
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Real-time analytics of concurrent adaptive video streams using next-generation
protocols

Mike Vandersanden
Scriptie ingediend tot het behalen van de graad van master in de informatica

2021
2022

PROMOTOR :

Prof. dr. Peter QUAX

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Real-time analytics of concurrent adaptive video streams using next-generation
protocols

Mike Vandersanden
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Peter QUAX

Universiteit Hasselt

Master’s thesis nominated for obtaining a master’s degree in
computer science

Networking and Security –
Real-Time Analytics of Concurrent

Adaptive Video Streams using
Next-Generation Protocols

Author :

Mike Vandersanden

Promotor :

Prof. Dr. Peter Quax

Co-promotor :

Prof. Dr. Wim Lamotte

Mentors :

Drs. Joris Herbots
Dr. Maarten Wijnants

Academic Year 2021-2022

Acknowledgements

I would like to recognize the invaluable assistance of all the people who stood by my side
throughout accomplishing this thesis, this would not have been possible without them.

Foremost, I am extremely grateful for the guidance given by Drs. Joris Herbots. Working
together, and spending many hours discussing numerous subjects, resulted in insights that I
would not have had otherwise. The frequent feedback I was able to receive made sure the thesis
always kept a pace towards the objectives.

This thesis has been made in collaboration with the Networking and Secured Systems research
department. I would also like to thank these people, with extra gratitude towards Dr. Maarten
Wijnants for the mentoring he did, my promotor Prof. Dr. Peter Quax, and co-promotor Prof.
Dr. Wim Lamotte. I would also like to acknowledge the help of Dr. Robin Marx, for the few but
insightful conversations we had. My gratitude goes towards the assessors for taking the time to
read this thesis.

Last, but definitely not least, I would like to thank all my friends and family to keep me sane and
motivated. Explicitly, Olaf and Arno for joining me during “QUIC @ EDM – summer edition”,
and participating in the many discussions that arose. And I am grateful for the proofreading by
Anne, Laura and Paulien, who made sure the text was clear.

ii

Abstract

Video streaming is a significant portion of the daily activity on the Internet. With growing
user bases, streaming over the HyperText Transfer Protocol (HTTP) is becoming the popular
streaming method. HTTP Adaptive Streaming (HAS) provides adaptability to the network,
by making in-the-moment decisions that will ensure the best possible experience for the user,
influenced by the current network environment. Another benefit of using HTTP is being able to
leverage the existing architectures that improve the performance of HTTP, such as a Content
Delivery Network (CDN). By utilizing a next-generation of network protocols, the performance
of HAS can be further improved. Streaming using the next-generation protocols HTTP/3 and
QUIC can eradicate certain flaws in the more traditional solution that uses HTTP/1.1 and
TCP.

Improvements can only be made when the flaws are first uncovered. A streaming client gener-
ates a plethora of logging data, that can be analyzed. Insights can be gained, and flaws will
emerge. This thesis proposes an analysis service that can ingest the logging data in real-time and
visualize it in interesting ways, in order to ease this analysis process. To facilitate the testing
of applications in an academic setting, a framework can be used to ensure consistent tests. The
evaluation of this thesis links the proposed analysis service to a testing framework in order to
inspect the logging data of video streaming applications. Resulting in not just the ability to
analyze the streaming session of multiple streaming clients, while they are streaming, but also
being able to infer events of outside forces, such as network middleboxes, other streaming clients
and various applications competing for network bandwidth.

iii

Samenvatting

Videostreaming is een aanzienlijk deel van de dagelijkse activiteit op internet. Met een groeiend
aantal gebruikers wordt streaming via het HyperText Transfer Protocol (HTTP) de populaire
streamingmethode. HTTP Adaptive Streaming (HAS) biedt de mogelijkheid om zich aan het
passen aan het netwerk door beslissingen te nemen wanneer het netwerk zich anders begint
te gedragen. Dit garandeert de best mogelijke ervaring voor de gebruiker, gegeven de huidige
netwerk omgeving, zoals gëıllustreerd in figuur 1. Een ander voordeel van over HTTP te streamen
is de mogelijkheid om gebruik te maken van de bestaande oplossingen die de prestaties van
HTTP verbeteren, zoals een Content Delivery Network (CDN). Door gebruik te maken van een
nieuwere netwerkprotocollen, kunnen de prestaties van HAS verder worden verbeterd. streaming
met behulp van de nieuwer protocollen HTTP/3 en QUIC kan bepaalde fouten wegwerken in
de meer traditionele oplossing, die streamt met HTTP/1.1 en TCP. Deze protocollen worden
vergeleken in figuur 2.

Figure 1: Een reeks videosegmenten, gestreamd door de applicatie, en de beschikbare
bandbreedte in op ieder moment, uitgedrukt in bits per seconde (bps). De kleur van de
segmenten representeert de kwaliteit, groen is de hoogste kwaliteit, rood de laagste kwaliteit.
Telkens wanneer de bandbreedte daalt, heeft het volgende segment een lagere kwaliteit,
terwijl wanneer de bandbreedte weer stijgt, de kwaliteit van het gekozen segment ook hoger
zal zijn.

Verbeteringen kunnen alleen worden aangebracht wanneer de gebreken eerst worden ontdekt.
Een streamingapplicatie maakt verschillende datapunten aan over de streamingsessie, die kunnen
worden geanalyseerd, en zo worden er fouten ontdekt. Deze thesis stelt een analyseprogramma
voor die de data van applicaties live kan opnemen en op interessante manieren kan visualiseren,
om het analyseproces te vergemakkelijken. Om het testen van applicaties in een academische
setting eenvoudiger te maken, kan een raamwerk worden gebruikt om de consistentie van testen
te garanderen. De evaluatie van deze thesis koppelt het voorgestelde analyseprogramma aan een
raamwerk om videostreamingapplicaties te testen, dit wordt getoond in figuur 3. Dit raamwerk
zorgt ervoor dat testen worden uitgevoerd, en de gegenereerde data van de applicaties kan dan
geanalyseerd worden door het analyseprogramma. Het resultaat is niet alleen de mogelijkheid om
de streamingsessie van meerdere streamingapplicaties te analyseren, terwijl ze aan het streamen

iv

v

Figure 2: Een figuur waarin HTTP/1.1 (a), HTTP/2 (b) en HTTP/3 (c) worden
vergeleken. HTTP/1.1 en HTTP/2 houden zich beide aan het gelaagde model. HTTP/3
houdt zich niet aan het gelaagd model, door de integratie van TLS in QUIC. QUIC heeft
daarnaast ook overlap met TCP en HTTP/2.

zijn, maar ook om gebeurtenissen van externe krachten af te leiden, zoals andere apparaten die
tussen de applicatie en de server staan, andere streamingapplicaties, of verschillende applicaties
die strijden om netwerkbandbreedte.

Figure 3: De onderdelen van het test- en analyseraamwerk. Link bevindt zich het anal-
yseprogramma, bestaande uit de analyzer en de visualizer. Aan de rechterkant staat het
analyseraamwerk waar testen voor videostreamapplicaties mee kunnen worden uitgevoerd.

Het is belangrijk om over de juiste datapunten te beschikken, zonder de juiste data is het on-
mogelijk om een goede analyse te bekomen. Zo wordt de doorvoersnelheid van het netwerk niet
gemeten in de applicatie, omdat de applicatie niet weet hoeveel data de lagere lagen toevoe-
gen, maar zal er gekozen worden om de nuttige data die doorgekomen is te meten, genaamd de
goodput. Daarnaast is het ook belangrijk om de interessante gebeurtenissen op te vangen, zoals
buffering van de streaming applicatie, omdat een negatief effect heeft op de gebruikerservaring.
Nadat de data binnen is gekomen bij het analyseprogramma moet de analyse uitgevoerd wor-
den. Om te beginnen moet de data op interessante manieren gevisualiseerd worden, dit is een
uitdaging. Figuur 4 toont hoe een dataset die verbindingen tussen apparaten op verschillende
manieren gevisualiseerd kan worden. Iedere visualisatie heeft zijn eigen voor- en nadelen, en
zal een bepaald attribuut van de dataset aan het licht brengen. Een belangrijk aspect van de
evaluatie was dan ook om visualisaties op te stellen die de juiste data op de correcte manier
toont.

Tijdens de evaluatie wordt er gebruikt gemaakt van het raamwerk om te verzekeren dat de
gekozen parameters vast staan. Er worden dan meerdere testen uitgevoerd, elke test past een
bepaalde parameter aan. Er kan dan vergeleken worden tussen de resultaten van deze testen om

vi

Figure 4: Verschillende visualisaties van eenzelfde dataset die een netwerk voorstelt. (a)
De linkmap toont verbindingen tussen apparaten. (b) De knooppuntenkaart, gebruikt pic-
togrammen om gegevens over te brengen voor ieder apparaat, in dit geval vertegenwoordigt
het pictogram het aantal totale verbindingen naar een apparaat. (c) De matrixweergave
geeft aan of twee apparaten een verbinding hebben door het snijpunt te markeren. (d) De
reeksweergave, het laat zien welke verbindingen verschijnen op welk moment in de tijd.

de impact van de aangepaste parameter vast te stellen. Zo is er vastgesteld dat het mogelijk is
om de data die applicaties genereren live door te sturen naar het analyseprogramma, maar dat
hiervoor genoeg bandbreedte nodig is. Daarnaast moet de manier waarop de data doorgestuurd
wordt ook aangepast worden aan de huidige omstandigheden. Figuur 5 toont hoe verschillende
methoden van data doorsturen een impact kunnen hebben op de streamingervaring. Andere
testen tonen bijvoorbeeld dat meerdere applicaties die tegelijkertijd streamen zeer gelijkaardige
metingen kunnen doen van het netwerk. Maar zoals figuur 6 aantoont, betekent dit niet altijd
dat de applicaties dezelfde ervaring zullen hebben. De kleine verschillen tussen de metingen van
deze applicaties zorgen ervoor dat een applicatie veel meer negatieve gebeurtenissen ervaart in
vergelijking met de andere applicatie.

Figure 5: Het verschil in goodput tussen het streamen van de data gegenereerd door de
applicatie een voor een (trace 1) en in groepen van 100 datapunten (trace 2). De groepen
zorgen voor minder overlast op het netwerk.

Er kan geconcludeerd worden dat het doel van de thesis bereikt is. Het analyseprogramma
kan een videostreamsessie live analyseren, zonder de ervaring negatief te bëınvloeden. Maar er
is nog manuele interventie nodig om dit tot een goed einde te brengen. Niet alleen moet de
applicatie juist ingesteld worden om de negatieve impact te voorkomen, de analyse zelf moet
volledig manueel uitgevoerd worden. De juiste aanpak vinden om dit manueel proces succesvol
af te ronden vergt ervaring. Daarnaast is het live aspect van het analyseprogramma niet volledig
tot zijn recht kunnen komen in deze opstelling waar het manueel verwerken van de data veel

vii

Figure 6: Het verschil in goodput tussen twee applicaties die tegelijkertijd aan het streamen
waren, terwijl er ook andere applicaties op het netwerk bezig waren. De rode lijnen stelt
buffering voor bij trace 1, de blauwe lijnen stelt buffering voor bij trace 2.

trager is dan de data binnenstroomt.

Contents

1 Preface 1

2 Next-Generation Protocols 3
2.1 Networked Applications . 3
2.2 Transport Protocols . 6
2.3 Transfer Protocols . 14

3 Streaming 18
3.1 Content . 19
3.2 Streaming Architecture . 23
3.3 Streaming Techniques . 24
3.4 Adaptive Streaming . 26

4 Simulation 31
4.1 Framework . 31
4.2 Client . 32
4.3 Server . 33
4.4 Network . 34

5 Data and Visualization 36
5.1 Network Logs and Visualization . 36
5.2 Client and Server Logs . 37
5.3 Client and Server Visualization . 39

6 Analysis Framework 44
6.1 Analysis Service . 44
6.2 Simulation Subjects . 52
6.3 Preliminary Testing . 52

7 Evaluation 55
7.1 Methodology . 55
7.2 Tests and Results . 58
7.3 Analysis Service . 84

8 Conclusion 85
8.1 Future Work . 86
8.2 Reflection . 87

viii

Chapter 1

Preface

Video streaming makes up a significant portion of the daily Internet traffic. According to
Hootsuite, who surveys social media and digital trends, nine out of ten Internet users admit
to using a portion of their daily Internet usage to watch any kind of video, while average time
spent on the Internet each day is around seven hours [Hoo21]. The share of global internet traffic
that goes to video streaming services like Facebook, TikTok, Twitch, and YouTube is growing
as social media platforms compete with other platforms by adding rival features to increase the
size of their user base and become the most popular [Thu22]. Aside from that, more traditional
video streaming services, such as Netflix, Disney+, Amazon Prime, or even the set-top box of a
local internet service provider, remain popular and have daily global usage.

With such a large user base, that can get millions of views on a video in a few days, streaming
protocols and standards have diverged from traditional architectures in favor of more scalable
alternatives that can provide a higher quality of experience. The HyperText Transfer Protocol
(HTTP) Adaptive Streaming paradigm allows a streaming session to adapt to the network by
leveraging algorithms that can make in-the-moment decisions to prevent events that degrade the
experience. By using HTTP to transfer data, it can also take advantage of existing infrastructure
and technologies that improve HTTP traffic performance, such as a Content Delivery Network
(CDN) [Clo22c].

A next-generation of network protocols is being developed to improve performance even fur-
ther by eradicating flaws in traditional protocols. HTTP/3 and QUIC are two next-generation
protocols that work together and can be used for HTTP Adaptive Streaming instead of the
traditional HTTP/1.1 and TCP solution. According to CloudFlare Radar, a service that tracks
Internet trends, approximately 30% of all Internet traffic is already transferred using these
next-generation protocols, which have been influenced principally by large corporations such as
Google, Facebook, and Cloudflare [Clo22a]. This traffic almost certainly includes video stream-
ing.

Analysis of video streaming service and next-generation protocol traffic is already being per-
formed, as evidenced by reports published on a regular basis, such as those by Hootsuite or
Cloudflare. The research community and the industry are working together as well, with the
objective to come up with novel ideas to improve media delivery over the next-generation proto-
cols [IET22]. These analyses and subsequent improvements will reassure content providers that
their promises to deliver content of a certain quality can be maintained.

The objective of this thesis is to investigate whether existing analysis techniques can be used to
perform real-time analysis on a video streaming session using next-generation protocols. It has
already been established that video streaming services allow their numerous client applications
to send back reports while streaming [Adh+12], and data analysis is an established part of

1

2 CHAPTER 1. PREFACE

the improvement process of network protocols [Mar+20a]. The next logical step is to analyze
these reports as they are returned. Modern streaming services have large user bases, in a
household there can be multiple applications streaming concurrently. The interactions between
the applications on the networks are suspected to result in events that will be interesting to
analyze. It is hypothesized that a content provider can leverage this manner of analysis, proposed
by the thesis, in order to inspect streaming session and gain insights about them. This can lead
to determining what could be improved to increase the quality of the experience of the users. The
sooner insights are gained, the sooner improvements can be made, which is why the real-time
aspect seems promising.

This thesis is categorized as a case study. The following research question must be addressed in
order to confirm the viability of the goal:

(RQ1): Is it possible to perform real-time analysis of an adaptive video stream when using next-
generation protocols, without impacting the performance of the application negatively?

(RQ2): What is the difference in performance, when adaptive streaming using next-generation
protocols, between having:

(a) different amounts of concurrent clients

(b) clients with diverse behavior

(c) various network environments

(d) assorted competing applications on the network

To answer the research questions, a solid understanding of various topics is required, ranging
from networking and video streaming to simulation and data visualization. A proof-of-concept
implementation combines this knowledge, and is needed to perform an assortment of tests. The
results of those tests can then be used to provide answers to the questions asked. This process
is described in the following chapters:

Chapter 2 An exploration of traditional and next-generation network protocols, and a com-
parison between them.

Chapter 3 An introduction to video streaming, and a discussion of modern streaming protocols
and standards.

Chapter 4 Finding the means to make simulation of video streaming possible and convenient.

Chapter 5 A discussion on what kind of data can be generated by simulation subjects during
a video streaming session, and how to facilitate its visualization and analysis.

Chapter 6 Clarifying the contributions made by the thesis, its implementation.

Chapter 7 Records of the evaluation phase.

Chapter 8 A conclusion that reflects on the thesis and its contributions.

Chapter 2

Next-Generation Protocols

A networked application is one that sends data over a communication network. It is made
up of the application logic and the supporting network stack, which allows two applications
to communicate with one another. Chapter 3 explores relevant streaming protocols for the
application logic. Section 2.2 of this chapter looks at transport layer protocols. Following that,
in Section 2.3, it investigates relevant application layer transfer protocols.

2.1 Networked Applications

The network stack of a networked application is a collection of protocols that interact with one
another to provide the functionalities required to enable communication over a network with an
equivalent network stack. In the context of this thesis, a protocol refers to a communication
protocol, which is a set of rules that allows communicating entities to exchange data. Not only
is the data format enforced, but so is the order in which it is transmitted, and what actions
an entity must take when certain events occur [KR17]. Data is passed from one protocol to
another like a conveyor belt, with each protocol changing the data to their own representation,
for example, by wrapping the data with more metadata or changing the coding. Every rep-
resentation ensures that the data is understood by the receiving protocol stack and facilitates
various functionalities. Next-generation protocols are those that have recently been developed
and focus on being evolvable, thereby future-proof [Bom22].

There are several ways to define the unit of communication between two networked entities.
For the sake of clarity, this thesis defines packets as the unit of a transport protocol. Messages
are the unit of communication in a transfer protocol. Both are structured data that is used to
communicate between two entities that are using the same protocol.

The network stack can be represented in a variety of ways, one of which is the seven-layered OSI
reference model [Sha22], illustrated in Figure 2.1a. Every layer is defined by its function, with
a higher layer building on lower layers to add functionality for the network stack to function
as expected by the networked application. A networked application may require secure trans-
missions, for example, which means that either the application or a layer within the network
stack must implement this requirement. The distinction between layer 7, the application layer,
and the networked application is critical. A networked application, such as a web browser, an
online game, or a video chat app, provides a service to a user via a communication network.
Layer 7, on the contrary, handles communication between the application and another entity,
such as the File Transfer Protocol (FTP) or the Simple Mail Transfer Protocol (SMTP). An
application creates layer 7 messages which transfer data to or request data from another en-
tity in the network, and the protocol executes the data communication using the functionality

3

4 CHAPTER 2. NEXT-GENERATION PROTOCOLS

provided by lower layers. Layer 6, the presentation layer, receives the message and changes the
data representation. To enable secure transmissions, cryptographic encryption and decryption
of data is one example. The session layer, layer 5, manages the connection between the sender
and the receiver. The session layer establishes the connection, terminates it when the session
is over, and ensures that it is available when needed. For example, a socket is a combination
of layer 4 port numbers and layer 3 IP addresses that define a connection between two hosts.
The layers beneath the session layer determine the behavior of the connection. Aside from port
numbers, layer 4, the transport layer, is responsible for controlling how data is transmitted, such
as packet size, when a packet is sent, and what to do when a packet arrives and when it does not.
The network layer, layer 3, provides network addresses such as IP addresses. Routers and other
middleboxes use the addresses to forward packets to the next hop in the network, which leads
to the destination. The data link later, layer 2, handles communication between two directly
connected entities in the network. Layer 1, the physical layer, enables the entities to transmit
packets from one another via a physical medium. The packets are converted into signals that
are transmitted over a cable or wirelessly.

Figure 2.1: (a) The OSI reference model and (b) the internet protocol suite model, abstract
representations of a network stack, next to (c) an example of such a stack for a streaming
application.

The four-layered Internet Protocol (IP) suite model [Bra89a; Bra89b] is another representation,
illustrated in Figure 2.1b. If compared to the OSI model, this model combines all layers above
the transport layer into the application layer. The application layer provides the protocols that
allow the overarching networked application to communicate with another application. The
transport layer is a layer below that performs the same function as the OSI model, providing
logical communication and managing communication. The internet layer is very similar to the
OSI network layer, since it routes packets through various networks to the right host. Finally,
the link layer, which combines the data link and physical layer of the OSI model, handles
communication within the local network.

While the network stack encapsulates the lower layers required for network communication,
any layers above this stack encompass the higher-level protocols as well as application-specific
business logic. The layers of the stack are the building blocks of the application and they work
together to ensure that the required features of the application are present [MH21]. Figure
2.1 depicts the OSI and IP suite models, as well as an example stack for a streaming applica-
tion. A protocol is used to fill in the gaps in each layer of the application. The highest layer,

2.1. NETWORKED APPLICATIONS 5

application-specific business logic, is MPEG-DASH, a streaming protocol described in Section
3.4. These higher-level layers are not defined in the abstract models. This thesis makes several
assumptions regarding the network stack of an application. We assume that the lowest layers,
the physical layer and the data link layer, transmit data correctly. IP is used for the network
layer in all network communication; an application binds to a socket, which establishes the
connection.

Figure 2.2: These illustrations show the relationships between different network metrics.
(a) Goodput is similar to the throughput, but measured without the overhead of lower layers.
(b) A connection is limited by the lowest bandwidth between the two networked devices.
The bandwidth of the indirect connection between A and C is limited by A-B, even though
B-C has double the bandwidth. The logical connection A-C will have the same bandwidth
as A-B. (c) Latency is the delay in one way, RTT is delay in both directions, jitter is the
variability in latencies, and loss is whenever a packet does not arrive.

Figure 2.2 depicts a number of network metrics that are important to this thesis [KR17]. Fore-
most, the bandwidth of the network, the maximum amount of data that can be transferred over
a connection, expressed in bits per second (bps). The one gigabit per second (Gbps) band-
width of a Cat5e network cable, or the twenty megabits per second (Mbps) bandwidth of a
home internet connection are a few examples. A connection can be either direct or indirect. A
direct connection physically connects the sender and receiver, whereas an indirect connection
has their packets forwarded by intermediate devices. The lowest bandwidth connection between
two devices of the overarching connection limits the bandwidth of a connection. Throughput is
measured similarly, but it represents the actual amount of data that an application can transfer
over the connection at that time. This value might be lower than the bandwidth for a variety
of reasons, including multiple applications communicating over the network, lowering the share
of the bandwidth that each application can take ownership of. Furthermore, at higher layers it
is difficult to measure the throughput accurately, because lower layers add their own headers to
the data, of which the size cannot be measured by the higher layers. The term goodput refers
to the useful amount of data transferred over the network without the overhead of lower layers,
which is again expressed in bps. This can be measured accurately at the higher layers. Data sent
over a network by a communicating party does not arrive instantaneously at the receiver; there
is a latency expressed in time units. The latency of a connection is proportional to its physical
length. The time it takes for data to be sent to another party and for the response of that
party to arrive is referred to as the round trip time (RTT), which is the sum of latencies in both
directions. Another critical measure is the amount of round trips required before application

6 CHAPTER 2. NEXT-GENERATION PROTOCOLS

data is transmitted. Any communication without data required to execute the main function of
the application; such as handshakes or metadata exchange, will cause the application to start
late.

The connection, however, may have fluctuating measurements over time. Congestion is a major
cause of this, which occurs when more data is sent than the network can handle. Middleboxes
may be forced to drop data, resulting in packets not being forwarded. The packet loss metric
represents the percentage of packets lost during transmission. Lost packets that are retransmit-
ted will have a higher latency compared to packets that get delivered on the first attempt. The
fluctuation in latency is referred to as jitter.

Bufferbloat is another issue that causes measurement irregularities. Many network devices have
large buffers in an attempt to reduce packet loss. The device can receive packets, temporarily
store them in the buffer, and then forward them while maintaining maximum throughput. How-
ever, if the network becomes congested, the buffer will approach its maximum capacity, and the
device will be unable to forward packets as quickly as they arrive. Because no loss is detected,
the applications sending data are not notified of the congestion in a timely manner. This can
result in increased latencies and jitter [The22a; Get11].

