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Abstract 

 
 

Background: If in a study population an event is observed only rarely, then 

computational problems may arise in the statistical analysis. It can lead to separation, 

which in turn may produce infinite coefficients and standard errors (SE). The Firth 

penalty has been described as one solution to problems with separation. Moreover, in 

clinical and sociological studies, it is common for data to have a complex structure due to 

a longitudinal design and to entail missing values. In the present thesis, the performance 

of the Firth penalty in a longitudinal study design with a dichotomous response variable 

and multiple imputation for values missing according to the MAR mechanism is 

investigated. 

Method: Simulation studies were performed on the basis of the longitudinal study by 

Sommer et al. (1983) on the influence of vitamin A deficiency on the occurrence of 

respiratory infections in children. The simulations considered different sample sizes and 

different dropout probabilities. Firth Generalized Estimating Equations (F-GEE), 

standard GEE, Firth-logistic regression, and logistic regression were performed before 

and after multiple imputation (MI) of missing values. For the multiple imputations itself, 

a Firth logistic regression with adjusted intercept (FLIC) and a data augmentation 

algorithm (DA) were used. 

Results: Standard GEE did not prove to be a valid method for analyzing data with rarely 

occurring events; the convergence rate was low, and the coefficients as well as SE were 

infinite in converged analyses for many simulation runs. This was particularly true for 

smaller samples or larger dropout probabilities. Classical logistic regressions showed 

high and uninterpretable coefficients for smaller samples. In spite of this, logistic 

regressions predominantly showed systematically lower SE, both with and without Firth 

penalty; this may be because these analyses do not consider the correlated nature of the 

data. F-GEE achieved a lower mean squared error and higher coverage for the 95% 

confidence interval of coefficient estimates after MI. FLIC imputation achieved lower bias 

than DA with respect to the predictor, which itself coded a rarely occurring event—

namely, vitamin A deficiency. 

Conclusion: The results of this thesis are consistent with previous scientific literature. F-

GEE with MI according to FLIC demonstrated overall reliable performance in the analysis 

of the datasets simulated in this study. 

 

 
Key words: Firth penalty, penalized generalized estimating equations, multiple 

imputation, separation, rarely occurring events  
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1. Introduction 

 

It is not uncommon in medical research for the clinical parameter of interest to occur 

rarely. For example, Sommer et al. (1983) investigated whether vitamin A deficiency in 

children can cause respiratory infections. Vitamin A deficiency is particularly prevalent 

in developing countries and manifests itself, among other things, as xerophthalmia, which 

is characterized by symptoms such as night blindness or Bitot spots in the eyes. The 

prevalence of xerophthalmia is, however, declining; it varies depending on the country 

and is generally below 5% (Sahile et al., 2020). It has been hypothesized for vitamin A 

deficiency to increase the risk of contracting a respiratory infection, the prevalence of 

which varies seasonally, ranging from 4% to 18% on average depending on the age of the 

child (Wang et al., 2016). In the statistical analysis of such relationships, a scenario with 

rarely occurring characteristics may lead to infinitely positive or negative regression 

coefficients as well as infinitely large standard errors, which are thus not interpretable 

(Heinze & Schemper, 2002). Further examples are given here, in which rare events have 

occurred in clinical research. The problem was described, for example, when analyzing 

the influence of radiation therapy on the development of lung cancer in smokers (Heinze 

& Schemper, 2002). Separation also occurred in the study of the occurrence of 

cannulation-site complications in the use of a new minimally invasive method for cardiac 

surgery (Puhr et al., 2017), as well as in the study of haematological complications after 

implant dentistry (Geroldinger et al., 2022). 

The problem arises when the group of individuals showing the rare clinical parameter—

for example, an infection—is almost completely separated from the other group by a 

predictor or by a combination of predictors. For example, if most of the children who have 

a respiratory infection at the time of the examination show a deficiency of vitamin A, and 

most of the other healthy children do not show this deficiency, then the separation is said 

to be near-to-quasi-complete (Albert & Anderson, 1984). Table 1 shows numerical 

examples of different scenarios of separation. 

 

Table 1 

Separation Scenarios 

  Respiratory infection 
  Yes No  Yes No Yes No 
Vitamin A 
Deficiency 

Yes 20 0  20 0 18 2 
No 0 20  8 12 8 12 

  Complete 
Separation 

 Quasi-complete 
Separation 

Near-to-quasi 
complete Separation 

Note: Numbers are based on Mondol and Rahman (2019), adapted to the study of Sommer et al (1983). 

 

In the scenario of complete separation and quasi-complete separation, a finite estimate 

of an association measure (i.e., odds ratio) does not even exist. The scenario of near-to-
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quasi-complete separation is more common in practice and leads to infinitely large or 

small non-interpretable coefficients of association, as previously mentioned. It can be 

inferred from the examples in Table 1 that the problem of separation can arise in both 

large and small samples (Rogers & Stoner, 2021). The problem is aggravated for small 

samples because, firstly, separation is more likely and, secondly, in small samples the 

maximum likelihood estimator (MLE) is itself subject to bias (McCullagh & Nelder, 1989). 

Firth (1993) proposed a method to prevent the small sample bias, and Heinze and 

Schemper (2002) demonstrated that Firth's technique is also a solution in the case of 

infinitely large (or small) estimators or non-finite coefficients due to separation. David 

Firth proposed multiplying the likelihood function by a penalty (hence the term Firth’s 

penalty) and thereby removing the first-order term of the asymptotic bias of the MLE. As 

a penalty term he suggested the root of the determinant of the Fisher information, 𝐼(𝜃). 

The penalized likelihood can be written as: 

 

𝐿∗(𝜃) = 𝐿(𝜃) ∙ |𝐼(𝜃)|
1
2 

 

Firth's penalty has been shown to provide valid estimates for coefficients of a logistic 

regression in the context of rarely occurring events (Heinze & Schemper, 2002; Puhr et 

al., 2017) and recently, the method has also been shown to be valid in the context of 

repeated measurements with rare events applying a penalized form of Generalized 

Estimating Equations (GEE) (Mondol & Rahman, 2019). 

The study by Sommer et al. (1983) can be used as an example of a setting with repeated 

measurements of rarely occurring clinical parameters: The participating children were 

regularly examined by a physician at three-month intervals to determine whether 

vitamin A deficiency or respiratory infection was present. This example also reveals 

another problem that has not yet been scientifically investigated in the context of rarely 

occurring events: missing values. There are some children who did not come for further 

visits and thus dropped out of the study. Missing values can be ignored in GEE only under 

the strict and unrealistic assumption that they are missing completely at random, which 

is termed MCAR (Molenberghs & Verbeke, 2005). However, if the child's dropout is 

dependent on previous infections, then the “missingness mechanism” is called missing at 

random (MAR) and missing values need to be addressed separately. In this respect, 

statistical research has developed techniques such as multiple imputation, which allow 

the application of a standard GEE model. Currently, there is no scientific research on the 

analysis of rarely occurring events where missing values had to be imputed before.  

The aim of this master’s thesis is to investigate the behavior of Firth’s penalty with logistic 

regression and GEE after multiple imputation. The data of Sommer et al. (1983) will be 

present throughout this work, serving as a basis for analysis. 

Chapter 1 will discuss the statistical basis in detail. The data of Sommer et al. (1983) will 

be presented in Chapter 2, and the setting of the simulation study will be described in 

Chapter 3. This will be followed by the results in Chapter 4, followed by the conclusions. 
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2. Description of the problem 

 

In this chapter, the statistical basis needed to study the topic of research is described. The 

bias of the MLE in smaller samples is addressed first, followed by Firth's proposed 

solution. Next, I describe how Firth's technique not only solves the problem of small 

sample bias but also the issue of separation in the context of logistic regression and GEE. 

This is followed by a section on techniques for handling missing values and an elaboration 

of how multiple imputation could be used when analyzing rarely occurring events. 

 

2.1. Small sample bias of the maximum likelihood estimate 

 

The MLE is a consistent estimator; however, it is only asymptotically unbiased. Thus, in 

small samples, the MLE may be biased (Heinze & Schemper, 2002; McCullagh & Nelder, 

1989). The bias of the MLE, b = E(𝛽̂ - 𝛽) was formulated by McCullagh and Nelder (1989) 

as follows: 

 

𝑏 = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝜉 

 

In the case of a binomial model with a logit link function, 𝜉 can be written as: 
 

𝜉𝑖 = ℎ𝑖 (𝜋𝑖 −
1

2
) 

 

with ℎ𝑖 representing the ith diagonal element of the hat matrix, H: 

 

𝐻 = 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇  

 

and 𝜋𝑖 being 𝑃(𝑦𝑖 = 1 | 𝑥𝑖, 𝜃),        

with i = 1 ... n subjects, 𝜃 vector of parameters  = 1 ... r 

  

The matrix 𝑊 = 𝑉−1 is the variance-covariance matrix of the modeled probability for the 

response variable Y having the binomial variances 𝜋𝑖 ⋅ (1 − 𝜋𝑖) on its diagonal and 

𝑋𝑇  𝑊 𝑋 being the Fisher information matrix. It should be emphasized, that in logistic 

regression, the variance is functionally dependent on the mean, 𝜇 = 𝜋 (Firth, 2015). A 

bias adjustment to the MLE is needed to improve the approximation in small samples 

(McCullagh & Nelder, 1989). 
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2.2. Firth’s solution to the small sample bias of the maximum likelihood estimate 

 

Firth (1993) proposed a technique for removing the first-order term of the asymptotic 

bias, 𝑂(𝑛−1), of the MLE and thus for reducing the bias of the MLE in small samples. He 

suggested multiplying the likelihood function by a vague prior distribution. He proposed 

using Jeffreys invariant prior distribution, which is obtained from Jeffreys invariance 

principle and leads to a distribution proportional to the square root of the determinant 

of the Fisher information (Lesaffre & Lawson, 2012). 

In the context of a logistic regression, with the Fisher information being 𝐼(𝜃) = 𝑋𝑇𝑊𝑋 

and with   being the vector of the regression coefficients, the Jeffreys invariant prior can 

be written as |𝑋𝑇𝑊𝑋|½. The prior distribution can be thought of as a penalty function that 

causes the regression coefficients 𝛽 to shrink toward 0 which, in this context, is 

equivalent to a shrinkage of the predicted probabilities, 𝜋𝑖, toward ½—the point where 

the determinant is maximized (Firth, 1993). The shrinkage is as large as needed to 

remove the first-order term of the bias and is asymptotically negligible (Heinze & 

Schemper, 2002). It should be mentioned that in the case of a logistic model the expected 

information, ⅈ(𝜃), and observed Fisher information, 𝐼(𝜃), do not differ, since the observed 

Fisher information is non-random (McCullagh & Nelder, 1989). In the following, the 

application of Firth's penalty in logistic regression is outlined.  

The likelihood function of logistic regression is: 

 

𝐿(𝜃) = ∏ ( ⅇ𝜃

1 + ⅇ𝜃̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝑦𝑖

(1 −
ⅇ𝜃

1 + ⅇ𝜃
)

(1−𝑦𝑖)

𝑛

𝑖=1

 

 

  = vector of the regression coefficients 

y  = binary response variable 

i   = subjects 1 to n 

 

The application of the penalty function to the likelihood can be formulated as: 

 

𝐿∗(𝜃) = 𝐿(𝜃)  ∙  |𝐼(𝜃)|
1
2 

 

with the penalized log-likelihood being: 

 

𝑙∗(𝜃) = 𝑙(𝜃) +
1

2
𝑙𝑜𝑔|𝐼(𝜃)| 
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The score function is obtained by taking the derivative of the penalized log-likelihood 

with respect to the parameter vector 𝜃: 

 

𝑈(𝛽𝑟)∗ = 𝑈(𝛽𝑟) +
1

2
𝑡𝑟𝑎𝑐ⅇ[𝐼(𝛽𝑟)−1{𝜕𝐼(𝛽𝑟)/ 𝜕𝛽𝑟}] = 0 

 

with   𝑟 = 1 …  𝑝   𝛽 parameters in 𝜃.  

 

It should be mentioned that the log of a determinant of a matrix is equal to the trace of 

the log of the matrix. In contrast, the non-penalized, classical score functions for a 

(univariate) logistic regression can be written as follows: 

 

𝑈(𝛽𝑟) = ∑(𝑦𝑖 − 𝜋𝑖)𝑥𝑖𝑟

𝑛

𝑖=1

= 0 

 

with the penalized score function resulting in: 

 

𝑈(𝛽𝑟)∗ = ∑ {𝑦𝑖 − 𝜋𝑖 + ℎ𝑖 (
1

2
− 𝜋𝑖)} 𝑥𝑖𝑟

𝑛

𝑖=1

= 0 

 

with 𝜋 =
1

1+ⅇ−𝜃
  .  

 

The penalty term in the penalized score equation is 

−ℎ𝑖 (𝜋𝑖 −
1

2
) 𝑥𝑖𝑟, with ℎ𝑖 representing the ⅈth diagonal elements of the hat matrix and it 

corresponds to subtracting −ⅈ(𝜃)𝑏(𝜃) from the score equation, 

 

𝑈∗(𝜃) = 𝑈(𝜃) − ⅈ(𝜃)𝑏(𝜃) , 

 

with b(𝜃) being the aforementioned bias of the MLE formulated by McCullagh and Nelder 

(1989). In a sense, the bias in the estimate of 𝜃 can be reduced by introducing a small bias 

in the score function (Firth, 1993). The presented technique is preventive rather than 

corrective, since the likelihood is penalized, and it is advantageous here that the 

asymptotic covariance matrix can be used for inference as usual. As in classical logistic 

regression, the Newton Raphson algorithm can be applied iteratively to the penalized 

score equations until convergence (Heinze & Schemper, 2002): 

 

𝛽(𝑠+1) = 𝛽(𝑠) + 𝐼−1(𝛽(𝑠))  𝑈(𝛽(𝑠))
∗
 ,  with s ... iteration 1 ... k, when convergence is met. 
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Heinze and Schemper (2002) showed that Firth's penalty term is a solution to the 

problem of separation. In a simulation study and in two re-analyses of clinical data, the 

authors impressively demonstrated that infinitely high and low parameter estimates 

from a logistic regression turned into finite parameter estimates through the Firth logistic 

regression. 

The penalized score equations can also be understood as score equations for an 

augmented dataset. In Bayesian statistics, priors can be thought of as adding information 

to the data using pseudo-observations. As Firth's penalty is equivalent to using the 

Jeffreys prior for the logistic regression, applying Firth's penalty can also be seen as 

augmenting the data. To augment the data such that it corresponds to this specific Firth 

penalized equation, one would need to supplement each original observation with two 

pseudo-observations that receive hi /2 as a weight, keeping the values in the covariates 

unchanged. One of the two created pseudo-observations would receive a zero as a 

response and the other would receive a one. If this augmented dataset were analyzed 

with a classical logistic regression, then the results of the Firth logistic regression using 

the original dataset would be obtained. Since the weights are taken from the hat matrix, 

and the trace of this matrix gives (p+1), then the augmented dataset contains (p+1)/2 

more events compared to the original dataset, with p equal to the number of covariates 

(Puhr et al., 2017).  

 

2.3. Applying Firth’s penalty to GEE 

 

In the example by Sommer et al. (1983) mentioned in the introduction, children were 

repeatedly examined by a physician at intervals of three months. The observations made 

on the same child were thus not independent of each other, but rather dependent within 

a particular child. However, the (Firth-) logistic regression model outlined in the previous 

section does not take into account these dependencies between the observations. 

Therefore, the model needs to be adapted. There are several possibilities for doing this, 

but this thesis will focus on GEE.  

GEE makes it possible to assume a correlation structure for the observations within a 

subject as a working guess. It is assumed that the working correlation structure and its 

parameters  are the same across all subjects. For each subject a separate variance-

covariance matrix Vi is created with the model-based variances along the diagonal and 

the covariances on the off-diagonal, which are calculated from the diagonal variances by 

means of the assumed working correlation structure: 

 

𝑉𝑖 = 𝐴
𝑖

1
2 𝑅𝑖  𝐴𝑖

1
2 

 

with Ai, a matrix with the marginal variances 𝜋𝑖 ⋅ (1 − 𝜋𝑖) on the main diagonal, which 

are fully specified by 𝜇 through the mean-variance link in binomial models and with Ri 
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corresponding to the marginal working correlation matrix, which is parameterized by the 

vector , which is not specified by the marginal mean 𝜇 (Molenberghs & Verbeke, 2005). 

The individual variance-covariance matrices are then stuck together to a block-diagonal 

matrix. In the score equations, the model-based variance-covariance matrix whose 

covariances are zero, is then replaced by this modified variance-covariance matrix. Due 

to this modification of the score equations, GEE is a semi-parametric, non-likelihood 

marginal model (Liang & Zeger, 1986; Molenberghs & Verbeke, 2005). Since the 

parameters of the working correlation structure are usually unknown, Liang and Zeger 

(1986) proposed a moment-based method for their estimation built on Pearson 

residuals: ⅇ𝑖𝑗 =
𝑦𝑖𝑗−𝜇𝑖𝑗

√𝑣𝑎𝑟𝑖𝑗
 . The residuals are calculated in each iteration of the Newton 

Raphson algorithm and inserted into the following formulas—that is, when assuming an 

exchangeable working correlation structure: 

 

𝛼̂ =
1

𝑁
∑

1

𝑛𝑖(𝑛𝑖−1)
∑ ⅇ𝑖𝑗ⅇ𝑖𝑘

𝑗≠𝑘

𝑁

𝑖=1

  

 

or when assuming a first-order autoregressive working correlation structure, AR(1): 

 

𝛼̂ =
1

𝑁
∑

1

𝑛𝑖−1
∑ ⅇ𝑖𝑗ⅇ𝑖,𝑗+1

𝑗≤𝑛𝑖−1

𝑁

𝑖=1

  

 

(Liang & Zeger, 1986; Molenberghs & Verbeke, 2005) 

 

In order to achieve asymptotically correct  coefficients, it is necessary to correctly 

specify the marginal mean only. The assumed working correlation structure does not 

have to be correct; however, a correct assumption does lead to more efficient coefficient 

estimators (Molenberghs & Verbeke, 2005). In this thesis, the focus is on a dichotomous 

response variable, such as the presence or absence of a respiratory infection, although 

GEE can also be used to model response variables that have a different distribution, such 

as a Gaussian distribution. GEE makes it possible to leave all higher-order moments 

unspecified. This is an advantage in the context of dichotomous outcome variables, as the 

properties of multivariate normality in that case are not applicable; with dichotomous 

data, the full correct specification of the joint distribution would be a high burden 

(Molenberghs & Verbeke, 2005). 

In the context of GEE, Firth's proposed penalty can now be used in the same way as with 

the logistic regression. This is possible because the described modifications of the 

variance-covariance matrix occur only at the level of the score equations and the Firth 

penalty is a penalty of the likelihood function. Mondol and Rahman (2019) showed in 

their simulation study that Firth GEE (F-GEE) leads to valid parameter estimates.  
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The authors formulate the penalized and modified score equations as follows: 

 

𝑈𝑟
∗(, 𝛼) = ∑ [𝑅𝑖

−1(𝑦𝑖 − 𝜇𝑖) + ℎ𝑖 (
1

2
− 𝜇𝑖)] 𝑥𝑖𝑟

𝑁

𝑖=1

= 0 

 

𝑟 = 1 to 𝑝 coefficients 

 

The estimation of the variances and covariances of the   parameters in , 𝑣𝑎𝑟(𝛽𝑟), also 

must consider the correlated nature of the data. As only the first moment must be 

correctly specified, but not the second moment, the Fisher information cannot be used as 

an asymptotically unbiased estimate for the variance-covariance matrix of the  

regression coefficients. The so-called sandwich estimator, however, makes it possible to 

estimate asymptotically consistent and unbiased estimators for the standard errors of the 

regression coefficients, even if the working covariance structure is misspecified (Mancl & 

DeRouen, 2001; Rogers & Stoner, 2021). The sandwich estimator was developed for the 

context of GEE by Liang and Zeger (1986) and was formulated as follows: 

 

 

𝑉(𝛽̂) = 𝐼0(𝛽̂)
−1

  𝐼1(𝛽̂)  𝐼0(𝛽̂)
−1

  with 𝐼0(𝛽) being the Fisher information, and 

 

𝐼1(𝛽̂) = 𝑋𝑉−1 𝑣𝑎𝑟(𝑦) 𝑉−1𝑋   with  𝑣𝑎𝑟(𝑦) = (𝑦𝑖 − 𝜇𝑖) (𝑦𝑖 − 𝜇𝑖 )𝑇  

 

 

If 𝐼1(𝛽̂) equals 𝐼0(𝛽̂), the two terms cancel each other out, leading to the familiar, 𝑉(𝛽̂) =

𝐼0(𝛽̂)
−1

. There is one further issue with the variances of . With small sample sizes and 

in samples with rarely occurring events, the sandwich estimators are biased toward zero, 

and in that way they underestimate the variances of the  regression coefficients. As a 

consequence, the resulting p values would be too small and thus lead to an inflated type I 

error rate in small samples (Morel et al., 2003; Rogers & Stoner, 2021). Various solutions 

have been proposed to this issue. For example, it has been suggested to use a jackknife or 

bootstrap technique to derive standard errors. However, with small samples and rarely 

occurring events (i.e. in bootstrap), zero cell counts are encountered frequently and thus 

do not provide a proper solution in this case (Mancl & DeRouen, 2001). Morel et al. (2003) 

took a different approach to solving the problem, borrowing the idea of the design effect 

from sampling theory. The authors transferred the idea of clusters in sampling designs to 

clusters in correlated data and repeated measures in longitudinal studies. They proposed 

inflating the model-based covariance matrix, 𝐼0(𝛽̂)
−1

 by an estimate of the design effect, 

trace{𝐼0(𝛽̂)
−1

  𝐼1(𝛽̂)}, and then multiplying it by a term of order 𝑛−1, which vanishes as 

the number of subjects increases.  
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This inflated variance is then added to the sandwich estimator: 

 

𝑉̂(𝛽̂) = 𝑉(𝛽̂) + 𝛿̂𝑛𝜙̂{𝐼0(𝛽̂)}
−1

 

 

with the overdispersion parameter 

 

𝜙̂ = 𝑚𝑎𝑥 [1, 𝑡𝑟 {𝐼0(𝛽̂)
−1

𝐼1(𝛽̂)} ∕ 𝑝]  and   𝛿̂𝑛 = 𝑚ⅈ𝑛 (0.5,
𝑝

𝑛−𝑝
) 

 

        1 = bounded below by 1            0.5 = arbitrarily upper bound 

         (over-dispersion parameter) 

 

and 𝑝 being the number of coefficients. 

