. In addition,
the difference in TTL value has been used in related work focusing on OS fingerprinting; [69]
classify the values of 64 and 128 as Ubuntu (which is also our Linux OS as mentioned earlier)
and Windows respectively. Furthermore, [13] found that Android and iOS use 64 by default,
implying that a TTL value of 128 is very unlikely to be generated by these OSes. Besides, they
found that most Windows IPv4 packets contained a TTL of 128. We can use this information
to distinguish between Windows and Linux by looking for a TTL value of 128 in a trace; if
we encounter at least one TTL value greater than 64, we classify the trace’s OS as Windows,
otherwise as Linux. We choose to check for a value greater than 64 rather than an exact value
of 128 because there is a possibility that the MITM intercepting the traffic is multiple hops
removed from the client. Of course, because our setup only contains two OSes, we can classify
the OS as Linux if no TTL value greater than 64 is found. However, if we chose not to limit
the included OSes to only Windows and Linux, we could classify a TTL value greater than 64
as Windows and another TTL value as ‘not Windows’.
Until now, concerning the classification of OSes, we discussed a fingerprinting approach to sepa-
rate the classification options by deducing packet types based on the observed packet sizes. This
TTL feature allows us to classify the OS much more effortless. The only element required for
this approach is a plain text header value. That is why we can actually consider this as some
form of data leakage similar to the topics discussed in Section 3.1.

Unfortunately, this strategy has some drawbacks. If an eavesdropper is at least 64 hops away,
the observed value will be smaller than or equal to 64, even if it was 128 at the origin. In
that case, one can not benefit from the fact that Windows initially sets a higher TTL value.
In addition, we need to keep in mind that changing the default TTL values in the OS settings
might affect the method’s accuracy.

4.3.6 Maximum packet size

The final parameter that we will discuss is the maximum packet size of a particular trace. In
Section 4.1, we found that the maximum packet size is larger for a Firefox client (1451 bytes)
than for a Chrome or Edge client (both 1444 bytes). First of all, it is notable that the value is

5https://docs.microsoft.com/en-us/powershell/module/nettcpip/get-netipv4protocol?view=windowsserver2019-
ps (accessed on 20-05-2022)

6https://docs.microsoft.com/en-us/powershell/module/nettcpip/get-netipv6protocol?view=windowsserver2019-
ps (accessed on 20-05-2022)

7https://github.com/torvalds/linux/blob/master/net/ipv4/ipconfig.c (accessed on 20-05-2022)
8https://github.com/torvalds/linux/blob/master/net/ipv6/addrconf.c (accessed on 20-05-2022)

Chapter 4: Manual Approach 35

the same for Chrome and Edge but not for Firefox. The most likely explanation is the fact that
both Chrome and Edge are built on top of Chromium 9, hence sharing a significant part of func-
tionality and therefore behaving similarly in the context of generated network traffic. Moreover,
Firefox is implemented independently from Chromium. When inspecting the plain text traffic
generated by all browser clients, we notice that the largest packets are typically categorised as
QUIC. For the regular QUIC packets (not encapsulated), we find maximum packet lengths of
1399 bytes for Firefox and 1392 bytes for Chrome and Edge. These values are what we expect
because, recalling Section 4.2, the difference between the OpenVPN packets and the regular
packets is exactly 52 bytes. To avoid IP fragmentation of QUIC packets, Chromium implements
the QUIC protocol in such a way that a QUIC packet as a whole (with UDP, IP, and Ethernet
header) is not larger than 1392 bytes 10, which is also exactly the maximum QUIC packet length
we observed for the web browsers Chrome and Edge. We did not find any documentation con-
cerning the QUIC implementation in Firefox. However, the maintainers of Firefox have likely
chosen a slightly (1399 bytes instead of 1392 bytes) larger maximum value for QUIC packet
lengths.
This observation enables us to differentiate between a Firefox client and a Chromium-based
client (Chrome or Edge), obviously only if the clients are generating QUIC traffic. On the
contrary, because the network stack is implemented in Chromium, which is being used by both
Chrome and Edge, we suspect that it will be hard to detect features to distinguish between
these two web browsers manually.

4.3.7 Recap

By analysing our extended web crawler traces, we have found several parameters that can be
used as features to classify the web browser, operating system, and traffic type of a certain VPN
traffic trace. In particular, we use the identification of the following packet types as features:
TCP ACKs without payload, both with and without the extra timestamp option, QUIC ACKs,
TLS Client Hello packets, both with and without the extra timestamp option, the IP TTL value
of the tunnel packets, the maximum packet size, and finally the packet rate. Every feature con-
tributes to at least one classification type. Table 4.3 shows an overview of which classification
types every feature contributes to. Except for the IP TTL and the maximum packet size feature,
the identification of the features was only possible because of the crucial observation in Section
4.2, hence using packet lengths to identify corresponding packet types. The mentioned packet
sizes corresponding to the utilised packet types are summarized in Table 4.4.

Feature Classifcation

TCP ACK Traffic, OS
QUIC ACK Traffic
TLS Client Hello Traffic, OS
Packet rate Traffic
IP TTL OS
Max. packet length Web browser

Table 4.3: Overview of which classifications every feature contributes to

9https://www.chromium.org/ (accessed on 20-05-2022)
10https://www.chromium.org/quic/ (accessed on 20-05-2022)

Chapter 4: Manual Approach 36

Packet type
IPv4 packet IPv6 packet

Size (B) OpenVPN size (B) Size (B) OpenVPN size (B)

TLS CH 571 623 591 643
TLS CH inc. option 583 635 603 655
TCP ACK 54 106 74 126
TCP ACK inc. option 66 118 86 138
QUIC ACK 81, 82, 83 133, 134, 135 101, 102, 103 153, 154, 155

Table 4.4: Packet sizes of packet types concerning discovered features

Figure 4.13: Classification process for traffic type (Created in Lucidchart,
www.lucidchart.com)

4.4 Classification process

In Section 4.3, we extensively discussed the features we will use for classification. In this section,
we describe how exactly we will use these features to obtain a web browser, operating system,
and traffic type classification for an (unknown) VPN traffic trace. The threshold values that are
used in the figures in this section are consistent with the values we discussed in Section 4.3.

The classification of traffic type is performed as shown in the flowchart in Figure 4.13. First, a
check is performed for the amount of detected TLS CH packets. If this amount is significant,
the traffic type will be classified as browsing, and the process ends. Otherwise, the significance
of the amounts of TCP ACK and QUIC ACK values is considered. Because we are checking
two elements with two possible outcomes for each element (significant or not), the check has
four possible outcomes. If only one element is significant, we will assign the traffic type corre-
sponding to that element, i.e. Twitch for TCP ACKs and YouTube for QUIC ACKs. If both
elements are significant, we assume that the classification is either Twitch or YouTube, but it
is not clear which one of these to choose. That is why, in that case, we will consider the packet
rate to distinguish between Twitch and YouTube. The last scenario that can occur is when both
elements are not significant. We interpret this scenario as an indication that the traffic type is
neither Twitch nor YouTube. We suspect this scenario to be browsing traffic where there was
little activity and, consequently, insufficient TLS CH packets. Therefore, we classify the traffic
type for this scenario as browsing.

Similar to traffic type classification, we can also express the classification of web browser type
as a flowchart. This is shown in Figure 4.14. As we argued in Section 4.3.6, we have found no
clear feature to distinguish Chrome and Edge because both are Chromium-based, hence sharing
a similar implementation of the networking stack. That is why we choose to combine these types

Chapter 4: Manual Approach 37

Figure 4.14: Classification process for web browser type (Created in Lucidchart,
www.lucidchart.com)

Figure 4.15: Classification process for OS type - approach B (Created in Lucidchart,
www.lucidchart.com)

into one type called ‘Chromium-based’. Therefore, we will use the maximum packet size feature
to distinguish between Firefox and Chromium-based web browsers since we found that a larger
maximum packet size is often observed for Firefox.

Finally, the classification of OS type is performed using two different methods. We refer to
these two methods as ‘approach A’ and ‘approach B’. We now elaborate on approach A. This
approach is slightly different compared to the previous ones as it is hard to express the used
method in a flowchart. In Section 4.3 we indicated that we could perform OS classification by
analysing the extra timestamp option in the TCP header. We can do this for both the TCP
ACK and TLS CH packet types. However, we also mentioned that scenarios could occur where
no observation in favour of any classification option can occur, hence classifying the OS as ‘un-
known’. Therefore, we also include this ‘unknown’ classification option in the OS classification
process. To choose the most suitable classification option, we will keep track of a score for both
the Windows and Linux options. For every observation discussed in Section 4.3 that favours a
particular OS option, we check if this occurs and increment the score of the corresponding OS
option if so. After that, we check the equality of the scores; if they are equal, we classify the OS
as unknown. In the other case, we choose the classification option with the highest score. The
observations that will be checked and the corresponding favouring OS option are summarised in
Table 4.5.
As discussed in Section 4.3.5, we can also classify OS in a completely different way by analysing
the IP TTL value in the plain text IP header of tunnel packets. We refer to this method as
approach B. The classification process for approach B is shown in Figure 4.15.

Chapter 4: Manual Approach 38

Observation OS option

TCP ACK with option pct ≥ 15% Linux
TCP ACK without option pct ≥ 70% Windows
TLS CH with option rate ≥ 5/min Linux
TLS CH without option rate ≥ 20/min Windows

Table 4.5: Observations per OS option

4.5 Evaluation

Up until now, we have described the workings of our manual approach for classification and we
can only assume that our method works. This section aims to properly evaluate our approach.
We will describe the dataset that is used for evaluation, the method of evaluation, and finally
the results.

4.5.1 Dataset creation

To evaluate our constructed manual approach properly, we need labelled data. In the past,
efforts have already been made to create publicly available labelled datasets containing VPN
traces [30,65,66]. However, these datasets were all created multiple years ago, meaning they may
not entirely represent network traffic as it typically looks nowadays. Network traffic is a very
dynamic and evolving field; thus, a span of multiple years is a relatively long period. Moreover,
other datasets are obviously not created for our specific use case, hence not containing all the
labels required to perform tests. Because of these drawbacks, we conclude that these existing
datasets are unsuitable for our use case. That is why we choose to create a new dataset. In the
next part of this section, we describe the process of creating the dataset and the exact content
of the dataset.