2.2 Transport Protocols

Logical communication is provided by the transport layer. Two applications can communicate as
if they were directly connected via the transport layer. If there is no direct connection, the lower
layers handle forwarding packets to the correct host [KR17]. There are two traditional transport
protocols relevant to this thesis: User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP). A connectionless and unreliable protocol and a connection-oriented and reliable
protocol, respectively. The next-generation protocol QUIC will be discussed afterwards.

The three-page specification for UDP [Pos80] describes a very bare-bones protocol. A UDP
datagram, as shown in Figure 2.3, only provides the source and destination port numbers, the
payload length, and the payload checksum. The port numbers are required for a host to multiplex
connections. An application binds to a socket created with a port number. When a packet arrives
at the host, it is routed to the right socket, ensuring that it reaches the intended application. As
a result, a host can have multiple connections open at the same time. The other fields show the
payload length, the cumulative amount of bytes of the header and the payload, and a checksum,
to ensure data integrity. Application data can be found after 64 bits of overhead. Furthermore,
UDP is connectionless and unreliable. There is no handshake between the two communicating
entities, and no explicit connection is established. Every packet sent will be delivered with in
a best-effort manner [KR17]. Because application data can be sent immediately, the minimal
overhead results in good performance, as shown in Figure 2.4. Packets, on the other hand, can
be lost and will never be retransmitted. The purpose of this protocol is to allow applications to
send messages while using as few protocol mechanisms as possible.

A few years before UDP, the first in-depth specification of the Transmission Control Protocol
(TCP) [CYC74] was released. TCP should be used whenever an application requires ordered
and reliable data stream delivery, according to the UDP specification. The TCP datagram is
depicted in Figure 2.5. The first 32 bits represent the source and destination port numbers. The
sequence and acknowledgement numbers ensure reliability. The sequence number expresses the
offset of the first byte transported during this TCP session; for example, if 5000 bytes must be
transported and the network can only handle 500 bytes at once (excluding the TCP header),
100 TCP packets will be created, with sequence numbers: 0, 500, 1000, . . . , 4500. The next
expected byte is represented in the acknowledgement number; for example, if the first packet
with 500 bytes arrives, the acknowledgement number will be 501. The offset specifies where the

2.2. TRANSPORT PROTOCOLS 7

Figure 2.3: UDP datagram.

Figure 2.4: A diagram showing UDP communication between a client and server. Without
any prior communication, the client sends a message to the server, which sends a response
back.

8 CHAPTER 2. NEXT-GENERATION PROTOCOLS

header ends and the payload begins, and it is determined by the number of options enabled.
TCP, being a more complicated protocol, utilizes a number of flags to represent the purpose of
a packet. A receiver, for example, can distinguish between handshake, data, acknowledgement,
and termination packets in this manner. There is also a window size field, which is required for
congestion control and can be used to calculate the maximum amount of data that can be sent
at once. A checksum is also included in this datagram to ensure its integrity. Finally, there
is an urgent pointer which can be used to notify the receiver of important data. A number of
options can be optionally added to the header. These options can alter the function of the TCP
implementations; for example, by enabling selective acknowledgements or allowing for larger
window sizes [KR17]. There is at least 160 bits of overhead, but this could increase to 512 bits
depending on the number of options available.

Figure 2.5: TCP datagram.

TCP communication is depicted in Figure 2.6. The client initiates a connection with the server
by sending a SYN packet, which is acknowledged by the server. The connection is established
in a single round trip, and data can then be communicated. To finish the session, FIN packets
must be sent. Congestion control manages the connection during the TCP session, attempting to
avoid a state where the network is congested. There are numerous congestion control algorithms
available to accomplish this. By sending increasing amounts of data, the network will be probed
to estimate its bandwidth. If congestion is detected, the congestion controller will decrease the
amount of data sent and resume probing. This cat-and-mouse game will continue throughout
the session in order to maximize bandwidth usage.

Transport Layer Security (TLS) [Res18] can be used on top of TCP to provide secure transmis-
sion. By encrypting the communication, TLS provides a secure channel that abides by the CIA
triad. Only the client and receiver can read the encrypted transmissions, ensuring confidential-
ity. Transmissions cannot be altered by a third party, guaranteeing integrity. Authentication
ensures that communications are carried out with the correct entity by authenticating the server
and, optionally, the client [KR17]. Figure 2.7 demonstrates the establishment of a connection
when TLS is used on top of TCP. Following the TCP handshake, a TLS handshake is per-
formed, which requires two round trips. The secure connection requires three round trips to be
established, before application data can be transferred.

QUIC (not an acronym) is a transport protocol, initially devised by Google, but later adopted
by the IETF. This new protocol runs on top of UDP, which is already supported by the vast
majority of devices. Figure 2.8 shows that QUIC does not conform to the standard layered
representation; however, because most devices already support UDP, this simplifies adaptation.
According to Cloudflare Radar [Clo22a], a website that shows daily Internet statistics, around

2.2. TRANSPORT PROTOCOLS 9

Figure 2.6: A diagram detailing TCP
communication between a client and
server. Both parties have to establish a
connection by performing a handshake,
after which data can be exchanged. The
connection is terminated after before
ending the communication.

Figure 2.7: A diagram detailing TLS
communication over TCP between a
client and server. Both parties have to
establish a connection by performing a
handshake, after which the TLS hand-
shake can be carried out. Both parties
send encrypted messages that can only
be decrypted by the receiver. The con-
nection is terminated after before end-
ing the communication.

10 CHAPTER 2. NEXT-GENERATION PROTOCOLS

30% of traffic is already using QUIC. The sheer amount of QUIC traffic is primarily the result
of some large companies, such as Google, Facebook, and Cloudflare, pushing this new protocol.
Contrary to popular belief, using UDP does not automatically make QUIC a faster protocol;
it does not improve performance. QUIC implements the features that make TCP slower than
UDP; for example, both protocols use similar congestion control, which manages the amount
of data that can be sent over the wire, and provide reliable communication, which necessitates
acknowledgements and retransmissions [Mar21b]. QUIC can be faster, but only because it is
smarter [Bom22].

Figure 2.8: A comparison between an application using UDP (a), TLS/TCP (b), and
QUIC (c). QUIC has overlap with TCP because it implements similar features on top of
UDP, and QUIC integrates TLS.

QUIC is an alternative for TCP. It is adaptable and can be used with any application protocol
that runs on top of it, and it exists to address some flaws in TCP. The first flaw is the layered
model, while it is very modular and allows for protocols that do not know about how another
protocol functions, it is not very efficient. For example, running TLS on top of TCP requires
three round trips for a connection to be established. The ability to evolve over time is a second
flaw. In practice, it has been proved that adding new features to TCP takes a long time, if at all.
TCP Fast Open, which should remove a round trip from successive connection establishments
with the same server, is a feature that improves TCP; however, firewalls flag these packets as
malformed [Mar21a]. QUIC addresses the first flaw by integrating TLS. This enables QUIC to
establish the connection and perform the TLS handshake at the same time, reducing the number
of round trips required, as shown in Figure 2.9. This is related to the performance enhancement
that will have the greatest impact on the majority of users, 0-RTT. The ability to reconnect
to a server using previously established connections rather than performing a new handshake.
While TLS1.3 supported this, it still required the establishment of a new TCP connection,
requiring a single round trip. When reconnecting with 0-RTT, QUIC allows application data to
be transferred in the first packet [Bom22; Mar21b].

The second flaw is avoided by encrypting the packet headers, which is also made possible by
TLS integration, making adoption easier. Middleboxes can no longer scan the packets and
because there is no plaintext visible on the wire, packets cannot be flagged as malformed when
a new extension is used; all packets appear the same. There is already an unreliable datagram
extension that allows data to be sent unreliably over QUIC while looking exactly like any
other QUIC packet on the wire [PKS22]. In practice, this can lead to adaption issues as well
because firewalls are no longer able to scan traffic. Allowing any connection through the firewall
could be argued to be less secure. Middleboxes, on the other hand, are permitted to read the
connection ID, which uniquely identifies a QUIC connection. These IDs can be used for routing,

2.2. TRANSPORT PROTOCOLS 11

Figure 2.9: A diagram showing QUIC communication between a client and server [Dri22].

12 CHAPTER 2. NEXT-GENERATION PROTOCOLS

ensuring that a connection always reaches its intended destination. Additionally, these IDs are
used for connection migration. Every time the network connection changes, TCP requires a
new connection that starts with a blank slate, whereas QUIC can continue to use the existing
connection by matching the connection ID [Bom22]. Since such IDs can be used to track a
connection, multiple connection IDs are agreed upon for linkability prevention. Because they
are part of the encrypted payload until utilized, these IDs are unknown to the middleboxes. A
unique logical connection ID will be assigned to each physical connection. When the physical
connection changes, the middleboxes will notice a new connection ID, which the client and server
can match to existing connections. Furthermore, because the client and server use different
connection IDs for a single connection, data flow can only be observed in one direction by
middleboxes [IT21; Mar21a].

Several types of headers can be seen when inspecting QUIC traffic. Figures 2.10 and 2.11 depict
a datagram with a long and a short header. QUIC attempts to minimize overhead by sending
only the necessary data and storing parameters rather than transmitting them with each packet.
The first packets will always use the long header format, which is used to negotiate between
the parameters of the communication session. These parameters can then be used, and a short
header will suffice for any subsequent communication. For example, the length of the connection
ID is not specified and can be negotiated during the handshake; once the length is determined,
only the IDs themselves should be sent [IT21]. Since QUIC runs on top of UDP, it will always
have at least the overhead of the UDP header, as well as the basic needs of the QUIC protocol.
However, there may be less overhead than with TCP. A long header can be as short as 120 bits
or as long as 424 bits. The short header can be as little as 80 bits long, which is only 16 bits
longer than a UDP header, and as much as 264 bits long.

Another improvement over TCP is the method of sending acknowledgements. By default, QUIC
supports selective acknowledgements, which is an extension for TCP. The sender and receiver
can also negotiate when an acknowledgement must be received. There are still limits to how
much data can be sent, however the receiver can request that an acknowledgement be sent only
once in a while [Mar21b]. This demonstrates yet another way in which QUIC is a very adaptable
protocol.

Multiplexed streams is a new feature of QUIC that is not available in TCP. A TCP packet
contains any data handed to it by the layer above, whereas a QUIC packet contains frames that
can exist independently of other frames. Figure 2.12 illustrates how multiple frames can be
contained in a single QUIC datagram. A sender can send a packet containing frames from mul-
tiple streams, which the receiver can demultiplex. This has a number of advantages, beginning
with retransmissions. If a packet gets lost, only the frames that should be retransmitted must
be sent again. In a scenario where streams have different priorities, the highest priority stream
frames can be retransmitted earlier than the lower priority frames. Furthermore, if the layers
above implement data stream multiplexing, each stream can be mapped to a QUIC stream.
With TCP, each packet would contain a part of various streams. Since there is no knowledge
of what data is contained, this can result in Head of Line (HoL) blocking. This means that a
TCP packet will not be decoded until all previous packets have been received, even if the data
contained might not be part of any other data in later packets, blocking all streams at once.
With QUIC, every packet can be decoded, and only the streams with missing frames are blocked
[Bom22; Mar21a].

QUIC, on the other hand, is still dealing with some issues as a result of being such a new protocol.
Large organizations, such as Microsoft, have found that the UDP stack is less optimized than the
TCP stack, owing to the fact that TCP was the primary scenario for a long time. This causes
QUIC implementations to be bottlenecked by the UDP stack in specific use cases, resulting
in skewed results [Ban22]. Furthermore, applications and protocols have optimizations that

2.2. TRANSPORT PROTOCOLS 13

Figure 2.10: QUIC datagram, with a long header.

Figure 2.11: QUIC datagram, with a short header.

Figure 2.12: QUIC datagram, with payload containing numerous frames.

14 CHAPTER 2. NEXT-GENERATION PROTOCOLS

improve TCP performance; however, these optimizations may not be desirable in the case of
QUIC [BRZ17]. QUIC, on the contrary, can outperform TCP in certain use cases, such as
seeking through a video stream [AB18].

Another study found that the current QUIC implementations are very heterogeneous. At the
time of writing, there are approximately fifteen maintained implementations, each with signif-
icantly different implementation choices. Congestion control, for example, can be New Reno,
Cubic, or BBRv1 [Mar+20b]. At times, the code and documentation are out of sync, making it
even more difficult to figure out what is implemented, such as with quic-go, where congestion
control is referred to as Cubic but is implemented as New Reno1.

Because the protocol is evolvable, extensions that aim to improve performance by employing
novel techniques already exist. One of these techniques is to remove the slow start phase from
congestion control. This phase can be bypassed by estimating the bandwidth and communicating
this estimate to the other networked entity, reducing the time required to maximize bandwidth
usage [Rüt+19]. Others have argued that it would be beneficial to deviate further from the
layered model and share information between layers. This cross-layer information sharing would
enable protocols to respond to a greater number of events and make decisions based on a larger
knowledge base, improving performance [Her+20].

TCPLS [Roc+21] combines TCP and TLS into a single protocol to achieve similar benefits to
how QUIC can make smarter decisions by integrating TLS. TLS/TCP is compared to TCPLS in
Figure 2.13. TCPLS appears on the wire exactly like TCP, but the encrypted payload contains
TLS records. These records, like QUIC frames, enable features like multiplexed streams and
connection migration. Using multiple TCP connections helps to avoid HoL blocking. TCPLS
manages the various connections and divides streams among them. Streams from other con-
nections cannot be blocked in this manner, but they can be blocked by streams from their own
connection.

Figure 2.13: A comparison between TLS/TCP (a) and TCPLS (b). Instead of running
TLS on top of TCP, TCPLS integrates TLS within the TCP protocol.

2.3 Transfer Protocols

A transfer protocol is an application layer protocol, which directly speaks to the overarching
application. As the name implies, its primary purpose is to add functionality that allows two

1There is an issue on their GitHub repository with a person confused about what congestion control is available
to them: issue #3189

https://github.com/lucas-clemente/quic-go/issues/3189

2.3. TRANSFER PROTOCOLS 15

networked applications to exchange data. The thesis will solely focus on the protocols that are
relevant to the streaming protocols discussed in Section 3.4, namely the HyperText Transfer
Protocol (HTTP).

HTTP was part of the initial implementation of the World Wide Web by Tim Berners-Lee. The
single line protocol, later dubbed version 0.9, that only allowed the GET method, evolved into
an extensible protocol that is used for a myriad of applications [Mc21]. Version 1.0 mostly added
metadata to the protocol, enabling client and server to share their status and information about
the content [NFB96]. Version 1.1 was soon after standardized. This version not only expanded
on the previously defined metadata, but also made some protocol improvements [Fie+97]. No-
tably, persistent connections improve performance on documents with many embedded resources
because TCP congestion control has already surpassed the initial slow start. This version also
includes range requests, which allow streaming clients to request only a portion of a segment.
Another new feature is Chunked Transfer Coding (CTC), which allows a sender to stream con-
tent in chunks rather than sending it all at once. This is an important feature for a number of
the streaming protocols discussed in Section 3.4, as it reduces latency. Furthermore, version 1.0
states that HTTP should not be used for sensitive data transmission. HTTP suffers from lower
layer overhead, which means that every first message will have the three round trip overhead of
the TCP handshake, later messages can overcome this using persistent connections.

The Hypertext Transfer Protocol Secure (HTTPS) protocol is used to secure HTTP communi-
cations. It uses TLS over TCP instead of a TCP connection to implement the CIA triad. This
implies that, while an HTTPS connection is secure, it also suffers from the additional overhead
introduced by TLS over TCP.

HTTP/2 [BPT15] introduced the next generation of transfer protocols. Instead of using human-
readable plain text to represent requests, this version employs binary encoded frames. These
frames form messages, which are then transmitted via a stream. Another improvement is the
ability to contain multiple streams within a single TCP connection. This can be used by a server
to perform a server push. This is a feature that allows the server to send data to the client
without the client requesting it. When the server is certain that a resource will be requested in
the future, it can initiate the response in a new stream. In the form of HPACK [PR15], another
performance feature added to HTTP/2 is header compression. The compression is accomplished
by keeping a dictionary of header names and values. Every header has the following format,
which is composed of two parts: “name:value”. The full header can be stored in the dictionary
for maximum compression, but only if the header will not change. If the header is subject to
change, frequent names or values can be stored separately and referred to instead [Kra16].

All HTTP RFCs were updated in June 2022, and the HTTP/3 RFC was added. The HTTP
semantics and caching are generally described in their own documents [FNR22b; FNR22a]. A
separate document describes the version-specific features and behavior for HTTP/1.1, HTTP/2,
and HTTP/3 [FNR22c; TB22; Bis22].

HTTP/3 [Bis22] could be described as HTTP/2 running over QUIC. The specification describes
all HTTP/2 features, including those subsumed by QUIC. The initial goal was to run HTTP/2
over QUIC, but this caused numerous issues, such as having streams and prioritization in both
HTTP/2 and QUIC. The solution was to develop HTTP/3, which is mandated to run on top of
QUIC and has features shared by both protocols. HTTP/2 and HTTP/3, for example, both use
multiplexed streams; however, HTTP/2 streams are subject to TCP HoL blocking, as described
in Section 2.2, whereas HTTP/3 uses QUIC streams, which do not suffer from this problem.
The HTTP/2 and QUIC streams are very similar, but the layer at which they operate is what
distinguishes them. The primary application for QUIC is HTTP/3 [Bom22]. HTTP/3 includes
header compression, which is now known as QPACK. It is a variation of HPACK, but reduces
HoL blocking [KBF22].

16 CHAPTER 2. NEXT-GENERATION PROTOCOLS

Figure 2.14 compares HTTP/1.1, HTTP/2, and HTTP/3. The main distinction between these
protocols is that HTTP/3 employs QUIC rather than TCP; the comparison between these two
is already made in Section 2.2. Furthermore, HTTP/2 introduced some features that were later
subsumed by QUIC, resulting in incompatibilities between HTTP/2 and QUIC.

Figure 2.14: A figure comparing HTTP/1.1 (a), HTTP/2 (b), and HTTP/3 (c).
HTTP/1.1 and HTTP/2 both conform to the layered model, the features of the protocols
in each stack are similar to their corresponding protocol, except for the stream multiplexing
added to HTTP/2. HTTP/3 is quite different, since QUIC implements TCP features on
top of UDP, integrates TLS, and provides some functionality previously in HTTP/2.

Figure 2.15 compares data stream multiplexing with various HTTP versions. With HTTP/1.1,
there is no multiplexing within a single connection, but there is no HoL blocking; connections
are handled independently. HTTP/2 supports stream multiplexing, but it suffers from TCP
HoL blocking. While streams can be combined in a single connection, the connection must
be handled completely in order to decode the individual streams. Since HTTP/3 uses QUIC
stream multiplexing, which is free of HoL blocking, streams can be handled independently, just
as they would with HTTP/1.1, but with the added benefit of reducing overhead by using a single
connection.

2.3. TRANSFER PROTOCOLS 17

Figure 2.15: A figure comparing multiplexing streams in HTTP/1.1, HTTP/2, and
HTTP/3. The client sends data using three streams: a, b, and c. With HTTP/1.1, the
protocol uses a single connection for every stream, there is no multiplexing, however, the
protocol knows which packet contains which stream. Multiplexing is available in HTTP/2,
but it does suffer from HoL blocking caused by TCP. The protocol knows which streams
exist, but not exactly in which packets the streams are contained. HTTP/3 uses QUIC
streams for multiplexing, that do not suffer from HoL blocking, the protocol is aware of
which stream is available in which packet.

Chapter 3

Streaming

Streaming is the continuous transfer of data that allows immediate processing or playback
[Dic21b]. A client uses streaming to access content in this manner, while a server enables
streaming by providing streaming-friendly content. This chapter gives an overview of streaming
and how streaming protocols function. It emphasizes some older techniques while clarifying
modern protocols pertinent to the thesis.

Content is a very broad term in the context of streaming. It can refer to anything from a simple
list of numbers to a more complex type of media, such as video. In other words, meaningful
data that a client can access. A piece of content should be streamable if it can be used when
it is only partially available. Unless otherwise stated, streaming refers to video streaming and
content refers to video. Figure 3.1 depicts video as a dynamic type of media, consisting of a
sequence of images or frames. It may or may not include audio or subtitles. A client can play
back the content from any point in the frame sequence. Because any subsequence of frames can
be played back1, this implies that video is a streamable type of media.

Figure 3.1: Representation of a video, consisting of N frames, where an object moves from
left to right. The movement of the object is captured by the frames, starting from frame
zero, and can be observed by playing back the frames in chronological order.

During streaming, two entities interact with each other: the client and the server. A client, also
known as a consumer, is an application that wants to access, retrieve, and play back content.
The content is hosted by the server, also known as the provider, and is made available to the
client. There is typically a many-to-few relationship, with many clients accessing content on a
limited amount of servers.

Furthermore, there are two types of video streaming: video-on-demand (VOD) [Dic21c] and
livestream [Dic21a]. VOD allows a client to watch the content at any time, and the entire
video is available at the provider. By allowing fast-forward and rewinding, VOD gives the client

1In order to achieve compression there are different types of frames, some are dependent on other frames and
do not contain all data necessary for decoding. This means it is not always possible to play back a video from
any frame without having the other frames which it depends on. Section 3.1.1 states how this problem is avoided
while video streaming.

18

3.1. CONTENT 19

more control over how the content is consumed. A livestream, on the contrary, is either a live
broadcast or prerecorded content presented as if it were live. The client can only access the
video up to the current time, limiting how the client can consume the content. It is not possible
to fast-forward past this point, but everything prior is still available. After the livestream has
ended, and the content remains available, it can be considered as VOD content. This thesis will
focus on VOD content, but the insights can be applied to live content as well.

When streaming, the Quality of Experience (QoE) uses multiple metrics to assess the quality
of the stream as perceived by the consumer, both by the application and by humans [HSA17].
Metrics can be objective or subjective. The objective metrics represent the quality of the content.
This can be accomplished by employing an absolute value, such as bit-rate, which expresses
the number of bits encoded per second of content. A higher bit-rate indicates higher quality
content when both pieces of content are encoded using the same codec, which is elaborated in
Section 3.1.1. Another way to represent objective quality is to use relative values that compare
one piece of content to another. The Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM) are two examples of relative values [Set21], where content is
compared to the highest quality version of that content. ITU-T Recommendation P.1203 is
another method of scoring the quality of content [Int17]. The P.1203 standard defines different
modes that can be used to evaluate the quality. One mode is entirely based on metadata,
specifically, bit-rate, frame-rate, and resolution. Another mode uses metadata and header data,
adding frame types and sizes. The last two modes uses all of the above and different amount
of content data. Subjective metrics assess how a human will perceive the content. This can
be accomplished by conducting a survey, interviewing test subjects about their experiences, or
measuring events that are known to impact the experience. Buffering events, for example, affect
the smoothness of playback, with smoother playback indicating a higher QoE. Many factors
influence these metrics, ranging from the client device to the human itself. The network-related
metrics, detailed in Chapter 2, that influence QoE, are, however, the most important to this
thesis. Buffering occurs when the time it takes for a segment to arrive exceeds the playback
time of that segment, forcing the client to wait for a new segment to arrive with nothing to
show. This means that in order to have a smooth streaming experience with no buffering, the
throughput should be at least equal to the bit-rate of the content. The client can try to avoid
buffering by keeping a buffer with future segments to show, ensuring that there is something
to show if the available throughput suddenly drops. However, the buffer is only a short-term
solution that can run out. Latency has an impact on QoE, especially when it fluctuates due to
jitter. This causes an unstable throughput, making throughput-based decision-making difficult.
Packet loss within the network is detrimental to the QoE. After a loss event, the client must
notice the loss, and then the packets must be retransmitted. This adds a significant amount of
latency for the lost packet to arrive, increasing the chance of buffering.

3.1 Content

The content must be repackaged to be suitable for streaming. Figure 3.2 depicts the source con-
tent and the repackaged content, the latter encoded for streaming. The example is most relevant
to the streaming techniques discussed in Section 3.4, but it will provide general insights into
how this process works. In this example, the original video, audio, and subtitles are separated
into their own layer. In practice, these layers can be merged; for example, the video can include
audio or subtitles.