 

In the simulation study by Rogers and Stoner (2021), the method was shown to be a valid 

alternative to the sandwich estimator of Liang and Zeger (1986) in the context of small 

samples and samples with rarely occurring events. Moreover, the correction was applied 

in the context of F- GEE by Mondol and Rahman (2019) and Geroldinger et al. (2022). 

 

2.4. Missing values 

 

The analysis of longitudinal, binary data becomes more complex when there are missing 

measurements for individual subjects. For example, in clinical research, patients might 

not return for subsequent visits (dropout pattern), or they might skip individual visits in 

between (intermittent pattern). Although GEE can cope with the problem of missing 

values by simply calculating with the observed responses, these only lead to consistent 

coefficients if the responses are MCAR (Lipsitz et al., 2020; Rubin, 1976). A missingness 

mechanism is called MCAR, if missingness neither depends on (previously) observed 

response values nor on the unobserved measurements; missingness is, however, allowed 

to depend on observed covariates (Little & Rubin, 1987; Rubin, 1987). MCAR is a strong 

and, in practice, often unrealistic assumption. However, if missingness depends on the 

(previously) observed response values and is still independent of unobserved 

measurements conditional on the given observed data, then the mechanism is referred to 

as MAR. Under MAR assumption, GEE do not lead to valid results since, due to the 

modification of the score equations, it is a non-likelihood, semiparametric, frequentist 

method. As already mentioned, the variance-covariance-matrix using a working 

assumption for the correlation structure can be wrong; and as the variance is involved in 

the prediction model for the missing values in case of MAR, it needs to be correctly 

specified (Liang & Zeger, 1986; Lipsitz et al., 2020; Molenberghs & Verbeke, 2005).  

Various approaches have been developed to adequately deal with missing values. One of 

these is the technique of multiple imputation (MI), and another is the approach of 

weighting all observations with the inverse probability that a participant would have a 
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missing value at a particular measurement time point (Molenberghs & Verbeke, 2005). 

Under MAR, both techniques, MI-GEE and Weighted-GEE (W-GEE) yield valid results. 

Beunckens et al. (2008), however, showed that for small- and medium-sized samples MI-

GEE could achieve results with lower bias compared to W-GEE. For this reason, only the 

MI approach is further pursued in this thesis, as small to medium samples and samples 

with rarely occurring events are the focus of research. 

The following equation refers to the MCAR mechanism, where R is the missing data 

indicator that is not dependent on Y, and 𝜓, the vector of parameters of the dropout 

model: 

 

𝑓(𝑅|𝑌, 𝜓) = 𝑓(𝑅|𝜓)  for all 𝑌, 𝜓 

 

For MAR, where R depends on Yobs, the equation can be written as 

 

𝑓(𝑅|𝑌, 𝜓) = 𝑓(𝑅|𝑌𝑜𝑏𝑠 , 𝜓) for all 𝑌𝑚𝑖𝑠 , 𝜓 

 

with covariates X suppressed from the equations (Molenberghs & Verbeke, 2005). 

 

MI was proposed by Rubin (1976) and consists of replacing the missing values with M 

values from a distribution of likely values (Rubin & Schenker, 1986). The number of 

imputations M must not be very large, and values such as M = 5 or M = 10 are often 

considered. In this way, M completed datasets are generated, retaining the structure as 

well as the sampling uncertainty of the original dataset (van Buuren et al., 2006). The M 

completed datasets can then be analyzed in parallel with, for example, standard GEE, or 

indeed Firth-GEE. The M results are finally combined with Rubin's rules to draw an 

inference (Rubin, 1976; van Buuren et al., 2006). 

According to Rubin, the MI estimate of 𝛽, 𝛽̂∗, is calculated as the mean of the M 

coefficients: 

 

𝛽̂∗ =
∑ 𝛽̂𝑚𝑀

𝑚=1

𝑀
   

 

leading to a normal based inference with  

 

(𝛽̂∗ − 𝛽) ~ 𝑁(0, 𝑉) 

 

The MI variance estimator, V, consists of two parts, the within-imputation variance, W, 

and the between-imputation variance, B. The variance components W and B are 

combined as follows: 

 

𝑉 = 𝑊 + (
𝑀 + 1

𝑀
) 𝐵 
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with 𝑊 =
∑ 𝑈𝑚𝑀

𝑚=1

𝑀
  and U = 𝑣𝑎𝑟̂(𝛽̂) 

 

with   𝐵 =
∑ (𝛽̂𝑚−𝛽̂∗)(𝛽̂𝑚−𝛽̂∗)

′𝑀

𝑚=1

𝑀−1
 

 

(Beunckens et al., 2008; Lipsitz et al., 2020) 

 

MI requires a model for the prediction of the missing values. One possible approach is to 

specify a joint distribution, which is then factorized into the marginal distribution of the 

observed values and into the conditional distribution of the missing values, given the 

observed values. From this conditional distribution, likely values can then be drawn at 

random to replace the missing values. Since the parameters of the predictive model are 

themselves unknown and need to be estimated, the uncertainty of its estimation must be 

taken into account when drawing values based on the prediction model. This is 

implemented by either first randomly drawing a parameter value from the posterior 

distribution of the parameter or by randomly drawing a parameter value from an 

approximation of a normal distribution using the specific  coefficient as the mean and 

its standard error, 𝛽 ̂  ± 𝑧 ∙ 𝑉^(1/2), with z = 1.96. Each prediction is then drawn based 

on specific, randomly selected parameter values (Beunckens et al., 2008; Molenberghs & 

Verbeke, 2005; van Buuren et al., 2006).  

A second possibility to specify a prediction model is the direct formulation of conditional 

distributions of missing values conditional on the observed values without having to 

specify a joint distribution. In this case, a predictive model is formulated for each variable 

containing missing values, conditional on the observed values of all other variables in the 

model. This approach was proposed by van Buuren et al. (2006) and is termed Fully 

Conditional Specification (FCS). Also in this method, the uncertainty of the estimation of 

the model parameters must be taken into account as described, for example, using an 

approximation of the normal distribution. As an example of FCS, in a longitudinal design 

with a dichotomous response, a logistic regression model could be specified for each 

measurement time point that counts missing values, employing the other time points—

or just the previous measurement time points and potentially covariates—as predictors. 

The FCS algorithm works iteratively until convergence by first assuming initial values for 

the missing values and then repeatedly going through all logistic regressions one after 

the other and imputing missing values under the condition of the values imputed in the 

previous steps. In each step, a new parameter value is first drawn from the parameter 

distribution to account for the variability of the parameters themselves. When 

convergence is reached, it is assumed that values are drawn from a stationary 

distribution, and these values are then kept as imputation for the missing values. This 

algorithm is repeated M times. The idea of modeling a joint distribution by drawing values 

from conditional distributions corresponds to that of Gibbs sampling (Schöning, 2013). It 

may now be that the joint distribution does not exist, since only the conditional 

distributions were specified. Simulation results showed that FCS leads to unbiased 
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results despite these theoretical considerations about a potentially nonexistent joint 

distribution. If the joint distribution exists, then FCS corresponds to a Gibbs sampling 

(van Buuren, 2007). Both techniques—the method via joint distribution and FCS—make 

use of Monte Carlo Markov Chains (MCMC) (Bartlett et al., 2015; van Buuren et al., 2006). 

The algorithm is briefly outlined for the first two iterations of the first imputation and is 

valid up to a constant of proportionality: 

 

  draw from           vague    observed given all other 

posterior of 𝜃       prior          variables but one 

 

      𝜃1
(𝑡)

       ~      𝑓(𝜃1)   ∙    𝑓(𝑦1
𝑜𝑏𝑠|𝑦−1

(𝑡)
, 𝑥, 𝜃1)  with y―1 = (y2, ... yn) 

   

draw from conditional predictive distribution 

 

       𝑦1
𝑚𝑖𝑠(𝑡)

~     𝑓(𝑦1
𝑚𝑖𝑠|𝑦−1

(𝑡)
, 𝑥, 𝜃1

(𝑡)
) 

 

next iteration 

 

       𝜃2
(𝑡)

      ~     𝑓(𝜃2)𝑓(𝑦2
𝑜𝑏𝑠|𝑦−2

(𝑡)
, 𝑥, 𝜃2)    with y―2 = (y1, y3, ... yn) 

 

       𝑦2
𝑚𝑖𝑠(𝑡)

~    𝑓(𝑦2
𝑚𝑖𝑠|𝑦−2

(𝑡)
, 𝑥, 𝜃2

(𝑡)
) 

 

In studies such as Sommer et al. (1983), where the presence or absence of respiratory 

infection is repeatedly assessed, the joint distribution is not as straightforward as in the 

case of normally distributed response variables. In the case of dichotomous variables, this 

would require the specification of all higher order associations. FCS provides a direct way 

of doing this in that only the logistic regression equations for each visit must be 

formulated. Since the focus of this thesis is on dichotomous response variables, only FCS 

will be considered in the following. 

 

2.5. Firth’s penalty in the context of missing values 

 

In this section, the situation of rarely occurring events is again addressed. Particularly in 

the context of FCS, some points need to be considered in greater detail. 

For the predictive model, in order to draw a parameter value from its distribution, in the 

frequentist approach, the standard error of the information matrix would be used to 

provide an approximation of the normal distribution from which values could be drawn. 

However, this approach cannot be pursued because in a scenario of separation, the 

standard errors of the parameters can become too large. A normal distribution 

approximation would be very flat and almost any value would be likely for the parameter; 



13 
 

a high between-imputation variance would be the consequence (White et al., 2010). At 

this point, it could be objected that Firth logistic regression could be used for imputation 

due to its ability to produce finite estimates. However, it has been shown that Firth 

logistic regression leads to valid parameter estimates but introduces bias into the 

predicted probabilities (Puhr et al., 2017; van Buuren, 2018). In the context of imputation, 

valid predictions are precisely what is of interest. The problem is that when applying the 

Firth penalty to the likelihood, the coefficients shrink toward 0, which corresponds to a 

shift on the probability scale in the direction of ½. Due to rarely occurring events, there 

are now many non-responses, for which probabilities below 0.5 are predicted. With 

larger numbers of smaller probabilities being modified upwards in the direction of 0.5, 

this results in an overestimation of the predicted proportion of events, such that it no 

longer holds that ∑ 𝑦𝑖
𝑛
𝑖=1 = ∑ 𝜋𝑖

𝑛
𝑖=1 . Puhr et al. (2017) proposed to re-estimate the 

intercept after applying the Firth logistic regression and thus to re-satisfy this equation 

by analogy to a calibration. The recalculation of the intercept is done by using the linear 

combination of the Firth coefficients without intercept as offset of a classical logistic 

regression. The authors have shown in simulation studies that the method leads to valid 

predictions. Puhr (2016) outlined the algorithm of Firth logistic regression with 

corrected intercept (FLIC) as follows:  

 

1. Calculate coefficient estimates with Firth logistic regression 

2. Calculate the linear predictor, , of Firth penalized coefficient estimates without 

including the intercept. 

3. Calculate a classic logistic regression using the linear predictor  from step 2 as 

offset, 𝜋(𝜂) =
1

1+ⅇ−𝛾0−𝛾1𝜂   setting  𝛾1 = 1. 

4. Use 𝛾0 as adjusted intercept along with remaining coefficients from step 1. 

 

FLIC will be discussed again later when the simulation study is planned. 

Puhr et al. (2017) proposed a second method that achieved valid predictions in their 

studies. The method involves augmenting the dataset with pseudo-observations 

corresponding to the effect of the Jeffreys prior used as Firth’s penalty and then including 

a covariate in the logistic model that differentiates between the augmented and the 

original dataset. ML estimation of the parameters then leads to valid predictions under 

this configuration. 
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3. Motivating case: Dr. Sommer’s investigation of vitamin A deficiency 

 

In the course of this thesis, the study by Sommer et al. (1983) has been repeatedly cited 

as an illustration. This section will describe the study in detail and use it as a motivating 

case for the empirical section that follows later. Subsequently, an exploratory analysis of 

a subset of the data from this study will be presented. 

 

3.1. Dr. Sommer’s investigation on vitamin A 

 

Dr. Alfred Sommer is professor of ophthalmology and epidemiology at Johns Hopkins 

University. Dr. Sommer and his colleagues have devoted their research to studying the 

effect of vitamin A deficiency in children on childhood mortality in developing countries. 

Vitamin A deficiency leads to keratinization of the respiratory, gastrointestinal, and 

genitourinary tracts, increasing the risk for bacterial colonization and infection. Vitamin 

A deficiency is manifested by so-called Bitot spots in the ocular conjunctiva, which are the 

clinical appearance of xerophthalmia leading to night blindness. Contrary to severe 

vitamin A deficiency, a mild form of this deficiency occurs in children who are otherwise 

well nourished and appear healthy (Sommer et al., 1983). Dr. Sommer and his research 

team examined 3,593 Indonesian children up to six years of age over an 18-month period 

in the late 1970s. A medical team consisting of an ophthalmologist, a pediatrician, and 

nutritionists assessed the children at three-month intervals. The ophthalmologist 

diagnosed xerophthalmia using the standard diagnostic criteria of the time by means of 

a hand light and a magnifying lens. When severe xerophthalmia was diagnosed, children 

were immediately treated with vitamin A and hospitalized. Children with mild 

xerophthalmia were treated in the same manner as children without such symptoms. For 

children with a severe infection, medical care was provided and referrals were made to 

local physicians.  

The researchers found a higher mortality even in children with mild xerophthalmia 

compared to those without this diagnosis. Moreover, children with mild xerophthalmia 

were at higher risk for respiratory infections compared with the other children.  

The prevalence of xerophthalmia was 5.5% on average and respiratory infection was 

identified in 8.8% of all physician visits. A total of 132 child deaths were counted. The 

study had a profound impact on global efforts to increase vitamin A levels in children.  

With the help of WHO, supplements to 12 million children were distributed into 40 

countries each year (Johns Hopkins Bloomberg School of Public Health, 2002).  

A subset of this dataset including 275 children is publicly available and has already been 

used by researchers to explore statistical methods (Diggle et al., 2002; Zeger & Karim, 

1991). The dataset contains up to six visits per child and the information on 

xerophthalmia and respiratory infection at each measurement time. In addition, there is 

information on gender, age, height, or the season of measurement. The available dataset 

does not include mortality information.  
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This dataset provides the opportunity to apply statistical analysis to infrequently 

occurring events. On the one hand is the occurrence of respiratory infection and on the 

other hand xerophthalmia. The aim of this thesis is to study the behavior of the penalized 

analyses under multiple imputation of missing data. For this purpose, however, I would 

like to start with a complete dataset in order to be able to perform the subsequent 

simulations under controlled conditions. In the following, only those children (n = 138) 

from the dataset who were present at the first four medical visits and had no missing 

values were included. 

 

3.2. Exploratory analysis of a complete subset of Summer et al. (1983) 

 

In this section an exploratory analysis of the subset from the data collected by Sommer et 

al. (1983) is presented. It should be noted at this point that the analysis of these data was 

done for illustrative purposes only in the context of the study of statistical methods for 

rarely occurring events. For precise statements on vitamin A deficiency and its effects, 

the reader may wish to refer to the original study. 

The complete dataset with four measurement time points included 138 Indonesian 

children, of whom 62 (44.9%) were female. 

At the start of the study, the children were on average 31 months old. The youngest child 

was four months, and the oldest child was 71 months (i.e., just under six years old). Due 

to cultural conditions on Jawa Island, it was not possible to include even younger children 

in the study. The proportion of children diagnosed with xerophthalmia at each 

measurement time point varied between 2% and 7% of the children, depending on the 

visit, and between 4% and 12% of the children had a respiratory infection. Boys (7%) 

were more likely to have symptoms of xerophthalmia than girls (2%); however, the mean 

age of the children was comparable between boys (30.1 months) and girls (31.5 months). 

Moreover, with increasing age there was an increase in the risk of xerophthalmia for both 

males and females (OR = 1.02).  The results of the Firth-GEE model are shown in Table 2. 

 

logit (P[infectionij]) = 𝛽0 + 𝛽1 * genderi + 𝛽2 * ageij + 𝛽3 * xerophthalmiaij 

 

i = child 1 to 138 

j = visit 1 to 4,  working correlation = first-order autoregressive (AR-1) 

 

There were no significant predictor interactions on the occurrence of respiratory 

infections. Children who showed symptoms of xerophthalmia were significantly more 

likely to have a respiratory illness. The odds of suffering from an infection increased four-

fold when xerophthalmia was present. The odds of having a respiratory infection 

decreased over time with increasing age; specifically, the odds decreased by about 3% 

per month of age. There was no significant difference between boys and girls in the 
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probability of acquiring a respiratory infection. It was tested whether a quadratic term 

for age contributed to the model, however, there was no significant quadratic age effect. 

 

 

Table 2 

Modeling Probability of Respiratory Infection using F-GEE 

  SE Wald p 

(Intercept) ―2.807 0.264 112.680 <0.001 

Female vs. male ―0.347 0.384 0.817 0.366 

Age ―0.028 0.009 9.831 0.002 

Xerophthalmia  1.418 0.557 6.483 0.011 

Note: response = respiratory infection, F-GEE = Firth penalized Generalized Estimating Equations 

 

 

 

 

4. Description of the methodology 

 

The purpose of this thesis is to investigate how penalized analyses work in longitudinal 

study designs with binary response after imputation of missing values—that is, when 

applying MI-F-GEE.  This research question will be answered by using a simulation study 

based on the study by Sommer et al. (1983). In this section, the process of data generation 

will first be described. Subsequently, how missing values are created for the generated 

dataset according to the MAR mechanism will be explained. Third, the multiple 

imputation of this incomplete dataset will be described and, finally, the procedure for the 

statistical analysis of the imputed data will be outlined. The simulation study was 

performed using R Statistics, version 4.1. For the purpose of replicating the results, a seed 

was set following Geroldinger et al. (2022), which was coupled to the index of the for-

loops. Excerpts of the programmed code may be found in the appendix. 

 

4.1. Data generation for the simulation study 

 

For the generation of the binary response, respiratory infection, the predictors gender, 

age, and xerophthalmia were used with the coefficients, 𝛽0 =  ―2.807, 𝛽1 = ―0.347, 𝛽2 = 

―0.028, 𝛽3 = 1.418, from the Firth-GEE model with a first-order autoregressive 

correlation structure, logit (P[infectionij = 1]) = 𝛽0 + 𝛽1 * genderi + 𝛽2 * ageij + 𝛽3 * 

xerophthalmiaij, i = 1 ... N, j = 1 ... 4 visits. This model was presented in the previous 

section. The associations between the previously described predictors were taken into 

account in the simulation. Xerophthalmia is a time-dependent variable, as the value could 
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change from visit to visit. Gender and age in months were already known at the beginning 

of the study. Due to the longitudinal design and the three-month intervals of the visits, 

the age in months has also been used to indicate the four repeated measures. In the first 

step, a Bernoulli random variable of length N with probability p = 0.45 was created as the 

gender variable. In the second step, a truncated normal random variable was created as 

the age variable, centered at 36 months. The normal distribution was truncated 

downward and upward to ensure that no child was younger than four months or older 

than six years. The mean of this centered age variable was similar to the Sommer et al. 