All of the traces in the dataset are captured using the ‘pyshark’ module 11. Moreover, the traces
are saved in the PCAP Next Generation Capture File Format (pcapng) [71].
For all possible combinations of OS, web browser, and traffic type (e.g. Windows-Chrome-
Browsing), we capture a trace with a time length of 60 minutes. As there are 18 possible
combinations, this yields a total of 1,080 minutes. Additionally, every trace is split into parts so
that every part has a fixed duration. We aim to keep this duration relatively low because this
yields more distinct traces, hence more data samples. However, we also need enough traffic in
one sample to properly perform classification prediction. We found that a duration of 1 minute
is a good trade-off between these two elements. Therefore, every trace is split into samples with
a duration of 1 minute. Thus, the dataset contains a total of 1,080 traces. This corresponds
to 360 traces, 360 traces, and 540 traces for every web browser option, traffic option, and OS
option respectively. Each trace is labelled with exactly one OS, web browser, and traffic option.
After completion, the traces containing less than 50 network packets were considered idle and
removed.
Concerning the generation of traffic for the different traffic types, generating YouTube and
Twitch traffic is relatively easy because this requires one simply to open a stream and start
capturing; the client requires no further action. On the other hand, automating the generation
of traffic for the browsing traffic type is more complex because this requires the client to interact
with the web pages frequently. We automated this process by utilising the Noisy project of Itay
Hury, available on GitHub 12. We made changes to the implementation to fit the needs of our

11https://github.com/KimiNewt/pyshark (accessed on 20-05-2022)
12https://github.com/1tayH/noisy (accessed on 20-05-2022)

Chapter 4: Manual Approach 39

Figure 4.16: Automated process for generating browsing traffic (Created in Lucidchart,
www.lucidchart.com)

specific use case. The Noisy process requires a list of URLs as input. These URLs are referred
to as root URLs. The process will repeatedly navigate to a randomly chosen root URL and
start to follow links on the webpage it is currently visiting. We choose the Tranco [57] top 50
websites to represent this list. A high-level overview of how the Noisy process works is shown
in the flowchart in Figure 4.16. Note that the timeout mentioned in the flowchart is set to 60
minutes, as discussed earlier in this section.
The used web browser versions for Chrome, Edge, and Firefox are 97.0.4692, 97.0.1072.62, and
96.0.1 respectively.

4.5.2 Method

We now describe how we evaluate our manual approach with the dataset we created in Section
4.5.1. For every data sample in the dataset, representing a labelled trace with a duration of 1
minute, we independently predict the classification for every classification type. For example,
considering a random trace in the dataset, we will make a prediction for OS, web browser, and
traffic type independently and successively. After that, the predictions are compared to the
actual values and stored. Concretely, the following steps will be performed for every sample in
the dataset:

1. Calculate parameter values necessary for classification, e.g. packet rate, TCP ACK per-
centage, etc.

2. Predict classifications by applying the classification processes described in Section 4.4

3. Store the predictions and true labels for calculation of metrics and confusion matrices later

Chapter 4: Manual Approach 40

The first metric used for evaluating the predictions is accuracy. We calculate the accuracy by
using the following formula:

Accuracy =
correct predictions

total traces

Thus, the accuracy represents the fraction of the total samples that were correctly classified.
Furthermore, the accuracy will be calculated for every classification process separately since
classification processes are performed independently. The accuracy for approach A of OS clas-
sification will be calculated in two different ways: the first includes the unknown option and
considers every unknown classification as false. The second one skips the unknown classification
option, hence only considering the cases where either Windows or Linux was predicted.
The calculated accuracy covers a classification type as a whole. However, we also want to gather
information about specific classification options within a type. That is why, besides the accu-
racy of a classification type, we consider the precision, recall, and F1-score for every individual
option. To clarify, we define the following terms for a particular classification option:

- True Positive (TP): the number of predictions where the classifier correctly predicts the
option (the actual label of the trace is the option)

- False Positive (FP): the number of predictions where the classifier incorrectly predicts
the option (the actual label of the trace is another option)

- False Negative (FN): the number of predictions where the classifier incorrectly predicts
the actual option as another option

- Precision: indicates what fraction of predictions as that option were actually correct.

- Recall: indicates what fraction of all samples containing that option were correctly pre-
dicted

- F1-score: combines precision and recall into a single value, representing the harmonic
mean.

The confusion matrix for every classification type is included because this element is required
to calculate the TP, FP, and FN values for every classification option. The precision, recall,
and F1-score values are expressed in percentages and specifically calculated using the following
formulas:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-score = 2 × precision× recall

precision + recall

4.5.3 Results & Discussion

The accuracy results are shown in Table 4.6. Because the OS classification contains a special
‘unknown’ result in addition to the ‘correct’ and ‘incorrect‘ prediction results, we included the
pie chart in Figure 4.17 for clarity. We observe a high accuracy for OS classification when

Chapter 4: Manual Approach 41

Classification Accuracy

OS - approach A - ’unknown’ excluded 97.36 %
OS - approach A - ’unknown’ included 54.70 %
OS - approach B 100 %
Web browser 87.96 %
Traffic type 90.52 %

Table 4.6: Accuracy rate per classification scenario

Figure 4.17: OS approach A accuracy pie chart

excluding the unknown option, meaning that the predictions are accurate if the classifier does
decide to choose a real classification option. However, when we include the unknown option,
we see that this option is chosen in 43.8% of all predictions. As a result, when considering the
unknown option as incorrect, the accuracy of the approach drops over 40% (97.36% to 54.70%).
Approach B for OS classification yields a perfect accuracy of 100%. This is what we expected
since the OS itself sets the IP TTL plain text header value. Therefore, the same value should
always be observed unless one modifies the IP TTL value specification in the OS’s settings.

The precision, recall, and F1-score metrics for every classification option are shown in Table 4.7.
Moreover, the confusion matrices from which the TP, FP, and FN are deduced are included in
Figure 4.18. For OS approach A, both with and without the ‘unknown’, we see high precision
for both options. However, recall is significantly lower when the ‘unknown’ option is included
and considered an incorrect prediction. Considering the two options, the F1-score for Windows
is the lowest of the two since precision is just slightly better for Windows, but recall is clearly
worse. Actually, the F1-score for Windows is also the lowest across all options.
For OS approach B, both options achieve the maximum score, which is no surprise because
earlier in this section, we reported an accuracy of 100% for this approach.
Considering web browsers, it is remarkable that Firefox achieves a maximum precision value,
meaning that every time the Firefox option is predicted for a trace, the prediction is correct. This
confirms our claim in Section 4.3.6 that a larger packet size is observed for Firefox web browsers
compared to Chromium-based web browsers. The maximum recall value for the Chromium-
based option also confirms this because this shows that all Chromium-based traces were pre-
dicted correctly. The downside of web browser classification is clearly visible in the relatively
lower Firefox recall value, indicating that only 63% of all Firefox traces were predicted as Fire-
fox. This suggests that Firefox does not always produce the larger packet size we look for.
Finally, looking at the traffic classification results, the performance values for the YouTube
option are the most significant. Looking at the confusion matrix, the primary error clearly
represents the prediction of Twitch while the actual option is Browsing. This error occurs for
23% of the total Browsing traces, which explains the relatively low recall value for the Browsing
option and precision value for the Twitch option.

Chapter 4: Manual Approach 42

Precision Recall F1-score

OS - approach A -
’unknown’ excluded

Windows 100 94 97
Linux 96 100 98

OS - approach A -
’unknown’ included

Windows 100 47 64
Linux 96 63 76

OS - approach B
Windows 100 100 100
Linux 100 100 100

Browser
Chromium based 85 100 92
Firefox 100 63 77

Traffic
Browsing 94 75 83
YouTube 98 96 97
Twitch 82 98 89

Table 4.7: Precision, recall, and F1-score metrics for all classification options

(a) OS approach A confusion matrix (b) Traffic confusion matrix

(c) Web browser confusion matrix

Figure 4.18: Confusion matrices for all classification types

Chapter 4: Manual Approach 43

4.6 Live classifying tool

To test our approach in a live environment, we created a tool that makes live classification
predictions for intercepted OpenVPN traffic. The predictions are made following the classifica-
tion process described in Section 4.4. The tool is written in Python 3 [73], specifically version
3.9. A simple GUI, created with the Tkinter library 13, is embedded to increase the ease of
use. The GUI is shown in Figure 4.19. Some editable configuration parameters are shown on
the left side. The source IP address, interface, and VPN server port are necessary to capture
the relevant OpenVPN packet stream we are targeting to fingerprint. Note that specifying the
source IP address allows us to fingerprint OpenVPN traffic from our device, as well as from
another endpoint if we are in a MITM position between that endpoint and its VPN server. The
prediction interval specifies the time length (in seconds) of the chunks for which predictions are
made. For example, if the prediction interval is 60 seconds, the tool will repeatedly capture
a 60-second chunk of traffic and predict classifications for that chunk. The IP TTL checkbox
specifies whether the IP TTL value should be used to classify the OS. This allows us to test
both methods for classifying the OS as described in Section 4.4.
The upper right pane of the GUI allows us to toggle the process of capturing traffic and perform-
ing predictions for the captured traffic chunks. If we hit ‘Start’, this process will be executed
continuously until the ‘Stop’ button is hit.
The lower right pane shows the prediction results for every captured chunk. Every line indicates
the time interval of the chunk that is used for prediction and a classification prediction of every
classification type, i.e. OS, web browser, and traffic type.

Figure 4.19: Live classifier GUI

4.7 Mitigations

In this section, we will discuss some steps a user can take to counter the fingerprinting method
used in this chapter, hence lowering the accuracy of our approach.

As discussed in Section 4.2, the observation that we frequently use in the fingerprinting ap-
proach is only valid if the regular packets are encrypted without applying padding. Therefore,
if we alter the OpenVPN configuration to use a symmetric-key cipher that applies padding, the
accuracy of our fingerprinting approach should decrease significantly. If we change the cipher to

13https://docs.python.org/3/library/tkinter.html (accessed on 20-05-2022)

Chapter 4: Manual Approach 44

Packet type
IPv4 packet IPv6 packet

Size (B) OpenVPN size (B) Size (B) OpenVPN size (B)

TLS CH 571 623 628 591 643 644
TLS CH inc. option 583 635 644 603 655 660
TCP ACK 54 106 116 74 126 132
TCP ACK inc. option 66 118 132 86 138 148
QUIC ACK 81, 82, 83 133, 134, 135 148 101, 102, 103 153, 154, 155 164

Table 4.8: Packet sizes of packet types with padding included

AES-256-CBC, which is the default fallback cipher as discussed earlier, a block size of 16 bytes is
maintained. As a result, if the packet length is not exactly a multiple of 16 bytes, padding will be
applied. Clearly, if this padding step is performed, the lengths of the packet types we are trying
to identify will be larger. As a result, we will not be able to identify the correct packet types.
To demonstrate the differences in OpenVPN packet sizes, we calculated the packet OpenVPN
packet lengths that would be observed if AES-256-CBC is used. The results are shown in Table
4.8. Note that the crossed-out values represent the original packet sizes for the AES-256-GCM
cipher used in Table 4.4.
One could argue that to use our fingerprinting approach for a setup that applies padding, we
can simply change it by matching the packet types with the adjusted lengths. However, this
adjustment introduces two issues. First, as shown in Table 4.8, there will be multiple packet
types with the same length, meaning that we can not longer map a unique length to a single
packet type. For instance, an IPv6 TLS CH will have an OpenVPN size of 644 bytes, which
would be the same length for an IPv4 TLS CH with the timestamp option included. The same
applies to an IPv6 TCP ACK & an IPv4 TCP ACK with a timestamp option, and also to an
IPv6 TCP ACK with a timestamp option & an IPv4 QUIC ACK. The second issue includes
that we would generate a significant amount of false positives because other types of packets
with slightly different lengths will also be padded to the same length, hence being identified as
our target packet type. Because of these issues, we suspect that the accuracy will still drop
significantly even if we adjust our approach to try to cope with padding.