3.1.1 Encoding

Encoding is converting data into another format that represents the same data [Tec21], a codec
executes this task. This can be both a lossless or a lossy operation. Lossless encoding ensures that

20 CHAPTER 3. STREAMING

Figure 3.2: Encoding process of source content into multiple adaptations and segment
sizes for each layer of the content, in order to facilitate HTTP Adaptive Streaming (HAS),
detailed in Section 3.4.

Figure 3.3: A diagram showing a subsequence of frames from a video. The arrows indicate
a dependency between frames; frame k is dependent on frame k-1, meaning both frames are
required to decode frame k. There is no dependency between frames k-1 and k-2. Segment
s contains frame k, all its dependencies, and its dependents. There are no dependencies
between frames belonging to different segments, resulting in the independence of segments.

3.1. CONTENT 21

both formats represent identical data, the content is not changed. With video, lossy encoding is
more common, the data of the content is changed in order to achieve compression. A common
approach is exploiting temporal redundancies, consecutive frames contain similar regions. A
region is only stored once, others refer to this and store a difference with the reference. However,
this can introduce unwanted artifacts, especially with high compression, and can lead to a lower
QoE. A codec can be tuned using parameters, which change the rate of compression. The
technical details of the encoding process are out of scope for this thesis.

An encoder takes the source content and performs two major tasks relating to video streaming.
The first task is to create multiple adaptations of the source, each with a different bit-rate
[Bit20]. In the example depicted in Figure 3.2, the color of an adaptation represents the bit-
rate, with green depicting the highest bit-rate and red depicting the lowest bit-rate. In this
context, bit-rate is directly proportional to quality, which means that there will be high and
low quality versions of the source material. As shown in the example, not every part of the
content must have the same amount of adaptations. Video, which typically has a very high
bit-rate, has the most adaptations. The high bit-rate makes smooth streaming challenging in
a network with insufficient throughput. More adaptations mean there are more options when
it comes to selecting the best adaptation for a given scenario, maximizing QoE. The dynamic
range of the corresponding organ is another factor that influences the number of adaptations.
The human ear has a much larger dynamic range than the eye. Due to this discrepancy, audio
is more susceptible to compression artifacts [FJT02]. It is preferable for audio to make fewer
adaptations at bit-rates that introduce fewer artifacts. Because audio has a lower bit-rate than
video, it does not present as many network bandwidth challenges as video does, which is why
fewer high-quality adaptations are preferred. Finally, the subtitles have only one adaptation,
the text has only one version. Multiple adaptations, such as translations into different languages
or subtitles for the deaf and hard of hearing, would be possible. Adaptations can also represent
alternative content, such as censored video or audio in different spoken language.

The second task is to make segments [Bit20]. A segment is a temporal piece of content that
contains all data from a specified start time to a specified end time. It is the smallest unit that
will be made available for streaming2. In practice, a segment can represent a single frame or a
sequence of frames lasting milliseconds to seconds. The encoder divides a layer into segments
that do not overlap. Figure 3.3 depicts a segment and the frames contained within. The
segment contains all the data required for it to exist independently, which means it can be
decoded without requiring the retrieval of any other segments. Each layer can have a different
segment length, a different time interval between the start and end time. In this example, the
video has the smallest segments, which keeps the total binary size of a segment relatively low
even at high bit-rates. Because the average bit-rate of an adaptation is lower, the audio has
longer segments. Furthermore, the subtitles are only available as a single segment that contains
all the data of the content. In practice, the segment size of each adaptation within a single layer
can vary.

3.1.2 Manifest and Container

A manifest includes all the metadata needed to stream a piece of content [14]. It describes all
adaptations, their segments, their encoding, and their location in the network. The manifest is
required by the client in order to bootstrap the stream. A manifest may include application-
specific metadata in addition to the content description. For example, Netflix provides a list
of cloud providers as well as a ranking, allowing the client to choose which provider to use
[Adh+12]. A manifest for VOD describes all segments that comprise the content. However, for
livestreaming, a manifest only describes the segments that are available when the manifest is

2While a segment is the smallest unit for representing a portion of the content, certain streaming techniques
can request partial segments. This is explained in Section 3.4

22 CHAPTER 3. STREAMING

retrieved, because future segments may not yet exist3. This means that the client must update
its manifest on a regular basis while livestreaming in order to keep track of all newly available
segments.

A container is not the same as a manifest. A container contains both the metadata and the
content data, whereas a manifest only contains the metadata [Mat20]. As shown in Figure 3.4,
the content for streaming is wrapped in containers; the adaptations in a manifest refer to different
containers with differently encoded content. Not all containers are created equal, as they support
different codecs and have different limitations. As a result, different containers are supported
by streaming protocols, which means that a provider may have to host content represented by
multiple types of containers if they want to support multiple streaming protocols.

Figure 3.4: The relationship between an adaptation and a container. An adaptation is
listed in the manifest and refers to a container on the server to retrieve the content.

Apple and Microsoft proposed the Common Media Application Format (CMAF) [20] in an
attempt to create unity among streaming protocols. This format standardizes the segmented
content and can be used in any type of media application or manifest. Any streaming protocol
can use this single container format [Bit22]. This new standard is being adopted by video de-
velopers and is gradually gaining popularity over existing standards [Bit21]. This demonstrates
the need for a less fragmented and more coherent technology space.

The CMAF hierarchical model is depicted by Listing 1. CMAF defines a logical model, which can
be converted into a manifest, and CMAF Addressable Media objects, that contain the content
[App22]. The logical model consists of a Presentation at the highest level, which contains
synchronized Selection Sets. Every Selection Set describes the same temporal piece of the same
layer of content, and allows for a client to select between different Switching Sets, which describe
the same content and can be used interchangeably. A client switches between Tracks, in which
the CMAF Addressable Media objects are described. Such an object can be one of a few types.
A Header has initialization data, not actual content. Smaller parts of the content are defined
by Chunks, while larger parts are defined by Segments.

3Certain streaming protocols do mention future segments in order to improve the performance of the protocol;
for example, Low Latency HLS, detailed in Section 3.4.2.

3.2. STREAMING ARCHITECTURE 23

1 <Presentation>

2 <SelectionSet>

3 <SwitchingSet>

4 <Track>

5 <Header/> <Chunk/> <Chunk/> <Chunk/> <Chunk/> <Chunk/> <Chunk/>

6 </Track>

7 <Track>

8 <Header/> <Segment/> <Segment/>

9 </Track>

10 </SwitchingSet>

11 <SwitchingSet>

12 ...

13 </SwitchingSet>

14 </SelectionSet>

15 <SelectionSet>

16 ...

17 </SelectionSet>

18 </Presentation>

19 <Presentation>

20 ...

21 </Presentation>

Listing 1: Hierarchical representation of the CMAF model.

3.2 Streaming Architecture

A streaming client performs a variety of important functions, which can be divided into four
components, as shown in Figure 3.5. This is based on the MPEG-DASH specification, as de-
tailed in Section 3.4.1. This architecture, like Section 3.1, is most relevant to the streaming
techniques discussed in Section 3.4, but it will provide general insights into how a streaming
client works.

The client application interacts directly with the control component. This component determines
which resources must be requested from the server. A decision is made based on the state of
the client, such as the playhead position, whether the client is paused and the playback speed.
The most basic decision-making technique is based on the playhead, as described in Section
3.3, or a more calculated decision can be made based on specific algorithms, as described in
Section 3.4. The specific inner workings of these algorithms are unimportant to the thesis;
all that matters is that they make decisions based on internal parameters and metrics. These
parameters and metrics are derived from a variety of sources. Client device capabilities and user
preferences are examples of parameters that can be read from the client. Other metrics can be
gathered by other components that perform measurements. The control component computes
throughput based on RTT measurements taken by the access component. The latter performs
the retrieval of external resources in the order determined by the control component. With
network access, it is possible to collect network metrics. The retrieved resource is routed to
the segment component, which decodes it and passes it on to the final component, the media
component. This component manages the media engine, displaying the appropriate segment at
the appropriate time and synchronizing segments of various media types.

The majority of streaming techniques operate on a simple network architecture. It is based on
the client-server model, in which the server contains all the files required to stream the content,

24 CHAPTER 3. STREAMING

Figure 3.5: Interaction between client, server, and HAS components.

and the client can request these files, or parts of them, at any time. In practice, however,
the networks are far more complex. It is unrealistic to connect to a server directly; there will
be at least a few hops in the network, such as the Internet Service Provider (ISP). Streaming
platforms use Content Delivery Networks (CDNs) to improve the distribution of their content,
as shown in Figure 3.6. Instead of a single server delivering content to each client, content is
delivered to the CDN. A CDN is a distributed network of servers, dispersed all throughout a
geographical location. The servers are placed as close to the edge of the network as possible,
usually connecting to the ISP. Content is distributed across the CDN to every edge server. The
client accesses the content at the closest edge server rather than the source server, reducing
network hops. Distance, in this case, is measured by the latency to a server, since the lowest
latency gives the best performance [Clo22c].

Figure 3.6: The path for content to reach a client when using a CDN. The source server
generates content, passes it onto the CDN, which distributes it to every CDN edge server,
where clients can access the content at the edge. This figure is based on resourced by the
Cloudflare Learning Center [Clo22c].

3.3 Streaming Techniques

Progressive streaming is an early and simple streaming technique that streams a file sequentially.
The file contains only one adaptation of the content. A server may offer multiple adaptations,
each at a different bit-rate; however, the client explicitly selects only one adaptation to stream
[Bit19]. One disadvantage of this technique is that the average bit-rate is constant, but network
conditions can change. To achieve the best QoE, the client can decide which adaptation best
suits the current network conditions, such as selecting the adaptation with the bit-rate closest

3.3. STREAMING TECHNIQUES 25

to the throughput of the network without exceeding it. This method achieves the best possible
QoE as long as network conditions do not change. However, as conditions change, the QoE
will deteriorate. Because the bit-rate is too high, the throughput can be reduced, and buffering
occurs. Because of interference from other network traffic during a throughput measurement,
the throughput may be underestimated. As a result, the client selects a lower bit-rate adaptation
while another adaptation provides a higher QoE. However, the client is not able to change its
decision.

The Real Time Streaming Protocol (RTSP) [RLS98] was one of the first streaming-focused
protocols, and most commonly uses the Real-time Transport Protocol (RTP) [Fre+96] to transfer
data. It supports VOD, including seeking, as well as livestreams. It does, however, suffer from
the limitation of only having a single bit-rate, but it does provide a solution. Instead of encoding
all content at a low bit-rate, a mixer can be placed in areas that cannot handle high bit-rate
content. A mixer receives an RTP stream, re-encodes it at various bit-rates, and then forwards
it. Clients can connect to the mixer to receive a lower bit-rate option, or directly to the source
to receive the highest bit-rate available. The quality of the service metadata communication
is handled by the RTP Control Protocol (RTCP) [Fre+96]. While RTP can work with any
suitable underlying transport protocol that provides multiplexing and checksums, applications
typically employ UDP, as described in Section 2.2. Since this is an unreliable protocol, there is
no retransmission, so any lost packets remain lost, resulting in missing data. The most recent
RFC relating to RTP was released in 2016, twenty years after its first RFC, with the goal of
transferring modern codec video streams over this protocol.

Real-Time Messaging Protocol (RTMP) is a TCP-based streaming protocol [dac22b]. It was
initially created as a real-time protocol for Adobe Flash Player, but it has since found use in
livestreaming applications. There are several RTMP variants, each with a unique set of features.
There is a version that supports SSL, which encrypts the stream and improves security. Another
variant encapsulated the stream within HTTP to bypass firewalls. Real-time communication is
possible with a UDP version. It is even possible to switch between adaptations while streaming.
Twitch [Int22], a well-known streaming platform, used RTMP for distribution before switching
to HTTP Adaptive Streaming (HAS).

HAS is adaptive streaming, as defined in Section 3.4, that transfers data using HTTP, as defined
in Section 2.3. Because of caching, HTTP is a more cost-effective method of streaming to
large audiences. CDNs can be used to distribute content to major geographical areas. One
disadvantage of using HTTP semantics is that latency increases [Kal+17]. Instead of establishing
a connection and sequentially streaming the segments, the segments are identified by a unique
Uniform Resource Identifier (URI). Every segment is explicitly requested by the client via its
URI. From this point forward, the thesis will focus on HTTP streaming.

Interaction between the broadcaster and the audience is common in livestreaming applications.
Messages are sent in both directions and are influenced by latencies introduced by both the
network and protocols used. The broadcaster experiences the least latency because the audience
interacts via a separate real-time channel, such as a text chat. The latency introduced by the
video stream, which is dependent on the protocol used, is noticed by the audience. Protocols that
scale best introduce the most latency, resulting in increased latency if the application supports
a large audience. The latency difference between the two parties causes issues during this
interaction [Kal+17]. Because one-on-one interaction between a broadcaster and an audience
member is not possible in real time, every message and its response is influenced by latency. It
is impossible to converse fluently. Meanwhile, one-to-many interaction, in which the broadcaster
sends a message to the audience, can make them feel excluded or disadvantaged if the message
is lost or arrives later. For example, an audience member watching a sporting event does not
want to know when a point is scored by hearing a neighbor cheer, but rather by seeing it and

26 CHAPTER 3. STREAMING

cheering simultaneously. A client wants to be as close to the live edge as possible, which is the
most recent frame available for playback.

The goal of low-latency livestreaming is to reduce video streaming latency as much as possible
while keeping the playhead as close to the live edge as possible. The primary goal is to reduce
two latencies: segmentation and advertisement latencies. The result of real-time encoding of
segments is segmentation latency; the encoder is unable to encode content faster than it can
be produced. There is a segmentation latency of two seconds if segments are defined to be
two seconds long. Advertisement latency is caused by the need of the client to update its
manifest, which advertises the available segments. After encoding has finished, the segment can
be appended to the manifest. There is an advertisement latency of a couple of round trips to
retrieve the updated manifest.

The use of Chunked Transfer Coding (CTC) when using HTTP/1.1, as explained in Section
2.3, avoids segmentation latency. A client can initiate the request and begin streaming data
before the segment has finished encoding. This is made possible by the codec, when it allows
for the streaming of partial segments. Ahead-of-time advertisements eliminate advertisement
latency by listing segments that do not yet exist but will in the near future. Figure 3.7 depicts a
segment sequence as well as the current live edge. A manifest with ahead-of-time advertisements
will include both the segments preceding and following the live edge. Manifest updates can be
less frequent, and updates can be delayed in favor of more important data, without affecting
the ability of the client to request the most recent segments [THE20]. It takes at least six
round trips, the amount of round trips for application data to be sent over the network using
HTTP/1.1 as seen in Section 2.3, to retrieve the manifest and the first segment using traditional
HTTP streaming of segmented content [Cur22a]. If there is no ahead-of-time advertising, each
segment will require six round trips if the client wants to stay on the live edge. With this
improvement, the client can retrieve multiple segments that will all exist on the live edge before
another manifest update is required.

Figure 3.7: A sequence of segments, relative to the live edge. Segment e is at the live edge,
the dashed outline of segments indicates that the data is not available at the server; future
segments only exist logically.

3.4 Adaptive Streaming

By using multiple bit-rates, adaptive bit-rate (ABR) streaming can improve the streaming ex-
perience over progressive streaming and does not require intermediate systems to re-encode
content. The source, which handles the requests of the client, serves the content in multiple
adaptations with various bit-rates. The ABR client can switch to a different bit-rate to make
the most of the network and provide the best QoE. The bit-rate can fluctuate over time, as
depicted in Figure 3.8. If network conditions deteriorate, for example, the client can retrieve a
lower bit-rate adaptation and continue streaming without encountering buffering. At any time,
the most appropriate adaptation of the content that fits the device capabilities, user preferences,
and networked environment can be selected.

An application can use a variety of ABR algorithms to determine which adaptation is best
suited. Many factors, such as throughput and buffer fullness, can be taken into account by

3.4. ADAPTIVE STREAMING 27

Figure 3.8: A sequence of segments, streamed by the client, and the available throughput
at that time. Whenever the throughput lowers, the following segment will have a lower
bit-rate, whereas when the throughput rises again, the bit-rate of the chosen adaptation will
be higher as well.

algorithms. The specifics of the algorithms are out of scope for this thesis.

The sections that follow go over several popular HAS streaming protocols. Unless otherwise
specified, the thesis focuses on HAS, referred to as adaptive streaming.

3.4.1 MPEG-DASH

The Moving Picture Experts Group (MPEG) developed the Dynamic Adaptive Streaming over
HTTP (MPEG-DASH) [14] HAS standard, which is referred to as DASH in this thesis. Although
it is standardized as a general-purpose streaming technique, it is best known and most commonly
used for video streaming. One of the first large-scale public live tests with DASH took place
during the 2012 Olympic Games. The event was covered live by the public broadcaster of the
Flemish Community in Belgium (VRT) [Uni12].

The manifest uses the Media Presentation Description (MPD) format, an XML-based hierar-
chical data model. Listing 2 is an example of an MPD, depicting single-layered content with
four adaptations. The content is divided into a series of Period elements, each representing a
temporal segment of the content. This sequence represents the content from beginning to end.
A Period contains all of the segments needed to play back a specific length of content. An Adap-
tationSet represents each layer of the content, such as audio, video, or subtitles. The standard
uses MIME types to distinguish between various types of media, in this case represented by a
layer. There are Representation elements for these layers, which represent various adaptations
of the content, such as the same content at different bit-rates or alternative content, such as sub-
titles in a different language. Every Representation listed within the same AdaptationSet should
be interchangeable. To choose between these adaptations, the DASH application will employ
an ABR algorithm. A Representation lists the segments that the client accesses on the server.
Segments can be represented by a SegmentList, which contains explicit SegmentURL elements,
or by a SegmentTemplate, which shows a template that can be filled in for each segment. It
should be noted that the DASH specification is quite extensive, and the method described here
is not the only way to represent content using an MPD.

Every segment is synchronized by a shared timeline. There is at least one period in the timeline.
The adaptations are mapped to the timeline, making it possible to interchange between adap-
tations where segments have different lengths. The standard specifies various profiles [14]. A
profile limits the scope of what can be defined within a manifest. This ensures interoperability
between players and the content. So, while the standard defines a very broad streaming solution,
the actual profile defines the possibilities for a given manifest and the described content. For

28 CHAPTER 3. STREAMING

1 <?xml version="1.0" encoding="UTF-8"?>

2 <MPD

3 xmlns="urn:mpeg:dash:schema:mpd:2011" profiles="urn:mpeg:dash:profile:isoff-live:2011"

4 minBufferTime="PT1.500S" type="static" mediaPresentationDuration="PT0H3M0S" >

5 <Period duration="PT0H3M0SPT0H9M55.46S">

6 <AdaptationSet

7 segmentAlignment="true" group="1" par="4:3"

8 maxFrameRate="24" maxWidth="480" maxHeight="360" >

9 <SegmentTemplate

10 initialization="video_$Bandwidth$/segment_init.mp4" startNumber="1"

11 media="video_$Bandwidth$/segment_$Number$.m4s" timescale="96" duration="96" />

12 <Representation

13 id="320x240 47.0kbps" mimeType="video/mp4" sar="1:1" startWithSAP="1"

14 width="320" height="240" frameRate="24" bandwidth="46980" codecs="avc1.42c00d" >

15 <SegmentTemplate

16 initialization="video_46980/segment_init.mp4" startNumber="1"

17 media="video_46980/segment_$Number$.m4s" timescale="96" duration="96" />

18 </Representation>

19 <Representation

20 id="854x480 538.0kbps" mimeType="video/mp4" sar="1:1" startWithSAP="1"

21 width="854" height="480" frameRate="24" bandwidth="537825" codecs="avc1.42c01e" >

22 <SegmentTemplate

23 initialization="video_537825/segment_init.mp4" startNumber="1"

24 media="video_537825/segment_$Number$.m4s" timescale="96" duration="96" />

25 </Representation>

26 <Representation

27 id="1280x720 1.7Mbps" mimeType="video/mp4" sar="1:1" startWithSAP="1"

28 width="1280" height="720" frameRate="24" bandwidth="1662809" codecs="avc1.42c01f" >

29 <SegmentTemplate

30 initialization="video_1662809/segment_init.mp4" startNumber="1"

31 media="video_1662809/segment_$Number$.m4s" timescale="96" duration="96" />

32 </Representation>

33 <Representation

34 id="1920x1080 4.7Mbps" mimeType="video/mp4" sar="1:1" startWithSAP="1"

35 width="1920" height="1080" frameRate="24" bandwidth="4726737" codecs="avc1.42c032" >

36 <SegmentTemplate

37 initialization="video_4726737/segment_init.mp4" startNumber="1"

38 media="video_4726737/segment_$Number$.m4s" timescale="96" duration="96" />

39 </Representation>

40 </AdaptationSet>

41 </Period>

42 </MPD>

Listing 2: Example of an MPD, describing a video encoded in four different bit-rates.

3.4. ADAPTIVE STREAMING 29

example, the VOD profile requires the type attribute to be ’static’, whereas the live profile
allows for the same value if the livestream has ended and the content is kept as VOD content.
Low-latency DASH (LL-DASH) is a DASH extension that can provide livestreaming with less
latency by utilizing CTC and encoding the content into shorter segments [THE20]. This reduces
the segmentation latency of HTTP livestreaming.

3.4.2 HLS

Apple developed its own proprietary HAS protocol, called HTTP Live Streaming (HLS) [PM17].
As a manifest, it employs the M3U format, which was originally used to describe MP3 playlists.
There are two types of manifests for HLS, as shown in Listing 3. The Media Playlist defines all
segments and can be used to stream content directly by a client. The Master Playlist contains
references to Media Playlists, which list all existing content adaptations. In contrast to DASH,
which is considered a general streaming technique, Apple designed HLS specifically for video
streaming. Playlists, for example, only support a limited set of media types, including audio,
video, subtitles, and closed captions.

1 #EXTM3U

2 #EXT-X-STREAM-INF:BANDWIDTH=150000,RESOLUTION=416x234,CODECS="avc1.42e00a,mp4a.40.2"

3 http://example.com/low/index.m3u8

4 #EXT-X-STREAM-INF:BANDWIDTH=640000,RESOLUTION=640x360,CODECS="avc1.42e00a,mp4a.40.2"

5 http://example.com/high/index.m3u8

6 #EXT-X-STREAM-INF:BANDWIDTH=64000,CODECS="mp4a.40.5"

7 http://example.com/audio/index.m3u8

1 #EXTM3U

2 #EXT-X-PLAYLIST-TYPE:VOD

3 #EXT-X-TARGETDURATION:10

4 #EXT-X-VERSION:4

5 #EXT-X-MEDIA-SEQUENCE:0

6 #EXTINF:10.0,

7 http://example.com/movie1/fileSequenceA.ts

8 #EXTINF:10.0,

9 http://example.com/movie1/fileSequenceB.ts

10 #EXTINF:10.0,

11 http://example.com/movie1/fileSequenceC.ts

12 #EXT-X-ENDLIST

Listing 3: Example of a HLS Master Playlist, which lists two adaptations of the video
stream and a single audio stream. An adaptation is represented by a HLS Media Playlist,
this example is for VOD, listing three segments.

HLS is the most popular streaming technology, according to the 2021 Bitmovin Video Developer
Report [Bit21], with 73% of the developers using it and another 10% planning to implement it.
Only 64% of developers reported using DASH. This is due to iOS, the mobile operating system
of Apple, only supporting HLS. Most devices will be supported by HLS, but a considerable
market share of users will be excluded by only supporting DASH [dac22a].

Twitch discovered a couple of flaws when using HLS for livestreaming [Cur22a]. With two-second
segments, an adaptation switch can occur only after two seconds, which could be enough time

30 CHAPTER 3. STREAMING

to exhaust the buffer if the network deteriorates. Furthermore, the segment length, manifest
updates, and other factors cause a noticeable latency of at least a few seconds. It also takes at
least six round trips to retrieve the first segment when using HTTP and TCP, and the buffer
requires multiple segments before playback starts.