(1983) dataset. From this age variable, the time indicator was obtained for each child by 

adding three months from the age at the beginning of each of the four measurement 

points. Thus, for each child there were four values—for example 7, 10, 13, and 16 months 

of age at the respective measurement points. The generation of the variable for 

xerophthalmia was somewhat more complex as it is a time-dependent variable that was 

related to the other predictors age and gender. To generate this variable, and later to 

generate the response variable—respiratory infections—the method of Qaqish (2003) 

was followed. This method was used by Mondol and Rahman (2019) in creating the 

response variable when exploring F-GEE. Qaqish (2003) described how a correlated 

binary variable can be simulated by specifying only the mean structure, the correlation, 

and the correlation structure. The full specification of the joint distribution is not 

required. For the first expression of this binary variable, a Bernoulli random variable is 

generated, in this concrete case with the mean value given from logit (P[xerophthalmiai 

= 1]) = 𝛽0 + 𝛽1 * genderi + 𝛽2 * agei. The values for the further three measurement points 

are then generated under the condition of the already generated value(s). The assumed 

correlation and the correlation structure are thereby used to weight the already 

generated values. This conditional mean is written in Qaqish (2003) as: 

 

𝐸(𝑌𝑖|𝑋𝑖 = 𝑥𝑖) = 𝜇𝑖 + ∑ 𝑏𝑖𝑗(𝑦𝑗 − 𝜇𝑗)

𝑖−1

𝑗=1

 

i = 2, …, n,  

b = weights calculated from correlation structure 

 

For each child, this creates a vector of dependent values that have the required mean and 

the specified correlation magnitude and structure. In addition, Qaqish (2003) provides 

the check of the following two preconditions. First, it checks that the correlation matrix 

is positively defined, and second, depending on the predetermined correlation structure, 

that the covariances are within the bounds imposed by the marginal mean. Professor 

Qaqish has made his method available in the R package binarySimCLF. For the 

generation of the response variable, respiratory infections, at the end, an analogous 

procedure was followed. The method of Qaqish was used with the following model for 

the generation of the (conditional) mean, logit(P[infectionij = 1]) = 𝛽0 + 𝛽1*genderi + 

𝛽2*ageij + 𝛽3 * xeroij. Because of the rare occurrence of both events, xerophthalmia and 

respiratory infection, F-GEE was calculated to obtain the coefficients estimates. 
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This algorithm resulted in simulated datasets that corresponded with the original dataset 

of Sommer et al. (1983) in its structure. The comparison of the means of 1000 simulated 

datasets with the original dataset is shown in Table 3. Datasets that by chance did not 

contain a single infection or contained only one infection, no xerophthalmia or only one 

xerophthalmia were rejected. 

 

Table 3 

Comparison of Means (Proportions) in Original and Simulated Datasets 

 infection gender age xero xero female xero male 

Original 0.060 0.449 30.5 0.047 0.020 0.069 

Simulation 0.059 0.452 31.7 0.049 0.024 0.070 

Note: infection = respiratory infection, xero = xerophthalmia, n = 1000 simulations 

 

 

4.2. Generating missing values 

 

The algorithm described in the previous section generates complete datasets. To 

investigate the behavior of Firth GEE after multiple imputation, however, it is necessary 

to generate datasets containing missing values. To this end, a dropout pattern with MAR 

mechanism is considered. It was assumed that with four repeated measurement time 

points, children could drop out at the second, third, or fourth time point. A dropout results 

in both the information on respiratory infection and the information on the time-

dependent variable xerophthalmia not being available for subsequent visits. Although 

intermittent missing patterns might also have been plausible, these are not considered in 

this thesis. In the scenario used for this simulation study, three different dropout patterns 

result, which are reproduced in Table 4. 

 

Table 4 

Three Dropout Missingness Patterns for Scenario of Sommer et al. (1983) 

# gender age xero1 resp1 xero2 resp2 xero3 resp3 xero4 resp4 

1 1 1 1 1 1 1 1 1 0 0 

2 1 1 1 1 1 1 0 0 0 0 

3 1 1 1 1 0 0 0 0 0 0 

Note: 1 = observed, 0 = missing, 1–4 = medical visits, # = pattern, resp = respiratory infection, xero = 

xerophthalmia 

 

As described previously, the MAR mechanism consists of the probability of the dropout 

depending on already observed response values. It is further possible that the dropout 

probabilities additionally depend on covariates. In this specific case, the response 

variable is the dichotomous variable with rarely occurring respiratory infections. In order 

to produce a dataset with missing values corresponding to MAR, the dropout 
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probabilities must now depend on whether a child was diagnosed with a respiratory 

infection at a previous visit. Sommer et al. (1983) described that children who were 

diagnosed with an infection were referred to local physicians. It is conceivable that these 

children would remain on treatment there and then not return for further visits with the 

initial physicians of the study. This would mean that at each visit, children with an 

infection would be more likely to drop out than children without an infection. This setting 

is assumed in the simulation, and 30%, 40%, 60%, and 80% dropout probabilities are 

modeled for infected children. For children without an infection, the lower dropout 

probabilities 10% and 20% were applied. The combinations of these probabilities, shown 

in Table 5, were then used for the simulations. The goal was to produce an MAR 

mechanism that was as clear and sharp as possible and not confounded with MCAR. For 

this reason, first, I left out the covariates when generating dropout dependencies, and 

second, I omitted the 30%/20% and 40%/20% combinations for infected and uninfected 

children, respectively, because of the small difference. Although an 80% dropout 

probability is rather unrealistic in practice, I included this scenario to be able to test the 

performance of MI-F-GEE even under an extreme situation. Generating a clear MAR 

mechanism was challenging, especially due to the infrequently occurring events. The 

MAR mechanism was validated by modeling dropout (yes / no) as an outcome variable in 

a logistic regression analysis with the previous response as a predictor. It should be noted 

that due to the rarely occurring (previous) event, which was used as a condition for 

generating dropout, separation may also occur in this case. Firth-logistic regression was 

therefore used for the analysis. The predictor had a statistically significant effect on 

dropout; this was taken as evidence that the dropout mechanism was not MCAR. 

 

Table 5 

Scenarios for Simulating Datasets by Sample Size and Dropout Probabilities 

 Dropout probabilities conditioned on previous infection (yes / no) 

n 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 
50 x x x x   
100 x x x x   
200 x x x x x x 
500 x x x x x x 

Note: x = scenario, which was applicated; in each scenario the following analyses were performed: DL-GLM, 
DL-F-GLM, GEE, F-GEE, MI-GLM, MI-F-GLM, MI-GEE, MI-F-GEE, multiple imputation was conducted with 
FLIC and with DA technique; DL = direct likelihood. 
 

 

 

4.3. Imputing missing values 

 

Once datasets with missing values following MAR were available, it was possible to 

perform a multiple imputation in this simulation study. FCS was already introduced 

theoretically in this thesis as a multiple imputation technique, and this technique was 

used for this purpose. In FCS, for each variable containing missing values, a univariate 
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imputation model is required. Based on the three dropout patterns given in the previous 

section in Table 4, the information on respiratory infection and on xerophthalmia could 

be missing at visits 2 to 4. The following predictive imputation models were specified for 

these two variables: 

 

response variable: respiratory infection 

logit (P[infectionvisit 2= 1]) = 𝛽0 + 𝛽1 * infectionvisit 1 + 𝛽2 * xerovisit 1 + 𝛽3 * age 

logit (P[infectionvisit 3= 1]) = 𝛽0 + 𝛽1 * infectionvisit 2 + 𝛽2 * xerovisit 2 + 𝛽3 * age 

logit (P[infectionvisit 4= 1]) = 𝛽0 + 𝛽1 * infectionvisit 3 + 𝛽2 * xerovisit 3 + 𝛽3 * age 

 

time-dependent predictor: xerophthalmia 

logit (P[xerovisit 2= 1]) = 𝛽0 + 𝛽1 * infectionvisit 1 + 𝛽2 * xerovisit 1 + 𝛽3 * age 

logit (P[xerovisit 3= 1]) = 𝛽0 + 𝛽1 * infectionvisit 2 + 𝛽2 * xerovisit 2 + 𝛽3 * age 

logit (P[xerovisit 4= 1]) = 𝛽0 + 𝛽1 * infectionvisit 3 + 𝛽2 * xerovisit 3 + 𝛽3 * age 

 

Based on these imputation models, M = 10 imputations for each missing value were 

generated for each dataset. The FCS procedure is implemented in the R package MICE 

(van Buuren & Groothuis-Oudshoorn, 2011). However, due to the rare occurrences, 

special precautions were needed to obtain valid imputations. A classical logistic 

regression analysis could lead to very large standard errors and possibly impute only 

zeros or only ones (van Buuren, 2018). In the MICE package, a technique of data 

augmentation (White et al., 2010), which is similar in approach to the Firth correction, is 

used to prevent perfect predictions. For each predictor, two pseudo-observations are 

introduced, at 𝑥̅ + 𝑆𝐷 and at 𝑥̅ − 𝑆𝐷; this also for dichotomous variables. One of these 

pseudo-observations is assigned the response 0 and the other is assigned 1. These 

pseudo-observations receive a low weight of (p + 1)/(2 * p  * levels of Y). The sum of the 

weights is equal to (p + 1), which is the number of parameters in the model. The 

technique of White et al. (2010) likewise removes the first-order bias of the MLE. On the 

other hand, it has been described earlier that a Firth penalty leads to valid parameter 

estimates but introduces a bias in the prediction of values. Puhr et al. (2017) proposed a 

Firth logistic regression with recalibrated intercept: FLIC. The method is implemented in 

the R package logistf (Heinze & Schemper, 2002) and was presented in the theoretical 

part of this paper. Therefore, in this thesis, imputation was performed using both 

techniques—data augmentation (White et al., 2010) and FLIC (Puhr et al., 2017) —and 

the results were compared in terms of their performance. In the mice.impute.logreg 

function in the MICE package, the logistf function was called with the option FLIC = 

TRUE instead of the algorithm of White et al. (2010). If by chance in the course of a 

multiple imputation a dataset with zero or only one event in respiratory infection or 

xerophthalmia was generated, then this dataset was discarded. 
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4.4. Analysis of datasets 

 

Once the imputed datasets were available, the data was ready to be analyzed. The same 

model that was presented earlier on the exploratory analyses of the data by Sommer et 

al. (1983) was used for the analysis, as described below. 

Four analyses were performed: Classical logistic regression (GLM), standard GEE (GEE), 

Firth logistic regression (F-GLM), and Firth-GEE (F-GEE). 

For F-GEE, the implementation of Mondol and Rahman (2019) in the extended version of 

Ogden (2022) in the R package geefirthr was used. The extension consisted of the 

ability to set the overdispersion parameter to 1 and to handle clusters of size 1. For F-

GLM logistf (Heinze & Schemper, 2002) was used, and geeM (McDaniel et al., 2013) 

was used for GEE. In all analyses, the overdispersion parameter was fixed to 1 so as not 

to introduce additional sources for differences between the methods. 

The coefficients and standard errors of the analyses of the 10 imputations per dataset 

were pooled according to the rules of Rubin (Rubin, 1987) presented earlier. 

Furthermore, these four analyses were also applied to the incomplete datasets before 

values were deleted. 

The four analyses were performed on 1000 simulated datasets. The four methods were 

compared in terms of MSE, bias and coverage of the 95% confidence interval (CI), and 

standard errors of the coefficients, with  

 

Bias =  𝐸(𝛽̂) − 𝛽   

 

MSE = 𝐸 [(𝛽̂ − 𝛽)
2
]  = Bias ² + 𝑣𝑎𝑟̂(𝛽̂) 

𝑣𝑎𝑟̂(𝛽̂) = 

∑ (𝛽̂𝑖  −  𝛽
̂

)
2

𝑠

𝑖=1

𝑠−1
 ,  with i = 1 to s simulations 

 

The analyses were repeated for datasets of different sizes (50, 100, 200, 500 children). 

Non-convergence rates for each type of analysis were documented.  

To compare the results with and without MI, the methods of analysis were also applied 

to datasets with missing values. For datasets with missing values according to the MAR 

mechanism, methods that are full-likelihood are valid. For such cases, the term direct 

likelihood (DL) was coined in the literature (Molenberghs & Verbeke, 2005). (F-)GEE is 

not valid for missing values that are not MCAR, as explained earlier, the performance of 

which is investigated in this thesis for the purpose of comparison with MI-(F)-GEE. Thus, 

for datasets with missing values, DL-GLM, GEE, DL-F-GLM, and F-GEE are performed. 
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5. Results 

 
This section reports the results of the analyses. The goal of this thesis was to investigate 

the performance of F-GEE after multiple imputation of values that were missing 

according to the MAR mechanism. For four sample sizes (50, 100, 200, and 500 children), 

the results of 1,000 converged analyses were collected and analyzed for scenarios with 

different dropout probabilities conditioned on previous respiratory infections. The 

percentage of analyses that did not converge were recorded. The evaluation is based on 

MSE, bias, coverage of 95% CI, and SE. Results are tabled separately for the four 

regression coefficients: 0 = intercept, 1 = gender, 2 = age, and 3 = xerophthalmia. The 

coefficient 3 is of particular interest here because not only the response but also the 

predictor addresses a rarely occurring event. Because a large number of analyses were 

performed, not all tables and figures could be included in this section. In general, for F-

GEE with incomplete datasets and MI-F-GEE after FLIC imputation, I have tabulated the 

results for all scenarios in this section. The results of all other analyses—DL-GLM, GEE, 

DL-F-GLM, MI-GLM, MI-F-GLM, MI-F-GEE (DA) —are tabulated in Appendices 1 to 20. For 

the graphical representations, I used a red tone for analyses with Firth penalty after MI 

and a blueish tone for the other analyses. Ideally, the scaling on the y-axis should always 

be kept constant; however, it was not possible everywhere, partly because the 

coefficients varied in magnitude and partly because the values became lower with 

increasing sample size. Since this thesis was primarily concerned with validity of 

parameter estimates and not with predictions, the values for the intercepts were not 

shown in the figures.  

 

 

5.1. Mean squared error 

 

Methods of analysis with Firth penalty after MI showed lower MSE values compared to 

analyses without Firth penalty or analyses of incomplete datasets. This can be seen from 

most of the lines in red being lower than other lines in Figure 1. Standard GEE showed 

infinitely high values in both cases, with incomplete and multiple imputed datasets; in 

those cases, values are not depicted in Figure 1. In logistic regression, with smaller 

datasets high but finite values were observed for incomplete datasets as well as after MI. 

Among the methods of analysis with a Firth penalty, F-GEE and DL-F-GLM had higher MSE 

values than other methods with Firth penalty. Among those, often MI-F-GEE 

predominantly achieved the lowest MSE values. Especially for the coefficient with the 

rare event, xerophthalmia, MI-F-GEE performed better after MI with the FLIC method 

than after MI with the DA method. This was mostly true when the proportion of dropouts 

was higher than 40% in children who had a previous infection. The MSE with DA 

imputation for the rare event was also larger compared to analyses with incomplete data 

in this case. MI-F-GLM performed well in terms of MSE; however, this method does not 
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take the intra-child correlation into account, which was simulated with 0.4. The problem 

with this method is highlighted later in the discussion of SE.  

MSE became lower with increasing sample size, and so did the variance in MSE across the 

different methods of analysis. In summary, with respect to MSE there is evidence for MI-

F-GEE showing a reliable performance, when using FLIC as a MI technique. In general, a 

low MSE indicates that estimates have little spread around the true value; thus, an 

estimator with small MSE is efficient. There is evidence for MI-F-GEE (FLIC) producing 

efficient estimators. 

Table 6 compares the results of MI-F-GEE (FLIC) with the F-GEE method applied on 

incomplete datasets. As already mentioned, all other results can be found in the 

appendices (1 to 20). Further, Figure 1 presents MSE graphically for all analyses. 

 

 

Table 6. MSE from Simulations for MI-F-GEE (FLIC) and F-GEE, 1000 Simulations. 
 MI-F-GEE (FLIC) F-GEE (incomplete dataset) 

p 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 

n = 50           

0 0.3655 0.3680 0.3825  0.3551  0.4563 0.4571 0.4736  0.4698  

1 0.6579 0.6344 0.5978  0.5380  0.8952 0.8586 0.8370  0.8667  

2 0.00095 0.00095 0.00089  0.00077  0.00122 0.00120 0.00120  0.00122  

3 0.7277 0.7433 0.7833  0.7017  0.9133 0.9347 1.0012  1.0500  

n = 100           

0 0.1687 0.1801 0.1908  0.1784  0.2042 0.2198 0.2347  0.2520  

1 0.3204 0.3157 0.3066  0.2660  0.4074 0.4021 0.3976  0.4338  

2 0.00038 0.00037 0.00038  0.00036  0.00048 0.00048 0.00049  0.00053  

3 0.4667 0.4936 0.5036  0.4704  0.5727 0.6184 0.6456  0.6798  

n = 200           

0 0.0783 0.0850 0.1050 0.1368 0.0962 0.1229 0.0871 0.0928 0.1103 0.1455 0.1153 0.1480 

1 0.1477 0.1509 0.1385 0.1289 0.1282 0.1203 0.1811 0.1825 0.1732 0.1722 0.1852 0.1835 

2 0.00019 0.00019 0.00018 0.00018 0.00019 0.00018 0.00023 0.00023 0.00023 0.00024 0.00026 0.00026 

3 0.2533 0.2590 0.2719 0.2879 0.2693 0.2751 0.2923 0.3063 0.3254 0.3694 0.3623 0.3909 

n = 500           

0 0.0383 0.0462 0.0648 0.1081 0.0562 0.0973 0.0379 0.0427 0.0533 0.0937 0.0533 0.0909 

1 0.0653 0.0654 0.0611 0.0592 0.0555 0.0556 0.0767 0.0769 0.0745 0.0749 0.0772 0.0806 

2 0.00008 0.00007 0.00007 0.00007 0.00008 0.00007 0.00008 0.00009 0.00009 0.00010 0.00009 0.00010 

3 0.0808 0.0826 0.0848 0.0961 0.0931 0.1018 0.0868 0.0913 0.0999 0.1222 0.1066 0.1334 

Note:  Results for other analyses are tabled in the attachment; 0 = intercept, 1 = gender, 2 = age, 3 = xerophthalmia; response 
variable = respiratory infection; p = probability of dropout conditional on previous infection (yes / no); FLIC = imputation with Firth 
logistic regression with adjusted intercept; MI = multiple imputation; F = Firth penalty; MSE = mean squared error, n = number of 
children.
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Figure 1. MSE Values for Coefficients 1, 2, 3  of Simulated Scenarios (1,000 Simulations each) 
n 1 gender 2 age 3 xerophthalmia 
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x-axis = probability of dropout conditioned on previous response (yes / no), n = number of children 
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5.2. Bias 

 

The interpretation of the results of the bias of the coefficient estimates was less 

straightforward than the interpretation of the results of the MSE. Figure 2 plots the bias 

values of all analyses, with the dashed line indicating a 0 bias. Standard GEE showed an 

infinitely high bias in most scenarios, both for incomplete datasets and after MI. In these 

cases, the values are not plotted in Figure 2. Logistic regressions achieved higher bias 

values for the coefficients 1 and 3 in small samples compared to the other methods. The 

bias here was up to four times larger than the values of the other methods. In spite of 

these issues, the bias was comparable between Firth-penalized and non-penalized 

methods of analysis and also between analyses with incomplete datasets and those after 

MI. It was noticeable that, with respect to 3 xerophthalmia, the bias in MI-F-GEE after 

FLIC imputation was smaller than after DA imputation at higher dropout probabilities. 

This corresponds to the results reported with respect to MSE. Table 7 shows the values 

for MI-F-GEE (FLIC) and F-GEE. In Figure 2, bias values of all analyses are shown. 