Several defences against WF attacks have been proposed in related work. All of these defences
alter the packet size and possibly also packet timing information of the generated traffic stream.
Therefore, these defences are also effective against our fingerprinting attack. Dyer et al. [21]
discussed multiple methods for applying padding, including the following:

- Linear padding : Increase packet size to nearest multiple of 128, or the MTU if the MTU
is smaller.

- Exponential padding : Increase packet size to nearest power of 2, or the MTU if the MTU
is smaller.

- Mice-Elephants padding : If packet size is ≤ 128, increase to 128; else increase to MTU.

- Pad to MTU : Increase packet size to MTU.

All padding methods have their advantages and disadvantages. When choosing ‘Pad to MTU’,
for instance, the packet size information becomes useless for an attacker because every single
packet will have the same length. However, this method also introduces the most significant
amount of bandwidth overhead. They also introduce a new mitigation approach called ‘Buffered
Fixed-Length Obfuscator’ or ‘BuFLO’. BuFLO sends fixed-length packets at fixed time intervals
to hide both packet size and timing information of the traffic stream. The downside of BuFLO,

Chapter 4: Manual Approach 45

however, is a significantly inefficient usage of resources.
Wright et al. [75] utilise a technique called ‘traffic morphing’, which alters the packet size distri-
bution of the generated traffic. In the context of WF, the distribution is altered to look like the
distribution of a very frequently accessed webpage, which the authors chose to be ”google.com”.

Another way to counter the fingerprinting approach is by generating background traffic. Our ap-
proach assumes minimal background traffic. If the majority of the traffic consists of background
traffic that is not useful for classification, many packet types identified by matching lengths will
be irrelevant packets that are part of the background traffic, hence false positives. Furthermore,
background traffic will yield higher packet rates, which is an issue for the packet rate feature.
Generating background traffic can be done in numerous ways. One could, for example, initiate
multiple random audio and/or video streams using separate browser tabs. Another possibility
is using the Noisy tool that we adjusted in Section 4.5.1 to create the dataset. The Noisy tool
is actually intended to add extra obscurity by generating random HTTP/DNS traffic noise in
the background. In addition, Panchenko et al. [53] have also used background noise as a coun-
termeasure for the WF attack they created. They show that the additional traffic generated by
one background page leads to a decrease in the classifier’s performance.

Our approach is specifically constructed for OpenVPN traffic. Therefore, one could use another
type of VPN to defend against the approach. Moreover, one could also use another privacy-
enhancing mechanism such as Tor.
Furthermore, the classification options do not cover all possible classes for every classification
type. For instance, many more web browsers exist than the three web browsers we chose to
handle. Of course, if one chooses to use a web browser that is not in our list of selections, we
cannot correctly identify it. The same applies to the other handled classification types.
Moreover, taking web browsers as an example, it may be possible that significantly older versions
of web browsers that we do handle also yield a traffic stream with different characteristics since
we only focus on the most recent versions of the selected web browsers.

Chapter 5

VPN operating system, browser, and
traffic type fingerprinting: machine
learning approach

In Chapter 4, we described our approach to classify OpenVPN traffic traces without using ML
techniques, which are commonly used in related work as described in Section 3.2. In this section,
we will test some of the ML techniques described in Section 3.2 by applying them for our use
case, which includes predicting OS, web browser and traffic type based on OpenVPN traces. We
find it interesting to test the related work implementations because it allows us to observe how
they perform for our use case compared to the use case they were originally intended for.

5.1 Method

The dataset used to evaluate the ML classifiers will be the one we created to test our manual
approach in Chapter 4. For the details of the dataset, we refer to Section 4.5.1. We adopt the
FlowPic and Var-CNN approach described in Section 3.2. The most important characteristics
for both approaches were summarised in Table 3.1. From these characteristics, it is clear that
both approaches are very different. First of all, the FlowPic classifier was originally created
solely for traffic type classification purposes, which is also included in our use case. However,
we will also use this classifier for OS and web browser classification. On the other hand, the
Var-CNN classifier was made for website fingerprinting purposes, which is a significantly differ-
ent use case than ours. Secondly, FlowPic considers VPN traffic while Var-CNN considers Tor
traffic. Lastly, although both approaches use timing features, only FlowPic uses packet sizes,
and only Var-CNN uses packet directions.
The authors of Var-CNN claim that their approach is data-efficient, hence performing well even
with low amounts of data. This is particularly interesting for us because our dataset contains
few data elements in an ML context.

The implementation of the FlowPic method is made available by the authors on GitHub 1. A
LeNet-5 style architecture [46] consisting of seven layers is used. The first four layers are repre-
sented by two pairs of a convolutional and max-pooling layer. Next, the output is converted to
a one-dimensional vector with a flatten layer before being forwarded to a fully-connected layer.
Finally, the output layer is the softmax layer, which does not have a fixed size since the size

1https://github.com/talshapira/FlowPic (accessed on 20-05-2022)

46

Chapter 5: Machine Learning Approach 47

Figure 5.1: Illustration of the FlowPic LeNet-5 style architecture [65,66]

depends on the number of used classes in the specific classification sub-problem. The activation
function ‘ReLU’ [49] is applied to the output of every convolutional and fully-connected layer. In
addition, dropout [70] is used in the second convolution layer and the fully-connected layer. The
Adam [40] optimizer is used for the optimization process. The classifier expects the input traces
in the shape of a two-dimensional 1500x1500 histogram. Because the traces in our dataset are
contained in the pcapng format, we first implement a process to convert a trace from the pcapng
format to a 1500x1500 histogram. After that, we split our dataset with converted traces into
a training set and test set with proportions of 80% and 20% respectively. Finally, we separate
15% of the training set representing the validation set. The resulting training and validation
are used for training the classifier, and the test set is saved for evaluating the classifier later on
after the training phase has finished.

The implementation of the Var-CNN method is also available on GitHub 2. Var-CNN’s baseline
architecture is based on ResNets [31], which are state-of-the-art convolutional neural networks
(CNNs) for image classification purposes. ResNet has multiple variants of different sizes. To
minimize training costs, the smallest variant is chosen. This variant consists of 18 layers and is
referred to as ResNet-18. The architecture of ResNet-18 is illustrated in Figure 5.2. ResNet-18
has four stages, indicated by a different colour in the figure. The first layer, indicated in orange,
is not considered a stage. Each stage contains two convolutional blocks, and a convolutional
block is represented by two convolutional layers, yielding a total of four convolutional layers per
stage. A feature of this architecture that helps for optimization is a residual ‘skip’ connection
between the input and output of a convolutional block. This is represented in the figure by the
arrows together with the plus sign. As the name suggests, skip connections allow a subset of
layers to be skipped by adding the skipped part’s input to the skipped part’s output. In this
scenario, we see that every individual convolutional block can possibly be skipped. As for the
FlowPic classifier, the Adam optimizer is also used for the optimization process of Var-CNN.
Direction and time metadata features are considered for this classifier. We first need to convert
our pcapng dataset files to text files, with each line representing the direction and timestamp
of the corresponding packet. This also means that packet sizes are not considered and hence
not included in the new data format. Because this classifier focuses on the classification of
websites and differentiates between monitored and unmonitored websites, we need to be a little
creative to use this for our use case. We first configure the number of unmonitored websites to
0, resulting in the classifier neglecting the part of the unmonitored websites. After that, we set
the number of monitored websites to the number of classification options we have. For instance,
if we want to classify the traffic type, we set the number of monitored sites to 3 because we

2https://github.com/sanjit-bhat/Var-CNN/blob/master/wang to varcnn.py (accessed on 20-05-2022)

Chapter 5: Machine Learning Approach 48

Figure 5.2: Illustration of the Var-CNN ResNet-18 architecture [10]

have three options, i.e. browsing, YouTube, and Twitch. The classifier will try to distinguish
between the different monitored websites, yielding the desired results for our use case because
the classifier will actually be distinguishing between our classification options.

5.2 Results & Discussion

For both classifiers, the accuracy results are shown in Table 5.1. The precision, recall, and
F1-score results are shown in Table 5.2. In both tables we also include the results of our man-
ual approach, described in Section 4.5.3, with the purpose of comparing this with the machine
learning classifiers. In addition, the confusion matrices are included in Figure 5.3 and Figure
5.4 for the FlowPic and Var-CNN classifier respectively.
Because our manual approach combines the ‘Chrome’ and ‘Edge’ web browsers as ‘Chromium
based’, the classification of web browsers is analysed in two different manners in both tables.
The first considers all three options, hence using both the ‘Chrome’ and ‘Edge’ options, while

Chapter 5: Machine Learning Approach 49

Classification FlowPic Var-CNN Manual

OS 90.28 % 70.75 % 100 %
Browser - 3 options 67.59 % 54.29 % /
Browser - 2 options 80.42 % 66.43 % 87.96 %
Traffic type 97.69 % 84.29 % 90.52 %

Table 5.1: Accuracy rate per classification type per model

FlowPic Var-CNN Manual
P R F1 P R F1 P R F1

OS
Windows 90 90 90 81 54 65 100 100 100
Linux 90 91 91 65 88 75 100 100 100

Browser -
3 options

Chrome 58 75 65 52 64 57 / / /
Edge 71 54 61 48 47 47 / / /
Firefox 80 74 77 67 51 58 / / /

Browser -
2 options

Chromium based 77 88 82 78 46 58 85 100 92
Firefox 85 72 78 62 87 72 100 63 77

Traffic
Browsing 97 96 97 79 86 82 94 75 83
YouTube 99 100 99 92 97 94 98 96 97
Twitch 97 97 97 82 70 75 82 98 89

Table 5.2: Precision, recall, and F1-score metrics for all classification options per model

the second combines these options and labels them as ‘Chromium based’. Since our manual
approach only uses the second manner, no results are reported for the first one. On the other
hand, the machine learning classifiers are tested for both cases, yielding an additionally inter-
esting comparison besides comparing the machine learning and manual approach.
Note that in Section 4.5.3, three different scenarios were evaluated for OS classification for the
manual approach. For comparison with the machine learning classifiers, we choose only to in-
clude the best performing scenario, which is ‘approach B’.