There are two options for achieving low-latency streaming with HLS. The first option is Low
Latency HLS (LHLS), which was developed by Twitter for their streaming platform Periscope
[Kal+17]. To reduce segmentation and advertisement latency, it relies on the two improvements
mentioned in Section 3.4: CTC and ahead-of-time segment advertisements. Twitch adopted
this as a replacement for HLS in order to reduce latency [Cur22a]. It introduced some new
challenges; for example, ABR algorithms have difficulty determining the adaptation. However,
the most significant issue, latency, was greatly reduced, from multiple seconds to hundreds of
milliseconds.

Low-Latency HLS (LL-HLS) is another low-latency option developed independently by Apple
[App21]. Five improvements to HLS have reduced latency. Segments are subdivided into much
smaller subsegments, as small as 200 milliseconds, using techniques such as CMAF. The playlist
updates become more efficient by allowing delta updates, which only transfer the changes that
must be made to the playlist. In addition, requests to update a playlist on the server are
blocked until there is a meaningful change. A server can notify clients of upcoming segments
that can be requested, but the response will be delayed until the segment becomes available4.
Finally, metadata is added to requests, making switching between adaptations more efficient
by reducing the number of round trips required to make that change. Twitch did not use this
protocol because it was found to be less performant than LHLS [Cur22a]. In comparison, they
observed a quadrupling amount of client requests. Aside from that, latency is significantly lower
than in HLS but higher than in LHLS. The adaptation switching, on the other hand, has been
improved.

3.4.3 Warp

As next-generation protocols gain popularity, as discussed in Chapter 2, organizations are be-
ginning to develop streaming protocols which utilize specific features of these new protocols.
The Media over QUIC (MoQ) mailing list [IET22] is a gathering place for like-minded people
discussing many topics, including streaming over QUIC. Warp, a streaming protocol developed
by Twitch, is an example of such a protocol.

Warp seems to be the LHLS successor, running on top of HTTP/3 and QUIC. It transports
segments in parallel using multiplexed streams, a QUIC functionality. During periods of conges-
tion, these streams can be prioritized to ensure that the most critical data is delivered first. It
requires that the segmented content meet a number of criteria, all of which are met by CMAF
[Cur22b].

It has numerous advantages over LHLS [Cur22a]. Content data is transferred in only two round
trips, allowing for very low-latency streaming in combination with segments that can have
lengths defined by the number of frames contained. Another improvement is video underflow,
which allows video data to be lost while continuing playback with only audio data. This is not
ideal for QoE, but reduces buffering and keeps the client at the live edge. However, as stated in
Section 2.2, using QUIC, and therefore UDP, is less efficient than TCP.

4In combination with this smaller segments, this is an alternative for CTC.This is very important to enable
low-latency streaming with HTTP/2 and HTTP/3, which do not support CTC, as elaborated in Section 2.3.

Chapter 4

Simulation

In a research setting, reproducibility ensures that results are consistent and not a one-off. Sim-
ulation helps the research process by securing behavior and parameters that can be observed or
controlled from outside. If three main actors are present: the client, the server, and the network,
the video streaming architecture discussed in Section 3.2 can be simulated. This chapter will
look into the possibility of providing these actors with a simulation.

The term simulation is not well-defined, as it is used interchangeably with the term emulation
in very similar contexts. Emulation has the additional goal of attempting to represent the
internal state of the target, whereas simulation uses a model to give the outside appearance of a
simulated target. In other words, an emulation can replace the target, but a simulation cannot.
Emulation is a simulation, but not the other way around [Sta17; Sta13]. To avoid ambiguity,
the term simulation will be used throughout the thesis.

The primary goal of simulation is to generate reproducible results; however, the secondary goal
can vary depending on the research needs at the time. A simulation can attempt to mimic
real-world behavior by being as realistic as possible, which is incredibly challenging. It can also
be the goal to approach a theoretical model and try to adhere to determined behavior, such as
having worst or best case performance in a given setting.

4.1 Framework

A simulation framework automates the simulation, taking away a part of the manual labor that
would otherwise be required. Not only should the framework be capable of performing the
simulation, but it should also make simulation setup and reproducing simulations easier. Figure
4.1 illustrates the requirements for a simulation framework for video streaming. It should allow
for a single server to act as a content source and connect to a simulated network. The network
forwards packets between clients and the server and shapes the network based on a model. The
framework should allow for the simulation of multiple clients at the same time, which could be
multiple instances of the same client or different clients.

The goDASHbed [RMQ20; ORQ20] is a framework that was developed in tandem with goDASH,
as detailed in Section 4.2. It can only test goDASH out of the box and uses the Mininet network
simulator, as described in Section 4.4. It does, however, provide the option to test HAS traffic
with VoIP background traffic, generated using D-ITG, Distributed Internet Traffic Generator
[Búc17]. Furthermore, it can run tests with multiple clients running at the same time.

The next-generation transport protocol QUIC has about fifteen heterogeneous implementations,
which is elaborated upon in Section 2.2. The QUIC community maintains the QUIC interop

31

32 CHAPTER 4. SIMULATION

Figure 4.1: Architecture of a simulation framework. A simulated network connects the
multiple clients to a server.

runner, a project that aims to document the interoperability of various QUIC implementations.
At different time intervals, the most recent version of each available implementation is retrieved,
and these versions are tested against each other. This framework also makes use of Docker
containers. A reference container shows the interface that testing subject containers need to
implement to be compatible. This allows the framework to differentiate between tests that are
not implemented and those that, in fact, pass or fail. The tests range from testing specific
features to testing the throughput that an implementation can reach. Tests with background
traffic can be performed by leveraging iPerf3, a tool developed to measure the maximum achiev-
able bandwidth of a network, but that can be retrofitted to generate background traffic as well
[Dug+22].

Vegvisir, a video streaming testing framework based on the QUIC interop runner, was provided
by the Networking and Secured Systems research department. It only supports one test, which
enables HTTP/3 and requests that the server serve a specific folder. Apart from Docker con-
tainers, it also allows host applications to be used as clients. The graphical interface, which is
not available with the QUIC interop runner, allows for the management of tests, results, and
Docker containers.

4.2 Client

The goal of an authentic client in video streaming is to stream a video with the highest QoE
possible. Only HAS clients will be considered for this thesis. To achieve this goal, an application
that implements the required features of a HAS client, as detailed in Section 3.4, is required. In
summary, the application must be capable of HTTP communication as well as implementing an
ABR algorithm.

There are two types of applications that can be considered: a full client or a headless client.
A full client is indistinguishable from an authentic client because it implements all four com-
ponents discussed in Section 3.2, whereas a headless client only requires the control and access
components. This means that a headless client will request the segments, but may not use them.
There may not be a buffer filled with video data, and the video may not be displayed. While
a headless client has less overhead, which may skew results, it also has less stringent hardware
requirements to run tests.

The reference DASH client dash.js [Das22b] is an authentic open source client. Based on the qlog
logging format discussed in Section 5.2, the research department provided a modified dash.js
version with extensive qlog logging capabilities. Even though it requires a browser that is not
in headless mode, this client can be used in an automated testing setup. Because browsers
keep the application in a sandbox, certain tasks, such as detecting the client finishing its test

4.3. SERVER 33

or gathering logs, are not trivial. The Vegvisir framework addresses detecting if it is finished
by detecting a specific file that is written to the host device after finishing. Because of browser
security features, logs may not be written to any file on the host system, changes to the browser
settings are required.

A headless client is a standalone application that runs on the host; no browser is required.
TAPAS [De +14] is a tried-and-true headless client that supports DASH and HLS streaming.
It has over fifty citations, according to Google Scholar. Despite being a headless client, it
implements the segment and media components. The video segments are decoded and sent to
the media component, which either is a sink or displays the video on the screen. The latter,
however, does increase the hardware requirements. While very promising, the client did not
appear to be very stable. Even after following the official documentation and running the client
in a virtual machine with the recommended OS and software, the client did not work in most
cases. In addition, the client does not support many DASH profiles; only a small number of
manifests can be correctly parsed.

goDASH [RMQ20; ORQ20] is a more modern headless client that only supports DASH. It has
the same flaws as TAPAS in that it only supports a limited amount of DASH profiles and
manifests. However, stability is much better. This client does not implement a segment or
media component; the buffer is completely simulated. This does, however, allow this client
to run in a Docker container. It also offers additional analysis features. It can calculate the
QoE of a video segment using an ITU P.1203 implementation1. Additionally, it supports the
next-generation protocol QUIC. The research department provided a modified goDASH client
with several improvements. It not only adds ABR qlog, as discussed in Section 5.2, but it also
fixes some serious issues with the application, such as not using persistent connections, wasting
network resources for RTT measurements, and a bug in which the client would ignore ABR
decisions.

Load generation frameworks that generate specific payloads to test a server are also available
[RKM20]. These frameworks may be the furthest removed from a realistic client; for example,
it lacks an ABR algorithm and instead has a target bit-rate. They do, however, ensure that the
server and network are pushed to their limits if desired. Even with multiple clients, the overhead
of a realistic client will give the server time to recover from any problems that may arise. Because
of the lower overhead, the simple client used by these frameworks is easily scalable, and fewer
clients are required to stress the network and the server.

There are numerous HAS datasets available; however, because most clients only support a
limited number of profiles, these may not be directly usable. TAPAS, unlike goDASH, does not
provide its own dataset and instead relies on publicly available videos. Other datasets, such
as the ITEC DASH dataset [ITE12], contain a large number of video options in a variety of
adaptations. It was possible to stream a video from the ITEC dataset using goDASH after some
manual adjustments to the manifest.

4.3 Server

The server is the easiest actor to get working correctly within a simulation. VOD requires
nothing more than an HTTP file server capable of serving all files mentioned in the manifest.
The content is static, and no changes are required over time.

Since the files are not completely static when livestreaming, simulation becomes more challeng-
ing. Because the HAS client is based on the manifest, the content can be static. The client will

1The ITU-T Rec. P.1203 Standalone Implementation can be found on GitHub: https://github.com/

itu-p1203/itu-p1203.

https://github.com/itu-p1203/itu-p1203
https://github.com/itu-p1203/itu-p1203
https://github.com/itu-p1203/itu-p1203

34 CHAPTER 4. SIMULATION

be able to livestream the content if the manifest is updated over time, as if it were generated in
real-time. This is similar to what is required when VOD content is presented as a livestream.
There is no overhead in generating and encoding the content as this is already done, and the
segments are added to the manifest chronologically over time. This method could also be used to
simulate low-latency livestreaming. This method is implemented by an open source live source
simulator maintained by the DASH Industry Forum [Das22a].

4.4 Network

The streaming architecture, as discussed in Section 3.2, is based on a simple client-server model.
The transport protocol provides logical communication as if it was a direct connection. The
physical connection, on the other hand, is more complicated and must be routed through multiple
intermediate networks. To begin a video stream somewhere, you will most likely need to connect
to the Internet via your ISP. In addition, as discussed in Section 3.2, the client-server model is
inefficient in many modern streaming scenarios. Rather than connecting directly to the server,
a client connects to the edge of a CDN. In practice, the intermediate network is regarded as a
black box because the endpoints have no way of knowing which path their packets will take.
The goal of a network simulation is to simulate packets taking a more complex path rather than
being directly connected, without the need to set up an actual complex network, as shown in
Figure 4.2. This can be accomplished with either a theoretical or a more realistic model.

Figure 4.2: The client and server are connected to a network, and do not know what it
physically looks like, there is a mist that surrounds the network. A network simulation will
act as this black box, while simulating a complex network.

When using a theoretical model, the network will be shaped in accordance with what the model
mathematically describes. Packets can be delayed by a predefined amount of time, and a per-
centage of packets can be dropped or reordered, to name a few features of the shaper. The
tc-NetEm [Hem11] simulator uses virtual network interfaces on the host, and manages a queu-
ing discipline (qdisc) that defines the behavior of packets passing through the interface. A qdisc
is a queue that takes in packets, and schedules when and the manner of forwarding the packet.
The class of a qdisc defines the behavior, a simple example class is First-In First-Out (FIFO),
which forwards packets in order of arrival [The22b]. Running commands on the host system
sets up the interfaces. Mininet [Clo22b] and ns-3 [nsn22] are network simulators that provide an
API to set up the network. Mininet uses process-based virtualization, whereas ns-3 simulates
each individual device and uses discrete-event models. Both create virtual network devices that
can communicate with the outside world.

By plugging a more realistic model into the previously mentioned simulators, more realistic
simulation can be achieved. Akamai, a CDN company, has a model based on 50,000 network
traces [Goe+17]. Traces are classified based on their loss percentage, resulting in groups of
traces with varying amounts of QoE. Because loss does not always occur, this classification

4.4. NETWORK 35

causes 68% of the traces to be ignored. A set of parameter buckets is created, which are used
to define the average network conditions over a specified time period. This model uses 70
ms bucket size, since this was the median RTT. Bandwidth, latency, and loss percentage are
among the parameters. The parameters can be replayed indefinitely, one by one, simulating
how a network changes over time. Another model is based on measurements obtained in Ghent
[Hoo+16]. This model only provides the parameters; it does not provide a means to play them
back. Furthermore, in the context of this thesis, the only actual useful network parameter it
provides is bandwidth; no other metrics are available. A solution similar to the Akamai model,
where the bandwidth is constantly changed to the next value in the model, would be required. A
model based on measurements taken in Ireland [Rac+18] is also available. This model captures
network metrics using a mobile app and is capable of logging numerous data points related to
the cellular network; however, once again, the only useful network parameter is bandwidth. In
addition to the Irish measurements, it includes some models based on synthetic measurements
generated with ns-3.

However, despite the fact that these models are based on real-world measurements and are
referred to as realistic, it is impossible to determine how realistic a model is. The tc-NetEm
random loss model, for example, is known to be very unrealistic and thereby deprecated, but
it is still used by the Akamai model. The use of the loss model by Akamai, which involves
changing the percentage of loss at specified intervals, has not been verified to be realistic. It is
also unknown what the impact of changing the qdisc at runtime is, and how buffered packets
are affected.

Finally, background traffic can be generated to simulate a network with unstable conditions.
Allowing background traffic to interfere with client and server traffic causes their network mea-
surements to vary. Loss and jitter can be simulated without resorting to mathematical mod-
els.

Chapter 5

Data and Visualization

Any analysis process requires data. The ability to have high confidence answers to a hypothesis
is made or broken by having access to the correct data. This chapter will explore the data
that can be generated, how the data can be meaningfully visualized, and how analysis can be
facilitated, with a focus on video streaming over HTTP/3, and therefore QUIC.

Actors within the simulation can generate any types of data, which is collected by a framework.
In this thesis, for video streaming, each actor generates a unique set of data points. The client
generates data from both the transport layer and the ABR algorithm, whereas the server only
generates data from the transport layer. Meanwhile, the network simulation can create packet
captures of all traffic that passes through it. Furthermore, if real-time analysis is intended, the
data format should support streaming.

5.1 Network Logs and Visualization

Packet capturing is the most well-known type of network traffic logging. A packet capture is a
file that contains all of the packets and messages sent over the network. The data on the wire is
recorded and parsed into a format that includes the headers of each layer, with the payload of
the next layer. Applications, such as Wireshark [Wir22], provide a user interface for inspecting
packet captures. One drawback of this method of capturing is that the data on the wire may
be encrypted, as with QUIC. The application requires the encryption keys in order to correctly
parse the packets. Furthermore, an application may have issues detecting the correct protocol,
such as by tagging QUIC packets as UDP packets, which is technically correct. A packet capture
is a streamable data structure in which each packet can be parsed separately. Certain packets
make reference to other packets, such as the response to a request, but these references cause no
troubles during parsing. Wireshark can even show packets in real time while capturing traffic.
There are network simulators that use proprietary logging formats; however, these formats are
not taken into account because they are not standardized and are not used by more than one
application, and the most important events can be read out from the packet capture.

A packet capture can be used to visualize a network, as shown in Figure 5.1. A map can be built
by tracking the flow of packets and which nodes are communicating with one another. This map
can be represented in a variety of ways. A link map shows which nodes are connected; however,
if there are many connections, this can become very cluttered, especially if a single node has
proportionally more connections than the other nodes. To reduce clutter, a node map only
shows certain attributes of each node, such as a size proportional to the number of connections.
Another way to reduce clutter is to use a more abstract matrix display, in which connections can
be read by finding the cell at the intersection of two nodes [BEW95]. The massive sequence view

36

5.2. CLIENT AND SERVER LOGS 37

visualization can be valuable if it is important to see the traffic flow over time [Elz+14].

Figure 5.1: (a) The link map, shows connections between nodes. (b) The node map,
uses icons to convey data, in this case the icon represents the amount of total connections
to a node. (c) The matrix display, shows if two nodes have a connection by marking the
intersection of the nodes. (d) The massive sequence view, it shows which connections appear
over time.

5.2 Client and Server Logs

Most HTTP/3 implementations support data logging at both the transport and application lay-
ers. Logs can be exported in either a proprietary or standardized format; some implementations
support both. While a proprietary format may give valuable insights, the fact that it is incom-
patible with other implementations forces the thesis to seek out a well-adopted standardized
format.

The majority of QUIC implementations support the high-level logging format qlog [Mar+18].
It describes a set of principles for event-based logging. Events can be categorized and typed,
allowing an analysis application to differentiate between them, whilst timestamps ensure that
they are ordered chronologically. The general format and principles are defined by a main
schema [MNS22b]. Other documents specify protocol events, such as QUIC [MNS22c] and
HTTP/3 and QPACK [MNS22a]. Listing 4 represents a qlog file in JSON notation, a human-
readable data-interchange format [Ecm17]. A qlog can be built from both the client and server
perspectives. While it is standardized, it does allow for some flexibility in implementation, which
can be beneficial or detrimental. Timestamps, for example, could be logged in a variety of ways.
While parsing was not a problem, it was extremely difficult to correlate two qlog files because
the starting point was not always documented in a comparable manner. The summary field
in the top level of the file is a good example of freedom because it allows for any data to be
represented, allowing extra metadata to be shared. The general structure of a qlog is as follows:
a top level object describes the file and contains traces. A trace is the log of a single connection,
from a certain perspective. The trace includes metadata as well as a list of events. Since qlog
defines event definitions using schemas, it is possible to define a new schema for a protocol. An
early draft of a qlog schema for a HAS application and the ABR algorithm was provided by
the research department. Most major events, such as starting and stopping the video player or
when there is buffering, are defined.

NetLog is used by Chromium-based browsers to perform event-based logging of network protocols
[RM22]. NetLog focuses on application events and is not intended to replace lower-layer tools
such as those that generate packet captures. There are, however, numerous network-related
events that are also logged. NetLog supports QUIC and HTTP/3, allowing it to obtain logs of
how the QUIC implementation of the browser functions, which does not support qlog. However,
as mentioned in Section 5.3, qvis can convert a NetLog file to a qlog file.

38 CHAPTER 5. DATA AND VISUALIZATION

1 {

2 "qlog_version": "0.3", "qlog_format": "JSON",

3 "title": "Name of this qlog",

4 "description": "Description for this group of traces",

5 "summary": {

6 "trace_count": 1, "max_duration": 5006,

7 "max_outgoing_loss_rate": 0.013,

8 "total_event_count": 568, "error_count": 2

9 },

10 "traces": [

11 {

12 "title": "Name of this trace",

13 "description": "Description for this trace",

14 "configuration": {

15 "time_offset": 150

16 },

17 "common_fields": {

18 "ODCID": "abcde1234", "time_format": "absolute"

19 },

20 "vantage_point": {

21 "name": "backend-67", "type": "server"

22 },

23 "events": [

24 {

25 "time": 1553986553572,

26 "category": "transport", "type": "packet_sent",

27 "data": {

28 "packet_size": 1280,

29 "header": {

30 "packet_type": "1RTT", "packet_number": 123

31 },

32 "frames": [

33 {

34 "frame_type": "stream",

35 "offset": 456, "length": 1000

36 },

37 {

38 "frame_type": "padding"

39 }

40]

41 },

42 "protocol_type": ["QUIC","HTTP3"],

43 },

44 ...

45]

46 }

47]

48 }

Listing 4: An example qlog file in the JSON format. This example was adapted from the
main schema RFC [MNS22b].

5.3. CLIENT AND SERVER VISUALIZATION 39

The qlog format is based on JSON, but there are alternative representations. NDJSON is a
format where multiple JSON objects can be contained within a file, if they are split by a newline
character. While JSON is not streamable, NDJSON was developed to enable structured data
to be streamed [ndj22]. Another streamable format, based on JSON, is JSON Text Sequences
(JSON-SEQ). In this case, every JSON object is split using the special record separator character
[Wil15]. With these streamable formats, the top level and trace metadata in qlog will be a single
JSON object, followed by a single JSON object for each event. Some attempts have been made
to create formal abstract definitions of JSON, which can be represented by a tree, as well as
methods for querying these structures [BRV20; FF13]. Each has advantages and disadvantages.
GraphQL [Fou] is a querying language developed by Facebook for querying graph-like structures.
The queries and mutations use a format that resembles JSON, and return actual JSON data.
A query retrieves data, while a mutation updates the data. A schema defines the queries,
mutations, and data types; an example is shown in Listing 5.

1 type Person {

2 id: ID!

3 name: String!

4 favorite_number: Float

5 }

6

7 type Query {

8 persons: [Person!]!

9 person(id: ID!): Person

10 }

11

12 type Mutation {

13 addPerson(input: PersonInput!): Person!

14 }

15

16 input PersonInput {

17 name: String!

18 favorite_number: Float

19 }

Listing 5: A GraphQL schema. A type to represent a person is defined, with some at-
tributes. Queries are defined to either retrieve all people or only a single person by their
ID. A person can be added by using a mutation, which uses an input type, since the ID is
generated by the data source in this example.

5.3 Client and Server Visualization

The qlog format, as discussed in Section 5.2, appears to be the most appropriate logging format.
The QUIC and HTTP/3 qlog events can be visualized using the tool qvis [Mar+20a]. It not only
supports the qlog format, but also packet captures and NetLog, which are internally transformed
into qlog. It features five analysis views after loading data. A view shows some global statistics
about the qlog file and the traces it contains. The other views give a more detailed view of
the traces. Figure 5.2 shows an example of a sequence view displaying the communication flow
between a client and a server. All streams and the way are multiplexed have their own view,
and the packetization of the transferred data is shown in another view. Finally, as shown in
Figure 5.3, a view displays both congestion control metrics and RTT measurements throughout
the session. Data cannot be streamed to qvis for real-time analysis. This type of visualization

40 CHAPTER 5. DATA AND VISUALIZATION

could be classified as a guided experience because the views are pre-planned. Grafana [Lab] is
an application that facilitates making dashboards to visualize data queried from a data source.
It comes with a variety of predefined visualization and data source types, but custom plugins
can be developed. The main use case of Grafana is querying a data source at timely intervals,
to visualize real-time data. Grafana is very flexible; almost everything can be modified by
parameters. Since it is less of a guided experience, except for some dashboards that might be
pre-planned, it can be daunting to get hands-on with a Grafana dashboard. Figures 5.4 and 5.5
show two examples of Grafana dashboards and the possible built-in visualizations.

When visualizing events, keep the three Gestalt principles in mind: closure, proximity, and
similarity. These principles are depicted in Figure 5.6. Because of the closure principle, humans
tend to perceptually complete objects that are not, in fact, complete. This principle goes hand-
in-hand with the proximity principle, which states that humans perceive objects that are close to
each other as a group. According to the similarity principle, humans will find similar appearing
objects and categorize them into groups. There are also some significant temporal patterns.
Trends are changes in the value of a metric that occur over time, whereas a counter trend is a
change that contradicts a previously observed trend. There can also be periodic repetitions of
certain events or metric values, or a disruption in the repetition. There is an anomaly whenever
a pattern emerges that behaves differently than all previously observed patterns [Elz+14]. It
is also essential to have control over the visualization parameters in order for the data to be
understandable. By emphasizing what is determined to be more important to view, parameter
focussing avoids visual overload. This also implies that unwanted data must be removed. The
identification of data points will aid comprehension of what is being examined, and animations
can be used to visually distinguish obvious unexpected changes [BEW95]. It can be concluded,
that while a guided analysis tool can be straightforward to use, it is important to have enough
freedom to ensure understandable views.