 

Table 7. Bias from Simulations for MI-F-GEE (FLIC) and F-GEE, 1000 Simulations. 
 MI-F-GEE (FLIC)  F-GEE (incomplete dataset) 
 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 

n = 50           

0 ―0.0906 ―0.1182 ―0.1845  ―0.1182  ―0.1414 ―0.1604 ―0.2271  ―0.2030  

1 0.0331 0.0321 0.0410  0.0590  ―0.0240 ―0.0206 ―0.0221  ―0.0228  

2 0.0027 0.0026 0.0018  0.0052  ―0.0021 ―0.0021 ―0.0033  ―0.0026  

3 ―0.0082 ―0.0087 0.0075  ―0.0932  0.1324 0.1358 0.1745  0.1906  

n = 100           

0 ―0.0751 ―0.1107 ―0.1873  ―0.1473  ―0.0812 ―0.1107 ―0.1824  ―0.1824  

1 0.0171 0.0191 0.0298  0.0563  ―0.0204 ―0.0222 ―0.0110  ―0.0151  

2 0.0022 0.0020 0.0019  0.0048  ―0.0007 ―0.0013 ―0.0019  ―0.0020  

3 ―0.0415 ―0.0308 ―0.0084  ―0.0956  0.0623 0.0710 0.0950  0.1020  

n = 200           

0 ―0.0578 ―0.0935 ―0.1746 ―0.2564 ―0.1431 ―0.2277 ―0.0378 ―0.0658 ―0.1406 ―0.2340 ―0.1288 ―0.2252 

1 0.0147 0.0137 0.0222 0.0287 0.0470 0.0519 ―0.0126 ―0.0119 ―0.0069 ―0.0100 ―0.0083 ―0.0046 

2 0.0015 0.0014 0.0012 0.0008 0.0035 0.0032 ―0.0010 ―0.0012 ―0.0019 ―0.0031 ―0.0020 ―0.0031 

3 ―0.0632 ―0.0586 ―0.0361 ―0.0167 ―0.1086 ―0.0846 0.0150 0.0231 0.0514 0.0843 0.0381 0.0810 

n = 500           

0 ―0.0667 ―0.1046 ―0.1821 ―0.2774 ―0.1572 ―0.2555 ―0.0360 ―0.0622 ―0.1295 ―0.2369 ―0.1220 ―0.2248 

1 0.0203 0.0266 0.0250 0.0323 0.0464 0.0541 ―0.0037 0.0001 ―0.0023 ―0.0013 0.0001 ―0.0012 

2 0.0014 0.0012 0.0009 0.0005 0.0030 0.0025 ―0.0008 ―0.0011 ―0.0019 ―0.0029 ―0.0019 ―0.0030 

3 ―0.0576 ―0.0416 ―0.0214 ―0.0093 ―0.1002 ―0.0826 0.0256 0.0408 0.0657 0.0952 0.0595 0.0896 

Note:  Results for other analyses are tabled in the attachment; 0 = intercept, 1 = gender, 2 = age, 3 = xerophthalmia; response 

variable = respiratory infection; p = probability of dropout conditional on previous infection (yes / no); FLIC = imputation with Firth 

logistic regression with adjusted intercept; MI = multiple imputation; F = Firth penalty, n = number of children. 

 

 

5.3. Coverage for the 95% confidence interval 

 

Coverage of the 95% CI of the coefficient estimates was not calculated for standard GEE 

with incomplete datasets and after MI because of infinitely large SE; the results would 

have been meaningless. Despite that, analyses after MI obtained higher coverage of the 



26 
 

Figure 2. Bias for Coefficients 1, 2, 3  of Simulated Scenarios (1,000 Simulations each) 
n 1 gender 2 age 3 xerophthalmia 
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x-axis = probability of dropout conditioned on previous response (yes / no), n = number of children 
dashed line represent 0 bias 
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95% CI for the three coefficients 1, 2  and 3  compared to analyses with incomplete 

data. However, it should be noted that even though the coverage values for incomplete 

datasets were lower, all values were around 0.90 or higher and thus satisfactory. The 

range of coverage values of MI-F-GEE after FLIC, for example, was 0.926 to 0.988, and for 

F-GEE with incomplete data it was 0.887 to 0.962. The higher coverage after FLIC 

imputation, however, cannot be attributed to higher SE values since these were 

comparably large with those in incomplete datasets. The coverage of MI-F-GEE (DA) with 

the 3 coefficient dropped with increasing dropout probabilities with 500 children. 

However, it should also be noted here that this may not be overestimated, as coverage 

was still 93% after having dropped.  

Coverage values for intercepts, on the other hand, were lower for 500 children after FLIC 

imputation and for incomplete data than after DA imputation. For example, with 500 

children, the value for MI-F-GEE (FLIC) intercept was 0.677, for F-GEE intercept 0.745, 

and for MI-F-GEE (DA) intercept 0.936. However, as the focus of this work was on 

estimation of coefficients and not on prediction of probabilities, no particular importance 

was given to the intercept at this stage. If the focus had been on predictions, then it might 

be that the FLIC method should have been used not only for MI of missing values, but also 

for analyses of the imputed data itself. Here, research could be done on applying the FLIC 

method developed for logistic regression to (F-)GEE. The coverage values of F-GEE and 

MI-F-GEE after FLIC imputation are presented in Table 8; the values of all analyses for 

coefficients 1, 2 and 3 are depicted in Figure 3.  

 

Table 8. Coverage from Simulations for MI-F-GEE (FLIC) and F-GEE, 1000 Simulations. 
 MI-F-GEE (FLIC)  F-GEE (incomplete dataset) 
 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 

n = 50           

0 0.955 0.962 0.965  0.967  0.920 0.925 0.933  0.924  

1 0.939 0.942 0.954  0.968  0.894 0.900 0.903  0.896  

2 0.926 0.928 0.942  0.956  0.891 0.894 0.899  0.908  

3 0.970 0.966 0.965  0.979  0.898 0.901 0.912  0.913  

n = 100           

0 0.954 0.948 0.952  0.968  0.933 0.920 0.918  0.926  

1 0.962 0.963 0.965  0.976  0.939 0.939 0.943  0.951  

2 0.948 0.946 0.956  0.964  0.921 0.927 0.932  0.932  

3 0.960 0.947 0.957  0.972  0.900 0.887 0.893  0.894  

n = 200           

0 0.956 0.945 0.933 0.902 0.941 0.919 0.942 0.933 0.914 0.880 0.920 0.896 

1 0.969 0.968 0.975 0.976 0.974 0.986 0.962 0.950 0.962 0.955 0.955 0.951 

2 0.941 0.943 0.948 0.960 0.938 0.945 0.930 0.926 0.935 0.935 0.910 0.917 

3 0.963 0.971 0.973 0.968 0.975 0.981 0.940 0.937 0.934 0.927 0.936 0.928 

n = 500           

0 0.935 0.915 0.854 0.677 0.882 0.732 0.935 0.926 0.896 0.745 0.909 0.778 

1 0.960 0.958 0.961 0.966 0.974 0.974 0.945 0.947 0.945 0.951 0.951 0.947 

2 0.946 0.953 0.959 0.969 0.953 0.955 0.937 0.943 0.944 0.932 0.934 0.937 

3 0.979 0.978 0.981 0.975 0.988 0.981 0.955 0.953 0.952 0.951 0.951 0.946 

Note:  Coverage of 95% CI. Results for other analyses tabled in attachment; 0 = intercept, 1 = gender, 2 = age, 3 = xerophthalmia; 

response variable = respiratory infection; p = probability of dropout conditional on previous infection (yes / no); FLIC = imputation 

with Firth logistic regression with adjusted intercept; MI = multiple imputation; F = Firth penalty, n = number of children. 



28 
 

Figure 3. Coverage for Coefficients 1, 2, 3  of Simulated Scenarios (1,000 Simulations each) 
n 1 gender 2 age 3 xerophthalmia 
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x-axis = probability of dropout conditioned on previous response (yes / no), n = number of children 
solid line represents 100% coverage 
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5.4. Standard Error 

 

In terms of SE, severe issues were observed with logistic regression for incomplete data 

as well as after MI when no Firth penalty was applied. The values were not infinitely high, 

but they were larger than the values of the other analyses by a factor of 10 to 100. These 

values are thus uninterpretable. This problem occurred mainly with smaller samples, 

with 3 even up to 200 children. In most analyses, SE of standard GEE and MI-GEE 

analyses were infinitely high; those values are thus not depicted in Figure 4. Apart from 

these problems, SE were smaller when intra-child correlations—simulated with 0.4—

were not considered. This was the case in variants of logistic regressions (e.g., DL-GLM, 

DL-F-GLM, MI-GLM). However, with SE it is not like with bias or MSE that low values are 

better. It may also be the other way around, that low SE underestimate the true variance 

and thus lead to inflation of the type I error rate when testing null hypotheses. For this 

reason, SE achieved with methods that consider the correlated nature of the data are 

more trustworthy. Generally, SE of MI-F-GEE after FLIC were lower than MI-F-GEE after 

DA. If the analyses with complete data are used as a reference (Appendix 21)—that is, 

those generated complete datasets before having deleted values according to MAR 

mechanism—then one sees that the SE obtained with F-GEE at coefficients 0, 1 and 2 

correspond to those of MI-F-GEE after FLIC imputation and not to those after DA. For 3, 

the SE were slightly higher in all cases compared to the analyses of complete data. It 

should be recalled here that 3 describes the association between the predictor with 

rarely occurring events and the response with rarely occurring events. SE became smaller 

mm 

Table 9. SE from Simulations for MI-F-GEE (FLIC) and F-GEE, 1000 Simulations. 
 MI-F-GEE (FLIC)  F-GEE (incomplete dataset) 

 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 0.3/0.1 0.4/0.1 0.6/0.1 0.8/0.1 0.6/0.2 0.8/0.2 

n = 50           

0 0.5331 0.5382 0.5407  0.5512  0.5314 0.5355 0.5416  0.5518  

1 0.7646 0.7659 0.7639  0.7723  0.7644 0.7671 0.7706  0.7857  

2 0.0257 0.0259 0.0261  0.0267  0.0255 0.0257 0.0262  0.0266  

3 0.9509 0.9606 0.9788  1.0109  0.8837 0.8955 0.9274  0.9563  

n = 100           

0 0.3862 0.3887 0.3902  0.3991  0.3906 0.3925 0.3932  0.4070  

1 0.5723 0.5715 0.5690  0.5749  0.5822 0.5838 0.5822  0.6001  

2 0.0191 0.0192 0.0194  0.0198  0.0190 0.0192 0.0194  0.0199  

3 0.7189 0.7312 0.7500  0.7776  0.6582 0.6716 0.6999  0.7223  

n = 200           

0 0.2735 0.2743 0.2761 0.2761 0.2797 0.2818 0.2788 0.2789 0.2801 0.2803 0.2896 0.2898 

1 0.4094 0.4090 0.4080 0.4044 0.4087 0.4084 0.4205 0.4207 0.4199 0.4166 0.4326 0.4294 

2 0.0137 0.0138 0.0140 0.0140 0.0142 0.0143 0.0138 0.0139 0.0140 0.0141 0.0144 0.0145 

3 0.5218 0.5345 0.5509 0.5633 0.5701 0.5801 0.4877 0.4998 0.5220 0.5446 0.5414 0.5652 

n = 500           

0 0.1737 0.1742 0.1746 0.1748 0.1768 0.1780 0.1773 0.1773 0.1780 0.1782 0.1844 0.1844 

1 0.2619 0.2620 0.2605 0.2574 0.2614 0.2601 0.2692 0.2692 0.2680 0.2655 0.2770 0.2742 

2 0.0089 0.0090 0.0090 0.0091 0.0091 0.0092 0.0090 0.0090 0.0091 0.0091 0.0093 0.0094 

3 0.3281 0.3345 0.3443 0.3542 0.3550 0.3652 0.3082 0.3133 0.3268 0.3454 0.3407 0.3596 

Note:  Results for other analyses in the attachment; 0 = intercept, 1 = gender, 2 = age, 3 = xerophthalmia; response variable = 

respiratory infection; p = probability of dropout conditional on previous infection (yes / no); FLIC = imputation with Firth logistic 

regression with adjusted intercept; MI = multiple imputation; F = Firth penalty, n = number of children.  
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Figure 4. SE for Coefficients 1, 2, 3  of Simulated Scenarios (1,000 Simulations each)  
n 1 gender 2 age 3 xerophthalmia 
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x-axis = probability of dropout conditioned on previous response (yes / no), n = number of children 
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with increasing sample size; this is simply because SE is a function of n. On the other hand, 

SE tended to become larger with increasing dropout probability conditioned on previous 

respiratory infections. This was less clearly the case for MI-F-GEE (FLIC), where SE were 

more constant across scenarios (Table 9, Figure 4). 

 

 

5.5. Failure of convergence 

 

Standard GEE with incomplete data and after MI had not only infinite coefficients as well 

as SE in converged analyses, but also a very high proportion of analyses, which did not 

converge. This problem mainly affected samples with 50, 100, or 200 children. For 50 

children, for example, up to 76% of the analyses did not converge. Across all methods of 

analysis, the rates of not converged analyses were lowest when analyzing incomplete 

data, followed by analyses after FLIC imputation. The percentage of not converged 

analyses after DA imputation was almost always higher than FLIC. Analyses with F-GLM, 

either with incomplete or after MI, reached the lowest non-convergence rates. Even with 

50 children only, there were 0% or, in the worst cases, 0.2% non-convergence rates. GLM 

was slightly above this with values between 0.5% and 6.1%, followed by F-GEE (with and 

without MI). With MI-F-GEE, a distinction should be made between MI-F-GEE after FLIC 

imputation (range: 2.3%–3.7%) and after DA imputation (range: 6.2%–14.4%). In terms 

of coverage, FLIC imputation seems to work more reliably than DA imputation for rarely 

occurring events. In large samples of 500 children, there were almost no problems with 

convergence for all methods of analysis. Even when including GEE, more than 95% of the 

analyses converged. It was also noticeable that the proportion of non-converged analyses 

increased with the increasing dropout probability of children. The percentages of 

analyses that did not converge are tabled in Appendices 1 to 20 in the last line of each 

table. 
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6. Discussion 
 

In this thesis, a longitudinal study with four measurement time points was simulated with 

a dichotomous response variable. The basis for the simulation was the study by Sommer 

et al. (1983) on the influence of vitamin A deficiency on the occurrence of respiratory 

infections in children. For the analysis of these data, GEE would be a suitable marginal 

model in the case of absence of missingness. The aim of this work was to investigate the 

performance of GEE in the context of rarely occurring events in the response variable and 

in one of the predictors. In the theoretical section, it was discussed and hypothesized that 

GEE is not suitable because rarely occurring events can generate separation and result in 

infinite coefficients and SE. As a solution to this problem, the Firth penalty was 

considered. The behavior of GEE and the application of the Firth penalty was also 

investigated under the condition of missing data. It was simulated that the data were 

missing after the MAR mechanism. It was hypothesized that F-GEE after multiple 

imputation would be a valid method for analyzing the data. Due to the fact that MI of 

missing values is a problem of rarely occurring events itself, the Firth penalty was also 

investigated in the context of imputations. It had to be considered that models with Firth 

penalty produce valid estimates, but not valid predictions. Since valid predictions are 

necessary for imputations, it was hypothesized that the application of the FLIC method, 

which recalibrates the intercept after applying the Firth penalty, would solve the 

problem. After presenting the results in the previous chapter, this section will discuss 

these results and put them in perspective with the theory. 

The results showed that standard GEE was not suitable for analyzing the simulated data 

with rarely occurring events. First, the proportion of analyses that did not converge was 

high; and second, for those analyses that did converge, there were infinite estimates for 

coefficients and for SE. Standard GEE was unsuitable both for analyzing datasets with 

missing values and for datasets with imputed values. The problems with this method of 

analysis were more prevalent with small samples, but also with large samples when the 

proportion of missing children increased. These results were expected based on 

theoretical assumptions about separation for rarely occurring events (Heinze & 

Schemper, 2002) and are consistent with analyses by Mondol and Rahman (2019) and 

Geroldinger et al. (2022). The solution proposed in the theory—namely the application 

of a Firth penalty to GEE, F-GEE—resulted in estimates for coefficients and SE that were 

neither infinite, nor finite large and not interpretable. This replicated the findings of 

Mondol and Rahman (2019). The proportion of analyses that did not converge was also 

much lower for F-GEE compared to GEE. However, the convergence rate was not at 100%, 

which again is consistent with the finding of Geroldinger et al. (2022) that, contrary to 

Mondol and Rahman (2019), some F-GEE analyses did not converge.  

Classical logistic regression analyses with and without Firth-penalty achieved the highest 

convergence rates. Without Firth penalty, there were finite but large and uninterpretable 

estimates for coefficients and SE in small samples. With Firth penalty, this was not the 

case. However, despite problems with interpretability of SE, variants of logistic 

regression analyses (DL-GLM, DL-F-GLM, MI-GLM, MI-F-GLM) showed systematically 

lower SE compared to the associated variants of GEE (GEE, F-GEE, MI-MI-GEE, F-GEE). 
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This could be because the logistic regressions do not account for the correlated nature of 

the data. It is well known from the literature that SE can be underestimated if the 

dependence structure of the data is ignored (Molenberghs & Verbeke, 2005). In the 

present simulations, an intra-child correlation of 0.4 was used. Thus, the results are 

consistent with theoretical considerations, and logistic regressions were not found to be 

suitable for the analysis of longitudinal data, even when bias and MSE values for F-GLM 

were on the lower side. 

The question then arose whether F-GEE yields better results after MI than when 

analyzing incomplete datasets. Here, however, the analysis of the imputation technique 

itself must be discussed beforehand. Both imputation methods, FLIC and DA, produced 

higher coverage of the 95% CI of the coefficient estimates compared to coverage rates 

with incomplete data. For FLIC, this was not due to higher SE, because its SE were 

comparable in size with those for incomplete analyses. DA analyses had slightly larger SE 

than FLIC and it was noticeable that the bias of the coefficient estimates for 3, 

xerophthalmia, was much larger for DA than FLIC. For larger samples, the MSE became 

larger for DA than for FLIC as dropout rates increased. Overall, the proportion of analyses 

that converged were higher for FLIC than for DA. For the coefficient estimates of the other 

predictors, bias and MSE of DA were partially lower than for FLIC and, partially 

comparable in magnitude. In summary, the FLIC method performed more reliably with 

respect to the predictor with rarely occurring events and performed comparably with 

respect to the other parameters. These results confirm the research of Puhr et al (2017) 

that recalibration of the intercept leads to valid predictions, which were imputations in 

this case. 

MI-F-GEE had lower MSE values compared to F-GEE. These results suggest that MI-F-GEE 

produces the most efficient estimators. MI-F-GEE after FLIC imputation also had mostly 

lower bias than F-GEE for small samples in coefficients 2 and 3. For 200 and 500 

children, with DA, the bias was partially smaller and partially the values of both methods 

of analysis were comparable. 

The counterargument of White et al. (2010) that multiple imputation with a Firth penalty 

is more time-consuming and thus computationally unrealistic can be questioned here. 

For 500 children, imputing with FLIC and running all analyses on 1,000 simulated 

datasets on a regular Windows 10 machine took about 48 hours. When imputation was 

done using the algorithm of White et al. (2010), DA, the time was reduced by three hours. 

However, in practice, 1,000 imputations are not performed and then analyzed using a 

wide variety of techniques. Therefore, it would be an additional effort of a matter of 

seconds, which probably no one would hesitate to do in order to obtain more valid results. 

The present analyses have shown that a Firth penalty is indeed feasible in the context of 

the MICE package. In summary, MI-F-GEE performed well in both smaller and larger 

samples and also in both lower and higher dropout rates. 

There are also some limitations that need to be addressed. Due to the rarely occurring 

event in the response variable, it was a challenge to generate missing values according to 

the MAR mechanism. Even if 80% of children with a previous infection drop out, only 4% 

of children are missing when the incidence is 5%. Conversely, with 80% dropout rate in 

uninfected children, almost all children would be dropped out. The goal of this thesis was 

to explicitly study the behavior of F-GEE under MAR. Based on the information in the 
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original study, it was assumed that children with a previous infection were more likely to 

be absent. A higher dropout probability among non-infected children was not simulated. 

The dropout mechanism was also not made dependent on covariates because otherwise 

the line between MAR and MCAR would not have been sharp due to the rarely occurring 

event. Because of limited resources of time, the intra-child correlation was kept constant 

at 0.4; the effect of different intra-child correlations was not investigated. Simulations 

with fewer than 50 children were not performed because the proportion of analyses that 

did not converge increased markedly. 

The generated datasets represented near-to-quasi-complete separation scenarios. 

However, due to the Monte Carlo process, datasets with quasi-complete separation were 

also included. No distinction was made between the two scenarios in the analyses, which 

was analogous to the study by Mondol and Rahman (2019). One suggestion for future 

studies would be to investigate this further. 

 

 

 

7. Ethical considerations 
 

At this point I would like to mention a few ethical considerations concerning this topic. 