For all analysed metrics, the FlowPic classifier clearly outperforms the Var-CNN classifier. One
explanation is that the original use case of the FlowPic classifier is more similar to our use
case than the Var-CNN classifier because FlowPic focuses on VPN traffic and classification of
traffic type while Var-CNN focuses on Tor and website fingerprinting. Besides, it is also pos-
sible that packet size features, which are used only by FlowPic, are very effective for our use case.

When comparing the best machine learning classifier (FlowPic) with our manual approach based
on accuracy, we see that the manual approach performs better for OS and web browser classifi-
cation with two classes while the FlowPic classifier performs better for traffic classification. The
fact that FlowPic performs best for traffic classification is not illogical since this corresponds
to the original use case of FlowPic. Let us compare them based on precision, recall, and F1-
score values instead of accuracy. We see that the recall and F1-score values for the Firefox web
browser are actually slightly better for FlowPic due to the relatively low recall value for the
manual approach. Using FlowPic, we can evaluate the performance for the Chrome, Edge, &
Firefox web browser classification instead of only combining Chrome and Edge into one option,
which we did for the manual approach. Furthermore, the three options’ accuracy and F1-scores
for the web browser classification yielded decent results for FlowPic. Therefore, FlowPic clearly
is the best option for this classification scenario.

Chapter 5: Machine Learning Approach 50

(a) OS confusion matrix (b) Traffic confusion matrix

(c) Web browser - 2 options - confusion matrix (d) Web browser - 3 options - confusion matrix

Figure 5.3: FlowPic confusion matrices

Looking at the different classification types for every classifier, we conclude that web browser
classification unquestionably performs worst for all analysed metrics. Considering the F1-scores
for web browser classifications of the FlowPic classifier, we see that Firefox’s score remains
similar. At the same time, Chrome and Edge have relatively low scores if separated but a sig-
nificantly higher score if combined (Chromium based). This supports our claim that Chrome
and Edge are hard to distinguish because both are chromium based as discussed in Section 4.3.6
and Section 4.4. Moreover, when analysing the FlowPic and Var-CNN web browser confusion
matrices in Figure 5.3d and Figure 5.4d respectively, we find for both that the most common
error includes predicting Chrome while the actual label is Edge. This error is significantly higher
than the other way around, i.e. predicting Edge with actual label Chrome.

Observing the F1-scores for traffic classification, we see that YouTube clearly performs best
for all classifiers, hinting that the characteristics (timing, direction, sizes) of YouTube traffic
clearly differ from the characteristics of the other considered options. Moreover, this also hints
that browsing and Twitch traffic have relatively similar characteristics resulting in the classifier

Chapter 5: Machine Learning Approach 51

having more trouble distinguishing between the two. This is also visible in the confusion ma-
trices of the Var-CNN and Manual approach shown in Figure 5.4b and Figure 4.18b respectively.

(a) OS confusion matrix (b) Traffic confusion matrix

(c) Web browser - 2 options - confusion matrix (d) Web browser - 3 options - confusion matrix

Figure 5.4: Var-CNN confusion matrices

Chapter 6

Conclusion

Nowadays, VPNs are used frequently to provide anonymity and/or privacy, although they were
not originally intended for these purposes. In this thesis, we aimed to examine existing and
discover new methods that result in privacy leakages of a VPN. Specifically, we focused on fin-
gerprinting techniques that reveal information about user device characteristics, including the
operating system, web browser, and traffic type of the user. We developed a manual approach
classifier which classifies a trace based on features that were obtained through analysis of traces,
without the aid of machine learning techniques. The classifier achieves an accuracy of 100% for
classifying the Windows & Linux OSes, 87.96% for classifying the Chromium based & Firefox
web browsers, and 90.52% for classifying browsing, YouTube & Twitch traffic. Note that we
evaluated multiple scenarios for the OS type, we selected the best performing one. In addition,
the lowest observed F1-score for an individual classification option is 77% for the Firefox web
browser. Therefore, looking back at the defined research questions, we conclude that it is gen-
erally possible to predict a VPN user’s device characteristics with our manual approach. There
is, however, one pair of web browsers, consisting of Chrome and Edge, for which we did not
manage to find a way to differentiate. As a result, we conclude that we cannot distinguish this
specific pair of web browsers in our manual approach.
Moreover, in order for our method to work, the scenario needs to comply with some unreal-
istic assumptions. First, all the classification types do not cover all possible options within a
type. For instance, if one chooses to use a web browser that is not in our list of selections,
say Safari 1, we are not able to correctly identify it. The same applies to the other handled
classification types. That is why we must assume that one of the included options is correct for
every classification type. It would have been more realistic if we did not assume that one of the
options is correct, hence introducing an additional possibility that all of our considered options
are incorrect. A possible way of handling this is by adding an additional ‘Other’ option for every
classification. Secondly, we assume the usage of a desktop browser. We do not know how our
method performs in the mobile context since we did not have time to analyse and evaluate this
properly. That is why we have to assume a desktop-only scenario. Lastly, we assume that the
user is generating a low amount of irrelevant background traffic since this will have an effect on
the calculated parameters/features for a trace as discussed in Section 4.7.

We also adopted two state-of-the-art machine learning approaches in the context of classification
with fingerprinting techniques based on VPN or Tor traffic. The classifiers were utilised with
the collected data used to evaluate our manual approach. The best performing classifier, being
FlowPic, achieves an accuracy of 90.28% for classifying the Windows & Linux OSes, 80.42%
for classifying the Chromium based & Firefox web browsers, 67.59% for classifying the Chrome,

1https://www.apple.com/safari/ (accessed on 05-06-2022)

52

Chapter : Conclusion 53

Edge & Firefox web browsers and 97.69% for classifying browsing, YouTube & Twitch traffic.
Consequently, we conclude that it is generally possible to predict the device characteristics of a
VPN user by adopting a state-of-the-art machine learning approach.
When comparing the manual approach with the FlowPic classifier, we discussed in Section 5.2
that the manual approach performs better for OS and web browser classification with two classes
while the FlowPic classifier performs better for traffic classification and web browser classifica-
tion with 3 options, based on all analysed metrics. Therefore, when comparing both approache,
there is no clear outperformer since the better choice depends on which classification type in
particular to consider.

Users can apply some methods to make sure our manual approach classifier’s performance drops
significantly to protect their privacy. Most of these methods are consequences of the unrealistic
assumptions that were described earlier in this chapter. To start, the OpenVPN configuration
settings can be altered to use a symmetric-key cipher that applies padding. An example of such
a cipher is AES-CBC. Generally, using any padding scheme works as a mitigation against our
manual approach. Furthermore, deliberately generating lots of irrelevant background traffic, for
instance, uploading a file to a server or using a tool like Noisy 2, can affect the performance of the
classifier since it is not able to distinguish between the relevant and irrelevant network packets.
Also, making sure that no classification option can be correct by, for example, using a Safari web
browser as discussed earlier, is a prominent method to use as a mitigation. Finally, because the
fingerprinting method focuses specifically on VPN traffic, another privacy-enhancing technology
can be used to provide a higher level of privacy and/or anonymity. A popular alternative is Tor.
All of these possible mitigations were also extensively discussed in Section 4.7.

Writing this thesis was not easy at all for me. In the past and throughout writing this thesis, I
often had trouble with adequately formulating my thought process in text. I did not know how
to properly express in words what I wanted to write down. Because that skill was obviously
required to complete this thesis, I got to practise it a lot, and I feel like I definitely got better
at that. Looking back, one thing I would do differently is the description of related work. At
the start of the thesis, I put a significant amount of time into analysing related work. During
this analysis, I took notes for every paper I read. I feel like, instead of taking the notes, I had
better described interesting related work sources directly in my thesis after reading it. It would
have saved me many hours since I had to revisit most sources when I started describing them
in my thesis. Contrarily, I am glad that I started on time with the evaluation phase because
although I knew a significant amount of time was necessary for this, it still took longer than I
expected. Finally, I learned a lot about VPNs, fingerprinting techniques, and cyber security in
general.

2https://github.com/1tayH/noisy (accessed on 20-05-2022)

Appendices

54

Appendix A

Dutch Summary

A.1 Inleiding

Er zijn vandaag de dag nog een aanzienlijk deel problemen omtrent de privacy van de gebruiker
in de context van het afluisteren van het internetverkeer van de gebruiker. Wanneer een ge-
bruiker met een bepaald eindpunt communiceert via het internet, zijn er een aantal instanties
waarlangs het gegeneerde internetverkeer vloeit. Deze instanties hebben dan ook de mogeli-
jkheid om dit voorbijkomende netwerkverkeer te inspecteren. In het algemeen bestaan er zo
twee types instanties. Enerzijds is er de man in the middle (MITM) die zich initieel niet in het
communicatiepad van de gebruik bevindt, maar zichzelf deze positie verschaft door bepaalde
technieken uit te voeren. Dit type is vaak terug te vinden bij publieke hotspots aangezien een-
der wie kan connecteren met een hotspot. Dit toont ook aan dat publieke hotspots niet veilig
zijn voor de privacy van de gebruiker [47]. Anderzijds zijn er instanties die zich standaard in
het communicatiepad bevinden, zoals een internet provider.

Het is dus duidelijk dat het internetverkeer van een gebruiker beschermd moet worden tegen
mogelijke afluisteraars. Een eerste poging om dit te verwezenlijken is de introductie van het
HTTPS protocol waarbij de communicatie met de web server geëncrypteerd wordt en niet gede-
crypteerd kan worden door afluisteraars. Op die manier kan gevoelige informatie, zoals bijvoor-
beeld wachtwoorden, veiliger over het internet gestuurd worden. Indien enkel HTTPS gebruikt
wordt, blijven er echter nog privacy problemen bestaan: afluisteraars kunnen nog altijd afleiden
welke domeinen de gebruiker bezoekt door in de communicatie de IP adressen, DNS pakketten
of TLS pakketten te analyseren. Om dit ook tegen te gaan, kan men gebruik maken van Vir-
tual Private Networks (VPNs) of The Onion Router (Tor) [19]. VPN gebruikers sturen al hun
netwerkverkeer naar een tussenliggende VPN server via een geëncrypteerde connectie. De VPN
server stuurt dit netwerkverkeer vervolgens door naar de eigenlijke bestemming. Doordat het
netwerkverkeer langs de tussenliggende VPN server loopt, wordt het IP adres van de eindbestem-
ming verborgen voor afluisteraars en weet de eindbestemming het IP adres van de gebruiker ook
niet. Dit biedt duidelijk een extra laag bescherming en privacy voor de gebruiker. Ons doel is
om te onderzoeken of een afluisteraar toch nog informatie kan vergaren over een VPN gebruiker.
Specifiek onderzoeken we of een afluisteraar de volgende elementen kan afleiden: besturingssys-
teem, web browser, type netwerkverkeer. We zullen twee verschillende methodes toepassen om
dit te onderzoeken. In de eerste methode, de ‘manuele methode’ genoemd, analyseren we zelf
het netwerkverkeer en proberen we features te ontdekken om te gebruiken voor classificatie van
de verschillende aangehaalde types. Bij de andere methode, de ‘machine learning methode’ ge-
noemd, zullen we machine learning (ML) classificeerders gebruiken voor classificatie. We stellen
de volgende onderzoeksvragen op:

55

Chapter A: Dutch Summary 56

• Is het mogelijk om karakteristieken over het toestel van de VPN gebruiker af te leiden gegeven
het netwerkverkeer dat uitgewisseld wordt tussen een VPN gebruiker en een VPN server?