5.3. CLIENT AND SERVER VISUALIZATION 41

Figure 5.2: The qvis view showing a sequence diagram, detailing the communication
between a client (left) and a server (right).

Figure 5.3: The qvis view showing congestion control metrics (top) and the RTT measure-
ments (bottom).

42 CHAPTER 5. DATA AND VISUALIZATION

Figure 5.4: A Grafana dashboard showing the same temperature measurements in four
different ways, all based on a table visualization. This dashboard is based on the table panel
showcase demo.

Figure 5.5: A Grafana dashboard showing synthetic site data. Visualized are, among
others, server requests, the amount of hits on Google, and the amount of logins. This
dashboard is based on the Grafana dashboard demo.

5.3. CLIENT AND SERVER VISUALIZATION 43

Figure 5.6: The Gestalt principles. (a) The closure principle states that humans tend to
perceptually complete objects that are not complete. As the gaps grow smaller, the larger
objects will be perceived. (b) The proximity principle states that objects close to each other
are perceived as a group. Instead of single lines, seven objects made up of grouped lines will
be perceived. (c) The similarity principle states that similar objects are grouped. Three
types of objects can be observed: lines, double lines, big blocks [Elz+14].

Chapter 6

Analysis Framework

This chapter discusses the contributions made by the thesis. The most significant contribution
was the addition of an analysis service to the Vegvisir framework, as detailed in Section 4.1.
Aside from that, applications are modified to work better with the analysis service or to correct
erroneous behavior.

Analysis is the act of examining something with the goal of understanding it better [Dic22].
With the gained knowledge, it is possible to act accordingly and improve the current situation.
This thesis differentiates between two types of analysis. The first, real-time analysis, takes recent
data, analyzes it, and based on known patterns decides the immediate action to take. During
video streaming, the ABR algorithm performs this kind of analysis, it takes some measurements,
and based on that data it decides what adaptation to choose. The algorithm has the knowledge
of what the expected result will be of its decision, based on the measurements. Knowledge can
also be gained over a longer period of time, not real-time, this is the second kind of analysis.
With this kind of analysis, the goal is to detect patterns, and contrive improvements accordingly.
This is the kind of analysis that would normally happen at an analysis service. An example
is qvis, in this case, a QUIC implementation will be used in tests, and their qlog will then be
analyzed at a later time. Performing a thorough search for anything that can be improved,
instead of solely focussing on known patterns.

6.1 Analysis Service

The goal of an analysis service is to assist a human in the analysis process. It should be able to
gather data, perform calculations on the data, and display it in a useful manner. Furthermore, for
this thesis, the analysis service must be able to perform this in real-time. The goal is to make the
root cause analysis process easier in this way, because while an anomaly may be noticeable, the
actual cause may be well hidden. This means the analysis service should help identify problems,
differentiate between times of normal and abnormal behavior, and help distinguish between the
root cause and correlated but uninfluential factors [Wik22]. The technologies mentioned in the
previous chapters are evaluated and combined into a coherent service, that attempts to meet
these requirements.

Not only during testing, but also in real-world applications, applications generate a plethora
of logs. While streaming content, the Netflix application sends data to a server, presumably
to measure QoE [Adh+12]. Telenet, another ISP, has an IP return data path for their set-top
boxes. This path can be used for interaction between the set-top box and a content provider,
independent of the internet connection supplied to the user, for example, to send reports back
[Tel21]. Based on these real-world use cases, it can be concluded that the goal of the analysis

44

6.1. ANALYSIS SERVICE 45

service, to receive these reports in the form of logs and then facilitate analysis, is not entirely
theoretical.

Figure 6.1: Architecture of the analysis framework, which is based on the Vegvisir frame-
work. The analysis service, consisting of an analyzer and a visualizer, are on the left,
connected to the same network as the simulation framework.

The analysis service consists of two parts, as shown in Figure 6.1 on the left. The analyzer
handles data ingress and serves as a data source for other applications. It must be connected
to the testing network in order to gather data and allow other applications to access it. It is
assumed that clients will always send logs to the analysis service. Because the provider may
not have access to the CDN logs, if a CDN is used, network and server data are regarded as
optional. The analyzer is a GraphQL endpoint implemented in a custom application, that is
able to perform some basic actions on the data, such as changing the representation of fields
and aggregating data. The visualizer queries the data, and allows visualizing the data in various
ways to aid analysis. This part is based on Grafana. In the background, the framework starts
the analysis service. This way, the service can collect data from various test runs and will remain
operational after the tests are completed.

6.1.1 Ingress

The analyzer collects the ingress data, which is generated by the entities participating in the
simulation. Section 5.2 discusses qlog, a high-level logging format that is supported by many
QUIC implementations. It is the preferred format for ingress data due to its granularity, flex-
ibility, support for both transport layer and application-specific events, and adoption by the
majority of QUIC implementations. There is no network simulator that supports this format;
however, because the intermediate network is considered a black box, the logs from this entity
are not taken into account during the analysis process. The generated logs are event-based,
the analyzer supports applications to stream either single events or batches of events. It also
supports different file formats for qlog, JSON, ND-JSON, and JSON-SEQ.

An additional attribute is added to the qlog schema to aid analysis. The new field analysis ID
allows aggregating multiple traces from different layers within an application, or from different
entities. During a test, multiple qlog files with very similar IDs will be generated. Only the suffix
can differ, representing the role of an entity, specifically client or server, or distinguishing two
entities with the same role, such as by adding a unique identifier. For example, if “test-id” is
the base ID, “test-id server” indicates the server logs, “test-id 0” indicates a client, where
the added number identifies the different clients, “test-id 1” indicates a second client etc.

Furthermore, the ABR qlog schema, which is discussed in Section 5.2, is expanded. Listing 6
shows a selection of the modifications. It was extended with a “metrics updated” event, which
was inspired by the QUIC event of the same name. The QUIC event is part of the recovery

46 CHAPTER 6. ANALYSIS FRAMEWORK

category, which describes congestion control behavior; however, in the ABR qlog, it is classified
as generic. The event includes RTT measurements, which can be taken at various layers, such
as the transport and application layer. The new event, which is logged by the streaming client,
consists solely of RTT measurements, which are performed in the same manner as in the QUIC
implementation, the other congestion control metrics are removed. Another event was added to
represent a decision made by the ABR algorithm, and the basis for that decision; currently, this
event is focused on throughput-based algorithms. Aside from that, existing events were updated
to support more representations of the same data, primarily because these representations were
more convenient.

1 type EventMetricsUpdated {

2 min_rtt: Float

3 smoothed_rtt: Float

4 latest_rtt: Float

5 rtt_variance: Float

6 }

7

8 type EventABRDecision {

9 segment: Int!

10 algorithm: String!

11 throughput: Int!

12 delivery_time: Int!

13 delivered_bits: Int!

14 }

15

16 type EventABRSwitch {

17 from_id: String

18 from_bitrate: Int

19 from_width: Int

20 from_height: Int

21 to_id: String!

22 to_bitrate: Int

23 to_width: Int

24 to_height: Int

25 media_type: MediaType!

26 }

Listing 6: New and improved ABR qlog events. The metrics updated event is based on
an event defined by the QUIC qlog schema, but only carries the RTT data. The ABR
decision event is a novel event, used to represent both the decision by an ABR algorithm,
and the reason for making that decision. The ABR switch event, which appears if the ABR
algorithm changes its target adaptation, got extended with more representations of the new
target adaptation set.

6.1.2 Querying

Section 5.2 discusses how the qlog is based on the JSON format and how JSON can be queried,
and GraphQL appears to be the best option for this analysis service. Partially because both
define the data structures using a schema, the idea being that the conversion into the GraphQL
schema would enable multiple applications to query qlog files. Since both are influenced by
JSON, converting the qlog schema to a GraphQL schema is simple. However, issues arise when
it comes to the types of data. The qlog specification has less stringent guidelines because it is a

6.1. ANALYSIS SERVICE 47

high level logging format that allows the implementation some leeway in how it represents certain
fields. Fields representing timestamps are an example of this. Previous qlog versions permitted
any representation, such as strings, as long as another field declared what the value represented.
According to the most recent version of the qlog specification, these should be represented in
milliseconds, which is a far more convenient representation to work with. GraphQL is more
stringent about types; the exact type must be declared at all times. The type of field was thus
chosen based on both the qlog specification and what was most convenient for the visualization
of a field; for example, numbers are preferred over strings since numbers can be interpreted
more easily without additional parsing. Furthermore, GraphQL does not support certain types
that are used within qlog, such as nested unions, which had to be flattened for the GraphQL
schema. To query data from the analyzer, the visualizer uses the Grafana GraphQL Data Source
plugin1.

Both mutations and queries are declared in the GraphQL schema. The mutations are used by
the simulated entities to send the generated data to the data analysis service. Firstly, a qlog
instance with a unique ID must be created. Second, the implementation can use the ID to add a
trace to the qlog instance; this trace is also identified by a unique ID. Finally, using the trace ID,
events can be streamed into the “events” field of the trace. Each mutation has a corresponding
input type, that is used to pass data to the mutation. The events should be sent as a JSON
string because it is impossible to declare a single type for this field due to technical limitations;
GraphQL requires an exact type for the input, not a union of all event types. The queries are
used by the visualization service to query the aggregated data. All known qlog instances and
analysis IDs can be queried for. Both of these can be used to query traces, and the traces can
be used to query events, annotations, and high level controls that Grafana can use. The types
declared by the main GraphQL schema are used in the queries.

A GraphQL type that implements the Grafana annotation interface is shown in Listing 7. An-
notations are a feature in Grafana that allows a global mark to be set at a specific timestamp.
It requires a timestamp and, optionally, the end time if a range is to be marked. Furthermore,
it requires a title and, if desired, a description. Finally, annotations are classified using tags.
Since annotations can be used to represent non-numerical data, not every event will have a
corresponding annotation.

1 type Annotation {

2 time: Float!

3 end_time: Float

4 title: String!

5 description: String

6 tags: String!

7 }

Listing 7: A GraphQL type that implements the Grafana annotation interface.

6.1.3 Visualization

Grafana is used to visualize event-based data generated by clients and servers. It is necessary
for the data source being queried to provide an absolute time value, such as a UNIX timestamp.
However, in a qlog, this is not always the preferred time representation. The analyzer corrects
this by recalculating the timestamp into an appropriate representation. Another issue is the

1The GraphQL Data Source plugin can be found on GitHub: https://github.com/fifemon/

graphql-datasource.

https://github.com/fifemon/graphql-datasource
https://github.com/fifemon/graphql-datasource
https://github.com/fifemon/graphql-datasource

48 CHAPTER 6. ANALYSIS FRAMEWORK

desire of Grafana to display real-time data. This is especially useful when streaming data into
the visualization and performing real-time analysis. However, if a closer look at older data is
desired, it is time-consuming to determine when the data was recorded. A query that returns
the time range where the events appear as a relative link was added. By clicking the link, the
dashboard will show the correct time range containing all events. The dashboards can display
both numerical and textual data by querying the data source and selecting an appropriate
visualization technique. Annotations can be used to show non-numerical data. Finally, the
visualizations can be exported using the Grafana Image Renderer plugin2.

The analysis service provisions the GraphQL data source and a number of pre-configured dash-
boards for Grafana. Figure 6.2 and 6.3 show the oldest dashboards, which are used to explore
the visualization possibilities of Grafana with the qlog data for both QUIC and ABR. Based on
these explorations, a new dashboard was created which compares the QUIC and ABR traces
from a streaming session. This combination dashboard is shown in Figure 6.4. Two more dash-
boards were developed for the evaluation phase, which is described in Chapter 7. Figure 6.5
demonstrates the dashboard for viewing the QUIC traces of both a client and a server. The final
dashboard, shown in Figure 6.6, can be used to compare two ABR traces. When comparing
data from two sessions in Grafana, the timestamps will not match if the tests are performed at
different times. This is solved by calculating the difference between the time of the initialization
events, and then using that difference to shift the events of the second trace so that both traces
are shown on top of one another.

2The Grafana Image Renderer plugin can be found on GitHub: https://github.com/grafana/

grafana-image-renderer.

https://github.com/grafana/grafana-image-renderer
https://github.com/grafana/grafana-image-renderer
https://github.com/grafana/grafana-image-renderer

6.1. ANALYSIS SERVICE 49

Figure 6.2: A Grafana dashboard visualizing QUIC qlog events. The trace metadata is
listed in the table at the top. The panels below show, from top-left to bottom-right, the
RTT measurements, aggregate data of the RTT measurements, the occurrences of specific
events, the maximum amount of data sent, and the data in flight.

Figure 6.3: A Grafana dashboard visualizing ABR qlog events. The trace metadata is listed
in the table at the top. The panels below show, from top-left to bottom-right, the buffer
occupancy, the playout time, the occurrences of specific events, the RTT measurements,
and aggregate data of the RTT measurements. Furthermore, annotations, the green vertical
lines, show the stream initialization, when the stream playback can start, and the end of
the stream.

50 CHAPTER 6. ANALYSIS FRAMEWORK

Figure 6.4: A Grafana dashboard visualizing QUIC and ABR qlog events of the same
stream session. The metadata of the traces is listed in the tables at the top. The panels
below show, from left to right, aggregate data of the ABR RTT measurements first, and
then for the QUIC trace, with the playout time below that, on the right, it shows the QUIC
RTT measurements op top and the ABR RTT measurements below that.

6.1. ANALYSIS SERVICE 51

Figure 6.5: A Grafana dashboard visualizing QUIC qlog events from both the client and
server. The metadata of the traces is listed in the tables at the top. The panels below
compare the RTT measurements of both traces, both as a graph and their aggregates.

Figure 6.6: A Grafana dashboard visualizing ABR qlog events of two separate sessions.
The metadata of the traces is listed in the tables at the top. The panels below compare the
goodput and the delivery times. It also includes aggregate data of those metrics.

52 CHAPTER 6. ANALYSIS FRAMEWORK

6.2 Simulation Subjects

Only the goDASH client meets all the requirements discussed in Section 4.2, with a few minor
modifications. The modified client can log data using qlog at both the transport and ABR layer.
The transport layer uses quic-go, but instead of writing qlog events to file, it allows them to be
streamed to the analysis service. Streaming can be executed in a few manners, either individually
or in batches. The logging routine, that is a separate routine from the main streaming routine,
receives events and processes them. Individual events are immediately processed and sent to
the analysis service. If batched sending is enabled, events will be stored until the batch size
is reached, and then all events are processed at once. Batching events results in less network
request being made, but also results in the logs arriving later at the analysis service. This qlog
implementation is ported to the ABR layer, where it uses the exact same functionality, but with
a different set of events. The container used to run the clients is adapted to support running
multiple clients at the same time with the same settings. The dash.js player provided by the
research department is an alternative, but it does not provide as extensive transport layer logs
as goDASH, it is more difficult to automate, and possibly impossible to have multiple clients
running at the same time, due to how a browser executes JavaScript on a webpage that is not
in focus.

During a test, any HTTP/3 compliant server can be used as a server. When the server logs are
required during analysis, a quic-go server is developed that implements the streaming function-
ality. Aside from that, no server implementations are changed.

Because measuring the impact of specific parameters is more convenient with a theoretical
model, the network simulator ns-3, discussed in Section 4.4, is used. The realistic models are
not verifiable, and inconsistent over time, which is a feature of being realistic. If the network
does not change unexpectedly, it will be clear how certain changes in the testing environment
affect the behavior of a client. Several versions of the network simulator are created, for example,
with different qdisc classes.

6.3 Preliminary Testing

Many smaller preliminary tests were carried out during the development of the analysis service to
ensure that it works properly. Several oddities were discovered during these tests. While certain
errors were found within the adopted implementations, others were introduced by the service
itself. Grafana offers a lot of freedom, which is useful when trying to find the best visualization
for a specific data point. However, freedom can be a source of errors. With so many parameters
to tune, it can take some time to ensure that each parameter improves the visualization while
not hiding any important data. This section discusses a selection of interesting anomalies that
were discovered.

One of the first preliminary tests appeared to exhibit bufferbloat characteristics, as detailed in
Chapter 2. This was further investigated, since there was no obvious cause for this behavior. It
was discovered that the UDP receive buffer size was too small, which was causing this. Because
QUIC runs on top of UDP, the UDP stack influences QUIC performance; the UDP receive buffer
size can result in limited throughput. Some QUIC implementations, including quic-go, which
was used in these tests, attempt to increase the size of this buffer but are unable to do so because
they exceed the kernel buffer size limit. During tests, the value of the UDP receive buffer in the
kernel should be set to approximately 2.5 MB to ensure a large enough buffer [See21].

Another issue discovered was a disparity in RTT measurements between the transport and
application layers. The transport layer calculates the RTT for each packet at a granular level.
It is measured when an acknowledgement of a packet arrives. However, at the application layer,

6.3. PRELIMINARY TESTING 53

the unit of data is video segments. This can also be used to measure RTT, but at a much more
coarse level. The RTT in this context refers to the time it takes between executing the function
call for a segment request and receiving the response object. Furthermore, because the segment
request is not a blocking function call in the implementation of the client, the data may not
be completely available at the client when the function returns the response. The transport
layer streams the data into the response object in the background, however, this asynchronous
behavior will become blocking, and wait until all packets have arrived, if the data is being
explicitly read from the response object. Because the RTT values describe various types of data
units, it is unclear what a comparison of these values represents. Attempting to compare these
values resulted in incomprehensible graphs, as illustrated in Figure 6.7. The solution was to
ignore RTT measurements at the application layer and instead add a new event to the ABR
qlog that included delivery time, which is the time it takes to receive a complete segment.

Figure 6.7: A graph showing the smoothed RTT measurement from the QUIC and ABR
qlog of the same streaming session. Anomalies occur in the beginning, where the ABR
measurements are much higher than expected, then the ABR measurements are lower than
the QUIC measurements, which should not be possible, and finally, throughout the session,
the ABR measurements show unexpected spikes.

Figure 6.8: A graph comparing QUIC RTT measurements to ABR delivery time measure-
ments. The delivery time is higher than the RTT, as expected, however, the values are too
high, caused by application overhead when calculating QoE values.

Another anomaly was discovered while investigating the RTT measurements. With no obvious
cause in sight, the time between requesting consecutive segments was always a few hundred
milliseconds longer than expected, shown in Figure 6.8. The function calculating QoE values

54 CHAPTER 6. ANALYSIS FRAMEWORK

caught the eye while tracking down the actions performed between requests. The ITU P.1203
implementation used by goDASH is a Python script that goDASH executes to as an external
process. It starts a new asynchronous routine for each calculation, but it makes a blocking
call while waiting for the calculations to finish. The delay between requests was caused by this
blocking call, which disappeared after turning off the QoE calculations. The data needed to
calculate QoE, however, is still available, so this can be done after the fact.

Chapter 7

Evaluation

This chapter will describe the outcomes of numerous tests that were run and analyzed using the
analysis framework described in Chapter 6. The tests will compare the streaming performance
of a HAS streaming client in different scenarios. Section 7.1 expounds the set of parameters
that can vary between tests, as well as the most important metrics gathered during the tests.
Following that, numerous tests in Section 7.2 will evaluate the chosen client. Finally, Section
7.3 assesses the analysis service itself, specifically how it facilitated the analysis process.

7.1 Methodology

The evaluation is carried out by running tests using the framework described in Chapter 6, which
also explains why the client, network simulator, and server were chosen. Different parameters
will be modified between tests, but the metrics collected will remain the same. The results
of various tests will be compared, and their analysis will be performed in Section 7.2. Unlike
preliminary tests, this evaluation phase solely uses the analysis service to analyze the gathered
data. The analysis service is also used to generate all graphs. Since these use absolute time, the
x-axis shows time in the “hour:minute:second” format, which refers to the time when the test
was performed.

7.1.1 Parameters

In order to evaluate the performance of multiple streaming clients using the same network
concurrently, tests can be executed with different amounts of concurrent clients. The amount of
clients will always be a power of two; one, two, four, eight, and so on. The results of these tests
are discussed in Section 7.2.4.

The test video is based on Big Buck Bunny [Ble13], with an aspect ratio of 16:9. It consists of
the first 180 seconds of the source content, segmented into one second segments, described by a
manifest that uses the live profile, set up for VOD. It has twenty adaptations, ranging from an
average bit-rate of approximately 4.7 Mbps and a resolution of 1080p, to an average bit-rate of
approximately 47 Kbps and a resolution of 360p.

The HAS streaming client uses an ABR algorithm to ensure a high QoE for the user when
streaming, as explained in Chapter 3. By limiting the bandwidth at the network simulator,
ns-3 in this case, the client should measure a throughput not higher than the bandwidth limit,
and the ABR algorithm should decide on lower bit-rate adaptations. Table 7.1 lists four chosen
adaptations, all with a different average bit-rate, as a target for the ABR algorithm. The shaper
will be set up with this average bit-rate value as the bandwidth limit. Using this method of

55

56 CHAPTER 7. EVALUATION

shaping the network, loss will be introduced naturally whenever the client exceeds the band-
width. Latency will be set at the arbitrary chosen value of 30 ms, without any jitter. Section
7.2.1 details these results.

resolution average bit-rate

1080p 4.7 Mbps
720p 1.7 Mbps
480p 621 Kbps
360p 425 Kbps

Table 7.1: The average bit-rate of different adaptation of the test video.

One of the parameters of the network simulator is the size of the queue for buffered packets.
A queue of length zero will have every packet be subject to the network shaper, every packet
that goes over the predefined limit will be dropped. A larger queue will have packets buffered
and sent out by the scheduler, any packet that goes over the limit has a chance to be saved
by being enqueued and sent whenever possible [Mik10; ns-22]. Since a connection goes over
multiple middleboxes, that all have buffering capabilities, it is decided that tests are run with
a queue length of 25 packets. Another parameter is the qdisc class, which changes the behavior
of the queue of the network simulator. Section 7.2.6 discusses the results to see if there is any
impact by changing the queue behavior. As stated in Section 6.3, the UDP receive size buffer
will be set to approximately 2.5 MB, to ensure the QUIC implementations are not limited by
this factor.

The streaming client, goDASH, will run using the same parameters most of the time. A simple
ABR algorithm is chosen, named conventional, which measures the goodput and chooses the
closest adaptation without exceeding the measurement. Other algorithms are available, such as
the average algorithm, that will calculate the average goodput value for the complete streaming
session. The initial buffer size is set to two seconds and the maximum buffer size is set to
thirty seconds, as these are the values used by dash.js. Furthermore, the client is set to stream
the full duration seconds of the test video. Section 7.2.2 details the results of comparing the
conventional algorithm to the average algorithm. Different methods of streaming logs and how
they affect the performance of an application are discussed in Section 7.2.3. The streaming of
logs can be turned on, turned off, or logs can be sent in batches of different sizes.

To test the impact of background traffic, Section 7.2.5 discusses the results of tests performed
with and without iPerf3 running in the background. The iPerf3 client and server send data as
fast as possible, over a TCP connection, with cubic as their congestion control.

A summary of all tests and which parameters are used can be found in Table 7.2.

7
.1
.

M
E
T
H
O
D
O
L
O
G
Y

57

Impact of # clients log streaming
method

ABR background traffic queue behavior bandwidth latency/jitter/loss

Bandwidth (7.2.1) 1 none conventional none FIFO 425 Kbps, 30ms/0ms/0%
621 Kbps,
1.7 Mbps,
4.7 Mbps

ABR (7.2.2) ——”—— ——”—— conventional,
average

——”—— ——”—— ——”—— ——”——

Log Streaming (7.2.3) ——”—— none, conventional ——”—— ——”—— ——”—— ——”——
individual,
batched (10),
batched (100)

Multiple Clients (7.2.4) 1,2,4,8 batched (100) ——”—— ——”—— ——”—— ——”—— ——”——

Background Traffic (7.2.5) ——”—— ——”—— ——”—— TCP cubic ——”—— ——”—— ——”——

Queue Behavior (7.2.6) ——”—— ——”—— ——”—— none FIFO, CoDel ——”—— ——”——

Table 7.2: A summary of the tests and their parameters. The number of clients decides how many are run concurrently during the test. A client
will be set up with the log streaming client and ABR parameters. Background traffic decides which connections are run in the background during a
test, that try to congest the network. The network simulator is set up with the queue behavior, bandwidth, latency, jitter, and loss parameters.