My master’s thesis was dedicated to statistical methods for the analysis of rarely 

occurring events. An event that occurs rarely can have severe consequences for the 

affected person and for society at large. For example, the event could concern a serious 

illness or the uncovering of sexual abuse, to name just two examples. Scientific research 

into these cases could help to reduce, end or prevent the suffering of those affected and 

the suffering within a society. A severe illness may also cause individual visits to be 

missed by the patients. The present thesis has investigated solutions as to how such 

topics can be researched even under these more difficult circumstances. 

The computational problems that occur in the context of separation have in the past often 

been inadequately addressed. For example, the predictor that caused separation was 

simply omitted in the absence of a solution, or the rare event was not evaluated with 

inferential statistics (Heinze & Schemper, 2002; Puhr et al., 2017). This is a wood-chipper 

approach that leaves available information unused and potentially undercuts new 

insights. The Firth penalty presented in this paper allows inferential statistical analysis 

of rare events. For a method to be used in medical research, for example, the 

implementation must be low threshold. The best technique is of little use if the 

application is so complex that no one knows how to use it. Firth-penalty is a technique 

that is easy to apply. In the most common statistical programs—such as SAS, R, Stata and 

SPSS—there are options for using Firth logistic regression, either directly or as a macro. 

In SAS, for example, the option "FIRTH" can be used in PROC LOGISTIC, in R the same 

syntax can be used for logistf() as for the familiar lm() function. For F-GEE there is a 

package in R, in the other programs it requires still relevant software developments. The 

Firth penalty showed promising results in past studies, and this was also the case in this 

thesis. Accordingly, researchers should continue to develop implementations of the Firth 

penalty in statistical software, especially for F-GEE. 
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Appendix 1. Simulation with N = 50 Children, Dropout Probabilities 0.3 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients             

0 ―3.2101 * ―3.0056 ―2.9484  ―2.9356 * ―2.7639 ―2.6936  ―3.1168 * ―2.9550 ―2.8976 

1 ―1.3438 * ―0.3853 ―0.3711  ―0.8699 * ―0.3256 ―0.3125  ―1.0640 * ―0.3398 ―0.3141 

2 ―0.0351 * ―0.0306 ―0.0306  ―0.0287 * ―0.0248 ―0.0221  ―0.0299 * ―0.0272 ―0.0257 

3 ―2.0978 * 1.5625 1.5500  ―0.7707 * 1.3597 1.1920  ―1.8766 * 1.4283 1.4095 
               

SE             

0 5.8378 * 0.5164 0.5314  19.7392 * 0.5265 0.5670  4.1348 * 0.5170 0.5331 

1 133.9532 * 0.7747 0.7644  106.7334 * 0.7487 0.7794  113.7417 * 0.7659 0.7646 

2 0.0289 * 0.0257 0.0255  0.5379 * 0.0259 0.0267  0.0287 * 0.0259 0.0257 

3 503.9182 * 1.0904 0.8837  393.3481 * 1.0729 1.0073  461.3192 * 1.0900 0.9509 
               

Bias             
0 ―0.4031 * ―0.1986 ―0.1414  ―0.1287 * 0.0431 0.1134  ―0.3098 * ―0.1481 ―0.0906 

1 ―0.9966 * ―0.0382 ―0.0240  ―0.5228 * 0.0216 0.0347  ―0.7168 * 0.0074 0.0331 

2 ―0.0067 * ―0.0032 ―0.0021  ―0.0003 * 0.0036 0.0063  ―0.0015 * 0.0012 0.0027 

3 ―3.5154 * 0.1449 0.1324  ―2.1883 * ―0.0580 ―0.2256  ―3.2942 * 0.0107 ―0.0082 
               

MSE             
0 1.3658 * 0.4715 0.4563  1.2410 * 0.2549 0.2639  0.6996 * 0.3994 0.3655 

1 20.4067 * 0.9809 0.8952  7.3541 * 0.6457 0.5618  12.3567 * 0.7493 0.6579 

2 0.001438 * 0.001284 0.001220  0.002336 * 0.000818 0.000770  0.00103 * 0.00101 0.000951 

3 63.1700 * 1.0203 0.9133  24.8166 * 0.6113 0.6113  52.0265 * 0.8117 0.7277 
               

Coverage             
0 0.941 ‡ 0.935 0.920  0.944 ‡ 0.926 0.952  0.959 ‡ 0.949 0.955 

1 0.935 ‡ 0.927 0.894  0.957 ‡ 0.950 0.960  0.957 ‡ 0.954 0.939 

2 0.911 ‡ 0.889 0.891  0.932 ‡ 0.910 0.929  0.935 ‡ 0.914 0.926 

3 0.961 ‡ 0.961 0.898  0.990 ‡ 0.990 0.983  0.981 ‡ 0.982 0.970 
               

NC 0.7% 9.9% 0% 0.7%  3.8% 70.9% 0% 8.6%  4.3% 66.8% 0% 3.7% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 2. Simulation with N = 50 Children, Dropout Probabilities 0.4 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients             

0 ―3.2452 * ―3.0302 ―2.9674  ―2.9209 * ―2.7574 ―2.6840  ―3.1478 * ―2.9811 ―2.9252 

1 ―1.3349 * ―0.3789 ―0.3677  ―0.8224 * ―0.3220 ―0.3136  ―1.0425 * ―0.3343 ―0.3150 

2 ―0.0356 * ―0.0315 ―0.0305  ―0.0283 * ―0.0244 ―0.0220  ―0.0301 * ―0.0271 ―0.0258 

3 2.2462 * 1.5738 1.5534  ―0.6617 * 1.3689 1.1851  ―1.9854 * 1.4260 1.4090 
               

SE             

0 5.8496 * 0.5236 0.5355  19.1572 * 0.5348 0.5768  4.1462 * 0.5252 0.5382 

1 135.0976 * 0.7814 0.7671  96.0382 * 0.7475 0.7773  111.6302 * 0.7743 0.7659 

2 0.0296 * 0.0261 0.0257  0.5379 * 0.0260 0.0268  0.0293 * 0.0263 0.0259 

3 547.1840 * 1.0998 0.8955  385.4460 * 1.0807 1.0308  483.4106 * 1.0978 0.9606 
               

Bias             
0 ―0.4382 * ―0.2232 ―0.1604  ―0.1140 * 0.0496 0.1230  ―0.3408 * ―0.1741 ―0.1182 

1 ―0.9877 * ―0.0317 ―0.0206  ―0.4752 * 0.0252 0.0336  ―0.6953 * 0.0129 0.0321 

2 ―0.0072 * ―0.0031 ―0.0021  0.0002 * 0.0040 0.0064  ―0.0017 * 0.0013 0.0026 

3 ―3.6638 * 0.1561 0.1358  ―2.0793 * ―0.0488 ―0.2325  ―3.4031 * 0.0084 ―0.0087 
               

MSE             
0 1.3920 * 0.4753 0.4571  1.2227 * 0.2504 0.2663  0.7219 * 0.4083 0.3680 

1 20.1563 * 0.9337 0.8586  6.7131 * 0.6145 0.5490  11.9414 * 0.7058 0.6344 

2 0.001494 * 0.001266 0.001201  0.002291 * 0.000793 0.000752  0.001004 * 0.001000 0.000949 

3 66.5580 * 1.0254 0.9347  22.8156 * 0.5632 0.5822  53.8589 * 0.8121 0.7433 
               

Coverage             
0 0.948 ‡ 0.943 0.925  0.948 ‡ 0.927 0.947  0.964 ‡ 0.958 0.962 

1 0.940 ‡ 0.934 0.900  0.964 ‡ 0.956 0.962  0.963 ‡ 0.958 0.942 

2 0.920 ‡ 0.899 0.894  0.939 ‡ 0.923 0.937  0.946 ‡ 0.926 0.928 

3 0.963 ‡ 0.964 0.901  0.993 ‡ 0.992 0.987  0.982 ‡ 0.981 0.966 
               

NC 0.5% 9.9% 0% 0.5%  3.8% 72.9% 0% 10.0%  4.6% 68.9% 0% 3.1% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 3. Simulation with N = 50 Children, Dropout Probabilities 0.6 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients             

0 ―3.3194 * ―3.0819 ―3.0341  ―2.9134 * ―2.7440 ―2.6821  ―3.2139 * ―3.0389 ―2.9915 

1 ―1.2491 * ―0.3732 ―0.3693  ―0.8322 * ―0.3183 ―0.3128  ―1.0387 * ―0.3282 ―0.3061 

2 ―0.0367 * ―0.0322 ―0.0318  ―0.0277 * ―0.0238 ―0.0222  ―0.0309 * ―0.0277 ―0.0266 

3 ―2.4713 * 1.6017 1.5921  ―0.6865 * 1.3738 1.1639  ―2.2162 * 1.4309 1.4251 
               

SE             

0 5.8984 * 0.5387 0.5416  19.1877 * 0.5590 0.5992  2.9624 * 0.5408 0.5407 

1 130.8061 * 0.7992 0.7706  98.2800 * 0.7452 0.7707  111.5247 * 0.7926 0.7639 

2 0.0307 * 0.0268 0.0262  0.5382 * 0.0260 0.0269  0.0304 * 0.0271 0.0261 

3 583.5836 * 1.1229 0.9274  401.3080 * 1.1069 1.0676  516.7869 * 1.1176 0.9788 
               

Bias             
0 ―0.5124 * ―0.2749 ―0.2271  ―0.1064 * 0.0629 0.1248  ―0.4069 * ―0.2319 ―0.1845 

1 ―0.9020 * ―0.0261 ―0.0221  ―0.4851 * 0.0288 0.0344  ―0.6916 * 0.0189 0.0410 

2 ―0.0083 * ―0.0038 ―0.0033  0.0007 * 0.0046 0.0062  ―0.0025 * 0.0007 0.0018 

3 ―3.8889 * 0.1841 0.1745  ―2.1042 * ―0.0438 ―0.2538  ―3.6338 * 0.0132 0.0075 
               

MSE             
0 1.4656 * 0.4877 0.4736  1.2134 * 0.2479 0.2585  0.7381 * 0.4300 0.3825 

1 18.6846 * 0.8826 0.8370  7.0199 * 0.5934 0.5250  11.8509 * 0.6656 0.5978 

2 0.001505 * 0.001231 0.001199  0.002244 * 0.000744 0.000704  0.001056 * 0.000952 0.000888 

3 71.0184 * 1.0589 1.0012  22.6385 * 0.5664 0.6044  57.7227 * 0.8129 0.7833 
               

Coverage             
0 0.958 ‡ 0.960 0.933  0.958 ‡ 0.940 0.956  0.976 ‡ 0.968 0.965 

1 0.955 ‡ 0.948 0.903  0.966 ‡ 0.962 0.971  0.974 ‡ 0.969 0.954 

2 0.933 ‡ 0.917 0.899  0.940 ‡ 0.925 0.945  0.966 ‡ 0.951 0.942 

3 0.961 ‡ 0.965 0.912  0.993 ‡ 0.993 0.990  0.989 ‡ 0.986 0.965 
               

NC 0.3% 10.0% 0% 0.3%  3.6% 76.4% 0% 11.4%  5.2% 72.0% 0.1% 2.3% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 4. Simulation with N = 50 Children, Dropout Probabilities 0.6 vs. 0.2 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients             

0 ―3.3383 * ―3.0488 ―3.0100  ―2.7383 * ―2.5820 ―2.5338  ―3.1630 * ―2.9737 ―2.9252 

1 ―1.3584 * ―0.3777 ―0.3700  ―0.5437 * ―0.2569 ―0.2561  ―0.8252 * ―0.2955 ―0.2882 

2 ―0.0364 * ―0.0316 ―0.0310  ―0.0224 * ―0.0192 ―0.0181  ―0.0273 * ―0.0242 ―0.0232 

3 ―2.7855 * 1.6222 1.6083  ―0.4570 * 1.2318 1.0434  ―2.3557 * 1.3475 1.3244 
               

SE             

0 14.3113 * 0.5537 0.5518  20.2178 * 0.6009 0.6353  8.2258 * 0.5537 0.5512 

1 168.1259 * 0.8213 0.7857  80.6602 * 0.7225 0.7523  108.5289 * 0.7943 0.7723 

2 0.0319 * 0.0275 0.0266  0.5389 * 0.0267 0.0278  0.0308 * 0.0275 0.0267 

3 679.9824 * 1.1558 0.9563  359.9850 * 1.1261 1.1114  521.0655 * 1.1387 1.0109 
               

Bias             
0 ―0.5313 * ―0.2418 ―0.2030  0.0687 * 0.2249 0.2732  ―0.3560 * ―0.1667 ―0.1182 

1 ―1.0112 * ―0.0306 ―0.0228  ―0.1966 * 0.0902 0.0911  ―0.4780 * 0.0517 0.0590 

2 ―0.0080 * ―0.0032 ―0.0026  0.0060 * 0.0092 0.0103  0.0011 * 0.0042 0.0052 

3 ―4.2031 * 0.2046 0.1906  ―1.8746 * ―0.1859 ―0.3743  ―3.7733 * ―0.0702 ―0.0932 
               

MSE             
0 2.2565 * 0.4787 0.4698  1.1653 * 0.2623 0.2963  1.1024 * 0.3935 0.3551 

1 22.1225 * 0.9055 0.8667  2.6346 * 0.4312 0.4044  7.8246 * 0.5692 0.5380 

2 0.001565 * 0.001258 0.001218  0.002090 * 0.000717 0.000680  0.000877 * 0.000837 0.000773 

3 76.2732 * 1.1055 1.0500  15.8561 * 0.4704 0.5864  55.0616 * 0.7205 0.7017 
               

Coverage             
0 0.968 ‡ 0.954 0.924  0.948 ‡ 0.923 0.939  0.975 ‡ 0.964 0.967 

1 0.957 ‡ 0.953 0.896  0.979 ‡ 0.976 0.985  0.985 ‡ 0.982 0.968 

2 0.933 ‡ 0.916 0.908  0.935 ‡ 0.919 0.939  0.967 ‡ 0.952 0.956 

3 0.967 ‡ 0.966 0.913  0.999 ‡ 0.999 0.998  0.995 ‡ 0.993 0.979 
               

NC 0.6% 10.0% 0.1% 0.6%  3.4% 73.4% 0.1% 14.4%  6.1% 75.2% 0.2% 2.6% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  



43 
 

Appendix 5. Simulation with N = 100 Children, Dropout Probabilities 0.3 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients             

0 ―3.0354 * ―2.9459 ―2.8882  ―2.8559 * ―2.7888 ―2.7337  ―2.9852 * ―2.9096 ―2.8821 

1 ―0.5226 * ―0.3760 ―0.3675  ―0.4162 * ―0.3389 ―0.3439  ―0.4290 * ―0.3387 ―0.3300 

2 ―0.0319 * ―0.0299 ―0.0291  ―0.0277 * ―0.0262 ―0.0245  ―0.0279 * ―0.0263 ―0.0262 

3 0.3492 * 1.4864 1.4799  0.7004 * 1.3564 1.2000  0.4750 * 1.3934 1.3762 
               

SE             

0 0.3622 * 0.3436 0.3906  0.3705 * 0.3539 0.4041  0.3596 * 0.3425 0.3862 

1 11.2814 * 0.5200 0.5822  7.0998 * 0.5210 0.5897  7.6696 * 0.5149 0.5723 

2 0.0186 * 0.0175 0.0190  0.0190 * 0.0181 0.0199  0.0185 * 0.0175 0.0191 

3 97.4576 * 0.7647 0.6582  66.2025 * 0.7622 0.7432  82.0032 * 0.7626 0.7189 
               

Bias             
0 ―0.2285 * ―0.1389 ―0.0812  ―0.0489 * 0.0182 0.0733  ―0.1782 * ―0.1026 ―0.0751 

1 ―0.1754 * ―0.0288 ―0.0204  ―0.0690 * 0.0082 0.0032  ―0.0819 * 0.0085 0.0171 

2 ―0.0035 * ―0.0015 ―0.0007  0.0007 * 0.0022 0.0039  0.0005 * 0.0021 0.0022 

3 ―1.0684 * 0.0688 0.0623  ―0.7172 * ―0.0612 ―0.2176  ―0.9427 * ―0.0242 ―0.0415 
               

MSE             
0 0.2851 * 0.2169 0.2042  0.1807 * 0.1571 0.1579  0.2230 * 0.1762 0.1687 

1 2.5841 * 0.4287 0.4074  0.8639 * 0.3029 0.2877  1.0628 * 0.3318 0.3204 

2 0.000579 * 0.000511 0.000477  0.000454 * 0.000422 0.000407  0.000431 * 0.000398 0.000383 

3 19.7709 * 0.6856 0.5727  7.7330 * 0.4581 0.4241  13.4538 * 0.5537 0.4667 
               

Coverage             
0 0.882 ‡ 0.891 0.933  0.928 ‡ 0.915 0.951  0.915 ‡ 0.916 0.954 

1 0.917 ‡ 0.913 0.939  0.952 ‡ 0.951 0.979  0.946 ‡ 0.946 0.962 

2 0.911 ‡ 0.910 0.921  0.931 ‡ 0.921 0.943  0.935 ‡ 0.927 0.948 

3 0.950 ‡ 0.949 0.900  0.985 ‡ 0.985 0.982  0.974 ‡ 0.973 0.960 
               

NC 0.3% 7.6% 0% 0.3%  0% 37.6% 0% 5.7%  0% 34.4% 0% 3.2% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE  
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Appendix 6. Simulation with N = 100 Children, Dropout Probabilities 0.4 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.0714 * ―2.9786 ―2.9176  ―2.8515 * ―2.7845 ―2.7254  ―3.0205 * ―2.9422 ―2.9177 

1 ―0.5246 * ―0.3762 ―0.3693  ―0.4135 * ―0.3372 ―0.3436  ―0.4325 * ―0.3373 ―0.3280 

2 ―0.0325 * ―0.0303 ―0.0297  ―0.0278 * ―0.0263 ―0.0244  ―0.0281 * ―0.0264 ―0.0264 

3 0.3123 * 1.4962 1.4886  0.7562 * 1.3792 1.1690  0.4459 * 1.3944 1.3868 
               
SE             

0 0.3699 * 0.3501 0.3925  0.3794 * 0.3622 0.4118  0.3685 * 0.3502 0.3887 

1 11.2775 * 0.5284 0.5838  6.9813 * 0.5241 0.5919  7.4576 * 0.5226 0.5715 

2 0.0190 * 0.0178 0.0192  0.0192 * 0.0183 0.0200  0.0189 * 0.0178 0.0192 

3 102.4559 * 0.7756 0.6716  66.2149 * 0.7744 0.7702  87.1336 * 0.7744 0.7312 
               
Bias             
0 ―0.2644 * ―0.1716 ―0.1107  ―0.0445 * 0.0225 0.0816  ―0.2135 * ―0.1352 ―0.1107 

1 ―0.1774 * ―0.0291 ―0.0222  ―0.0663 * 0.0100 0.0036  ―0.0853 * 0.0098 0.0191 

2 ―0.0041 * ―0.0019 ―0.0013  0.0006 * 0.0021 0.0040  0.0003 * 0.0020 0.0020 

3 ―1.1053 * 0.0786 0.0710  ―0.6614 * ―0.0385 ―0.2486  ―0.9718 * ―0.0232 ―0.0308 
               
MSE             
0 0.3121 * 0.2330 0.2198  0.1894 * 0.1654 0.1694  0.2437 * 0.1891 0.1801 

1 2.5809 * 0.4233 0.4021  0.8824 * 0.2963 0.2820  1.2327 * 0.3275 0.3157 

2 0.000573 * 0.000500 0.000475  0.000439 * 0.000409 0.000397  0.000416 * 0.000382 0.000369 

3 20.5359 * 0.7163 0.6184  6.9889 * 0.4631 0.4529  13.7877 * 0.5725 0.4936 
               
Coverage             
0 0.873 ‡ 0.894 0.920  0.924 ‡ 0.919 0.945  0.920 ‡ 0.933 0.948 

1 0.919 ‡ 0.910 0.939  0.959 ‡ 0.956 0.979  0.944 ‡ 0.943 0.963 

2 0.918 ‡ 0.912 0.927  0.932 ‡ 0.927 0.942  0.942 ‡ 0.936 0.946 

3 0.943 ‡ 0.941 0.887  0.982 ‡ 0.982 0.975  0.973 ‡ 0.969 0.947 
               
NC 0.2% 8.1% 0% 0.2%  0% 40.2% 0% 6.2%  0% 35.2% 0% 2.3% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 7. Simulation with N = 100 Children, Dropout Probabilities 0.6 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.1447 * ―3.0453 ―2.9894  ―2.8517 * ―2.7853 ―2.7206  ―3.0961 * ―3.0130 ―2.9943 

1 ―0.4951 * ―0.3623 ―0.3582  ―0.3856 * ―0.3152 ―0.3273  ―0.4068 * ―0.3199 ―0.3173 

