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Abstract

The endpoint that is used in a clinical trial is a key factor determining the trial's cost, complexity
and duration. Ideally, the clinically most relevant endpoint is used, this is the so-called true
endpoint. However, such endpoints often come with importantissues. Alternatively, substitute
endpoints could be used that address these issues; these are so-called surrogate endpoints.
However, a surrogate endpoint should first be evaluated to ensure that it is an appropriate
replacement for the true endpoint. Many methods have been proposed for this evaluation
process.

In this thesis, the causal-inference approach to the evaluation of surrogate endpoints is
extended to the setting with a time-to-event surrogate and true endpoint. The quality of the
surrogate endpoint is quantified by the individual causal association (ICA), which is itself based
on information-theoretic concepts. Rank-based measures for the ICA are also considered. A
flexible model based on a D-vine copula is proposed for the vector of potential outcomes. How-
ever, due to the so-called fundamental problem of causal inference, the proposed model is
not identifiable. These identifiability issues are tackled by a sensitivity analysis that results in
bounds for the ICA. In this sensitivity analysis, the unidentifiable parameters are sampled from
the region of the parametric space of the model that is compatible with the observed data.
Further, additional assumptions are proposed that restrict this region to obtain tighter bounds
for the ICA. The proposed methods are illustrated with an analysis of pooled data from four
ovarian cancer trials. This analysis provides convincing evidence that progression-free survival
is a good surrogate for overall survival in these four trials.



Introduction

Drug development is a lengthy, complex, and costly process, entrenched with a high degree of
uncertainty whether the drug will actually succeed (Pankevich et al., 2014). An important con-
tributing factor is the nature of the endpoint that is used to assess the treatment’s efficacy.
The true endpoint is the best possible indicator for treatment efficacy, or to put it differently,
the clinically "most relevant" endpoint (Alonso, Van der Elst, & Meyvisch, |2017). However, true
endpoints may have important issues. For instance, the true endpoint might require a long
follow-up time such as overall survival (OS) in early cancer types. Amongst other things, a long
follow-up time can cause posttreatment confounding and an increased chance of missing data.
In addition, the evaluation of treatment efficacy is delayed, which delays a possible market au-
thorization and patient access to a potentially effective treatment. Other issues include the true
endpoint being costly to measure (e.g., certain imaging modalities) or having a low incidence
(e.g., pregnancy in severe luteinizing hormone deficiency) (Van Der Elst, 2016).

Given the challenges surrounding the true endpoints in some trials, a seemingly attractive
strategy is to replace the true endpoint by a "substitute endpoint" in which these issues are not
present. Such a substitute endpoint is termed a surrogate endpoint (or surrogate). The potential
of surrogate endpoints is widely recognized by regulatory agencies and medical researchers.
Between 2010 and 2012, the FDA approved 45% of new drugs based on a surrogate endpoint
(FDA, |2018). The surrogate endpoints that are deemed acceptable by the FDA are very diverse;
a sample of those endpoints is given in Table [1 (FDA, [2022). Of course, not just any alternative
endpoint can replace the true endpoint. At first sight, a strong association between the sur-
rogate and true endpoint seems to be a sufficient criterion to justify the replacement of the
true endpoint. This is however a common misconception that has had serious consequences
in the past (Alonso et al., |2017). For example, long-term hormone replacement therapy has
been found to lower "bad" cholesterol and raise "good" cholesterol in women; where high lev-
els of "bad" cholesterol increase the cardiovascular risk and high levels of "good" cholesterol
decrease the cardiovascular risk. At the same time, this therapy also increased the cardiovas-

Table 1: Example of surrogate endpoints that the FDA considers as acceptable, adopted from
FDA (2022).