58 CHAPTER 7. EVALUATION

7.1.2 Metrics

During the tests, qlog data is generated by both the client and server. Both the client and
server export QUIC qlog, on top of that the client also exports ABR qlog. Metrics are gathered
from the transport layer and the higher-level application layer. For comparing the performance
between clients, the goodput measure and delivery time showed most potential, therefore these
are put in the spotlight for most tests.

Furthermore, buffering events can be used to show when and how often buffering occurs. Another
event shows which adaptation is chosen for the current event, and by referring to the network
event that captures the request of a segment, the size of the segment can be inferred.

7.2 Tests and Results

This section discusses test results and compares them to one another. The goal is both to gain
knowledge about how the client and server are impacted by different parameters.

7.2.1 Impact of Bandwidth

This section will discuss tests to determine the impact of different network bandwidths on
the performance of the streaming client. A single client is used, with the conventional ABR
algorithm, and no events are streamed to the analysis service. There will be no other applications
competing for the bandwidth. The network simulator will be running with the FIFO qdisc class,
with 30 ms of latency, no jitter, and no loss, whilst the bandwidth is set to different targets for
every test: 4.7 Mbps, 1.7 Mbps, 621 Kbps, and 425 Kbps.

The hypothesis is that the goodput measurement will approach the bandwidth. There should
not be any buffering, as the delivery time remains under the one-second mark, because this is
the length of a segment.

Table 7.3 shows the results of this test. It should be noted that the average delivery time never
does not exceed the one-second mark, meaning all segments can be delivered in time, and the
buffer can start to fill. Besides that, the average goodput measurements also do not exceed the
bandwidth. Staying under these limits is the goal of the ABR algorithm. None of the tests show
any buffering, the buffer never runs dry. When inspecting the actual data sent, however, in
Figure 7.1, the discrepancy between the goodput and the actual data sent on the wire becomes
obvious. The average bit-rate advertised by the manifest is not representative of all segments.
While this is not causing too many problems in this case, this could become problematic with
multiple clients streaming more data than expected, especially at lower bandwidths.

bandwidth delivery time goodput

4.7 Mbps 887 ms 4,106.751 Kbps
1.7 Mbps 858 ms 1,491.160 Kbps
621 Kbps 938 ms 546.850 Kbps
425 Kbps 921 ms 376.452 Kbps

Table 7.3: Table containing average delivery time and goodput values of tests where a
single streaming application is limited by different bandwidth values.

For this test, the server logs were consulted to ensure that no anomalies can be found for this
simple test. Figure 7.2 shows the RTT measurements and the congestion window used by the
server. The congestion window resembles the expected pattern from a New Reno implementa-
tion. It might seem like there is an unusual amount of jitter in the RTT measurements, however,

7.2. TESTS AND RESULTS 59

Figure 7.1: A comparison between the measured goodput and the actual data sent to
the client, during the test with a bandwidth of 4.7 Mbps. The green line represents the
measured goodput, whilst the yellow line represents the amount of data transferred to the
client that resulted in the goodput measurement.

this seems to be caused by the interaction with the goDASH client, this RTT pattern is always
present at the server.

60 CHAPTER 7. EVALUATION

(a) RTT, lower is better

(b) congestion window

Figure 7.2: A selection of transport layer protocols, collected at the server during the
test with a bandwidth of 4.7 Mbps. (a) The RTT measurements, blue shows the latest
measurement, yellow shows the smoothed RTT calculated using the latest measurements,
red shows the variance between the smoothed and the latest measurement, green is the
minimum RTT value. The minimum remains at zero until a first measurement is made. (b)
The congestion window.

7.2. TESTS AND RESULTS 61

7.2.2 Impact of ABR

This section will discuss tests to determine the impact of different ABR algorithms on the
performance of the streaming client. A single client is used, with the conventional or average
ABR algorithm, and no events are streamed to the analysis service. There will be no other
applications competing for the bandwidth. The network simulator will be running with the
FIFO qdisc class, with 30 ms of latency, no jitter, and no loss, whilst the bandwidth is set to
different targets for every test: 4.7 Mbps, 1.7 Mbps, 621 Kbps, and 425 Kbps.

The hypothesis is that both algorithms will have very similar performance, because of their simi-
lar behavior. Where the conventional algorithm reacts immediately to a throughput change, the
average algorithm will make the same changes, but less intense. Both algorithms will approach
the bandwidth with their goodput measurements. There should not be any buffering, as the
delivery time remains under the one-second mark, because this is the length of a segment.

conventional average

bandwidth delivery time goodput delivery time goodput

4.7 Mbps 887 ms 4,106.751 Kbps 878 ms 4,106.662 Kbps
1.7 Mbps 858 ms 1,491.160 Kbps 860 ms 1,492.742 Kbps
621 Kbps 938 ms 546.850 Kbps 784 ms 537.385 Kbps
425 Kbps 921 ms 376.452 Kbps 922 ms 375.782 Kbps

Table 7.4: Table containing the comparison between average delivery times and goodput
measurements between a streaming client using the conventional and the average algorithm.

The comparison between the conventional and the average algorithm is shown in Table 7.4.
The results are as expected, there is almost no difference between delivery times and goodput
measurements. Figure 7.3 shows the goodput and delivery time measurements with a bandwidth
of 4.7 Mbps. Both of the traces appear to have similar behavior. There is, however, an anomaly
during the test with a bandwidth of 621 Kbps, the delivery time is much lower than expected with
the average algorithm. Furthermore, with the average algorithm, the test ends approximately 23
seconds earlier because of this. Figure 7.4 shows the goodput and delivery time measurements.
Visually, the delivery time is lower, and the goodput seems to be lower at most points as well.
By inspecting the logs even further, it is obvious that with the average algorithm, an adaptation
with a lower bit-rate is chosen consistently. Whereas the conventional algorithm usually goes
for the adaptation with an average bit-rate of 537 Kbps, the average algorithm opts for the
adaptation with an average bit-rate of 424 Kbps. When inspecting the actual data sent to
the clients, shown in Figure 7.5, it is obvious that the average algorithm chooses lower bit-rate
adaptations more often than the conventional algorithm. This only happens a few times during
the test with the bandwidth at 4.7 Mbps, but frequently with the test at 621 Kbps.

The algorithms can not exceed the goodput measurement. While measurements can approach
600 Kbps, they can also be as low as 500 Kbps. Averaging out these measurements, as can
be seen by the average goodput in Table 7.4, results in a value just around 537 Kbps. The
algorithm will choose the lower adaptation because it thinks the 537 Kbps adaptation will
congest the network.

62 CHAPTER 7. EVALUATION

(a) goodput, higher is better

(b) delivery time, lower is better

Figure 7.3: Goodput and delivery time compared between tests with different ABR algo-
rithms, conventional (trace 1) and average (trace 2), with a bandwidth of 4.7 Mbps.

7.2. TESTS AND RESULTS 63

(a) goodput, higher is better

(b) delivery time, lower is better

Figure 7.4: Goodput and delivery time compared between tests with different ABR algo-
rithms, conventional (trace 1) and average (trace 2), with a bandwidth of 621 Kbps. Trace
2 ends approximately 23 seconds earlier than trace 1.

64 CHAPTER 7. EVALUATION

(a) bandwidth at 4.7 Mbps

(b) bandwidth at 621 Kbps

Figure 7.5: Comparison between the segment data of the tests with the conventional (trace
1) and the average (trace 2) ABR algorithm.

7.2. TESTS AND RESULTS 65

7.2.3 Impact of Log Streaming

This section will discuss tests to determine the impact on the performance of the streaming
client of different methods of streaming events to the analysis service. A single client is used,
with the conventional ABR algorithm, and events are streamed to the analysis service in four
ways: none are streamed, all are streamed individually, batches of events are streamed, either
in groups of 10 or 100. There will be no other applications competing for the bandwidth. The
network simulator will be running with the FIFO qdisc class, with 30 ms of latency, no jitter,
and no loss, whilst the bandwidth is set to different targets for every test: 4.7 Mbps, 1.7 Mbps,
621 Kbps, and 425 Kbps.

As a reminder, event logging is done by a routine that is separate from the main streaming
loop. This routine receives events, and writes them to the local log file. Then, based on the
parameters, the event is either ignored if streaming is turned off, or it is passed onto the piece
of the application that provides this streaming functionality. Whenever events are streamed
individually, the events are sent out one-by-one, otherwise they are temporarily stored as the
batch is being prepared until the batch size has been reached.

The hypothesis is that the amount of requests will impact the available throughput for the
application, with more requests meaning a more negative impact. Meaning that not streaming
logs will have the best performance, streaming individual events will have the worst performance.
The batched streaming method will have a lesser negative impact, but will be noticeable. It
should not be unexpected to see delivery times exceeding the one-second mark, as the many
events could result in very high latency on the network, therefore, buffering is possible.

Table 7.5 shows the results of the tests with logging turned off and events streamed individually.
In both cases, the ABR algorithm is able to make sure that the delivery time does not exceed the
segment length of one second. It is obvious, however, that the goodput is severely and negatively
impacted by streaming the logs. In the case of the test with the most bandwidth, the goodput
measurement is approximately a ninth of the same test with streaming of logs turned off. Figure
7.6 shows the goodput and delivery time of the tests with the lowest bandwidth, whereas Figure
7.7 shows the same metrics for the highest bandwidth test. The delivery times for both traces
in each test do not seem too out of the ordinary. Trace 1 shows in both cases more frequent
peaks than trace 2, however, their average stays below the critical segment length. The goodput
measurements, however, clearly show when congestion occurs. A lower goodput starts being
measured and a lower average bit-rate adaptation is chosen for the following segments. The
lower bit-rate allows for the delivery time to stay level. When looking at the buffering events, as
is done with Figure 7.8, it can be seen that with a higher bandwidth buffering events occur, but
this does not occur with a lower bandwidth. This is most likely caused by the larger segments
getting impacted more by the congestion.

logs on logs off

bandwidth delivery time goodput delivery time goodput

4.7 Mbps 974 ms 462.336 Kbps 887 ms 4,106.751 Kbps
1.7 Mbps 935 ms 454.887 Kbps 858 ms 1,491.160 Kbps
621 Kbps 930 ms 362.609 Kbps 938 ms 546.850 Kbps
425 Kbps 922 ms 299.257 Kbps 921 ms 376.452 Kbps

Table 7.5: Table containing average delivery time and throughput values of tests where a
single streaming application is limited by different bandwidth values, and streaming of logs
is turned on or off.

Table 7.6 shows the results where events are batched together before sending the batches to

66 CHAPTER 7. EVALUATION

(a) 425 Kbps, goodput

(b) 425 Kbps, delivery time

Figure 7.6: Goodput and delivery time compared between tests with streaming of logs on
(trace 1) and off (trace 2), with a maximum bandwidth of 425 Kbps.

batched logs (10) batched logs (100)

bandwidth delivery time goodput delivery time goodput
4.7 Mbps 924 ms 1,624.363 Kbps 928 ms 3,035.264 Kbps
1.7 Mbps 901 ms 1,261.480 Kbps 861 ms 1,485.830 Kbps
621 Kbps 947 ms 545.524 Kbps 931 ms 545.923 Kbps
425 Kbps 921 ms 375.712 Kbps 921 ms 376.570 Kbps

Table 7.6: Table containing average delivery time and throughput values of tests where
a single streaming application is limited by different bandwidth values, and events are
streamed in batches of ten and one hundred events.

7.2. TESTS AND RESULTS 67

(a) goodput, higher is better

(b) delivery time, lower is better

Figure 7.7: Goodput and delivery time compared between tests with streaming of logs on
(trace 1) and off (trace 2), with a maximum bandwidth of 4.7 Mbps.

68 CHAPTER 7. EVALUATION

(a) bandwidth at 425 Kbps

(b) bandwidth at 4.7 Mbps

Figure 7.8: The goodput measurement and the actual data sent to the client. The red
vertical lines indicate buffering events.

7.2. TESTS AND RESULTS 69

the analysis service. While the delivery time stays stagnant, the goodput rises as the size of
the batches rise. There is, however, a diminishing return, since the goodput can not exceed the
bandwidth limit. With a batch size of ten, the client is able to reach an equal goodput to not
streaming the logs for the tests up to 621 Kbps, and the 1.7 Mbps test reaches approximately
85% of the target goodput. With a larger batch size of one hundred, the 1.7 Mbps test also
reaches their target goodput, the tests with a lower maximum bandwidth see no change in
goodput. This means that those tests delay sending their events, with no actual benefit for
increasing the goodput.

7.2.4 Impact of Multiple Clients

This section will discuss tests to determine the impact of multiple streaming clients concurrently
on their performance. A single client is used as a reference, then tests are run with multiple
concurrent clients: 2, 4, and 8 clients. Every client uses the same parameters: the conventional
ABR algorithm, and events are streamed to the analysis service in batches of 100 events. There
will be no other applications competing for the bandwidth. The network simulator will be
running with the FIFO qdisc class, with 30 ms of latency, no jitter, and no loss, whilst the
bandwidth is set to different targets for every test: 4.7 Mbps, 1.7 Mbps, 621 Kbps, and 425
Kbps.

The hypothesis is that the amount of clients will impact the performance, as the bandwidth has
to be shared, a lower goodput will be measured, and a lower bit-rate adaptation will be chosen.
Clients will take their fair share of the bandwidth, meaning the bandwidth will approximately
be divided evenly between all clients. There should be no buffering events, since the congestion
control should be able to notice the other clients being active on the network, and ensure a lower
experienced throughput.

The first test is run with two clients, their delivery times and goodput measurements are shown
in Table 7.7. The clients seem to share the bandwidth quite fairly, however, one of the clients is
always able to achieve a higher average goodput, this can result in a higher bit-rate adaptation
for that client. Shown in Figure 7.10 are the adaptation choices made by the two clients, of the
test with a bandwidth of 4.7 Mbps. One of the clients is able to choose a much higher bit-rate
adaptation, however, towards the end both clients approach an equilibrium.

Figure 7.9 depicts the goodput and delivery time of the test with a bandwidth of 1.7 Mbps.
This test shows the greatest difference between the end time of the clients, it results in one of
the client being able to take a much larger share of the bandwidth for the latest segments, up
to 1.5 Mbps.

client 1 client 2

bandwidth delivery time goodput delivery time goodput difference

4.7 Mbps 860 ms 2,106.363 Kbps 855 ms 1,859.652 Kbps 1 s
1.7 Mbps 869 ms 752.363 Kbps 897 ms 879.075 Kbps 5 s
621 Kbps 917 ms 299.949 Kbps 919 ms 300.838 Kbps 1 s
425 Kbps 955 ms 217.032 Kbps 943 ms 201.003 Kbps 2 s

Table 7.7: Table containing the comparison between average delivery times and goodput
measurements between two streaming clients from the same streaming session, and the
absolute difference in how long it took for the clients to finish.

Table 7.8 compares the aggregated measurements of the two clients to the measurements of a
single client. While the delivery times do not seem out of the ordinary, there is a higher overall
goodput. Individually, the two clients measure a lower goodput than the single client, and have

70 CHAPTER 7. EVALUATION

(a) goodput, higher is better

(b) delivery time, lower is better

Figure 7.9: Goodput and delivery time compared between tests with two clients, client 1
(trace 1) and client 2 (trace 2), and a bandwidth of 1.7 Mbps.

7.2. TESTS AND RESULTS 71

a lower QoE. This comparison, however, shows that the bandwidth is more optimally used by
the two clients.

1 client 2 clients

bandwidth delivery time goodput delivery time goodput

4.7 Mbps 928 ms 3,035.264 Kbps 858 ms 3,966.015 Kbps
1.7 Mbps 861 ms 1,485.830 Kbps 883 ms 1,631.438 Kbps
621 Kbps 931 ms 545.923 Kbps 918 ms 600.787 Kbps
425 Kbps 921 ms 376.570 Kbps 949 ms 418.035 Kbps

Table 7.8: Table containing the comparison between average delivery times and goodput
measurements between a single client and two clients sharing the same bandwidth. For
the two clients, the data is aggregated, delivery times are averaged and goodput values are
summed up.

With four clients, the same pattern continues. The measurements stay quite level over time, and
there is some difference between the achieved goodput values of the clients. Table 7.9 depicts
the delivery times and goodput measurements for the four-client test with a bandwidth of 4.7
Mbps, which shows no anomalies.

delivery time goodput

client 1 906 ms 1,128.000 Kbps
client 2 916 ms 1,331.165 Kbps
client 3 891 ms 1,044.998 Kbps
client 4 889 ms 1,055.754 Kbps

Table 7.9: Table containing average delivery time and throughput values of four clients
who ran concurrently during a streaming session with a bandwidth of 4.7 Mbps.

However, if we compare the aggregated data points of the four clients to the single client, depicted
in Table 7.10, the goodput measurements stand out. During certain tests, the average goodput
measurement exceeds the bandwidth. Furthermore, the clients suffer from buffering during the
session. By measuring the goodput when other clients are less active, a higher goodput is
measured. The conventional algorithm immediately chooses a higher bit-rate adaptation, but
the network will struggle with delivering it as the other clients become more active. This pattern
continues as the amount of clients grows. The average delivery time of a client does not exceed
the one-second mark, while the average goodput is roughly equal to the bandwidth divided by all
clients, however the sum of the average goodput is higher than the bandwidth. With a greater
amount of clients, a greater amount of congestion is noticed, resulting in more buffering, and a
lower QoE.

72 CHAPTER 7. EVALUATION

Figure 7.10: The bit-rate choices from two clients that streamed concurrently during the
test with a bandwidth of 4.7 Mbps.

1 client 4 clients

bandwidth delivery time goodput delivery time goodput

4.7 Mbps 928 ms 3,035.264 Kbps 901 ms 4,559.917 Kbps
1.7 Mbps 861 ms 1,485.830 Kbps 946 ms 1,746.120 Kbps
621 Kbps 931 ms 545.923 Kbps 942 ms 649.032 Kbps
425 Kbps 921 ms 376.570 Kbps 970 ms 486.734 Kbps

Table 7.10: Table containing the comparison between average delivery times and goodput
measurements between a single client and four clients sharing the same bandwidth. For
the four clients, the data is aggregated, delivery times are averaged and goodput values are
summed up.

7.2. TESTS AND RESULTS 73

7.2.5 Impact of Background Traffic

This section will discuss tests to determine the impact of background traffic on the performance
of multiple clients streaming concurrently. A single client is used as a reference, then tests are
run with multiple concurrent clients: 2, 4, and 8 clients. Every client uses the same parameters:
the conventional ABR algorithm, and events are streamed to the analysis service in batches of
100 events. The background traffic is generated using iPerf3, which sets up a TCP connection
with a cubic congestion controller, and continuously sends data over this connection with the
aim to saturate the network. The network simulator will be running with the FIFO qdisc class,
with 30 ms of latency, no jitter, and no loss, whilst the bandwidth is set to different targets for
every test: 4.7 Mbps, 1.7 Mbps, 621 Kbps, and 425 Kbps.

The hypothesis is that the background traffic will reduce the available throughput. However,
this is also the case with multiple clients. This test simply adds another subject to the network
to compete for the bandwidth, but it should play fair, just like the streaming clients. This time,
however, buffering is not written out.

The measurements of a single client, both with and without background traffic, are depicted
in Table 7.11. As expected, the goodput measurement is lower with background traffic. There
is no buffering taking place at any point within the streaming session, as the lower goodput
measurement ensures the delivery time does not get too high. When inspecting the graph
visually, shown in Figure 7.11, it is obvious that jitter is present. Based on these results and
the results in Section 7.2.4, however, with more clients the QoE will rapidly drop as there is less
bandwidth to divide and more unexpected behavior on the network.

1 client 1 client, background traffic

bandwidth delivery time goodput delivery time goodput

4.7 Mbps 928 ms 3,035.264 Kbps 898 ms 2,452.228 Kbps
1.7 Mbps 861 ms 1,485.830 Kbps 909 ms 660.137 Kbps
621 Kbps 931 ms 545.923 Kbps 885 ms 157.975 Kbps
425 Kbps 921 ms 376.570 Kbps 778 ms 69.166 Kbps

Table 7.11: Table containing the comparison between average delivery times and goodput
measurements between streaming with and without background traffic.

Figure 7.12 shows the goodput measurements and delivery times of two out of four clients that
streamed concurrently. While showing similar behavior, there is obvious jitter present and one
client experiences much more buffering than the other. As with the tests in Section 7.2.4, the
bandwidth is more optimally used by multiple clients, as can be seen in Table 7.12. This time,
however, the bandwidth is not exceeded, whilst buffering still occurs. Background traffic takes
up their share of the bandwidth that is not represented in the table.

74 CHAPTER 7. EVALUATION

Figure 7.11: The delivery times compared between tests with a single client and with
background traffic. A test is run with a bandwidth of 4.7 Mbps (trace 1), the other with a
bandwidth of 621 Kbps (trace 2). A lower delivery time is better.

4 clients 4 clients, background traffic

bandwidth delivery time goodput delivery time goodput

4.7 Mbps 901 ms 4,559.917 Kbps 903 ms 3,998.263 Kbps
1.7 Mbps 946 ms 1,746.120 Kbps 927 ms 1.480,323 Kbps
621 Kbps 942 ms 649.032 Kbps 937 ms 358.226 Kbps
425 Kbps 970 ms 486.734 Kbps 889 ms 268.194 Kbps

Table 7.12: Table containing the comparison between average delivery times and goodput
measurements between a single client and four clients sharing the same bandwidth. For
the four clients, the data is aggregated, delivery times are averaged and goodput values are
summed up.

7.2. TESTS AND RESULTS 75

(a) goodput, higher is better; red vertical lines show buffering events of trace 1, blue vertical lines show buffering
events of trace 2

(b) delivery time, lower is better

Figure 7.12: The goodput and delivery time of two out of four streaming clients that
streamed concurrently with a bandwidth of 425 Kbps.

76 CHAPTER 7. EVALUATION

7.2.6 Impact of Queue Behavior

This section will discuss tests to determine the impact of the network simulator queue behavior
on the performance of multiple clients streaming concurrently. A single client is used as a
reference, then tests are run with multiple concurrent clients: 2, 4, and 8 clients. Every client
uses the same parameters: the conventional ABR algorithm, and events are streamed to the
analysis service in batches of 100 events. The background traffic is generated using iPerf3,
which sets up a TCP connection with a cubic congestion controller, and continuously sends
data over this connection with the aim to saturate the network. The network simulator will be
running with the FIFO or CoDel qdisc class, with 30 ms of latency, no jitter, and no loss, whilst
the bandwidth is set to different targets for every test: 4.7 Mbps, 1.7 Mbps, 621 Kbps, and 425
Kbps.

The hypothesis is that the CoDel qdisc class should handle a congested network better, ensuring
that traffic is let through more fairly, since the FIFO queue is prone to bufferbloat [The22a].
Resulting in less buffering and jitter, but similar latencies and goodput.

FIFO CoDel

delivery time goodput delivery time goodput

logs off 938 ms 546.859 Kbps 961 ms 547.744 Kbps
logs batched (10) 948 ms 545.408 Kbps 940 ms 544.342 Kbps

logs batched (100) 932 ms 545.985 Kbps 945 ms 546.918 Kbps
logs 930 ms 362.609 Kbps 962 ms 351.513 Kbps

Table 7.13: Table containing average delivery time and throughput values of tests with a
bandwidth of 621 Kbps, comparing the FIFO qdisc class to the CoDel qdisc class.

An initial test compares the difference in performance between using the FIFO and CoDel
qdisc classes, with all methods of log streaming. When comparing these results, which are
summarized in Table 7.13, no significant difference is found. The behavior of the packet queue
seems to behave in similar ways when only a single client is saturating the network.