2 ―0.0329 * ―0.0306 ―0.0303  ―0.0272 * ―0.0258 ―0.0237  ―0.0280 * ―0.0262 ―0.0265 

3 0.2812 * 1.5196 1.5126  0.8442 * 1.4112 1.1023  0.4160 * 1.4047 1.4093 
               
SE             

0 0.3854 * 0.3633 0.3932  0.3996 * 0.3811 0.4266  0.3844 * 0.3640 0.3902 

1 9.7005 * 0.5445 0.5822  6.8592 * 0.5267 0.5877  7.1591 * 0.5388 0.5690 

2 0.0197 * 0.0184 0.0194  0.0195 * 0.0186 0.0203  0.0196 * 0.0185 0.0194 

3 112.6163 * 0.7953 0.6999  65.6889 * 0.8002 0.8984  93.3291 * 0.7932 0.7500 
               
Bias             
0 ―0.3377 * ―0.2383 ―0.1824  ―0.0447 * 0.0217 0.0864  ―0.2892 * ―0.2060 ―0.1873 

1 ―0.1479 * ―0.0151 ―0.0110  ―0.0384 * 0.0320 0.0199  ―0.0597 * 0.0272 0.0298 

2 ―0.0045 * ―0.0022 ―0.0019  0.0012 * 0.0027 0.0048  0.0004 * 0.0022 0.0019 

3 ―1.1364 * 0.1019 0.0950  ―0.5734 * ―0.0065 ―0.3153  ―1.0016 * ―0.0130 ―0.0084 
               
MSE             
0 0.3444 * 0.2475 0.2347  0.1879 * 0.1638 0.1756  0.2667 * 0.1982 0.1908 

1 2.2862 * 0.4132 0.3976  0.7329 * 0.2863 0.2629  1.1144 * 0.3098 0.3066 

2 0.000592 * 0.000512 0.000489  0.000429 * 0.000400 0.000404  0.000419 * 0.000383 0.000376 

3 21.1994 * 0.6914 0.6456  5.8061 * 0.4001 1.4902  14.0497 * 0.5319 0.5036 
               
Coverage             
0 0.881 ‡ 0.904 0.918  0.931 ‡ 0.927 0.951  0.934 ‡ 0.944 0.952 

1 0.941 ‡ 0.934 0.943  0.957 ‡ 0.954 0.981  0.963 ‡ 0.964 0.965 

2 0.917 ‡ 0.914 0.932  0.942 ‡ 0.934 0.947  0.954 ‡ 0.953 0.956 

3 0.941 ‡ 0.939 0.893  0.985 ‡ 0.984 0.989  0.984 ‡ 0.977 0.957 
               
NC 0.1% 8.5% 0% 0.1%  0.1% 48% 0% 8%  0.1% 38% 0% 1.9% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 8. Simulation with N = 100 Children, Dropout Probabilities 0.6 vs. 0.2 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.1598 * ―3.0366 ―2.9894  ―2.8517 * ―2.7853 ―2.7206  ―3.0551 * ―2.9723 ―2.9543 

1 ―0.5240 * ―0.3662 ―0.3623  ―0.3856 * ―0.3152 ―0.3273  ―0.3517 * ―0.2938 ―0.2909 

2 ―0.0332 * ―0.0307 ―0.0304  ―0.0272 * ―0.0258 ―0.0237  ―0.0251 * ―0.0235 ―0.0236 

3 0.0502 * 1.5258 1.5196  0.8442 * 1.4112 1.1023  0.3205 * 1.3309 1.3221 
               
SE             

0 1.7403 * 0.3782 0.4070  0.3996 * 0.3811 0.4266  0.9501 * 0.3774 0.3991 

1 15.6008 * 0.5662 0.6001  6.8592 * 0.5267 0.5877  6.1775 * 0.5489 0.5749 

2 0.0205 * 0.0190 0.0199  0.0195 * 0.0186 0.0203  0.0201 * 0.0189 0.0198 

3 144.8085 * 0.8271 0.7223  65.6889 * 0.8002 0.8984  101.9256 * 0.8190 0.7776 
               
Bias             
0 ―0.3528 * ―0.2297 ―0.1824  ―0.0447 * 0.0217 0.0864  ―0.2481 * ―0.1653 ―0.1473 

1 ―0.1768 * ―0.0191 ―0.0151  ―0.0284 * 0.0320 0.0199  ―0.0046 * 0.0533 0.0563 

2 ―0.0048 * ―0.0023 ―0.0020  0.0012 * 0.0027 0.0048  0.0033 * 0.0049 0.0048 

3 ―1.3675 * 0.1081 0.1020  ―0.5734 * ―0.0065 ―0.3153  ―1.0972 * ―0.0867 ―0.0956 
               
MSE             
0 0.6833 * 0.2643 0.2520  0.1879 * 0.1638 0.1756  0.2649 * 0.1842 0.1784 

1 3.2713 * 0.4519 0.4338  0.7329 * 0.2863 0.2629  0.5678 * 0.2723 0.2660 

2 0.000647 * 0.000553 0.000528  0.000429 * 0.000400 0.000404  0.000389 * 0.000368 0.000362 

3 25.8095 * 0.7251 0.6798  5.8061 * 0.4001 1.4902  12.9071 * 0.4932 0.4704 
               
Coverage             
0 0.891 ‡ 0.918 0.926  0.931 ‡ 0.927 0.927  0.953 ‡ 0.956 0.968 

1 0.939 ‡ 0.935 0.951  0.957 ‡ 0.954 0.954  0.971 ‡ 0.970 0.976 

2 0.916 ‡ 0.907 0.932  0.942 ‡ 0.934 0.934  0.955 ‡ 0.940 0.964 

3 0.941 ‡ 0.940 0.894  0.985 ‡ 0.984 0.984  0.994 ‡ 0.990 0.972 
               
NC 0.2% 9.0% 0% 0.2%  0.1% 47.6% 0% 8.5%  0.1% 37.2% 0% 1.4% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; GLM = logistic 
regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value larger 1x1010 or smaller 

―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  



47 
 

Appendix 9. Simulation with N = 200 Children, Dropout Probabilities 0.3 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―2.9371 * ―2.8977 ―2.8448  ―2.7598 * ―2.7299 ―2.6754  ―2.9145 * ―2.8799 ―2.8648 

1 ―0.3820 * ―0.3637 ―0.3598  ―0.3144 * ―0.3022 ―0.3227  ―0.3490 * ―0.3335 ―0.3324 

2 ―0.0309 * ―0.0300 ―0.0294  ―0.0268 * ―0.0261 ―0.0241  ―0.0275 * ―0.0268 ―0.0269 

3 1.2815 * 1.4344 1.4326  1.1446 * 1.2559 0.9941  1.2179 * 1.3490 1.3544 
               
SE             

0 0.2406 * 0.2352 0.2788  0.2805 * 0.2746 0.3122  0.2387 * 0.2337 0.2735 

1 0.3622 * 0.3526 0.4205  0.3820 * 0.3734 0.4323  0.3583 * 0.3495 0.4094 

2 0.0125 * 0.0121 0.0138  0.0141 * 0.0138 0.0153  0.0124 * 0.0121 0.0137 

3 7.1898 * 0.5251 0.4877  7.2492 * 0.5805 0.6159  5.9533 * 0.5251 0.5218 
               
Bias             
0 ―0.1301 * ―0.0908 ―0.0378  0.0471 * 0.0771 0.1316  ―0.1076 * ―0.0729 ―0.0578 

1 ―0.0348 * ―0.0166 ―0.0126  0.0328 * 0.0450 0.0244  ―0.0018 * 0.0137 0.0147 

2 ―0.0025 * ―0.0016 ―0.0010  0.0016 * 0.0023 0.0044  0.0009 * 0.0017 0.0015 

3 ―0.1361 * 0.0168 0.0150  ―0.2730 * ―0.1617 ―0.4235  ―0.1997 * ―0.0687 ―0.0632 
               
MSE             
0 0.1095 * 0.0948 0.0871  0.0868 * 0.0861 0.0968  0.0925 * 0.0815 0.0783 

1 0.2082 * 0.1919 0.1811  0.1306 * 0.1246 0.1178  0.1622 * 0.1517 0.1477 

2 0.000257 * 0.000242 0.000225  0.000232 * 0.000227 0.000234  0.000204 * 0.000198 0.000192 

3 2.2802 * 0.3554 0.2923  0.8900 * 0.2402 0.3654  1.5724 * 0.3064 0.2533 
               
Coverage             
0 0.872 ‡ 0.893 0.942  0.922 ‡ 0.913 0.928  0.912 ‡ 0.915 0.956 

1 0.892 ‡ 0.895 0.962  0.959 ‡ 0.958 0.995  0.931 ‡ 0.933 0.969 

2 0.892 ‡ 0.889 0.930  0.920 ‡ 0.916 0.931  0.914 ‡ 0.907 0.941 

3 0.947 ‡ 0.941 0.940  0.992 ‡ 0.991 0.984  0.969 ‡ 0.968 0.963 
               
NC 0% 2.3% 0% 0%  0% 15.6% 0% 3.1%  0% 6.4% 0% 0.1% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and 
a first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 10. Simulation with N = 200 Children, Dropout Probabilities 0.4 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―2.9757 * ―2.9346 ―2.8728  ―2.8057 * ―2.7744 ―2.7330  ―2.9516 * ―2.9157 ―2.9005 

1 ―0.3809 * ―0.3620 ―0.3590  ―0.3494 * ―0.3355 ―0.3489  ―0.3494 * ―0.3333 ―0.3334 

2 ―0.0311 * ―0.0302 ―0.0296  ―0.0286 * ―0.0279 ―0.0266  ―0.0276 * ―0.0268 ―0.0270 

3 1.2870 * 1.4441 1.4407  1.2278 * 1.3101 1.1738  1.2269 * 1.3514 1.3591 
               
SE             

0 0.2458 * 0.2401 0.2789  0.2534 * 0.2483 0.2911  0.2442 * 0.2389 0.2743 

1 0.3696 * 0.3595 0.4207  0.3685 * 0.3600 0.4280  0.3653 * 0.3559 0.4090 

2 0.0127 * 0.0123 0.0139  0.0130 * 0.0127 0.0144  0.0127 * 0.0123 0.0138 

3 7.6237 * 0.5339 0.4998  4.0496 * 0.5419 0.5558  5.6494 * 0.5326 0.5345 
               
Bias             
0 ―0.1687 * ―0.1276 ―0.0658  0.0012 * 0.0326 0.0740  ―0.1446 * ―0.1088 ―0.0935 

1 ―0.0338 * ―0.0148 ―0.0119  ―0.0023 * 0.0117 ―0.0017  ―0.0022 * 0.0139 0.0137 

2 ―0.0027 * ―0.0018 ―0.0012  ―0.0002 * 0.0005 0.0019  0.0008 * 0.0016 0.0014 

3 ―0.1306 * 0.0265 0.0231  ―0.1899 * ―0.1076 ―0.2438  ―0.1908 * ―0.0662 ―0.0586 
               
MSE             
0 0.1227 * 0.1041 0.0928  0.0815 * 0.0781 0.0802  0.1030 * 0.0889 0.0850 

1 0.2118 * 0.1948 0.1825  0.1536 * 0.1446 0.1410  0.1663 * 0.1552 0.1509 

2 0.000265 * 0.000249 0.000234  0.000230 * 0.000222 0.000209  0.000204 * 0.000198 0.000193 

3 2.3153 * 0.3580 0.3063  0.6206 * 0.2574 0.2643  1.3243 * 0.2992 0.2590 
               
Coverage             
0 0.866 ‡ 0.882 0.933  0.922 ‡ 0.911 0.947  0.893 ‡ 0.913 0.945 

1 0.905 ‡ 0.910 0.950  0.941 ‡ 0.941 0.981  0.936 ‡ 0.935 0.968 

2 0.891 ‡ 0.888 0.926  0.910 ‡ 0.904 0.945  0.917 ‡ 0.907 0.943 

3 0.951 ‡ 0.946 0.937  0.983 ‡ 0.982 0.986  0.972 ‡ 0.968 0.971 
               
NC 0% 0.3% 0% 0%  0% 9.1% 0% 1.7%  0% 7.4% 0% 0.4% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 11. Simulation with N = 200 Children, Dropout Probabilities 0.6 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.0551 * ―3.0094 ―2.9476  ―2.8081 * ―2.7766 ―2.7195  ―3.0329 * ―2.9942 ―2.9816 

1 ―0.3771 * ―0.3575 ―0.3540  ―0.3420 * ―0.3284 ―0.3496  ―0.3408 * ―0.3239 ―0.3250 

2 ―0.0318 * ―0.0308 ―0.0303  ―0.0288 * ―0.0280 ―0.0260  ―0.0278 * ―0.0270 ―0.0272 

3 1.2866 * 1.4741 1.4690  1.2383 * 1.3427 1.0865  1.2117 * 1.3723 1.3816 
               
SE             

0 0.2567 * 0.2501 0.2801  0.2710 * 0.2652 0.3065  0.2555 * 0.2495 0.2761 

1 0.3840 * 0.3726 0.4199  0.3737 * 0.3650 0.4304  0.3792 * 0.3689 0.4080 

2 0.0133 * 0.0128 0.0140  0.0133 * 0.0130 0.0147  0.0132 * 0.0128 0.0140 

3 9.3766 * 0.5492 0.5220  6.0217 * 0.5668 0.6007  7.8365 * 0.5482 0.5509 
               
Bias             
0 ―0.2481 * ―0.2025 ―0.1406  ―0.0011 * 0.0304 0.0875  ―0.2259 * ―0.1872 ―0.1746 

1 ―0.0299 * ―0.0104 ―0.0069  0.0052 * 0.0188 ―0.0024  0.0064 * 0.0232 0.0222 

2 ―0.0034 * ―0.0024 ―0.0019  ―0.0004 * 0.0004 0.0024  0.0006 * 0.0014 0.0012 

3 ―0.1310 * 0.0565 0.0514  ―0.1793 * ―0.0750 ―0.3312  ―0.2060 * ―0.0453 ―0.0361 
               
MSE             
0 0.1540 * 0.1264 0.1103  0.0856 * 0.0819 0.0883  0.1307 * 0.1095 0.1050 

1 0.1973 * 0.1809 0.1732  0.1477 * 0.1395 0.1351  0.1513 * 0.1411 0.1385 

2 0.000260 * 0.000242 0.000229  0.000224 * 0.000216 0.000209  0.000192 * 0.000185 0.000183 

3 2.7577 * 0.3600 0.3254  0.9836 * 0.2380 0.3096  1.9440 * 0.2958 0.2719 
               
Coverage             
0 0.852 ‡ 0.879 0.914  0.925 ‡ 0.918 0.936  0.889 ‡ 0.907 0.933 

1 0.921 ‡ 0.927 0.962  0.942 ‡ 0.941 0.981  0.953 ‡ 0.949 0.975 

2 0.906 ‡ 0.905 0.935  0.921 ‡ 0.916 0.944  0.928 ‡ 0.924 0.948 

3 0.940 ‡ 0.936 0.934  0.986 ‡ 0.984 0.983  0.979 ‡ 0.979 0.973 
               
NC 0.1% 3.4% 0% 0.1%  0% 13.6% 0% 2.3%  0% 9.6% 0% 0.1% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 12. Simulation with N = 200 Children, Dropout Probabilities 0.8 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.1335 * ―3.0843 ―3.0409  ―2.8124 * ―2.7807 ―2.7153  ―3.1143 * ―3.0726 ―3.0639 

1 ―0.3798 * ―0.3582 ―0.3571  ―0.3355 * ―0.3221 ―0.3493  ―0.3357 * ―0.3178 ―0.3182 

2 ―0.0328 * ―0.0317 ―0.0315  ―0.0286 * ―0.0279 ―0.0253  ―0.0283 * ―0.0274 ―0.0276 

3 1.2619 * 1.5058 1.5019  1.3351 * 1.4254 1.0325  1.2105 * 1.3924 1.4009 
               
SE             

0 0.2682 * 0.2609 0.2803  0.2945 * 0.2880 0.3276  0.2671 * 0.2603 0.2761 

1 0.3996 * 0.3868 0.4166  0.3771 * 0.3683 0.4289  0.3946 * 0.3831 0.4044 

2 0.0138 * 0.0133 0.0141  0.0136 * 0.0133 0.0150  0.0138 * 0.0134 0.0140 

3 12.9279 * 0.5661 0.5446  6.3891 * 0.6091 0.6521  10.2813 * 0.5643 0.5633 
               
Bias             
0 ―0.3265 * ―0.2774 ―0.2340  ―0.0055 * 0.0263 0.0916  ―0.3073 * ―0.2657 ―0.2564 

1 ―0.0326 * ―0.0111 ―0.0100  0.0117 * 0.0250 ―0.0022  0.0115 * 0.0294 0.0287 

2 ―0.0044 * ―0.0033 ―0.0031  ―0.0002 * 0.0005 0.0031  0.0001 * 0.0010 0.0008 

3 ―0.1557 * 0.0882 0.0843  ―0.0826 * 0.0077 ―0.3852  ―0.2072 * ―0.0252 ―0.0167 
               
MSE             
0 0.1975 * 0.1607 0.1455  0.1050 * 0.0998 0.1202  0.1703 * 0.1410 0.1368 

1 0.1936 * 0.1764 0.1722  0.1391 * 0.1317 0.1249  0.1401 * 0.1302 0.1289 

2 0.000269 * 0.000247 0.000239  0.000210 * 0.000203 0.000213  0.000190 * 0.000182 0.000181 

3 3.7533 * 0.3879 0.3694  0.7413 * 0.2278 0.3717  2.0146 * 0.2972 0.2879 
               
Coverage             
0 0.819 ‡ 0.852 0.880  0.927 ‡ 0.924 0.924  0.856 ‡ 0.889 0.902 

1 0.943 ‡ 0.938 0.955  0.952 ‡ 0.952 0.986  0.968 ‡ 0.967 0.976 

2 0.921 ‡ 0.916 0.935  0.933 ‡ 0.931 0.952  0.946 ‡ 0.941 0.960 

3 0.947 ‡ 0.936 0.927  0.984 ‡ 0.983 0.975  0.974 ‡ 0.970 0.968 
               
NC 0% 0.4% 0% 0%  0% 31.6% 0% 8.6%  0% 13.2% 0% 0% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 13. Simulation with N = 200 Children, Dropout Probabilities 0.6 vs. 0.2 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.0377 * ―2.9896 ―2.9358  ―2.7598 * ―2.7299 ―2.6754  ―2.9976 * ―2.9603 ―2.9501 

1 ―0.3785 * ―0.3573 ―0.3555  ―0.3144 * ―0.3022 ―0.3227  ―0.3134 * ―0.2979 ―0.3002 

2 ―0.0319 * ―0.0308 ―0.0304  ―0.0268 * ―0.0261 ―0.0241  ―0.0255 * ―0.0247 ―0.0249 

3 1.1980 * 1.4592 1.4557  1.1446 * 1.2559 0.9941  1.1264 * 1.3046 1.3090 
               
SE             

0 0.2657 * 0.2585 0.2896  0.2805 * 0.2746 0.3122  0.2625 * 0.2563 0.2797 

1 0.3963 * 0.3839 0.4326  0.3820 * 0.3734 0.4323  0.3843 * 0.3739 0.4087 

2 0.0137 * 0.0132 0.0144  0.0141 * 0.0138 0.0153  0.0135 * 0.0131 0.0142 

3 14.1176 * 0.5724 0.5414  7.2492 * 0.5805 0.6159  10.0507 * 0.5683 0.5701 
               
Bias             
0 ―0.2307 * ―0.1826 ―0.1288  0.0471 * 0.0771 0.1316  ―0.1906 * ―0.1533 ―0.1431 

1 ―0.0313 * ―0.0101 ―0.0083  0.0328 * 0.0450 0.0244  0.0338 * 0.0492 0.0470 

2 ―0.0035 * ―0.0024 ―0.0020  0.0016 * 0.0023 0.0044  0.0029 * 0.0037 0.0035 

3 ―0.2196 * 0.0415 0.0381  ―0.2730 * ―0.1617 ―0.4235  ―0.2912 * ―0.1130 ―0.1086 
               
MSE             
0 0.1563 * 0.1285 0.1153  0.0868 * 0.0861 0.0968  0.1174 * 0.0993 0.0962 

1 0.2112 * 0.1930 0.1852  0.1306 * 0.1246 0.1178  0.1360 * 0.1282 0.1282 

2 0.000289 * 0.000267 0.000255  0.000232 * 0.000227 0.000234  0.000190 * 0.000187 0.000186 