– Is dit mogelijk door een manuele methode te hanteren?

– Is dit mogelijk door een machine learning methode te hanteren?

– Hoe presteert een manuele methode ten opzichte van een machine learning methode?

• Wat kunnen VPN gebruikers doen om zich te beschermen tegen de toegepaste fingerprinting
technieken?

A.2 Achtergrond

In dit hoofdstuk behandelen we een aantal belangrijke aspecten die aan bod komen in het verdere
verloop van de thesis. Het eerste topic dat besproken wordt is cryptografie. Cryptografie is een
term voor technieken die gebruikt worden om veilige communicatie te voorzien tussen twee
eindpunten. Cryptografie verzorgt de vertrouwelijkheid en integriteit van de communicatie; dit
zijn twee elementen van de ‘CIA triad’ [23], een model dat aan de basis ligt van het creëren
van beveiligingssystemen. Er zijn twee soorten cryptografie: symmetrische en asymmetrische.
Bij symmetrische cryptografie gebruiken beide eindpunten dezelfde sleutel voor encryptie en
decryptie, bij asymmetrische gebruiken beide eindpunten een verschillende sleutel.

Een VPN biedt toegang tot een privénetwerk via een gedeeld netwerk. Dit wordt verwezenlijkt
door het netwerkverkeer van de VPN gebruiker te tunnelen over het gedeelde netwerk. De term
tunnelen refereert naar het encrypteren en encapsuleren van een netwerkpakket in een ander
netwerkpakket. Op die manier kan netwerkverkeer dat bestemd is voor het privénetwerk over
het gedeelde netwerk gestuurd worden. Een VPN is vaak noodzakelijk voor telewerken hetgeen
hoofdzakelijk door de recente COVID-19 pandemie steeds meer toegepast wordt [50]. Sinds de
start van de pandemie zien we in Europa daarom ook een toename in VPN gebruik [24]. VPNs
worden echter ook gebruikt voor andere doeleinden waarvoor een VPN initieel niet bedoeld was.
Zo is het gebruik van een VPN voor privacy/anonimiteit populair [64]. Het tunnelen zorgt er
bijvoorbeeld voor dat een afluisteraar niet kan zien wat de gebruiker precies doet (privacy).
Verder kunnen de eindpunten waarmee de VPN gebruiker communiceert het IP adres van de
VPN gebruiker niet zien (anonimiteit). Een VPN introduceert echter ook nieuwe problemen
omtrent privacy/anonimiteit omdat de VPN provider wel het netwerkverkeer en het IP adres
van de gebruiker kan inspecteren. Uit een studie blijkt dat het VPN ecosysteem niet altijd even
transparant is over in hoeverre dit toegepast wordt [38]. VPN protocols zijn verantwoordelijk
voor het opzetten van de VPN tunnel. Er bestaan verschillende VPN protocols, de meest
voorkomende zijn PPTP [78], IKEv2 [22], L2TP [72] en OpenVPN [52]. In deze thesis focussen
we enkel op het OpenVPN protocol.

OpenVPN maakt gebruikt van een virtuele netwerkadapter, gëımplementeerd in software, die
het netwerkverkeer van het toestel opvangt en dit doorstuurt naar OpenVPN software. De
OpenVPN software vormt deze netwerkpakketten om tot tunnelpakketten die over het gedeelde
netwerk gestuurd kunnen worden. De encryptie die toegepast wordt tijdens het tunnelen gebeurt
met symmetrische cryptografie. Een belangrijk element dat we dienen te onthouden is dat enkel
het volledige initiële gegenereerde pakket, dat getunneld wordt, geëncrypteerd is en gebruikt
wordt als payload voor het tunnelpakket. De headers die het tunnelpakket vervolledigen tot
een volwaardig netwerkpakket zijn niet geëncrypteerd. Verder beschikt OpenVPN over twee
soorten kanalen: het controlekanaal en datakanaal. Het controlekanaal verzorgt de uitwisseling
van parameters tussen client en server om een connectie op te kunnen zetten. Het datakanaal
zorgt voor de eigenlijke uitwisseling van getunneld netwerkverkeer tussen de twee eindpunten,
gebruik makende van de parameters die verkregen worden via het controlekanaal. Er zijn twee

Chapter A: Dutch Summary 57

protocols in de transportlaag die gebruikt kunnen worden voor de tunnel: TCP en UDP. TCP
is de betere optie om firewalls te passeren terwijl UDP beter is voor performantie [15]. De
onbetrouwbaardheid van UDP is geen probleem voor VPN tunnels omdat getunnelde TCP
connecties dit oplossen. Het OpenVPN team raadt zelf ook aan om eerst UDP te proberen en
bij problemen over te schakelen naar TCP [51]. Daarom focussen wij ons op UDP tunnels in
deze thesis.

A.3 Fingerprinten van onderschept netwerkverkeer

Dit hoofdstuk bespreekt gerelateerd werk dat het fingerprinten van onderschept netwerkverkeer
behandelt. Fingerprinten is het toepassen van patroonherkenning op netwerkverkeer om meer
te weten te komen over de eindpunten die dat verkeer genereren. Fingerprinten is in de meeste
gevallen een classificatieproces waarin beslist dient te worden welke classificatieoptie uit een lijst
van mogelijkheden het meest waarschijnlijk is voor het geobserveerde netwerkverkeer. Finger-
printen kan op verschillende manieren toegepast worden, het is bijvoorbeeld mogelijk dat er
informatie over een eindpunt afgeleid kan worden door gewoonweg ongeëncrypteerde elementen
van het netwerkverkeer te inspecteren, hetgeen relatief eenvoudig is. Anderzijds kan men ook een
stuk complexer te werk gaan door bijvoorbeeld bepaalde statistische waarden af te leiden en een
ML algoritme te gebruiken voor patroonherkenning. Welke manier van fingerprinten gebruikt
kan worden is deels afhankelijk van welke privacyvriendelijke technologieën aan bod komen in
het netwerkverkeer. We beschouwen fingerprinten van netwerkverkeer waarbij minstens één van
de volgende privacyvriendelijke technologieën gebruikt wordt: HTTPS, VPN of Tor.

We bespreken eerst fingerprinting methodes die enkel gebruik maken van ongeëncrypteerde ele-
menten voor classificatie. Bij het gebruik van HTTPS kan een afluisteraar het domein bepalen
dat een gebruiker bezoekt. Dit is mogelijk door rechtstreeks het domein af te lezen via DNS of
TLS Client Hello netwerkpakketten. Indien deze pakketten geëncrypteerd zouden zijn [32,59], is
dit echter nog altijd mogelijk op een indirecte manier door onder andere de ongeëncrypteerde IP
adressen van de eindbestemmingen te gebruiken [18]. Er zijn verschillende methodes ontwikkeld
om classificatie van besturingssystemen toe te passen door headers van netwerkpakketten te
analyseren [4, 7, 13]. Hierbij wordt vooral naar TCP en IP headers gekeken. JA3 [6] maakt een
hash van ongeëncrypteerde elementen in TLS onderhandelingspakketten. Deze hash dient als
identificatie voor het eindpunt dat de desbetreffende pakketten genereerde. Op die manier kun-
nen bijvoorbeeld malware toepassingen gedetecteerd worden aangezien de communicatie tussen
de client en server van dergelijke toepassingen typisch altijd exact hetzelfde verloopt, waardoor
telkens dus dezelfde hash bekomen wordt. Daarnaast kan dit ook gebruikt worden om een
bepaald type web browser met standaard configuratie te identificeren.
We zouden verwachten van VPNs dat er geen ongeëncrypteerde elementen aanwezig zijn die
kunnen leiden tot classificatie van een bepaalde karakteristiek. Toch zien we vaak dat door
fouten in de implementatie dat bepaalde netwerkpakketten niet langs de VPN tunnel worden
gestuurd en dus niet afgeschermd worden door de VPN; dit is meestal het geval voor DNS en
IPv6 [29,35,54,74].

Er is een aanzienlijk deel gerelateerd werk dat fingerprinting methodes gebruikt waarbij er
niet naar ongeëncrypteerde elementen gezocht wordt, meestal in de veronderstelling dat deze
elementen niet aanwezig zijn. Dit is typisch het geval bij technologieën zoals VPN en Tor.
Aangezien de manier waarop de classificatie bepaald kan worden minder triviaal is in dit geval,
wordt vaak een ML algoritme gebruikt om patroonherkenning te gaan toepassen en zo te
proberen een onderscheid te maken tussen de verschillende classificatieopties. De besproken
werken worden samengevat en vergeleken in tabel A.1. De tabel geeft voor elke bron aan welk
soort verkeer er wordt beschouwd (VPN of Tor), welk type classificatie er toegepast wordt, met
welk soort ML algoritme dit gebeurt en ten slotte welke eigenschappen van het onderschept

Chapter A: Dutch Summary 58

Source Traffic Features Classification ML algorithm

Gerard-Gil et al. (2016) VPN Timing Application type
C4.5 Decision Tree
K-Nearest Neighbors

Gerard-Gil et al. (2016) Tor Timing Application type

C4.5 Decision Tree
K-Nearest Neighbors
Zero R
Random Forest

Shapira et al. (2019) VPN
Timing
Size

Application type LeNet-5

Rimmer et al. (2018) Tor Raw trace Webpage
Stacked Denoising Autoencoder
Convolutional Neural Network
Long-Short Term Memory

Bhat et al. (2019) Tor

Raw trace
Timing
Direction
Cumulative statistical features

Webpage Var-CNN (ResNet-18 architecture)

Table A.1: Vergelijking van gerelateerd werk omtrent het fingerprinten van VPN en Tor
netwerkverkeer

Web browser Operating system Traffic type VPN

Google Chrome
Microsoft Edge
Mozilla Firefox

Windows 10
Ubuntu 20.0 LTS

Browsing
YouTube (on-demand)
Twitch (live)

OpenVPN (UDP)

Table A.2: Overzicht van gekozen parameters voor de manuele methode

netwerkverkeer gebruikt worden.

A.4 Fingerprinten van besturingssysteem, web browser en ver-
keer: manuele methode

In dit hoofdstuk bespreken we de creatie van een manuele methode om de volgende karakter-
istieken van een VPN gebruiker te fingerprinten: type besturingssysteem, type web browser en
type netwerkverkeer. De gekozen classificatie opties en VPN worden weergegeven in tabel A.2.
We starten door de volgende veronderstellingen te maken:

• Een VPN gebruiker is geconnecteerd met een VPN server en tunnelt zijn netwerkverkeer,
dat hoofdzakelijk gegenereerd wordt door een desktop browser, door de VPN connectie.