Figures 7.13 and 7.14 show results with a bandwidth of 4.7 Mbps, with individual event logging
and logging in batches of 100, respectively. Again, there are a few seconds of difference between
the end of the tests. The goodput with CoDel seems to be more jittery when logging individual
events, but the goodput in both scenarios show similar averages. With batched logging, however,
the FIFO qdisc class is able to reach higher goodput overall, over 3.04 Mbps compared to 2.69
Mbps with CoDel. The same can be observed when logs are not streamed to the analysis
service, with the FIFO qdisc class reaching 4.10 Mbps, whereas with CoDel an average goodput
of 3.91 Mbps is achieved. Figure 7.15 zoom in to the start of the test where events are streamed
individually, with a CoDel qdisc class, and a bandwidth of 4.7 Mbps. As the client starts
to stream content, events are generated and start taking up bandwidth, resulting in lower a
goodput. With a decreasing share of the bandwidth for the client, buffering events start to
occur, until an adaptation is chosen where the bit-rate of the content is low enough.

The test with two concurrently streaming clients shows the impact of CoDel on the scheduling
of the network. Table 7.14 compares the aggregate data of the test with two concurrently
streaming clients. With FIFO, there is a higher overall goodput measured. In Figure 7.16,
however, the results of the test with a bandwidth of 1.7 Mbps show that goodput measurements
are very similar, hinting at that the network is shared fairly when using CoDel. The sizes of the
segments that are streamed to the clients are equal, and both clients choose an adaptation once,
and never have to switch. This pattern can be found in every test with two clients when using
the CoDel qdisc class, except for some client making a few minor adjustments in adaptation

7.2. TESTS AND RESULTS 77

(a) goodput, higher is better; red vertical lines show buffering events

(b) delivery time, lower is better

Figure 7.13: The goodput and delivery time of tests with the FIFO qdisc class (trace 1) and
the CoDel qdisc class (trace 2), with events being streamed individually, and a bandwidth
of 4.7 Mbps. The test with the CoDel qdisc class took longer to finish, the average delivery
time was higher. This test also shows more jittery goodput behavior.

78 CHAPTER 7. EVALUATION

(a) goodput, higher is better; red vertical lines show buffering events

(b) delivery time, lower is better

Figure 7.14: The goodput and delivery time of tests with the FIFO qdisc class (trace 1)
and the CoDel qdisc class (trace 2), with events being streamed in batches of 100, and a
bandwidth of 4.7 Mbps. The test with the CoDel qdisc class took less time to finish, the
average delivery time was lower.

7.2. TESTS AND RESULTS 79

choice at the start, but an equilibrium is quickly reached.

2 clients, FIFO 2 clients, CoDel

bandwidth delivery time goodput delivery time goodput

4.7 Mbps 858 ms 3,966.015 Kbps 854 ms 3,604.210 Kbps
1.7 Mbps 883 ms 1,631.438 Kbps 798 ms 1,536.532 Kbps
621 Kbps 918 ms 600.787 Kbps 922 ms 590.154 Kbps
425 Kbps 949 ms 418.035 Kbps 918 ms 394.359 Kbps

Table 7.14: Table containing the comparison between average delivery times and goodput
measurements between two concurrently streaming clients, once with the FIFO qdisc class,
and once with the CoDel qdisc class. For the two clients, the data is aggregated, delivery
times are averaged and goodput values are summed up.

When performing this test with a greater amount of clients, however, the slight differences can
start to grow larger. An equilibrium will be reached, but with a less fair distribution of the
available bandwidth. Figure 7.17 shows the goodput compared between a few different clients
from the test with eight clients, with a bandwidth of 621 Kbps and using the CoDel qdisc class.
Client 0 and client 1 show very similar behavior, resulting in an average goodput of over 100
Kbps. However, with the bandwidth only being 621 Kbps, it is not sustainable for all clients
to receive data at this rate. That is why all other clients have lower goodput measurements,
as can be seen by comparing client 0 with client 2. No buffering occurs during this test, as the
clients are still playing reasonably fair with each other. Most other tests with multiple clients,
however, show a more fair distribution of the bandwidth. The clients act as expected, and avoid
congesting the network

80 CHAPTER 7. EVALUATION

Figure 7.15: Partial results of the test with the CoDel qdisc class, and a bandwidth of
4.7 Mbps, with the clients streaming events individually. The green line shows the goodput
measurement. The height of the yellow bars show the amount of bits per segment, while
the length shows the time it took for the segment to arrive, these are used to calculate the
goodput. The red vertical lines indicate a buffering event.

7.2. TESTS AND RESULTS 81

(a) goodput, higher is better

(b) segment data

Figure 7.16: Goodput measurements and segment data sent to two concurrently streaming
clients. The segment data shows the size of the segments in the y-axis, the width of the bar
shows the time needed to deliver the segment.

82 CHAPTER 7. EVALUATION

(a) goodput, compared between client 0 and client 1, higher is better

(b) goodput, compared between client 0 and client 2, higher is better

Figure 7.17: Goodput measurements compared between clients during the test with eight
concurrently streaming clients, with a bandwidth of 621 Kbps, using the CoDel qdisc class.
(a) Some clients measure equal goodput values, (b) others measure lower values.

7.2. TESTS AND RESULTS 83

(a) segment data, compared between client 0 and client 1

(b) segment data, compared between client 0 and client 2

Figure 7.18: The segment sizes compared between clients during the test with eight con-
currently streaming clients, with a bandwidth of 621 Kbps, using the CoDel qdisc class.
The segment data shows the size of the segments in the y-axis, the width of the bar shows
the time needed to deliver the segment. (a) Some clients some the same behavior, resulted
from getting the same bandwidth share, (b) other clients show different behavior, since they
measure different goodput values, therefore choosing different adaptations.

84 CHAPTER 7. EVALUATION

7.3 Analysis Service

Throughout the evaluations, the analysis service was a valuable asset, that does come with
some flaws. Since absolute timestamps are used, it is not trivial to find the correct time range
at all times. With little being preprepared and being an unguided experience, creating a concise
dashboard that shows the most important data points in the correct way is a challenge every
time. With a lower number of clients to compare, it was not difficult to create a dashboard
to facilitate this. When the number of clients increased, however, it became inconvenient to
create a dashboard to compare all clients. Grafana lacks the ability to dynamically change the
dashboard according to the number of clients.

Furthermore, while the GraphQL plugin for Grafana works, the user interface is not really user-
friendly. The queries are not checked at the frontend, which is done by many GraphQL front-
ends. In order to write correct queries, it was most convenient to use an external front-end to
write the queries, before importing them into Grafana. Besides that, the plugin does not support
all data types and can not access all data within the query result. Queries might need to be
rewritten in order to work correctly with the plugin. Besides that, the way the GraphQL queries
work with interfaces, abstract types, is suboptimal for the qlog events. Common attributes are
queried on all events, and then it can be specified which attributes to extract from specific
subtypes. This results in a trace returning the common data for every event, which in the case
of transport layer logs can be tens of thousands of events, even those who are not needed, and
can result in Grafana needing some noticeable processing time. The lag experienced is not only
caused by large traces, but also by the inefficient querying method by Grafana. Every panel on
a dashboard executes its own query, even if panels use equivalent data.

Chapter 8

Conclusion

The thesis confirms that it is possible to perform real-time analysis of an adaptive video stream
when using next-generation protocols without negatively impacting the performance of the ap-
plication. However, this is reliant on the network having the required bandwidth to support log
transfer without interfering with the video stream. Section 7.2.3 explains how different methods
of streaming logs affect streaming performance. The fewer network requests that must be made
and the less overhead that is avoided, the more likely a streaming client will be able to reach its
target bit-rate for the current network environment. The method of streaming logs should be
tuned towards the network for both the best streaming performance, but also making sure this
data stream stays as real-time as possible.

Several tests on streaming clients can be performed using the framework and analysis service.
Influences that multiple concurrent clients exert on one another can be inspected by overlaying
the data points from multiple clients and making a comparison. Section 7.2.4 shows how this
method is used on tests with numerous clients. The differences in behavior of a streaming client
can be observed if internal streaming parameters are changed; for example, the ABR algorithm,
as is done in Section 7.2.2. Furthermore, outside forces, such as the network environment, also
changes the behavior of a streaming client. Tests are run with different network settings in
Section 7.2.6, and show how the clients and network react. Another outside force is background
traffic, which can also have an influence on the streaming experience, as shown in Section 7.2.5.
While the analysis service cannot analyze these outside forces/external factors, the network is
treated as a black box, it is still possible to analyze the behavior of the streaming client and
infer the behavior of outside forces.

While it was possible to achieve the real-time aspect of the thesis, throughout the evaluation
phase the importance of this aspect became questionable. The realization that there are two
types of analysis, as stated in Chapter 6, uncovered a misalignment between what this kind of
analysis service is best suited for, and the goal of the thesis. It is possible to detect certain
events, such as congestion, but the analysis service is not able to act on those events. The client
detects these events as well, however, it does act immediately; for example, congestion is noticed
by the transport protocol and the congestion window is reduced, and the ABR algorithm might
notice a reduced goodput and choose a lower bit-rate adaptation. Knowledge can still be gained
by using the analysis service, but the real-time aspect does not benefit this process. Following
an evaluation, it was discovered that comparisons provide the most insight into client behavior.
A good comparison necessitates the availability of corresponding data points; this is most easily
accomplished when both subjects to be compared have all data points available.

Another problem is the velocity at which logs arrive at the analysis service, and the speed at
which they can be processed. The human analyzer is a bottleneck, as there are numerous data

85

86 CHAPTER 8. CONCLUSION

points continuously streaming into the analysis service, while the analyzer can only observe a
selection of those data points at a time. It is possible to construct a dashboard with panels
highlighting the most important data points, but it is unlikely that a single human analyzer can
keep an eye on all of them. During the analysis process, multiple dashboards would be used,
which all highlighted a different set of data points from different layers. At times, a single panel
of the dashboard would be focused, in order to zoom in or change the parameters to improve
the visualization.

The visualizations, while straight-forward to create and modify, are difficult to perfect. A lot of
experience is required in order to know what data to visualize in what manner, which turned
out to be more challenging than expected. The many visualizations available in the dashboards,
however, show great potential, and there is still much room for improvement.

8.1 Future Work

Intrusion Detection Systems (IDS), in the field of cybersecurity, have the goal of analyzing
network traffic and events, detecting anomalies, and performing an action based on what was
detected. This is a process that is similar to the analysis service process. There is active research
being conducted to integrate Machine Learning techniques (ML) within IDS solutions in order
to detect anomalies more effectively. The ability of ML to generalize methods means that
previously unknown anomalies can be detected by training an ML model on known anomalous
behavior [LL19]. Anomalies can be detected in a real-time stream of temporal data, regardless
of the type of data. The stream will be analyzed in real-time, and if the behavior of the data
appears to change at any point in time, this will be classified as an anomaly [Ahm+17].

The integration of ML techniques would be an improvement over the current analysis service.
The analysis service would relieve the burden of analyzing every single data point by detecting
anomalies in the data and marking the most interesting areas to inspect. This will also make
real-time data more feasible, as data can be marked as interesting during ingress. The human
analyzer has fewer data points to observe, or it can be automated. If the analysis process is
automated, it will be possible to react to events in the same way that an ABR algorithm does.
Changes in CDN routing may be possible to reduce latency.

At the moment, the analysis focuses on a single layer, the streaming application. While there
are dashboards that allow for comparisons between different layers, these did not prove to gain
as many valuable insights as expected. Instead, the other layers served as sanity checks to make
sure everything was working as expected. Chapter 2 discusses the cross-layer aspect of protocols,
this analysis service can be used to facilitate analyzing an application that uses this principle.
The numerous data points can be correlated to gain insights into how the cross-layer principle
affects the application.

The analysis can also be layered by aggregating data from various nodes. Only logs from the
client and, optionally, the server are currently aggregated. While the network is regarded as
a black box, it could be argued that a large corporation, such as Google, which controls the
client, server, and CDN, has access to data from the middleboxes. The different connections
between the different middleboxes can also be analyzed and are potentially valuable sources of
knowledge. In practice, there is no single connection between the client and the server, but there
is a connection between the server and the CDN, as well as between CDN nodes, and between
a CDN edge server and the client. A poor streaming experience might be caused by only one of
these connections.

8.2. REFLECTION 87

8.2 Reflection

I, Mike Vandersanden, have had various educational experiences throughout writing this thesis.
A number of technologies and principles discussed in the thesis have been addressed in courses or
been explored in my bachelor thesis. Having the opportunity to gain more in-depth knowledge on
these and other topics, such as video streaming and network protocols, is invaluable. At times, it
is challenging to take the acquired knowledge and form a coherent and clear text that my peers
would comprehend. With the help of my mentors and some friends, however, I think the thesis
is able to accomplish this. Being both quite comprehensive, and still understandable for people
that lack domain knowledge. The practical aspect of the thesis turned out to be different from
expected, more testing and analyzing, less actual implementation. It also included more of an
exploration of different technologies, and turned into a proof-of-concept of their collaboration. In
the end, while not being what I would have imagined, the end result satisfies me, it is wonderful
to see all things learned coming together.

Throughout the implementation phase, the decision was made to not base my work upon existing
solutions, specifically using qvis for visualization of qlog. It is difficult to prove whether this was
the right call. After spending some time with members of the research department, however,
and seeing how their research was developing on related subjects, this seemed like the right call
at that time. What sounded like small improvements that they tried to implement in their own
visualizations took a substantial amount of time. Recreating their simple visualizations was no
challenge with Grafana. Later, during the evaluation phase, the downsides of Grafana started
to show, but I do not think another solution would have been considerably better.

Based on my experiences with writing a thesis for my bachelor degree, I tried some new methods
of trying to improve my thesis writing, and most importantly, not postpone the writing. I
kept a list of all papers and other sources that seemed relevant and showed potential. The
list was categorized and had a little summary for every source. Furthermore, throughout the
implementation and evaluation phase, I would try to take notes and include them in the thesis
document. This resulted in a lot of content already being in the document when starting the
writing phase, the sentences just had to be written. During the evaluation phase, however, this
tactic was not used optimally. Various problems kept postponing what I thought to be the actual
evaluation phase, instead of realizing that these problems could be turned into parts of that
phase. Without keeping track of what problems exactly came up, and the data gathered during
that time, some things got lost. This was eventually turned into Section 6.3, the preliminary
testing. I encountered an example of Miller’s Law: Exceptions prove the rule – and wreck the
budget. It took longer than expected to ensure a certain level of quality, but I failed to adapt
to the depleted time budget.

If I were to start over, I would take better advantage of the facilities offered by my mentor,
specifically the ability to get a desk in their research room. During the summer, the “QUIC
@ EDM – summer edition” initiative allowed all researches, students, and student workers, to
collaborate on their work. This invaluable experience made it possible to finish the thesis in
time, at a higher level of quality I would have been able to achieve on my own.

Finally, throughout this experience, I learned that it is important to listen to others, but not
follow their words blindly. While reading numerous publications and conversing with people,
my own ideas would get challenged, and at times this resulted in rejection of these ideas. The
further I got through the year, however, I realized that my ideas are as valuable as those of
others, especially as long as there is proof or expertise saying otherwise. Towards the end, I
would start listening to people and taking their ideas with a grain of salt, as I should have from
the start.

Bibliography

[14] Information technology — Dynamic adaptive streaming over HTTP (DASH). Stan-
dard. Geneva, CH: International Organization for Standardization, May 2014.

[20] Information technology — Multimedia application format (MPEG-A) — Part 19:
Common media application format (CMAF) for segmented media. Standard. Geneva,
CH: International Organization for Standardization, Mar. 2020.

[AB18] Sevket Arisu and Ali C. Begen. “Quickly Starting Media Streams Using QUIC”. In:
Proceedings of the 23rd Packet Video Workshop. PV ’18. Amsterdam, Netherlands:
Association for Computing Machinery, 2018, pp. 1–6. isbn: 9781450357739. doi:
10.1145/3210424.3210426.

[Adh+12] Vijay Kumar Adhikari et al. “Unreeling netflix: Understanding and improving
multi-CDN movie delivery”. In: 2012 Proceedings IEEE INFOCOM. 2012, pp. 1620–
1628. doi: 10.1109/INFCOM.2012.6195531.

[Ahm+17] Subutai Ahmad et al. “Unsupervised real-time anomaly detection for streaming
data”. In: Neurocomputing 262 (Nov. 2017), pp. 134–147. doi: 10.1016/j.neucom.
2017.04.070.

[App21] Apple. Enabling Low-Latency HTTP Live Streaming (HLS). 2021. url: https://
developer.apple.com/documentation/http_live_streaming/enabling_low-

latency_http_live_streaming_hls (visited on 25/7/2022).
[App22] Apple. About the Common Media Application Format with HTTP Live Stream-

ing. 2022. url: https://developer.apple.com/documentation/http_live_
streaming/about_the_common_media_application_format_with_http_live_

streaming (visited on 15/2/2022).
[Ban22] Nick Banks. QUIC at Microsoft - Nick Banks - EPIQ 2021 Keynote 1. 2022. url:

https://www.youtube.com/watch?v=W8I3bjYn4_0 (visited on 6/8/2022).
[BEW95] R.A. Becker, S.G. Eick, and A.R. Wilks. “Visualizing network data”. In: IEEE

Transactions on Visualization and Computer Graphics 1.1 (1995), pp. 16–28. doi:
10.1109/2945.468391.

[Bis22] Mike Bishop. HTTP/3. RFC 9114. June 2022. doi: 10.17487/RFC9114.
[Bit19] Bitmovin. Adaptive Bitrate Streaming. 2019. url: https://bitmovin.com/adaptive-

streaming/ (visited on 25/7/2022).
[Bit20] Bitmovin. Video Compression Basics: What is video transcoding, why is it impor-

tant, and how does it apply to my everyday life? 2020. url: https://bitmovin.
com/what-is-transcoding/ (visited on 22/7/2022).

[Bit21] Bitmovin. Video Developer Report. 2021. url: https://go.bitmovin.com/video-
developer-report.

[Bit22] Bitmovin. The Definitive Guide to Container File Formats [2022]. 2022. url:
https://bitmovin.com/container-formats-fun-1/ (visited on 23/7/2022).

[Ble13] Blender. Big Buck Bunny. 2013. url: https://peach.blender.org/ (visited on
4/8/2022).

[Bom22] David Bombal. The Internet just changed. 2022. url: https://www.youtube.com/
watch?v=cdb7M37o9sU (visited on 3/8/2022).

88

https://doi.org/10.1145/3210424.3210426
https://doi.org/10.1109/INFCOM.2012.6195531
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1016/j.neucom.2017.04.070
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming
https://www.youtube.com/watch?v=W8I3bjYn4_0
https://doi.org/10.1109/2945.468391
https://doi.org/10.17487/RFC9114
https://bitmovin.com/adaptive-streaming/
https://bitmovin.com/adaptive-streaming/
https://bitmovin.com/what-is-transcoding/
https://bitmovin.com/what-is-transcoding/
https://go.bitmovin.com/video-developer-report
https://go.bitmovin.com/video-developer-report
https://bitmovin.com/container-formats-fun-1/
https://peach.blender.org/
https://www.youtube.com/watch?v=cdb7M37o9sU
https://www.youtube.com/watch?v=cdb7M37o9sU

BIBLIOGRAPHY 89

[BPT15] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. May 2015. doi: 10.17487/RFC7540.

[Bra89a] Robert T. Braden. Requirements for Internet Hosts - Application and Support. RFC
1123. Oct. 1989. doi: 10.17487/RFC1123.

[Bra89b] Robert T. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122. Oct. 1989. doi: 10.17487/RFC1122.

[BRV20] Pierre Bourhis, Juan L. Reutter, and Domagoj Vrgoč. “JSON: Data model and
query languages”. In: Information Systems 89 (2020), p. 101478. issn: 0306-4379.
doi: https://doi.org/10.1016/j.is.2019.101478.

[BRZ17] Divyashri Bhat, Amr Rizk, and Michael Zink. “Not so QUIC: A Performance Study
of DASH over QUIC”. In: Proceedings of the 27th Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video. NOSSDAV’17. Taipei, Taiwan:
Association for Computing Machinery, 2017, pp. 13–18. isbn: 9781450350037. doi:
10.1145/3083165.3083175.

[Búc17] Javier Búcar. D-ITG (Distributed Internet Traffic Generator). 2017. url: https:
//github.com/jbucar/ditg (visited on 10/8/2022).

[Clo22a] Cloudflare. Cloudflare Radar. 2022. url: https://radar.cloudflare.com/ (vis-
ited on 3/8/2022).

[Clo22b] Cloudflare. Mininet: An Instant Virtual Network on your Laptop (or other PC).
2022. url: http://mininet.org/ (visited on 10/8/2022).

[Clo22c] Cloudflare. What is a CDN? — How do CDNs work? 2022. url: https://www.
cloudflare.com/en-gb/learning/cdn/what-is-a-cdn/ (visited on 10/8/2022).

[Cur22a] Luke Curley. Video Distribution Progression @ Twitch. 2022. url: https://docs.
google.com/document/d/1OTnJunbpSJchdj8XI3GU9Fo-RUUFBqLO1AhlaKk5Alo/

edit (visited on 25/7/2022).
[Cur22b] Luke Curley. Warp - Segmented Live Media Transport. Internet-Draft draft-lcurley-

warp-01. Work in Progress. Internet Engineering Task Force, July 2022. 15 pp. url:
https://datatracker.ietf.org/doc/draft-lcurley-warp/01/.

[CYC74] Vinton Cerf, Dalal Yogen, and Sunshine Carl. Specification of Internet Transmis-
sion Control Program. RFC 675. Dec. 1974. doi: 10.17487/RFC0675.

[dac22a] dacast. HLS vs. MPEG-DASH: A Live Streaming Protocol Comparison for 2022.
2022. url: https://www.dacast.com/blog/mpeg-dash-vs-hls-what-you-
should-know/ (visited on 25/7/2022).

[dac22b] dacast. What is RTMP? The Real-Time Messaging Protocol: What you Need to
Know in 2022. 2022. url: https://www.dacast.com/blog/rtmp-real-time-
messaging-protocol/ (visited on 26/7/2022).

[Das22a] Dash Industry Forum. DASH-IF DASH Live Source Simulator. 2022. url: https:
//github.com/Dash-Industry-Forum/dash-live-source-simulator (visited
on 10/8/2022).

[Das22b] Dash Industry Forum. dash.js. 2022. url: https://github.com/Dash-Industry-
Forum/dash.js/ (visited on 10/8/2022).

[De +14] Luca De Cicco et al. “TAPAS: A Tool for RApid Prototyping of Adaptive Stream-
ing Algorithms”. In: Proceedings of the 2014 Workshop on Design, Quality and
Deployment of Adaptive Video Streaming. VideoNext ’14. Sydney, Australia: As-
sociation for Computing Machinery, 2014, pp. 1–6. isbn: 9781450332811. doi: 10.
1145/2676652.2676654.