3 4.0476 * 0.3976 0.3623  0.8900 * 0.2402 0.3654  1.8236 * 0.2964 0.2693 
               
Coverage             
0 0.856 ‡ 0.880 0.920  0.922 ‡ 0.913 0.928  0.907 ‡ 0.926 0.941 

1 0.924 ‡ 0.924 0.955  0.959 ‡ 0.958 0.995  0.959 ‡ 0.958 0.974 

2 0.890 ‡ 0.885 0.910  0.920 ‡ 0.916 0.931  0.927 ‡ 0.922 0.938 

3 0.953 ‡ 0.950 0.936  0.992 ‡ 0.991 0.984  0.981 ‡ 0.980 0.975 
               
NC 0% 2.9% 0% 0%  0% 15.6% 0% 3.1%  0% 9.1% 0% 0.5% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and 
a first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 14. Simulation with N = 200 Children, Dropout Probabilities 0.8 vs. 0.2 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.1224 * ―3.0700 ―3.0316  ―2.7699 * ―2.7395 ―2.6751  ―3.0832 * ―3.0429 ―3.0347 

1 ―0.3771 * ―0.3540 ―0.3516  ―0.3063 * ―0.2943 ―0.3243  ―0.3099 * ―0.2934 ―0.2953 

2 ―0.0330 * ―0.0318 ―0.0315  ―0.0268 * ―0.0262 ―0.0237  ―0.0258 * ―0.0250 ―0.0252 

3 1.2208 * 1.5010 1.4983  1.2674 * 1.3492 0.9616  1.1444 * 1.3282 1.3330 
               
SE             

0 0.2782 * 0.2700 0.2898  0.3065 * 0.2998 0.3350  0.2756 * 0.2685 0.2818 

1 0.4133 * 0.3992 0.4294  0.3859 * 0.3771 0.4320  0.4017 * 0.3900 0.4084 

2 0.0143 * 0.0138 0.0145  0.0144 * 0.0141 0.0157  0.0141 * 0.0137 0.0143 

3 15.5949 * 0.5882 0.5652  5.4097 * 0.6196 0.6583  10.7643 * 0.5827 0.5801 
               
Bias             
0 ―0.3154 * ―0.2630 ―0.2252  0.0370 * 0.0675 0.1319  ―0.2762 * ―0.2359 ―0.2277 

1 ―0.0300 * ―0.0068 ―0.0046  0.0408 * 0.0528 0.0228  0.0373 * 0.0538 0.0519 

2 ―0.0046 * ―0.0034 ―0.0031  0.0016 * 0.0022 0.0047  0.0026 * 0.0034 0.0032 

3 ―0.1968 * 0.0833 0.0810  ―0.1502 * ―0.0685 ―0.4561  ―0.2732 * ―0.0895 ―0.0846 
               
MSE             
0 0.1986 * 0.1604 0.1480  0.1040 * 0.1017 0.1263  0.1526 * 0.1265 0.1229 

1 0.2082 * 0.1889 0.1835  0.1233 * 0.1180 0.1163  0.1289 * 0.1211 0.1203 

2 0.000294 * 0.000270 0.000262  0.000224 * 0.000219 0.000236  0.000185 * 0.000182 0.000181 

3 4.3316 * 0.4090 0.3909  0.5975 * 0.2101 0.4178  1.7531 * 0.2865 0.2751 
               
Coverage             
0 0.835 ‡ 0.871 0.896  0.925 ‡ 0.916 0.920  0.894 ‡ 0.913 0.919 

1 0.934 ‡ 0.935 0.951  0.966 ‡ 0.963 0.992  0.975 ‡ 0.974 0.986 

2 0.916 ‡ 0.910 0.917  0.927 ‡ 0.922 0.947  0.941 ‡ 0.936 0.945 

3 0.944 ‡ 0.939 0.928  0.990 ‡ 0.990 0.974  0.987 ‡ 0.984 0.981 
               
NC 0.1% 4.6% 0% 0.1%  0% 27.6% 0% 8.3%  0% 12.1% 0% 0.1% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 15. Simulation with N = 500 Children, Dropout Probabilities 0.3 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―2.9121 ―2.9134 ―2.8970 ―2.8430  ―2.8090 ―2.7998 ―2.7965 ―2.7778  ―2.8985 ―2.8940 ―2.8850 ―2.8736 

1 ―0.3579 ―0.3572 ―0.3512 ―0.3509  ―0.3402 ―0.3532 ―0.3348 ―0.3443  ―0.3274 ―0.3350 ―0.3217 ―0.3269 

2 ―0.0301 ―0.0305 ―0.0297 ―0.0292  ―0.0290 ―0.0285 ―0.0287 ―0.0281  ―0.0270 ―0.0274 ―0.0267 ―0.0270 

3 1.4397 1.4907 1.4577 1.4433  1.3071 1.2422 1.3246 1.2587  1.3436 1.2428 1.3624 1.3600 
               
SE             

0 0.1486 0.1836 0.1473 0.1773  0.1528 0.1853 0.1516 0.1827  0.1475 0.1762 0.1464 0.1737 

1 0.2227 0.2774 0.2205 0.2692  0.2263 0.2795 0.2243 0.2746  0.2204 0.2662 0.2184 0.2619 

2 0.0077 0.0093 0.0076 0.0090  0.0079 0.0094 0.0078 0.0092  0.0077 0.0091 0.0076 0.0089 

3 0.3268 0.3145 0.3210 0.3082  0.3299 0.3360 0.3243 0.3281  0.3260 0.3352 0.3203 0.3281 
               
Bias             
0 ―0.1052 ―0.1065 ―0.0900 ―0.0360  ―0.0020 0.0071 0.0105 0.0292  ―0.0915 ―0.0871 ―0.0780 ―0.0667 

1 ―0.0107 ―0.0100 ―0.0041 ―0.0037  0.0070 ―0.0061 0.0124 0.0029  0.0198 0.0122 0.0255 0.0203 

2 ―0.0017 ―0.0020 ―0.0013 ―0.0008  ―0.0006 ―0.0001 ―0.0003 0.0003  0.0014 0.0010 0.0017 0.0014 

3 0.0221 0.0731 0.0401 0.0256  ―0.1105 ―0.1754 ―0.0930 ―0.1589  ―0.0740 ―0.0738 ―0.0553 ―0.0576 
               
MSE             
0 0.0495 0.0492 0.0456 0.0379  0.0359 0.0350 0.0352 0.0348  0.0438 0.0424 0.0407 0.0383 

1 0.0842 0.0821 0.0819 0.0767  0.0666 0.0657 0.0652 0.0632  0.0686 0.0673 0.0672 0.0653 

2 0.000095 0.000093 0.000092 0.000084  0.000091 0.000087 0.000090 0.000085  0.000078 0.000076 0.000077 0.000076 

3 0.1105 0.0963 0.1052 0.0868  0.1057 0.1058 0.0972 0.0964  0.1033 0.0873 0.0954 0.0808 
               
Coverage             
0 0.845 0.926 0.864 0.935  0.878 0.943 0.872 0.931  0.868 0.930 0.885 0.935 

1 0.887 0.944 0.889 0.945  0.918 0.975 0.920 0.976  0.909 0.962 0.911 0.960 

2 0.884 0.938 0.885 0.937  0.904 0.942 0.905 0.940  0.917 0.948 0.909 0.946 

3 0.949 0.949 0.942 0.955  0.968 0.967 0.968 0.969  0.967 0.980 0.969 0.979 
               
NC 0% 0% 0% 0%  0% 0.2% 0% 0%  0% 0% 0% 0% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 16. Simulation with N = 500 Children, Dropout Probabilities 0.4 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―2.9504 ―2.9505 ―2.9346 ―2.8692  ―2.8106 ―2.7977 ―2.7981 ―2.7755  ―2.9371 * ―2.9232 ―2.9116 

1 ―0.3529 ―0.3517 ―0.3461 ―0.3471  ―0.3326 ―0.3488 ―0.3274 ―0.3399  ―0.3212 * ―0.3154 ―0.3206 

2 ―0.0305 ―0.0309 ―0.0301 ―0.0295  ―0.0293 ―0.0287 ―0.0290 ―0.0282  ―0.0272 * ―0.0269 ―0.0272 

3 1.4559 1.5221 1.4745 1.4584  1.3045 1.2152 1.3219 1.2329  1.3536 * 1.3729 1.3760 
               
SE             

0 0.1518 0.1841 0.1504 0.1773  0.1574 0.1880 0.1561 0.1856  0.1509 * 0.1496 0.1742 

1 0.2267 0.2776 0.2244 0.2692  0.2286 0.2810 0.2266 0.2761  0.2245 * 0.2224 0.2620 

2 0.0079 0.0093 0.0078 0.0090  0.0081 0.0095 0.0080 0.0093  0.0078 * 0.0078 0.0090 

3 0.3312 0.3190 0.3251 0.3133  0.3356 0.3469 0.3297 0.3384  0.3308 * 0.3248 0.3345 
               
Bias             
0 ―0.1434 ―0.1435 ―0.1276 ―0.0622  ―0.0036 0.0093 0.0088 0.0315  ―0.1301 * ―0.1162 ―0.1046 

1 ―0.0058 ―0.0046 0.0010 0.0001  0.0146 ―0.0016 0.0198 0.0072  0.0260 * 0.0318 0.0266 

2 ―0.0020 ―0.0025 ―0.0017 ―0.0011  ―0.0009 ―0.0002 ―0.0006 0.0002  0.0012 * 0.0015 0.0012 

3 0.0383 0.1044 0.0568 0.0408  ―0.1131 ―0.2024 ―0.0957 ―0.1847  ―0.0641 * ―0.0447 ―0.0416 
               
MSE             
0 0.0607 0.0598 0.0553 0.0427  0.0375 0.0368 0.0367 0.0367  0.0536 * 0.0493 0.0462 

1 0.0846 0.0826 0.0823 0.0769  0.0658 0.0654 0.0645 0.0629  0.0683 * 0.0670 0.0654 

2 0.000095 0.000096 0.000093 0.000086  0.000092 0.000088 0.000091 0.000086  0.000075 * 0.000075 0.000074 

3 0.1146 0.1029 0.1096 0.0913  0.1029 0.1159 0.0946 0.1051  0.1039 * 0.0961 0.0826 
               
Coverage             
0 0.808 0.888 0.828 0.926  0.895 0.939 0.889 0.935  0.829 ‡ 0.850 0.915 

1 0.883 0.944 0.888 0.947  0.927 0.976 0.926 0.976  0.916 ‡ 0.914 0.958 

2 0.882 0.939 0.883 0.943  0.900 0.950 0.901 0.949  0.924 ‡ 0.918 0.953 

3 0.946 0.942 0.948 0.953  0.968 0.968 0.972 0.969  0.967 ‡ 0.967 0.978 
               
NC 0% 0.1% 0% 0%  0% 0.3% 0% 0.2%  0% 0.1% 0% 0% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 17. Simulation with N = 500 Children, Dropout Probabilities 0.6 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.0247 * ―3.0075 ―2.9365  ―2.8035 * ―2.7911 ―2.7612  ―3.0141 ―3.0082 ―2.9991 ―2.9891 

1 ―0.3566 * ―0.3492 ―0.3495  ―0.3326 * ―0.3274 ―0.3454  ―0.3252 ―0.3303 ―0.3189 ―0.3222 

2 ―0.0311 * ―0.0397 ―0.0303  ―0.0296 * ―0.0293 ―0.0282  ―0.0275 ―0.0280 ―0.0271 ―0.0276 

3 1.4769 * 1.4971 1.4833  1.2964 * 1.3137 1.1568  1.3631 1.3779 1.3842 1.3962 
               
SE             

0 0.1582 * 0.1567 0.1780  0.1693 * 0.1679 0.1958  0.1571 0.1770 0.1557 0.1746 

1 0.2357 * 0.2331 0.2680  0.2330 * 0.2309 0.2793  0.2333 0.2646 0.2309 0.2605 

2 0.0082 * 0.0081 0.0091  0.0083 * 0.0083 0.0095  0.0082 0.0092 0.0081 0.0090 

3 0.3423 * 0.3355 0.3268  0.3523 * 0.3457 0.3668  0.3414 0.3520 0.3348 0.3443 
               
Bias             
0 ―0.2177 * ―0.2005 ―0.1295  0.0035 * 0.0159 0.0458  ―0.2071 ―0.2013 ―0.1921 ―0.1821 

1 ―0.0094 * ―0.0021 ―0.0023  0.0146 * 0.0198 0.0017  0.0219 0.0168 0.0282 0.0250 

2 ―0.0027 * ―0.0023 ―0.0019  ―0.0012 * ―0.0009 0.0002  0.0009 0.0004 0.0013 0.0009 

3 0.0592 * 0.0795 0.0657  ―0.1212 * ―0.1040 ―0.2608  ―0.0545 ―0.0398 ―0.0334 ―0.0214 
               
MSE             
0 0.0845 * 0.0763 0.0533  0.0371 * 0.0365 0.0381  0.0757 0.0729 0.0689 0.0648 

1 0.0808 * 0.0783 0.0745  0.0599 * 0.0588 0.0576  0.0636 0.0629 0.0622 0.0611 

2 0.000099 * 0.000095 0.000088  0.000094 * 0.000092 0.000086  0.000074 0.000073 0.000073 0.000072 

3 0.1186 * 0.1140 0.0999  0.1019 * 0.0933 0.1369  0.1026 0.0900 0.0946 0.0848 
               
Coverage             
0 0.715 ‡ 0.748 0.896  0.912 ‡ 0.912 0.946  0.749 0.822 0.771 0.854 

1 0.897 ‡ 0.901 0.945  0.938 ‡ 0.936 0.980  0.924 0.960 0.925 0.961 

2 0.903 ‡ 0.903 0.944  0.915 ‡ 0.910 0.949  0.933 0.962 0.933 0.959 

3 0.949 ‡ 0.947 0.952  0.979 ‡ 0.981 0.967  0.970 0.982 0.973 0.981 
               
NC 0% 0.3% 0% 0%  0% 1% 0% 0.5%  0% 0.4% 0% 0% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE. 
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Appendix 18. Simulation with N = 500 Children, Dropout Probabilities 0.8 vs. 0.1 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.1130 * ―3.0939 ―3.0439  ―2.8032 * ―2.7908 ―2.7432  ―3.1078 ―3.1032 ―3.0914 ―3.0844 

1 ―0.3558 * ―0.3478 ―0.3484  ―0.3261 * ―0.3210 ―0.3515  ―0.3197 ―0.3230 ―0.3129 ―0.3148 

2 ―0.0320 * ―0.0316 ―0.0314  ―0.0300 * ―0.0297 ―0.0278  ―0.0280 ―0.0283 ―0.0276 ―0.0279 

3 1.4987 * 1.5212 1.5129  1.3405 * 1.3558 1.0566  1.3735 1.3865 1.3969 1.4083 
               
SE             

0 0.1661 * 0.1644 0.1782  0.1975 * 0.1957 0.2207  0.1655 0.1771 0.1639 0.1748 

1 0.2463 * 0.2433 0.2655  0.2377 * 0.2356 0.2816  0.2439 0.2614 0.2411 0.2574 

2 0.0086 * 0.0084 0.0091  0.0086 * 0.0086 0.0099  0.0086 0.0092 0.0085 0.0091 

3 0.3557 * 0.3479 0.3454  0.3993 * 0.3912 0.4236  0.3551 0.3628 0.3475 0.3542 
               
Bias             
0 ―0.3060 * ―0.2869 ―0.2369  0.0038 * 0.0162 0.0638  ―0.3008 ―0.2962 ―0.2844 ―0.2774 

1 ―0.0086 * ―0.0007 ―0.0013  0.0210 * 0.0261 ―0.0044  0.0275 0.0241 0.0342 0.0323 

2 ―0.0036 * ―0.0032 ―0.0029  ―0.0016 * ―0.0013 0.0006  0.0005 0.0001 0.0008 0.0005 

3 0.0811 * 0.1035 0.0952  ―0.0772 * ―0.0618 ―0.3610  ―0.0441 ―0.0311 ―0.0207 ―0.0093 
               
MSE             
0 0.1306 * 0.1182 0.0937  0.0450 * 0.0442 0.0487  0.1226 0.1196 0.1121 0.1081 

1 0.0797 * 0.0771 0.0749  0.0592 * 0.0582 0.0560  0.0612 0.0604 0.0599 0.0592 

2 0.000105 * 0.000100 0.000096  0.000097 * 0.000095 0.000090  0.000072 0.000072 0.000071 0.000071 

3 0.1347 * 0.1298 0.1222  0.0902 * 0.0902 0.2127  0.1087 0.1028 0.1001 0.0961 
               
Coverage             
0 0.562 ‡ 0.605 0.745  0.912 ‡ 0.916 0.936  0.580 0.641 0.612 0.677 

1 0.922 ‡ 0.920 0.951  0.948 ‡ 0.947 0.981  0.953 0.966 0.953 0.966 

2 0.908 ‡ 0.909 0.932  0.920 ‡ 0.920 0.960  0.953 0.971 0.952 0.969 

3 0.944 ‡ 0.945 0.951  0.990 ‡ 0.991 0.952  0.974 0.978 0.973 0.975 
               
NC 0% 0.5% 0% 0%  0% 4.9% 0% 2.1%  0% 0.5% 0% 0% 

Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 
first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE. 
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Appendix 19. Simulation with N = 500 Children, Dropout Probabilities 0.6 vs. 0.2 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.0087 * ―2.9902 ―2.9290  ―2.7863 * ―2.7742 ―2.7433  ―2.9875 ―2.9830 ―2.9729 ―2.9642 

1 ―0.3549 * ―0.3471 ―0.3473  ―0.3113 * ―0.3064 ―0.3245  ―0.3023 ―0.3081 ―0.2964 ―0.3008 

2 ―0.0312 * ―0.0308 ―0.0303  ―0.0288 * ―0.0285 ―0.0274  ―0.0253 ―0.0258 ―0.0250 ―0.0254 

3 1.4659 * 1.4879 1.4771  1.2240 * 1.2427 1.0768  1.2876 1.2962 1.3105 1.3174 
               
SE             

0 0.1638 * 0.1621 0.1844  0.1766 * 0.1751 0.2007  0.1617 0.1791 0.1602 0.1768 

1 0.2433 * 0.2404 0.2770  0.2399 * 0.2378 0.2821  0.2372 0.2654 0.2348 0.2614 

2 0.0085 * 0.0083 0.0093  0.0088 * 0.0088 0.0099  0.0083 0.0093 0.0083 0.0091 

3 0.3557 * 0.3481 0.3407  0.3653 * 0.3581 0.3785  0.3534 0.3638 0.3461 0.3550 
               
Bias             
0 ―0.2017 * ―0.1832 ―0.1220  0.0206 * 0.0328 0.0636  ―0.1805 ―0.1760 ―0.1659 ―0.1572 

1 ―0.0077 * 0.0001 0.0001  0.0359 * 0.0408 0.0227  0.0449 0.0391 0.0507 0.0464 

2 ―0.0028 * ―0.0024 ―0.0019  ―0.0004 * ―0.0001 0.0010  0.0031 0.0026 0.0034 0.0030 

3 0.0483 * 0.0702 0.0595  ―0.1936 * ―0.1749 ―0.3409  ―0.1300 ―0.1214 ―0.1071 ―0.1002 
               
MSE             
0 0.0801 * 0.0718 0.0533  0.0376 * 0.0375 0.0399  0.0652 0.0634 0.0593 0.0562 

1 0.0837 * 0.0810 0.0772  0.0561 * 0.0553 0.0535  0.0572 0.0567 0.0563 0.0555 

2 0.000105 * 0.000101 0.000094  0.000095 * 0.000094 0.000090  0.000077 0.000075 0.000077 0.000075 

3 0.1270 * 0.1209 0.1066  0.1211 * 0.1096 0.1820  0.1152 0.1033 0.1035 0.0931 
               
Coverage             
0 0.759 ‡ 0.790 0.909  0.928 ‡ 0.928 0.944  0.813 0.861 0.825 0.882 

1 0.904 ‡ 0.903 0.951  0.951 ‡ 0.951 0.984  0.950 0.975 0.951 0.974 

2 0.898 ‡ 0.896 0.934  0.913 ‡ 0.915 0.943  0.935 0.956 0.931 0.953 

3 0.950 ‡ 0.951 0.951  0.979 ‡ 0.983 0.950  0.979 0.987 0.978 0.988 
               
NC 0% 0.1% 0% 0%  0% 0.9% 0% 0.5%  0% 0% 0% 0% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and 
a first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.  
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Appendix 20. Simulation with N = 500 Children, Dropout Probabilities 0.8 vs. 0.2 Conditional on Respiratory Infection at Previous Visit (yes vs. no) respectively. 