• De VPN gebruiker gebruikt maar één type web browser tegelijk.

• De VPN gebruiker genereert geen aanzienlijke proportie netwerkverkeer in de achtergrond.

• Een aanvaller bevindt zich in het communicatiepad tussen de VPN gebruiker en de VPN
server en kan deze geëncrypteerde communicatie dus onderscheppen en bekijken.

• De aanvaller kan de onderschepte, geëncrypteerde communicatie enkel observeren, beteke-
nende dat hij deze bijvoorbeeld niet kan decrypteren.

Vervolgens voeren we een kleinschalig experiment uit waarin we traces genereren voor alle mogeli-
jke combinaties van classificatieopties van verschillende types (bv. Windows-Chrome-Browsing).
We visualiseren elke trace door deze voor te stellen als een histogram waarbij de x-as de tijd bevat
en de y-as de grootte van het netwerkpakket. Deze visualisatiemethode hebben we overgenomen
van de ‘FlowPic’ approach [65, 66] besproken in gerelateerd werk en vinden we zeer interessant
om met het blote oog verschillen te kunnen observeren tussen verschillende traces. We zien
duidelijke verschillen tussen de types verkeer, subtiele verschillen tussen de types web browser

Chapter A: Dutch Summary 59

Feature Classifcation

TCP ACK Traffic, OS
QUIC ACK Traffic
TLS Client Hello Traffic, OS
Packet rate Traffic
IP TTL OS
Max. packet length Web browser

Table A.3: Overzicht van afgeleide types netwerkpakketten en de classificatie(s) waarvoor
ze gebruikt worden

Classification Accuracy

OS - approach A - ’unknown’ excluded 97.36 %
OS - approach A - ’unknown’ included 54.70 %
OS - approach B 100 %
Web browser 87.96 %
Traffic type 90.52 %

Table A.4: Nauwkeurigheid voor ieder type classificatie

en weinig tot geen verschil tussen de types besturingssysteem. Tijdens dit experiment identifi-
ceren we reeds een aantal mogelijkheden die we verder willen analyseren om later eventueel te
gebruiken voor classificatie.

We stellen vast dat de lengte van het geëncapsuleerde pakket gevonden kan worden via het
tunnelpakket. Dit komt omdat de standaard OpenVPN configuratie momenteel een encryp-
tiealgoritme gebruikt dat de lengte van de inhoud niet verandert na encryptie. Hierdoor kunnen
we, gegeven het tunnelpakket, de lengte van het geëncapsuleerde pakket bepalen. Deze lengte
bekomen we door 52 bytes af te trekken van de totale lengte van het tunnelpakket van een IPv4
tunnel; voor een IPv6 tunnel bedraagt dit 72 bytes. Met behulp van deze observatie leiden
we een aantal types geëncapsuleerde netwerkpakketten af uit tunnelpakketten die we kunnen
gebruiken voor classificatie. In tabel A.3 tonen we de types afgeleide pakketten en de classi-
ficatie(s) waarvoor ze gebruikt worden. Tijdens dit proces van features ontdekken, hebben we
besloten dat het moeilijk blijkt om een onderscheid te maken tussen de web browsers Chrome
en Edge. We vermoeden dat de oorzaak is dat beide browsers Chromium als basis gebruiken en
daarom gelijkaardig netwerkverkeer genereren. Daarom besluiten we om deze te combineren tot
één optie, namelijk ‘Chromium gebaseerd’. Verder hebben we ook twee verschillende methodes
vastgesteld waarmee we het besturingssysteem kunnen classificeren, we noemen deze ‘methode
A’ en ‘methode B’. We zullen beide methodes evalueren. Methode A is een speciaal geval omdat
er een extra classificatieoptie is toegevoegd, namelijk ‘onbekend’, aangezien het niet zeker is dat
deze methode een resultaat zal teruggeven na een bepaald deel netwerkverkeer geanalyseerd te
hebben.

We genereren zelf een dataset voor evaluatie van de manuele methode omdat geen enkele
bestaande dataset hiervoor geschikt is. De dataset bestaat uit 1080 traces van elk 1 min-
uut. Voor elke trace in de dataset doen we telkens een predictie voor alle classificatietypes. De
beschouwde statistieken voor evaluatie zijn nauwkeurigheid, precisie, sensitiviteit en F1-score.
De formele definities voor deze statistieken zijn terug te vinden in sectie 4.5.2. De resultaten
zijn weergegeven in tabel A.4 en A.5. Om de manuele methode live uit te testen, hebben we ook
een tool gëımplementeerd die toelaat om live predicties te doen op basis van (live) geobserveerd
OpenVPN netwerkverkeer.

Om zich te beschermen tegen de toegepaste fingerprintingtechieken, kunnen gebruikers een aan-

Chapter A: Dutch Summary 60

Precision Recall F1-score

OS - approach A -
’unknown’ excluded

Windows 100 94 97
Linux 96 100 98

OS - approach A -
’unknown’ included

Windows 100 47 64
Linux 96 63 76

OS - approach B
Windows 100 100 100
Linux 100 100 100

Browser
Chromium based 85 100 92
Firefox 100 63 77

Traffic
Browsing 94 75 83
YouTube 98 96 97
Twitch 82 98 89

Table A.5: Precisie, sensitiviteit en F1-score voor alle classificatieopties

tal zaken ondernemen. Een eerste mogelijkheid is het toevoegen van padding waardoor de lengtes
van de netwerkpakketten zullen veranderen. Daarnaast is het genereren van een aanzienlijke ho-
eveelheid achtergrondverkeer ook een optie. Verder kan men ook classificatieopties gebruiken
die niet beschouwd zijn (bv. Safari web browser) en een andere privacyvriendelijke technologie
gebruiken zoals Tor.

A.5 Fingerprinten van besturingssysteem, web browser en ver-
keer: machine learning methode

In dit hoofdstuk bespreken we de ML methode. Hierbij gebruiken we ML classificeerders uit
gerelateerd werk in combinatie met de dataset die we genereerden voor de manuele methode.
Specifiek kiezen we de ‘FlowPic’ [65,66] en ‘Var-CNN’ [10] classificeerders. We berekenen dezelfde
statistieken als voor de manuele methode en vergelijken de resultaten verder ook met de manuele
methode. De resultaten worden weergegeven in tabel A.6 en A.7. Merk op dat in beide tabellen
methode B gekozen is voor het besturingssysteem van de manuele methode.

Classification FlowPic Var-CNN Manual

OS 90.28 % 70.75 % 100 %
Browser - 3 options 67.59 % 54.29 % /
Browser - 2 options 80.42 % 66.43 % 87.96 %
Traffic type 97.69 % 84.29 % 90.52 %

Table A.6: Nauwkeurigheid voor ieder type classificatie per gebruikte methode

Chapter 6: Dutch Summary 61

FlowPic Var-CNN Manual
P R F1 P R F1 P R F1

OS
Windows 90 90 90 81 54 65 100 100 100
Linux 90 91 91 65 88 75 100 100 100

Browser -
3 options

Chrome 58 75 65 52 64 57 / / /
Edge 71 54 61 48 47 47 / / /
Firefox 80 74 77 67 51 58 / / /

Browser -
2 options

Chromium based 77 88 82 78 46 58 85 100 92
Firefox 85 72 78 62 87 72 100 63 77

Traffic
Browsing 97 96 97 79 86 82 94 75 83
YouTube 99 100 99 92 97 94 98 96 97
Twitch 97 97 97 82 70 75 82 98 89

Table A.7: Precisie, sensitiviteit en F1-score voor alle classificatieopties per gebruikte
methode

A.6 Conclusie

Het is mogelijk om karakteristieken over het toestel van de VPN gebruiker af te leiden mits
we een aantal assumpties maken die niet altijd even realistisch zijn. In het algemeen presteert
zowel de manuele methode als de machine learning methode goed. We concluderen dat geen
van beide methodes de andere overtreft. De manuele methode presteert beter voor type bes-
turingssysteem en web browser met twee classificatieopties terwijl de machine learning methode
beter presteert voor type netwerkverkeer en web browser met drie classificatieopties. Om zich
te beschermen tegen de toegepaste fingerprintingtechieken, kunnen gebruikers de volgende za-
ken ondernemen: padding toevoegen, achtergrondverkeer genereren, andere opties binnen een
bepaald type classificatie gebruiken die niet beschouwd zijn (bv. Safari web browser) en een
andere privacyvriendelijke technologie gebruiken zoals Tor.

Bibliography

[1] Desktop browser market share worldwide. Accessed on 20-05-2022. URL: https://gs.
statcounter.com/browser-market-share/desktop/worldwide.

[2] Desktop operating system market share worldwide. Accessed on 20-05-2022. URL: https:
//gs.statcounter.com/os-market-share/desktop/worldwide/.

[3] IP in IP Tunneling. RFC 1853, October 1995. URL: https://www.rfc-editor.org/info/
rfc1853, doi:10.17487/RFC1853.

[4] Ahmet Aksoy, Sushil Louis, and Mehmet Hadi Gunes. Operating system fingerprinting via
automated network traffic analysis. In 2017 IEEE Congress on Evolutionary Computation
(CEC), pages 2502–2509, 2017. doi:10.1109/CEC.2017.7969609.

[5] Taher Al-Shehari and Sami Zhioua. An empirical study of web browsers’ resistance to traffic
analysis and website fingerprinting attacks. Cluster Computing, 21(4):1917–1931, 2018.

[6] John Althouse. Tls fingerprinting with ja3 and ja3s, Jan 2019. Ac-
cessed on 20-05-2022. URL: https://engineering.salesforce.com/

tls-fingerprinting-with-ja3-and-ja3s-247362855967.

[7] Blake Anderson and David McGrew. Os fingerprinting: New techniques and a study of
information gain and obfuscation. In 2017 IEEE Conference on Communications and Net-
work Security (CNS), pages 1–9, 2017. doi:10.1109/CNS.2017.8228647.

[8] T Alexandra Beauregard, Kelly A Basile, and Esther Canonico. Telework: Outcomes and
facilitators for employees. 2019.

[9] Michal Beno. The advantages and disadvantages of e-working: An examination us-
ing an aldine analysis. Emerging Science Journal, 5:11–20, 04 2021. doi:10.28991/

esj-2021-SPER-02.

[10] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. Var-cnn: A data-efficient
website fingerprinting attack based on deep learning. Proceedings on Privacy Enhancing
Technologies, 2019:292–310, 10 2019. doi:10.2478/popets-2019-0070.

[11] Broadband. Key internet statistics to know in 2022 (including mobile), 2022. Accessed on
20-05-2022. URL: https://www.broadbandsearch.net/blog/internet-statistics.