[Dic21a] Cambridge Dictionary. LIVESTREAM — meaning in the Cambridge English Dic-
tionary. 2021. url: https://dictionary.cambridge.org/dictionary/english/
livestream (visited on 19/10/2021).

https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC1123
https://doi.org/10.17487/RFC1122
https://doi.org/https://doi.org/10.1016/j.is.2019.101478
https://doi.org/10.1145/3083165.3083175
https://github.com/jbucar/ditg
https://github.com/jbucar/ditg
https://radar.cloudflare.com/
http://mininet.org/
https://www.cloudflare.com/en-gb/learning/cdn/what-is-a-cdn/
https://www.cloudflare.com/en-gb/learning/cdn/what-is-a-cdn/
https://docs.google.com/document/d/1OTnJunbpSJchdj8XI3GU9Fo-RUUFBqLO1AhlaKk5Alo/edit
https://docs.google.com/document/d/1OTnJunbpSJchdj8XI3GU9Fo-RUUFBqLO1AhlaKk5Alo/edit
https://docs.google.com/document/d/1OTnJunbpSJchdj8XI3GU9Fo-RUUFBqLO1AhlaKk5Alo/edit
https://datatracker.ietf.org/doc/draft-lcurley-warp/01/
https://doi.org/10.17487/RFC0675
https://www.dacast.com/blog/mpeg-dash-vs-hls-what-you-should-know/
https://www.dacast.com/blog/mpeg-dash-vs-hls-what-you-should-know/
https://www.dacast.com/blog/rtmp-real-time-messaging-protocol/
https://www.dacast.com/blog/rtmp-real-time-messaging-protocol/
https://github.com/Dash-Industry-Forum/dash-live-source-simulator
https://github.com/Dash-Industry-Forum/dash-live-source-simulator
https://github.com/Dash-Industry-Forum/dash.js/
https://github.com/Dash-Industry-Forum/dash.js/
https://doi.org/10.1145/2676652.2676654
https://doi.org/10.1145/2676652.2676654
https://dictionary.cambridge.org/dictionary/english/livestream
https://dictionary.cambridge.org/dictionary/english/livestream

90 BIBLIOGRAPHY

[Dic21b] Cambridge Dictionary. STREAMING — meaning in the Cambridge English Dic-
tionary. 2021. url: https://dictionary.cambridge.org/dictionary/english/
streaming (visited on 14/10/2021).

[Dic21c] Cambridge Dictionary. VIDEO-ON-DEMAND — meaning in the Cambridge En-
glish Dictionary. 2021. url: https://dictionary.cambridge.org/dictionary/
english/video-on-demand (visited on 14/10/2021).

[Dic22] Cambridge Dictionary. ANALYSIS — meaning in the Cambridge English Dictio-
nary. 2022. url: https://dictionary.cambridge.org/dictionary/english/
analysis (visited on 13/8/2022).

[Dri22] Michael Driscoll. The Illustrated QUIC Connection. 2022. url: https://quic.
xargs.org/ (visited on 8/8/2022).

[Dug+22] Jon Dugan et al. iPerf - The ultimate speed test tool for TCP, UDP and SCTP.
2022. url: https://iperf.fr/ (visited on 11/8/2022).

[Ecm17] Ecma International. ECMA-404: The JSON data interchange syntax. ECMA ECMA-
404. Ecma International, Dec. 2017. url: https://www.ecma-international.
org/publications-and-standards/standards/ecma-404/.

[Elz+14] Stef van den Elzen et al. “Dynamic Network Visualization withExtended Massive
Sequence Views”. In: IEEE Transactions on Visualization and Computer Graphics
20.8 (2014), pp. 1087–1099. doi: 10.1109/TVCG.2013.263.

[FF13] Daniela Florescu and Ghislain Fourny. “JSONiq: The History of a Query Lan-
guage”. In: IEEE Internet Computing 17.5 (2013), pp. 86–90. doi: 10.1109/MIC.
2013.97.

[Fie+97] Roy T. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2068. Jan.
1997. doi: 10.17487/RFC2068.

[FJT02] Thomas Funkhouser, Jean-Marc Jot, and Nicolas Tsingos. ““Sounds Good to Me!”
Computational Sound for Graphics, Virtual Reality, and Interactive Systems”. In:
SIGGRAPH 2002 Course Notes (2002). url: https://www.cs.princeton.edu/

~funk/course02.pdf.
[FNR22a] Roy T. Fielding, Mark Nottingham, and Julian Reschke. HTTP Caching. RFC

9111. June 2022. doi: 10.17487/RFC9111.
[FNR22b] Roy T. Fielding, Mark Nottingham, and Julian Reschke. HTTP Semantics. RFC

9110. June 2022. doi: 10.17487/RFC9110.
[FNR22c] Roy T. Fielding, Mark Nottingham, and Julian Reschke. HTTP/1.1. RFC 9112.

June 2022. doi: 10.17487/RFC9112.
[Fou] The GraphQL Foundation. GraphQL — A query language for your API. url:

https://graphql.org/ (visited on 19/10/2021).
[Fre+96] Ron Frederick et al. RTP: A Transport Protocol for Real-Time Applications. RFC

1889. Jan. 1996. doi: 10.17487/RFC1889.
[Get11] Jim Gettys. “Bufferbloat: Dark buffers in the internet”. In: IEEE Internet Com-

puting 15.3 (2011), pp. 96–96.
[Goe+17] Utkarsh Goel et al. “Domain-Sharding for Faster HTTP/2 in Lossy Cellular Net-

works”. In: CoRR abs/1707.05836 (2017). arXiv: 1707.05836. url: http://arxiv.
org/abs/1707.05836.

[Hem11] Stephen Hemminger. NetEm - Network Emulator. 2011. url: https : / / man .

archlinux.org/man/tc-netem.8.en (visited on 10/8/2022).
[Her+20] Joris Herbots et al. “Cross-Layer Metrics Sharing for QUICker Video Stream-

ing”. In: Proceedings of the 16th International Conference on Emerging Networking
EXperiments and Technologies. CoNEXT ’20. Barcelona, Spain: Association for
Computing Machinery, 2020, pp. 542–543. isbn: 9781450379489. doi: 10.1145/
3386367.3431901.

https://dictionary.cambridge.org/dictionary/english/streaming
https://dictionary.cambridge.org/dictionary/english/streaming
https://dictionary.cambridge.org/dictionary/english/video-on-demand
https://dictionary.cambridge.org/dictionary/english/video-on-demand
https://dictionary.cambridge.org/dictionary/english/analysis
https://dictionary.cambridge.org/dictionary/english/analysis
https://quic.xargs.org/
https://quic.xargs.org/
https://iperf.fr/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://doi.org/10.1109/TVCG.2013.263
https://doi.org/10.1109/MIC.2013.97
https://doi.org/10.1109/MIC.2013.97
https://doi.org/10.17487/RFC2068
https://www.cs.princeton.edu/~funk/course02.pdf
https://www.cs.princeton.edu/~funk/course02.pdf
https://doi.org/10.17487/RFC9111
https://doi.org/10.17487/RFC9110
https://doi.org/10.17487/RFC9112
https://graphql.org/
https://doi.org/10.17487/RFC1889
https://arxiv.org/abs/1707.05836
http://arxiv.org/abs/1707.05836
http://arxiv.org/abs/1707.05836
https://man.archlinux.org/man/tc-netem.8.en
https://man.archlinux.org/man/tc-netem.8.en
https://doi.org/10.1145/3386367.3431901
https://doi.org/10.1145/3386367.3431901

BIBLIOGRAPHY 91

[Hoo+16] Jeroen van der Hooft et al. “HTTP/2-Based Adaptive Streaming of HEVC Video
Over 4G/LTE Networks”. In: IEEE Communications Letters 20.11 (2016), pp. 2177–
2180. doi: 10.1109/LCOMM.2016.2601087.

[Hoo21] Hootsuite. Digital Trends Q4 Update. Statshot Q4. Hootsuite, Oct. 2021.
[HSA17] Md. Faisal Murad Hossain, Mahasweta Sarkar, and Syed Hassan Ahmed. “Quality

of Experience for video streaming: A contemporary survey”. In: 2017 13th Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC).
2017, pp. 80–84. doi: 10.1109/IWCMC.2017.7986266.

[IET22] IETF. IETF Mail Archive: MoQ. 2022. url: https://mailarchive.ietf.org/
arch/browse/moq/ (visited on 6/8/2022).

[Int17] International Telecommunication Union. Parametric bitstream-based quality assess-
ment of progressive download and adaptive audiovisual streaming services over re-
liable transport. Recommendation P.1203. International Telecommunication Union,
Oct. 2017. 22 pp. url: https://www.itu.int/rec/T-REC-P.1203.

[Int22] Twitch Interactive. Company — Twitch.tv. 2022. url: https://www.twitch.tv/
p/en/company/ (visited on 25/7/2022).

[IT21] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure
Transport. RFC 9000. May 2021. doi: 10.17487/RFC9000.

[ITE12] ITEC. Datasets — ITEC – Dynamic Adaptive Streaming over HTTP. 2012. url:
https://dash.itec.aau.at/dash-dataset/ (visited on 10/8/2022).

[Kal+17] Mark Kalman et al. Introducing LHLS Media Streaming. 2017. url: https://

medium.com/@periscopecode/introducing-lhls-media-streaming-eb6212948bef

(visited on 25/7/2022).
[KBF22] Charles ’Buck’ Krasic, Mike Bishop, and Alan Frindell. QPACK: Field Compression

for HTTP/3. RFC 9204. June 2022. doi: 10.17487/RFC9204.
[KR17] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Ap-

proach, 7th Edition. Pearson, 2017.
[Kra16] Vlad Krasnov. HPACK: the silent killer (feature) of HTTP/2. 2016. url: https:

//blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/

(visited on 4/8/2022).
[Lab] Grafana Labs. Grafana: The open observability platform — Grafana Labs. url:

https://grafana.com/ (visited on 19/10/2021).
[LL19] Hongyu Liu and Bo Lang. “Machine Learning and Deep Learning Methods for

Intrusion Detection Systems: A Survey”. In: Applied Sciences 9.20 (Oct. 2019),
p. 4396. doi: 10.3390/app9204396.

[Mar+18] Robin Marx et al. “Towards QUIC Debuggability”. In: Proceedings of the Workshop
on the Evolution, Performance, and Interoperability of QUIC. EPIQ’18. Heraklion,
Greece: Association for Computing Machinery, 2018, pp. 1–7. isbn: 9781450360821.
doi: 10.1145/3284850.3284851.

[Mar+20a] Robin Marx et al. “Debugging QUIC and HTTP/3 with qlog and qvis”. In: Pro-
ceedings of the Applied Networking Research Workshop. 2020, pp. 58–66.

[Mar+20b] Robin Marx et al. “Same Standards, Different Decisions: A Study of QUIC and
HTTP/3 Implementation Diversity”. In: Proceedings of the Workshop on the Evo-
lution, Performance, and Interoperability of QUIC. EPIQ ’20. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 14–20. isbn: 9781450380478. doi:
10.1145/3405796.3405828.

[Mar21a] Robin Marx. HTTP/3 From A To Z: Core Concepts (Part 1). Aug. 2021. url:
https://www.smashingmagazine.com/2021/08/http3-core-concepts-part1/

(visited on 13/10/2021).

https://doi.org/10.1109/LCOMM.2016.2601087
https://doi.org/10.1109/IWCMC.2017.7986266
https://mailarchive.ietf.org/arch/browse/moq/
https://mailarchive.ietf.org/arch/browse/moq/
https://www.itu.int/rec/T-REC-P.1203
https://www.twitch.tv/p/en/company/
https://www.twitch.tv/p/en/company/
https://doi.org/10.17487/RFC9000
https://dash.itec.aau.at/dash-dataset/
https://medium.com/@periscopecode/introducing-lhls-media-streaming-eb6212948bef
https://medium.com/@periscopecode/introducing-lhls-media-streaming-eb6212948bef
https://doi.org/10.17487/RFC9204
https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/
https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/
https://grafana.com/
https://doi.org/10.3390/app9204396
https://doi.org/10.1145/3284850.3284851
https://doi.org/10.1145/3405796.3405828
https://www.smashingmagazine.com/2021/08/http3-core-concepts-part1/

92 BIBLIOGRAPHY

[Mar21b] Robin Marx. HTTP/3: Performance Improvements (Part 2). Aug. 2021. url:
https://www.smashingmagazine.com/2021/08/http3-performance-improvements-

part2/ (visited on 13/10/2021).
[Mat20] Matroska. What is Matroska? 2020. url: https://www.matroska.org/what_is_

matroska.html (visited on 23/7/2022).
[Mc21] Mozilla and individual contributors. Evolution of HTTP - HTTP — MDN. Oct.

2021. url: https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_
of_HTTP/Evolution_of_HTTP (visited on 19/10/2021).

[MH21] Robin Marx and Joris Herbots. “Merge Those Metrics: Towards Holistic (Protocol)
Logging”. In: 2021. url: https://www.iab.org/wp-content/IAB-uploads/
2021/09/MergeThoseMetrics_Marx_Jul2021.pdf.

[Mik10] Mikrotik Wiki. Manual:Queue Size. 2010. url: https://wiki.mikrotik.com/
wiki/Manual:Queue_Size (visited on 9/8/2022).

[MNS22a] Robin Marx, Luca Niccolini, and Marten Seemann. HTTP/3 and QPACK qlog
event definitions. Internet-Draft draft-ietf-quic-qlog-h3-events-01. Work in Progress.
Internet Engineering Task Force, Mar. 2022. 25 pp. url: https://datatracker.
ietf.org/doc/draft-ietf-quic-qlog-h3-events/01/.

[MNS22b] Robin Marx, Luca Niccolini, and Marten Seemann. Main logging schema for qlog.
Internet-Draft draft-ietf-quic-qlog-main-schema-02. Work in Progress. Internet En-
gineering Task Force, Mar. 2022. 49 pp. url: https://datatracker.ietf.org/
doc/draft-ietf-quic-qlog-main-schema/02/.

[MNS22c] Robin Marx, Luca Niccolini, and Marten Seemann. QUIC event definitions for
qlog. Internet-Draft draft-ietf-quic-qlog-quic-events-01. Work in Progress. Internet
Engineering Task Force, Mar. 2022. 48 pp. url: https://datatracker.ietf.
org/doc/draft-ietf-quic-qlog-quic-events/01/.

[ndj22] ndjson. ndjson. 2022. url: http://ndjson.org/ (visited on 11/8/2022).
[NFB96] Henrik Nielsen, Roy T. Fielding, and Tim Berners-Lee. Hypertext Transfer Protocol

– HTTP/1.0. RFC 1945. May 1996. doi: 10.17487/RFC1945.
[ns-22] ns-3. ns-3: ns3::PfifoFastQueueDisc Class Reference. 2022. url: https://www.

nsnam.org/doxygen/classns3_1_1_pfifo_fast_queue_disc.html (visited on
9/8/2022).

[nsn22] nsnam. ns-3. 2022. url: https://www.nsnam.org/ (visited on 10/8/2022).
[ORQ20] John O’Sullivan, Darijo Raca, and Jason J. Quinlan. “Godash 2.0 - The Next

Evolution of HAS Evaluation”. In: 2020 IEEE 21st International Symposium on ”A
World of Wireless, Mobile and Multimedia Networks” (WoWMoM). 2020, pp. 185–
187. doi: 10.1109/WoWMoM49955.2020.00043.

[PKS22] Tommy Pauly, Eric Kinnear, and David Schinazi. An Unreliable Datagram Exten-
sion to QUIC. RFC 9221. Mar. 2022. doi: 10.17487/RFC9221.

[PM17] Roger Pantos and William May. HTTP Live Streaming. RFC 8216. Aug. 2017. doi:
10.17487/RFC8216.

[Pos80] Jon Postel. User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/RFC0768.
[PR15] Roberto Peon and Herve Ruellan. HPACK: Header Compression for HTTP/2. RFC

7541. May 2015. doi: 10.17487/RFC7541.
[Rac+18] Darijo Raca et al. “Beyond throughput: A 4G LTE dataset with channel and con-

text metrics”. In: Proceedings of the 9th ACM multimedia systems conference. 2018,
pp. 460–465.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. Aug. 2018. doi: 10.17487/RFC8446.

[RKM20] Roberto Ramos-Chavez, Theo Karagkioules, and Rufael Mekuria. “A Scalable Load
Generation Framework for Evaluation of Video Streaming Workflows in the Cloud”.
In: Proceedings of the 11th ACM Multimedia Systems Conference. MMSys ’20.

https://www.smashingmagazine.com/2021/08/http3-performance-improvements-part2/
https://www.smashingmagazine.com/2021/08/http3-performance-improvements-part2/
https://www.matroska.org/what_is_matroska.html
https://www.matroska.org/what_is_matroska.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://www.iab.org/wp-content/IAB-uploads/2021/09/MergeThoseMetrics_Marx_Jul2021.pdf
https://www.iab.org/wp-content/IAB-uploads/2021/09/MergeThoseMetrics_Marx_Jul2021.pdf
https://wiki.mikrotik.com/wiki/Manual:Queue_Size
https://wiki.mikrotik.com/wiki/Manual:Queue_Size
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-h3-events/01/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-h3-events/01/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/02/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/02/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-quic-events/01/
https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-quic-events/01/
http://ndjson.org/
https://doi.org/10.17487/RFC1945
https://www.nsnam.org/doxygen/classns3_1_1_pfifo_fast_queue_disc.html
https://www.nsnam.org/doxygen/classns3_1_1_pfifo_fast_queue_disc.html
https://www.nsnam.org/
https://doi.org/10.1109/WoWMoM49955.2020.00043
https://doi.org/10.17487/RFC9221
https://doi.org/10.17487/RFC8216
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC7541
https://doi.org/10.17487/RFC8446

BIBLIOGRAPHY 93

Istanbul, Turkey: Association for Computing Machinery, 2020, pp. 255–260. isbn:
9781450368452. doi: 10.1145/3339825.3394930.

[RLS98] Anup Rao, Rob Lanphier, and Henning Schulzrinne. Real Time Streaming Protocol
(RTSP). RFC 2326. Apr. 1998. doi: 10.17487/RFC2326.

[RM22] Eric Roman and Matt Menke. NetLog: Chrome’s network logging system. 2022.
url: https://www.chromium.org/developers/design-documents/network-
stack/netlog/ (visited on 11/8/2022).

[RMQ20] Darijo Raca, Maëlle Manifacier, and Jason J. Quinlan. “goDASH — GO Accel-
erated HAS Framework for Rapid Prototyping”. In: 2020 Twelfth International
Conference on Quality of Multimedia Experience (QoMEX). 2020, pp. 1–4. doi:
10.1109/QoMEX48832.2020.9123103.

[Roc+21] Florentin Rochet et al. “TCPLS: Modern Transport Services with TCP and TLS”.
In: Proceedings of the 17th International Conference on Emerging Networking EX-
periments and Technologies. CoNEXT ’21. Virtual Event, Germany: Association
for Computing Machinery, 2021, pp. 45–59. isbn: 9781450390989. doi: 10.1145/
3485983.3494865.

[Rüt+19] Jan Rüth et al. Blitz-starting QUIC Connections. 2019. arXiv: 1905.03144 [cs.NI].
[See21] Marten Seemann. UDP Receive Buffer Size. 2021. url: https://github.com/

lucas-clemente/quic-go/wiki/UDP-Receive-Buffer-Size (visited on 9/8/2022).
[Set21] De Rosal Igantius Moses Setiadi. “PSNR vs SSIM: imperceptibility quality assess-

ment for image steganography”. In: Multimedia Tools and Applications 80.6 (2021),
pp. 8423–8444.

[Sha22] Keith Shaw. The OSI model explained and how to easily remember its 7 layers.
2022. url: https : / / www . networkworld . com / article / 3239677 / the - osi -

model-explained-and-how-to-easily-remember-its-7-layers.html (visited
on 1/8/2022).

[Sta13] Stack Exchange. What is the difference between ”simulate” and ”emulate”? 2013.
url: https://english.stackexchange.com/questions/111787/what-is-the-
difference-between-simulate-and-emulate (visited on 10/8/2022).

[Sta17] Stack Overflow. Simulator or Emulator? What is the difference? 2017. url: https:
//stackoverflow.com/questions/1584617/simulator-or-emulator-what-

is-the-difference (visited on 10/8/2022).
[TB22] Martin Thomson and Cory Benfield. HTTP/2. RFC 9113. June 2022. doi: 10.

17487/RFC9113.
[Tec21] Technopedia. What is Encoding? — Definition from Technopedia. 2021. url: https:

//www.techopedia.com/definition/948/encoding (visited on 26/7/2022).
[Tel21] Telenet BV. TLN WRO Specification type Dcument. TLN WRO Specification

type Document TLN WRO TA I S PDAA V3.0. Specification and Certification
AO STB. Telenet BV, Apr. 2021. 46 pp.

[THE20] THEOplayer. Low Latency DASH (LL-DASH). 2020. url: https://www.theoplayer.
com/blog/low-latency-dash (visited on 25/7/2022).

[The22a] The Bufferbloat community. Bufferbloat. 2022. url: https://www.bufferbloat.
net/projects/ (visited on 6/8/2022).

[The22b] The Linux Documentation Project. Components of Linux Traffic Control. 2022.
url: https://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
(visited on 15/8/2022).

[Thu22] Rob Thubron. Number of teens using Facebook crashes as YouTube becomes plat-
form of choice. 2022. url: https://www.techspot.com/news/95594-number-
teens-using-facebook-crashes-youtube-becomes-platform.html (visited on
13/8/2022).

https://doi.org/10.1145/3339825.3394930
https://doi.org/10.17487/RFC2326
https://www.chromium.org/developers/design-documents/network-stack/netlog/
https://www.chromium.org/developers/design-documents/network-stack/netlog/
https://doi.org/10.1109/QoMEX48832.2020.9123103
https://doi.org/10.1145/3485983.3494865
https://doi.org/10.1145/3485983.3494865
https://arxiv.org/abs/1905.03144
https://github.com/lucas-clemente/quic-go/wiki/UDP-Receive-Buffer-Size
https://github.com/lucas-clemente/quic-go/wiki/UDP-Receive-Buffer-Size
https://www.networkworld.com/article/3239677/the-osi-model-explained-and-how-to-easily-remember-its-7-layers.html
https://www.networkworld.com/article/3239677/the-osi-model-explained-and-how-to-easily-remember-its-7-layers.html
https://english.stackexchange.com/questions/111787/what-is-the-difference-between-simulate-and-emulate
https://english.stackexchange.com/questions/111787/what-is-the-difference-between-simulate-and-emulate
https://stackoverflow.com/questions/1584617/simulator-or-emulator-what-is-the-difference
https://stackoverflow.com/questions/1584617/simulator-or-emulator-what-is-the-difference
https://stackoverflow.com/questions/1584617/simulator-or-emulator-what-is-the-difference
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9113
https://www.techopedia.com/definition/948/encoding
https://www.techopedia.com/definition/948/encoding
https://www.theoplayer.com/blog/low-latency-dash
https://www.theoplayer.com/blog/low-latency-dash
https://www.bufferbloat.net/projects/
https://www.bufferbloat.net/projects/
https://tldp.org/HOWTO/Traffic-Control-HOWTO/components.html
https://www.techspot.com/news/95594-number-teens-using-facebook-crashes-youtube-becomes-platform.html
https://www.techspot.com/news/95594-number-teens-using-facebook-crashes-youtube-becomes-platform.html

94 BIBLIOGRAPHY

[Uni12] European Broadcasting Union. TAKING DASH TO THE NEXT LEVEL AT IBC2012.
2012. url: https://www.ebu.ch/news/2012/09/taking-dash-to-the-next-
level-at (visited on 10/2/2022).

[Wik22] Wikipedia. Root cause analysis. 2022. url: https://en.wikipedia.org/wiki/
Root_cause_analysis (visited on 11/8/2022).

[Wil15] Nicolás Williams. JavaScript Object Notation (JSON) Text Sequences. RFC 7464.
Feb. 2015. doi: 10.17487/RFC7464.

[Wir22] Wireshark. Wireshark. Go Deep. 2022. url: https://www.wireshark.org/ (vis-
ited on 11/8/2022).

https://www.ebu.ch/news/2012/09/taking-dash-to-the-next-level-at
https://www.ebu.ch/news/2012/09/taking-dash-to-the-next-level-at
https://en.wikipedia.org/wiki/Root_cause_analysis
https://en.wikipedia.org/wiki/Root_cause_analysis
https://doi.org/10.17487/RFC7464
https://www.wireshark.org/

	Preface
	Next-Generation Protocols
	Networked Applications
	Transport Protocols
	Transfer Protocols

	Streaming
	Content
	Streaming Architecture
	Streaming Techniques
	Adaptive Streaming

	Simulation
	Framework
	Client
	Server
	Network

	Data and Visualization
	Network Logs and Visualization
	Client and Server Logs
	Client and Server Visualization

	Analysis Framework
	Analysis Service
	Simulation Subjects
	Preliminary Testing

	Evaluation
	Methodology
	Tests and Results
	Analysis Service

	Conclusion
	Future Work
	Reflection