 Analysis of incomplete datasets  MI following DA imputation (White et al. 2010)  MI following FLIC imputation (Puhr et al. 2017) 

 DL-GLM GEE DL-F-GLM F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE  MI―GLM MI―GEE MI―F―GLM MI―F―GEE 

Coefficients              

0 ―3.0969 * ―3.0765 ―3.0317  ―2.7783 * ―2.7662 ―2.7160  ―3.0847 * ―3.0686 ―3.0625 

1 ―0.3563 * ―0.3479 ―0.3483  ―0.3110 * ―0.3062 ―0.3378  ―0.2968 * ―0.2905 ―0.2931 

2 ―0.0321 * ―0.0317 ―0.0314  ―0.0290 * ―0.0287 ―0.0267  ―0.0259 * ―0.0255 ―0.0259 

3 1.4899 * 1.5144 1.5073  1.2640 * 1.2809 0.9657  1.3008 * 1.3264 1.3350 
               
SE             

0 0.1720 * 0.1701 0.1844  0.2043 * 0.2024 0.2265  0.1704 * 0.1687 0.1780 

1 0.2544 * 0.2511 0.2742  0.2426 * 0.2405 0.2834  0.2484 * 0.2456 0.2601 

2 0.0088 * 0.0087 0.0094  0.0092 * 0.0091 0.0103  0.0088 * 0.0087 0.0092 

3 0.3701 * 0.3614 0.3596  0.4072 * 0.3986 0.4352  0.3680 * 0.3597 0.3652 
               
Bias             
0 ―0.2899 * ―0.2695 ―0.2248  0.0287 * 0.0408 0.0910  ―0.2777 * ―0.2616 ―0.2555 

1 ―0.0092 * ―0.0007 ―0.0012  0.0362 * 0.0410 0.0094  0.0504 * 0.0567 0.0541 

2 ―0.0037 * ―0.0032 ―0.0030  ―0.0005 * ―0.0003 0.0017  0.0026 * 0.0029 0.0025 

3 0.0723 * 0.0967 0.0896  ―0.1536 * ―0.1367 ―0.4519  ―0.1168 * ―0.0912 ―0.0826 
               
MSE             
0 0.1242 * 0.1115 0.0909  0.0458 * 0.0456 0.0547  0.1101 * 0.1005 0.0973 

1 0.0861 * 0.0831 0.0806  0.0559 * 0.0552 0.0532  0.0571 * 0.0562 0.0556 

2 0.000113 * 0.000108 0.000104  0.000100 * 0.000099 0.000099  0.000074 * 0.000074 0.000073 

3 0.1480 * 0.1411 0.1334  0.1133 * 0.1035 0.2852  0.1205 * 0.1075 0.1018 
               
Coverage             
0 0.629 ‡ 0.657 0.778  0.935 ‡ 0.930 0.931  0.653 ‡ 0.682 0.732 

1 0.925 ‡ 0.924 0.947  0.964 ‡ 0.963 0.990  0.960 ‡ 0.959 0.974 

2 0.908 ‡ 0.912 0.937  0.925 ‡ 0.924 0.955  0.943 ‡ 0.939 0.955 

3 0.945 ‡ 0.941 0.946  0.994 ‡ 0.994 0.931  0.975 ‡ 0.978 0.981 
               
NC 0% 0.3% 0% 0%  0% 0.5% 0% 0.2%  0% 0.5% 0% 0% 
Note: Results based on n = 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and 
a first―order autoregressive correlation structure with  = 0.4. MI = multiple imputation; DA = data augmentation; FLIC = Firth logistic regression with intercept correction; DL = direct 
likelihood; GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; NC = percentage of non―convergence; * value 

larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.
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Appendix 21. Simulation with N = 50, 100, 200 and 500 Children Without any Dropout (Complete Datasets). 

 N=50 N=100  N=200  N=500 

 GLM GEE F―GLM F―GEE  GLM GEE F―GLM F―GEE  GLM GEE F―GLM F―GEE  GLM GEE F―GLM F―GEE 

Coefficients                

0 ―3.0892 * ―2.9174 ―2.8452  ―2.9389 * ―2.8628 ―2.8289  ―2.8491 * ―2.8162 ―2.7999  ―2.8299 ―2.8303 ―2.8172 ―2.8077 

1 ―1.2140 * ―0.3900 ―0.3670  ―0.4792 * ―0.3716 ―0.3565  ―0.3874 * ―0.3711 ―0.3630  ―0.3553 ―0.3582 ―0.3496 ―0.3492 

2 ―0.0341 * ―0.0300 ―0.0283  ―0.0312 * ―0.0291 ―0.0286  ―0.0298 * ―0.0291 ―0.0286  ―0.0292 ―0.0291 ―0.0289 ―0.0286 

3 ―1.8076 * 1.4862 1.4610  0.6361 * 1.4465 1.4454  1.2585 * 1.3875 1.4025  1.4181 1.4193 1.4332 1.4301 
                    
SE               

0 2.4520 * 0.4689 0.5088  0.3287 * 0.3142 0.3778  0.2197 * 0.2156 0.2697  0.1361 0.1743 0.1351 0.1717 

1 102.8803 * 0.7169 0.7427  7.3653 * 0.4786 0.5661  0.3337 * 0.3262 0.4084  0.2051 0.2667 0.2034 0.2620 

2 0.0264 * 0.0236 0.0242  0.0170 * 0.0161 0.0184  0.0115 * 0.0112 0.0134  0.0071 0.0089 0.0070 0.0087 

3 403.5412 * 1.0262 0.8096  62.3698 * 0.7097 0.6116  5.2479 * 0.4890 0.4517  0.3023 0.2913 0.2977 0.2865 
                    
Bias               
0 ―0.2822 * ―0.1104 ―0.0382  ―0.1319 * ―0.0558 ―0.0219  ―0.0421 * ―0.0092 0.0071  ―0.0229 ―0.0234 ―0.0102 ―0.0007 

1 ―0.8669 * ―0.0428 ―0.0198  ―0.1320 * ―0.0244 ―0.0093  ―0.0403 * ―0.0240 ―0.0158  ―0.0081 ―0.0110 ―0.0025 ―0.0020 

2 ―0.0057 * ―0.0016 0.0001  ―0.0028 * ―0.0007 ―0.0002  ―0.0014 * ―0.0006 ―0.0002  ―0.0008 ―0.0007 ―0.0005 ―0.0002 

3 ―3.2253 * 0.0686 0.0434  ―0.7816 * 0.0289 ―0.0278  ―0.1592 * ―0.0301 0.0152  0.0005 0.0017 0.0155 0.0125 
                    
MSE               
0 0.8528 * 0.3659 0.3433  0.2224 * 0.1794 0.1719  0.0855 * 0.0791 0.0767  0.0343 0.0339 0.0332 0.0323 

1 16.9726 * 0.9085 0.7803  1.9638 * 0.4016 0.3649  0.1953 * 0.1824 0.1721  0.0762 0.0746 0.0744 0.0716 

2 0.0013 * 0.0010 0.0009  0.000516 * 0.000461 0.000434  0.000229 * 0.000218 0.000206  0.000083 0.000081 0.000082 0.000079 

3 56.7331 * 0.9511 0.7771  14.1693 * 0.6284 0.4974  1.9146 * 0.3166 0.2465  0.0958 0.0762 0.0913 0.0726 
                    
Coverage               
0 0.923 ‡ 0.912 0.919  9.871 ‡ 0.873 0.942  0.875 ‡ 0.873 0.945  0.865 0.943 0.869 0.941 

1 0.928 ‡ 0.919 0.906  0.891 ‡ 0.891 0.943  0.880 ‡ 0.877 0.956  0.861 0.951 0.861 0.951 

2 0.887 ‡ 0.873 0.905  0.879 ‡ 0.876 0.923  0.873 ‡ 0.873 0.931  0.873 0.943 0.869 0.938 

3 0.960 ‡ 0.960 0.897  0.952 ‡ 0.948 0.896  0.942 ‡ 0.940 0.941  0.953 0.960 0.952 0.962 
                    
NC 1.2% 9.8% 0% 1.2%  1.1% 6.7% 0% 1.1%  0.1% 1.6% 0% 0.1%  0% 0% 0% 0% 
Note: Results based on 1,000 converged simulation analyses using coefficients 0 (intercept) = ―2.8070; 1 (gender) = ―0.3472; 2 (age) = ―0.0284; 3 (xerophthalmia) = 1.4176 and a 

first―order autoregressive correlation structure with  = 0.4. GLM = logistic regression; GEE = generalized estimating equations; F = Firth; SE = Standard Error; MSE = Mean Squared Error; 

NC = percentage of non―convergence; * value larger 1x1010 or smaller ―1x1010; ‡ not calculated due to uninterpretable coefficients and SE.



60 
 

R-Code 

 

Generation of simulated datasets (in analogy to Mondol & Rahman, 2019) 

 

#Algorithm by Qaqish (2003) for generating correlated binary values 

#install_github("cran/binarySimCLF") 

library(binarySimCLF) 

#Mondol & Rahman (2019) 

#install_github("heogden/geefirthr") 

library(geefirthr) 

#Firth-logistic regression including FLIC 

library(logistf) 

#Generalized estimating equations (GEE) 

library(geeM) 

#data from Sommer et al. (1983) are contained in gamlss 

library(gamlss)  

#multiple imputation 

library(mice) 

#wide to long and long to wide 

library(reshape) 

#to generate age variable 

library(truncnorm) 

#seed 

seed <- 1234 

set.seed(seed) 

 

 

#Firth GEE full model using data from Sommer et al. (1983) within gamlss 

#time = binary response variable identifying the presence of respiratory infection 

#xero = binary response variable identifying the presence of xerophthalmia 

#female = gender factor with levels 0 is male 1 is female 

#age = the age in months (centered around 36) 

result <- geefirth(time ~ female + age + xero, id=id,  

corstr="ar1",  

data=respInf_complete,  

est_dispersion = FALSE) 

 

#beta coefficients collected for simulation 

betaCoef <- c(result$coefficients[1][1,], 

result$coefficients[1][2,], 

result$coefficients[1][3,], 

result$coefficients[1][4,]) 

 

#Firth GEE modeling xerophthalmia for generating xerophthalmia values in simulations 

xero <- geefirth(xero ~ female + age, id=id,  

data=respInf_complete,  

corstr = "ar1",  

est_dispersion = FALSE) 

coefXero <- c(xero$coefficients[1][1,], 

xero$coefficients[1][2,], 

xero$coefficients[1][3,]) 

 

#parameters for simulated datasets 

#number of clusters 

nc <- 50  # 100, 200, 500 

#intra-child correlation for response variable respiratory infection 

rho <- 0.4 

#overall mean proportion to generate binary predictor X = gender according to Sommer et al. 

p <- 0.45 

#number of repeated measurement time points 

cl.size <- 4 

#number of simulations 

nSim <- 1000 
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#the following algorithm was adopted from Mondol and Rahman (2019) 

#data generation 

generateDataset <- function(beta, nc, cl.size, p,  rho, coefXero) {   

  #generate repeated measurement points 

  cl.size <- round(runif(nc,  cl.size[1], cl.size[length(cl.size)])) 

  #sum of individual subjects 

  N <- sum(cl.size) 

  j <- cl.size 

  #generate binary predictor X = gender 

  X1i <- rep(rbinom(nc, 1, p), times=cl.size) 

  #generate age variable according to Sommer et al. (age centered at 36 month), 

  #truncated to ensure no values below 4 month and beyond 6 years 

  age <- rtruncnorm(nc, mean = -12, sd = 19, a = -32, b = 35) 

  age <- rep(round(age), times = cl.size) 

  #define age as "repeated measurement-point" 

  if(length(unique(cl.size)) == 1)  tij <- c(sapply(j, function(x) 3*(1:x))) 

  if(length(unique(cl.size)) > 1)  tij <- unlist(sapply(j, function(x) 3*(1:x))) 

  time <- tij 

  age <- tij + age 

  #intra-child correlation for predictor xerophthalmia 

  rho_xero <- 0.3 

  #Process of generating correlated values for predictor xerophthalmia 

  #design matrix X 

  intercept_xero <- rep(1, N) 

  dat_xero <- cbind(intercept_xero, X1i, age) 

  #linear predictor 

  a_xero <- exp(apply(dat_xero, 1, function(r_xero) r_xero %*% coefXero)) 

  #modeled probability 

  pi_xero <- a_xero/(1+a_xero) 

  #set child id 

  id <- rep(1:nc, times=j) 

  #build data frame 

  dd_xero <- data.frame(id, pi_xero) 

  d.pi_xero <- split(dd_xero, id) 

  #create one modeled (ar-1) correlation matrix for each child 

  R_xero <- lapply(cl.size, function(x_xero) ar1(x_xero, rho_xero))  

  #transform correlation matrix of each child into var-cov-matrix using the generated  

  estimated proportion pi  

  #diagonal = pi*(1-pi), offdiagonal according to ar1 correlation matrix = model based 

  V_xero <- list()   

  for(i in 1:nc){  

    V_xero[[i]] <- cor2var(R_xero[[i]], d.pi_xero[[i]]$pi_xero) 

  } 

  #Checks CLF compatibility 

  B_xero <- lapply(V_xero, function(Vi_xero)  allReg(Vi_xero));   

  clf.compat_xero <- NULL 

  for(i in 1:nc) {     

    clf.compat_xero[i] <- blrchk(d.pi_xero[[i]][,2], V_xero[[i]]) 

  } 

  #generate correlated xerophthalmia values (Qaqish) 

  xero <- list() 

  for(i in 1:nc) {     

    if(clf.compat_xero[i]) {       

      xero[[i]] = mbsclf(1, d.pi_xero[[i]][,2], B_xero[[i]])$y 

    }     

    if(clf.compat_xero[i]==FALSE) { 

      xero[[i]] = rep(NA, cl.size[i]) 

    } 

  } 

  X2i <- unlist(xero) 
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  #Process of generating correlated response values Y 

  #design matrix X 

  intercept <- rep(1, N)   

  dat <- cbind(intercept, X1i, obstime=age, X2i) 

  #linear predictor 

  a <- exp(apply(dat, 1, function(r) r %*% beta)) 

  #modeled probability 

  pi <- a/(1+a) 

  #set child id 

  id <- rep(1:nc, times=j) 

  #build data frame 

  dd <- data.frame(id, pi) 

  d.pi <- split(dd, id) 

  #create one modeled ar1 correlation matrix for each child 

  R <- lapply(cl.size, function(x) ar1(x, rho))  

  #transform correlation matrix of each child into var-cov-matrix using the generated  

  estimated proportion pi  

  #diagonal = pi*(1-pi), offdiagonal according to ar1 correlation matrix = model based 

  V <- list()   

  for(i in 1:nc){  

    V[[i]] <- cor2var(R[[i]], d.pi[[i]]$pi) 

  } 

  #Checks CLF compatibility 

  B <- lapply(V, function(Vi)  allReg(Vi));   

  clf.compat <- NULL   

  for(i in 1:nc) {     

    clf.compat[i] <- blrchk(d.pi[[i]][,2], V[[i]])   

  } 

  #generate correlated y values (Qaqish) 

  y <- list()   

  for(i in 1:nc) {     

    if(clf.compat[i]) {       

      y[[i]] = mbsclf(1, d.pi[[i]][,2], B[[i]])$y 

    }     

    if(clf.compat[i]==FALSE) {       

      y[[i]] = rep(NA, cl.size[i])     

    } 

  }   

  yij <- unlist(y) 

  data <- data.frame(id=id, y= yij, x1=X1i, x2 = X2i, obstime=age, time)   

  return(data) 

} 
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Amputing values according to MAR mechanism 

 

 

#number of imputations for each missing value 

m <- 10 

 

proportion <- prop[r] 

 

for(k in 1:nSim) { 

  #couple seed with index to enable easier reproducibility of results 

  set.seed(seed * 2 * k) 

  #get simulated dataset 

  generated_data <- get(dataset_names_list[k, n]) 

   

  tryCatch({ 

    #change to wide format 

    d <- longToWide(generated_data) 

    #ampute values according to MAR 

    #conditioning on previous infections 

    for(i in 1:length(d[,1])) { 

      if(d$y.3[i] == 1) { 

        if(runif(1, 0, 1) < 0.60) { 

          d$x2.6[i] <- NA  

          d$y.6[i] <- NA  

          d$x2.9[i] <- NA  

          d$y.9[i] <- NA  

          d$x2.12[i] <- NA  

          d$y.12[i] <- NA  

        } 

      } 

      else { 

        if(d$y.6[i] == 1) { 

          if(runif(1, 0, 1) < 0.60) { 

            d$x2.9[i] <- NA  

            d$y.9[i] <- NA  

            d$x2.12[i] <- NA  

            d$y.12[i] <- NA  

          } 

        } 

        else { 

          if(d$y.9[i] == 1) { 

            if(runif(1, 0, 1) < 0.60) { 

              d$x2.12[i] <- NA  

              d$y.12[i] <- NA  

            } 

          } 

        } 

      } 

       

      if(!is.na(d$y.3[i]) & d$y.3[i] == 0) { 

        if(runif(1, 0, 1) < 0.20) { 

          d$x2.6[i] <- NA  

          d$y.6[i] <- NA  

          d$x2.9[i] <- NA  

          d$y.9[i] <- NA  

          d$x2.12[i] <- NA  

          d$y.12[i] <- NA  

        } 

      } 

      else { 

        if(!is.na(d$y.6[i]) & d$y.6[i] == 0) { 

          if(runif(1, 0, 1) < 0.20) { 

            d$x2.9[i] <- NA  

            d$y.9[i] <- NA  

            d$x2.12[i] <- NA  
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            d$y.12[i] <- NA  

          } 

        } 

        else { 

          if(!is.na(d$y.9[i]) & d$y.9[i] == 0) { 

            if(runif(1, 0, 1) < 0.20) { 

              d$x2.12[i] <- NA  

              d$y.12[i] <- NA  

            } 

          } 

        } 

      } 

    } 

    

    #conditional specifications for FCS algorithn 

    formula <- c(x2.6 ~ y.3 + x2.3  + obstime.3, 

                 x2.9 ~ y.6 + x2.6  + obstime.6, 

                 x2.12 ~ y.9 +x2.9 + obstime.9, 

                 y.6  ~ y.3 + x2.3  + obstime.3, 

                 y.9  ~ y.6 + x2.6  + obstime.6, 

                 y.12 ~ y.9 + x2.9 + obstime.9)       

     

    #multiple imputations of missing outcome values 

    impute <- mice(d, 

method = "logreg",  

                    formulas = formula,  

                    m = m, printFlag = F) 

       

    #save dataset 

    #[ ... ] 

     

  }, error = function(e) { 

    print(e) 

  }) 

} 

 

 

 

Method of analyses for each of m=10 imputed dataset or with incomplete data 

 

#logistic regression 

resultGLM <- glm(y ~ x1 + obstime + x2,  

family=binomial(link="logit"),  

data=d) 

 

#standard GEE 

d2 <- d[order(d$id),] 

resultGEE <- geem(y ~ x1 + obstime + x2,  

id=id,  

data=d2, corstr = "ar1",  

family = binomial(link = "logit"),  

scale.fix = TRUE) 

 

#Firth-Logistic regression 

resultFirthGLM <- logistf(y ~ x1 + obstime + x2,  

family=binomial(link="logit"),  

data=d, 

pl = FALSE) 

 

#Firth-GEE 

resultFirthGEE <- geefirth(y ~ x1 + obstime + x2,  

id=id,  

data=d,  

corstr = "ar1",  

est_dispersion = FALSE) 
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Function called by MICE logreg, for FLIC imputation 

 

#Function which is called within mice.impute.logreg in MICE package instead of DA algorithm 

callMethodOutside <- function(y, ry, x, wy = NULL) { 

  ry <- unlist(ry) 

  y <- unlist(y) 

  y <- y[ry] 

   

  if(length(unique(as.numeric(y)))==1) { 

    vec <- y 

  }  

  else { 

    x <- x[ry, , drop=FALSE] 

    frame <- data.frame(y,x) 

    #Firth Logistic regression with FLIC option from logistf package 

    fit <- logistf(y ~ x, flic = TRUE, data=frame)  

    beta <- coef(fit) 

    #draw random value for the parameter from approximation of normal distribution 

    rv <- t(chol((summary(fit)$var))) 

    beta.star <- beta + rv %*% rnorm(ncol(rv)) 

    #draw imputations 

    x <- cbind(intercept = 1,x) 

    p <- 1 / (1 + exp(-(as.matrix(x) %*% beta.star))) 

    vec <- (runif(nrow(p)) <= p) 

    for(i in 1:length(vec)) { 

      vec[i] <- ifelse(vec[i] == TRUE, 1, 0) 

    } 

    if(is.factor(y)) { 

      vec <- as.factor(vec) 

    } 

  } 

  vec 

} 