[12] Sapna Chaudhary, Prince Sachdeva, Abhijit Mondal, Sandip Chakraborty, and Mukulika
Maity. Youtube over google’s quic vs internet middleboxes: A tug of war between proto-
col sustainability and application qoe, 2022. URL: https://arxiv.org/abs/2203.11977,
doi:10.48550/ARXIV.2203.11977.

[13] Yi-Chao Chen, Yong Liao, Mario Baldi, Sung-Ju Lee, and Lili Qiu. Os fingerprinting and
tethering detection in mobile networks. In Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC ’14, page 173–180, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2663716.2663745.

62

https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide/
https://gs.statcounter.com/os-market-share/desktop/worldwide/
https://www.rfc-editor.org/info/rfc1853
https://www.rfc-editor.org/info/rfc1853
https://doi.org/10.17487/RFC1853
https://doi.org/10.1109/CEC.2017.7969609
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://doi.org/10.1109/CNS.2017.8228647
https://doi.org/10.28991/esj-2021-SPER-02
https://doi.org/10.28991/esj-2021-SPER-02
https://doi.org/10.2478/popets-2019-0070
https://www.broadbandsearch.net/blog/internet-statistics
https://arxiv.org/abs/2203.11977
https://doi.org/10.48550/ARXIV.2203.11977
https://doi.org/10.1145/2663716.2663745

Chapter 6: BIBLIOGRAPHY 63

[14] Irfaan Coonjah, Pierre Clarel Catherine, and K. M. S. Soyjaudah. Experimental per-
formance comparison between tcp vs udp tunnel using openvpn. In 2015 International
Conference on Computing, Communication and Security (ICCCS), pages 1–5, 2015. doi:

10.1109/CCCS.2015.7374133.

[15] Irfaan Coonjah, Pierre Clarel Catherine, and K. M. S. Soyjaudah. An investigation of the
tcp meltdown problem and proposing raptor codes as a novel to decrease tcp retransmissions
in vpn systems. In Suresh Chandra Satapathy, Vikrant Bhateja, Radhakhrishna Somanah,
Xin-She Yang, and Roman Senkerik, editors, Information Systems Design and Intelligent
Applications, pages 337–347, Singapore, 2019. Springer Singapore.

[16] Samantha Cossick. If the internet shutdown for a day, what would happen?,
Sep 2021. Accessed on 20-05-2022. URL: https://www.allconnect.com/blog/

what-would-happen-if-internet-down-for-day.

[17] E.F. Crist and J.J. Keijser. Mastering OpenVPN. Community experience distilled. Packt
Publishing, 2015. URL: https://books.google.be/books?id=5VUqjgEACAAJ.

[18] Mariano Di Martino, Peter Quax, Wim Lamotte, and Neetesh Saxena. Knocking on ips:
Identifying https websites for zero-rated traffic. Sec. and Commun. Netw., 2020, jan 2020.
doi:10.1155/2020/7285786.

[19] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington DC, 2004.

[20] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham,
E. Roback, and James Dray. Advanced encryption standard (aes), 2001-11-26 2001.
doi:https://doi.org/10.6028/NIST.FIPS.197.

[21] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail. In 2012 IEEE Symposium
on Security and Privacy, pages 332–346, 2012. doi:10.1109/SP.2012.28.

[22] Pasi Eronen, Yoav Nir, Paul E. Hoffman, and Charlie Kaufman. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 5996, September 2010. URL: https://rfc-editor.
org/rfc/rfc5996.txt, doi:10.17487/RFC5996.

[23] Kristelle Feghali. The cia triad: Confidentiality, integrity and availability,
Oct 2021. Accessed on 20-05-2022. URL: https://medium.com/coinmonks/

the-cia-triad-confidentiality-integrity-and-availability-ef54d777cbd2.

[24] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese, Christoph
Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo Vallina-Rodriguez,
Oliver Hohlfeld, and Georgios Smaragdakis. A year in lockdown: How the waves of covid-19
impact internet traffic. Commun. ACM, 64(7):101–108, jun 2021. doi:10.1145/3465212.

[25] Sheila Frankel, K. Robert Glenn, and Scott G. Kelly. The AES-CBC Cipher Algorithm and
Its Use with IPsec. RFC 3602, September 2003. URL: https://www.rfc-editor.org/
info/rfc3602, doi:10.17487/RFC3602.

[26] Sergey Frolov and Eric Wustrow. The use of tls in censorship circumvention. In NDSS,
2019.

[27] José Luis Garćıa-Dorado, Javier Ramos, Miguel Rodŕıguez, and Javier Aracil. Dns
weighted footprints for web browsing analytics. Journal of Network and Computer Ap-
plications, 111:35–48, 2018. URL: https://www.sciencedirect.com/science/article/
pii/S1084804518300894, doi:https://doi.org/10.1016/j.jnca.2018.03.008.

https://doi.org/10.1109/CCCS.2015.7374133
https://doi.org/10.1109/CCCS.2015.7374133
https://www.allconnect.com/blog/what-would-happen-if-internet-down-for-day
https://www.allconnect.com/blog/what-would-happen-if-internet-down-for-day
https://books.google.be/books?id=5VUqjgEACAAJ
https://doi.org/10.1155/2020/7285786
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/SP.2012.28
https://rfc-editor.org/rfc/rfc5996.txt
https://rfc-editor.org/rfc/rfc5996.txt
https://doi.org/10.17487/RFC5996
https://medium.com/coinmonks/the-cia-triad-confidentiality-integrity-and-availability-ef54d777cbd2
https://medium.com/coinmonks/the-cia-triad-confidentiality-integrity-and-availability-ef54d777cbd2
https://doi.org/10.1145/3465212
https://www.rfc-editor.org/info/rfc3602
https://www.rfc-editor.org/info/rfc3602
https://doi.org/10.17487/RFC3602
https://www.sciencedirect.com/science/article/pii/S1084804518300894
https://www.sciencedirect.com/science/article/pii/S1084804518300894
https://doi.org/https://doi.org/10.1016/j.jnca.2018.03.008

Chapter 6: BIBLIOGRAPHY 64

[28] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. Hiding in the crowd: an
analysis of the effectiveness of browser fingerprinting at large scale. In Proceedings of the
2018 world wide web conference, pages 309–318, 2018.

[29] Fernando Gont. Layer 3 Virtual Private Network (VPN) Tunnel Traffic Leakages in Dual-
Stack Hosts/Networks. RFC 7359, August 2014. URL: https://rfc-editor.org/rfc/
rfc7359.txt, doi:10.17487/RFC7359.

[30] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Mamun, and Ali Ghorbani. Char-
acterization of encrypted and vpn traffic using time-related features. 02 2016. doi:

10.5220/0005740704070414.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition, 2015. URL: https://arxiv.org/abs/1512.03385, doi:10.48550/ARXIV.
1512.03385.

[32] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS (DoH). RFC 8484, Octo-
ber 2018. URL: https://www.rfc-editor.org/info/rfc8484, doi:10.17487/RFC8484.

[33] Matthias Horst, Martin Grothe, Tibor Jager, and Jörg Schwenk. Breaking pptp vpns via
radius encryption. In Sara Foresti and Giuseppe Persiano, editors, Cryptology and Network
Security, pages 159–175, Cham, 2016. Springer International Publishing.

[34] IANA. Service name and transport protocol port number registry. Accessed on 20-
05-2022. URL: https://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.xhtml?&page=19.

[35] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mohamed Ali Kaafar,
and Vern Paxson. An analysis of the privacy and security risks of android vpn permission-
enabled apps. In Proceedings of the 2016 Internet Measurement Conference, IMC ’16,
page 349–364, New York, NY, USA, 2016. Association for Computing Machinery. doi:

10.1145/2987443.2987471.

[36] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the fingerprinters:
Learning to detect browser fingerprinting behaviors. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1143–1161. IEEE, 2021.

[37] Joshua Jones, Hayden Wimmer, and Rami J. Haddad. Pptp vpn: An analysis of
the effects of a ddos attack. In 2019 SoutheastCon, pages 1–6, 2019. doi:10.1109/

SoutheastCon42311.2019.9020514.

[38] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M. Voelker, Alex C. Snoeren, Chris Kanich,
and Narseo Vallina-Rodriguez. An empirical analysis of the commercial vpn ecosystem. In
Proceedings of the Internet Measurement Conference 2018, IMC ’18, page 443–456, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3278532.

3278570.

[39] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M. Voelker, Alex C. Snoeren, Chris Kanich,
and Narseo Vallina-Rodriguez. An empirical analysis of the commercial vpn ecosystem. In
Proceedings of the Internet Measurement Conference 2018, IMC ’18, page 443–456, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3278532.

3278570.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
URL: https://arxiv.org/abs/1412.6980, doi:10.48550/ARXIV.1412.6980.

https://rfc-editor.org/rfc/rfc7359.txt
https://rfc-editor.org/rfc/rfc7359.txt
https://doi.org/10.17487/RFC7359
https://doi.org/10.5220/0005740704070414
https://doi.org/10.5220/0005740704070414
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://www.rfc-editor.org/info/rfc8484
https://doi.org/10.17487/RFC8484
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=19
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?&page=19
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1145/2987443.2987471
https://doi.org/10.1109/SoutheastCon42311.2019.9020514
https://doi.org/10.1109/SoutheastCon42311.2019.9020514
https://doi.org/10.1145/3278532.3278570
https://doi.org/10.1145/3278532.3278570
https://doi.org/10.1145/3278532.3278570
https://doi.org/10.1145/3278532.3278570
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1412.6980

Chapter 6: BIBLIOGRAPHY 65

[41] Michael K Kissi and Michael Asante. Penetration testing of ieee 802.11 encryption protocols
using kali linux hacking tools. International Journal of Computer Applications, 176(32):26–
33, 2020.

[42] Amit Klein and Benny Pinkas. Dns cache-based user tracking. In NDSS, 2019.

[43] Adam Langley. A Transport Layer Security (TLS) ClientHello Padding Extension. RFC
7685, October 2015. URL: https://www.rfc-editor.org/info/rfc7685, doi:10.17487/
RFC7685.

[44] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang,
Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman,
Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The quic transport protocol: Design and
internet-scale deployment. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’17, page 183–196, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3098822.3098842.

[45] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. Browser fingerprint-
ing: A survey. ACM Transactions on the Web (TWEB), 14(2):1–33, 2020.

[46] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi:10.1109/5.

726791.

[47] Ahmed Y. Lotfy, Alaa M. Zaki, Tarek Abd-El-Hafeez, and Tarek M. Mahmoud. Privacy is-
sues of public wi-fi networks. In Aboul Ella Hassanien, Abdelkrim Haqiq, Peter J. Tonellato,
Ladjel Bellatreche, Sam Goundar, Ahmad Taher Azar, Essaid Sabir, and Driss Bouzidi, ed-
itors, Proceedings of the International Conference on Artificial Intelligence and Computer
Vision (AICV2021), pages 656–665, Cham, 2021. Springer International Publishing.

[48] David McGrew and John Viega. The galois/counter mode of operation (gcm). submission
to NIST Modes of Operation Process, 20:0278–0070, 2004.

[49] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Icml, 2010.

[50] OECD. Teleworking in the covid-19 pandemic: Trends and prospects, Sep 2021. Accessed
on 20-05-2022. URL: https://www.oecd.org/coronavirus/policy-responses/

teleworking-in-the-covid-19-pandemic-trends-and-prospects-72a416b6/

#section-d1e858.

[51] OpenVPN. Why does openvpn use udp and tcp?, May 2019. Accessed on 20-05-2022. URL:
https://openvpn.net/faq/why-does-openvpn-use-udp-and-tcp/.

[52] OpenVPN, Nov 2021. Accessed on 20-05-2022. URL: https://openvpn.net/.

[53] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website finger-
printing in onion routing based anonymization networks. In WPES ’11, 2011.

[54] Vasile C. Perta, Marco V. Barbera, Gareth Tyson, Hamed Haddadi, and Alessandro Mei.
A glance through the vpn looking glass: Ipv6 leakage and dns hijacking in commercial
vpn clients. Proceedings on Privacy Enhancing Technologies, 2015(1):77–91, 2015. URL:
https://doi.org/10.1515/popets-2015-0006, doi:doi:10.1515/popets-2015-0006.

[55] Vasile Claudiu Perta, M Barbera, Gareth Tyson, Hamed Haddadi, Alessandro Mei, et al.
A glance through the vpn looking glass: Ipv6 leakage and dns hijacking in commercial vpn
clients. 2015.

https://www.rfc-editor.org/info/rfc7685
https://doi.org/10.17487/RFC7685
https://doi.org/10.17487/RFC7685
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://www.oecd.org/coronavirus/policy-responses/teleworking-in-the-covid-19-pandemic-trends-and-prospects-72a416b6/#section-d1e858
https://www.oecd.org/coronavirus/policy-responses/teleworking-in-the-covid-19-pandemic-trends-and-prospects-72a416b6/#section-d1e858
https://www.oecd.org/coronavirus/policy-responses/teleworking-in-the-covid-19-pandemic-trends-and-prospects-72a416b6/#section-d1e858
https://openvpn.net/faq/why-does-openvpn-use-udp-and-tcp/
https://openvpn.net/
https://doi.org/10.1515/popets-2015-0006
https://doi.org/doi:10.1515/popets-2015-0006

Chapter 6: BIBLIOGRAPHY 66

[56] Michael Peterson. Chapter 1 - maps and the internet: An introduction. In Michael Peterson,
editor, Maps and the Internet, International Cartographic Association, pages 1–16. Elsevier
Science, Oxford, 2003. URL: https://www.sciencedirect.com/science/article/pii/
B9780080442013500037, doi:https://doi.org/10.1016/B978-008044201-3/50003-7.

[57] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczynski,
and Wouter Joosen. Tranco: A research-oriented top sites ranking hardened against
manipulation. In Proceedings 2019 Network and Distributed System Security Sympo-
sium. Internet Society, 2019. URL: https://doi.org/10.14722%2Fndss.2019.23386,
doi:10.14722/ndss.2019.23386.

[58] E Ramadhani. Anonymity communication VPN and tor: a comparative study. Journal
of Physics: Conference Series, 983:012060, mar 2018. doi:10.1088/1742-6596/983/1/

012060.

[59] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS En-
crypted Client Hello. Internet-Draft draft-ietf-tls-esni-14, Internet Engineering Task Force,
February 2022. Work in Progress. URL: https://datatracker.ietf.org/doc/html/

draft-ietf-tls-esni-14.

[60] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter Joosen.
Automated website fingerprinting through deep learning. 02 2018. doi:10.14722/ndss.

2018.23115.

[61] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, feb 1978. doi:10.1145/359340.
359342.

[62] Joseph A. Salowey, David McGrew, and Abhijit Choudhury. AES Galois Counter Mode
(GCM) Cipher Suites for TLS. RFC 5288, August 2008. URL: https://www.rfc-editor.
org/info/rfc5288, doi:10.17487/RFC5288.

[63] Bruce Schneier, Mudge, and David Wagner. Cryptanalysis of microsoft’s pptp authentica-
tion extensions (ms-chapv2). In Secure Networking — CQRE [Secure] ’ 99, pages 192–203,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[64] Security.org. Vpn consumer usage, adoption, and shopping study: 2021, Dec
2021. Accessed on 20-05-2022. URL: https://www.security.org/resources/

vpn-consumer-report-annual/.

[65] Tal Shapira and Yuval Shavitt. Flowpic: Encrypted internet traffic classification is as
easy as image recognition. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 680–687, 2019. doi:10.1109/
INFCOMW.2019.8845315.

[66] Tal Shapira and Yuval Shavitt. Flowpic: A generic representation for encrypted traffic
classification and applications identification. IEEE Transactions on Network and Service
Management, 18(2):1218–1232, 2021. doi:10.1109/TNSM.2021.3071441.

[67] Yueshi Shen. Live video transmuxing/transcoding: Ffmpeg vs twitchtranscoder,
part i. Accessed on 20-05-2022. URL: https://blog.twitch.tv/en/2017/10/10/

live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/

#:~:text=RTMP%20is%20a%20protocol%20designed,most%20video%20websites%

20also%20use.

https://www.sciencedirect.com/science/article/pii/B9780080442013500037
https://www.sciencedirect.com/science/article/pii/B9780080442013500037
https://doi.org/https://doi.org/10.1016/B978-008044201-3/50003-7
https://doi.org/10.14722%2Fndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1088/1742-6596/983/1/012060
https://doi.org/10.1088/1742-6596/983/1/012060
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-14
https://doi.org/10.14722/ndss.2018.23115
https://doi.org/10.14722/ndss.2018.23115
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://doi.org/10.17487/RFC5288
https://www.security.org/resources/vpn-consumer-report-annual/
https://www.security.org/resources/vpn-consumer-report-annual/
https://doi.org/10.1109/INFCOMW.2019.8845315
https://doi.org/10.1109/INFCOMW.2019.8845315
https://doi.org/10.1109/TNSM.2021.3071441
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/#:~:text=RTMP%20is%20a%20protocol%20designed,most%20video%20websites%20also%20use.
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/#:~:text=RTMP%20is%20a%20protocol%20designed,most%20video%20websites%20also%20use.
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/#:~:text=RTMP%20is%20a%20protocol%20designed,most%20video%20websites%20also%20use.
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/#:~:text=RTMP%20is%20a%20protocol%20designed,most%20video%20websites%20also%20use.

Chapter 6: BIBLIOGRAPHY 67

[68] Tanya Shreedhar, Rohit Panda, Sergey Podanev, and Vaibhav Bajpai. Evaluating quic
performance over web, cloud storage and video workloads. IEEE Transactions on Network
and Service Management, pages 1–1, 2021. doi:10.1109/TNSM.2021.3134562.

[69] Jinho Song, Yonggun Kim, and Yoojae Won. Operating system fingerprint recognition using
icmp. In James J. Park, Doo-Soon Park, Young-Sik Jeong, and Yi Pan, editors, Advances
in Computer Science and Ubiquitous Computing, pages 285–290, Singapore, 2020. Springer
Singapore.

[70] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[71] Michael Tüxen, Fulvio Risso, Jasper Bongertz, Gerald Combs, Guy Harris, Eelco Chau-
dron, and Michael Richardson. PCAP Next Generation (pcapng) Capture File For-
mat. Internet-Draft draft-tuexen-opsawg-pcapng-04, Internet Engineering Task Force,
October 2021. Work in Progress. URL: https://datatracker.ietf.org/doc/html/

draft-tuexen-opsawg-pcapng-04.

[72] Andrew J. Valencia, Glen Zorn, William Palter, Gurdeep-Singh Pall, Mark Townsley, and
Allan Rubens. Layer Two Tunneling Protocol ”L2TP”. RFC 2661, August 1999. URL:
https://www.rfc-editor.org/info/rfc2661, doi:10.17487/RFC2661.

[73] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA, 2009.

[74] Jack Wilson, David McLuskie, and Ethan Bayne. Investigation into the security and privacy
of ios vpn applications. In Proceedings of the 15th International Conference on Availability,
Reliability and Security, ARES ’20, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3407023.3407029.

[75] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing: An efficient
defense against statistical traffic analysis. In NDSS, volume 9, 2009.

[76] Sami Zhioua. The web browser factor in traffic analysis attacks. Security and Communi-
cation Networks, 8(18):4227–4241, 2015.

[77] Sami Zhioua and Mahjoub Langar. Traffic analysis of web browsers. In FMS@ Petri Nets,
pages 20–33. Citeseer, 2014.

[78] Glen Zorn, Gurdeep-Singh Pall, and Kory Hamzeh. Point-to-Point Tunneling Protocol
(PPTP). RFC 2637, July 1999. URL: https://rfc-editor.org/rfc/rfc2637.txt, doi:
10.17487/RFC2637.

https://doi.org/10.1109/TNSM.2021.3134562
https://datatracker.ietf.org/doc/html/draft-tuexen-opsawg-pcapng-04
https://datatracker.ietf.org/doc/html/draft-tuexen-opsawg-pcapng-04
https://www.rfc-editor.org/info/rfc2661
https://doi.org/10.17487/RFC2661
https://doi.org/10.1145/3407023.3407029
https://rfc-editor.org/rfc/rfc2637.txt
https://doi.org/10.17487/RFC2637
https://doi.org/10.17487/RFC2637

	Introduction
	Background
	Cryptography
	Tunneling
	Virtual Private Network (VPN)
	Use cases
	Protocols

	OpenVPN protocol
	Virtual network adapters
	Data and control channel
	UDP vs TCP tunnel
	Encapsulation

	Man in the middle attack

	Fingerprinting intercepted traffic
	Plain text attributes
	VPN and Tor traffic

	Manual Approach
	Experiment: visualising browser generated traffic
	Matching OpenVPN packets with regular packets
	Feature discovery
	TCP Acknowledgement
	QUIC Acknowledgement
	TLS Client Hello
	Packet rate
	IP time to live
	Maximum packet size
	Recap

	Classification process
	Evaluation
	Dataset creation
	Method
	Results & Discussion

	Live classifying tool
	Mitigations

	Machine Learning Approach
	Method
	Results & Discussion

	Conclusion
	Appendices
	Dutch Summary
	Inleiding
	Achtergrond
	Fingerprinten van onderschept netwerkverkeer
	Fingerprinten van besturingssysteem, web browser en verkeer: manuele methode
	Fingerprinten van besturingssysteem, web browser en verkeer: machine learning methode
	Conclusie