Disease or Use  Patient Population Surrogate Endpoint

Anthrax vaccine Persons at high risk of exposure to an- Anti-protective antigen antibody
thrax

Hematological Patients with Acute Lymphoblastic Serum asparaginase
malignancies Leukemia

Hematological Patients with diffuse large B-cell lym- Event-free survival (EFS)
malignancies phoma

Solid tumors Patients with nonmetastatic castrate- Metastasis-free survival
resistant prostate cancer




cular risk (for the Women's Health Initiative Investigators et al., 2002). Hence, cholesterol level
was not a valid surrogate for cardiovascular risk in that setting. These unfortunate experiences
highlight the need for a proper statistical evaluation of surrogate endpoints.

The statistical evaluation of surrogate endpoints is a non-trivial endeavor. Indeed, various
methods have been proposed over the last three decades, some of which are now known to
be insufficient. Nowadays, the meta-analytic approach is the "gold standard" for the statistical
evaluation of surrogate endpoints. However, its use is hindered in some settings by its strong
data requirements. Indeed, this approach requires patient-level data from multiple clinical trials
(Alonso et al., 2017).

More recently, Alonso et al. (2015) proposed a new approach for the evaluation of surrogate
endpoints, based on causal-inference ideas. This approach is further referred to as the causal-
inference framework. As opposed to the meta-analytic framework, this framework only requires
patient-level data from a single clinical trial. This framework is however not as well-developed
as the meta-analytic framework. Indeed, it has only been developed for the gaussian-gaussian
and binary-binary setting (Alonso et al., 2015, |2016). In this thesis, the causal-inference frame-
work is extended to the survival-survival setting. In essence, the setting where a time-to-event
surrogate is evaluated for a time-to-event true endpoint.

In the first chapter, a brief overview of different surrogate evaluation methods is given. The
models proposed in this thesis are based on vine copulas, therefore, the necessary theoretic
concepts regarding vine copulas are described in chapter 2. Next, models for the survival-
survival setting in the causal-inference framework are proposed in chapter 3. These methods
are illustrated in chapter 4 with data from clinical trials in advanced ovarian cancer. Finally,
some concluding remarks are formulated.



Chapter 1

Overview of Surrogate Validation
Methods

Since Prentice’s seminal paper in 1989, the evaluation of surrogate endpoints has received
much attention in the statistical literature (Prentice,|1989). The initially proposed methods were
grounded in the single-trial setting and are now recognized to be insufficient for a proper eval-
uation of surrogate endpoints. Some of the subsequent methods are grounded in the multi-
ple trial setting and are now recognized as the gold standard. Other contemporary methods
are still grounded in the single-trial setting and are based on causal-inference ideas. A brief
overview of different surrogate evaluation methods is given in this chapter. In the last section,
the causal-inference framework is introduced. In the remainder of this thesis, the surrogate
and true endpoint are respectively denoted by S and 7. The treatment is denoted by Z.

1.1 Early Single-Trial Setting Approaches

1.1.1 Prentice’s Definition

Prentice (1989, p. 432) defined a surrogate endpoint as "a response variable for which a test
of the null hypothesis of no relationship to the treatment groups is also a valid test of the
corresponding null hypothesis based on the true endpoint”. This is formalized as follows:

f(812) = f(S) & f(T2) = f(T). (1.1)

This definition is appealing at first sight. It corresponds to how a surrogate is intended to be
used in practice: instead of testing the treatment effect on the true endpoint, the treatment ef-
fect is tested on the surrogate endpoint. Indeed, according to Prentice’s definition, a treatment
effect on the surrogate is a necessary and sufficient condition for a treatment effect on the true
endpoint. Prentice (1989) proposed four operational criteria to evaluate whether the definition
in Equation r.1)is fulfilled for a given surrogate and true endpoint. The first two criteria require
a treatment effect on both the surrogate and true endpoint.

f(81Z) # f(5) (1.2)

f(T2) = f(T) (1.3)
The third criterion requires the surrogate and true endpoint to be statistically dependent.

J(T1S) # f(T) (1.4)

This entails that the surrogate is prognostic, a condition that any reasonable surrogate should
satisfy (Buyse et al., 2000). The fourth criterion requires the treatment to be irrelevant in pre-
dicting the true endpoint given the surrogate endpoint.

f(T1S, 2) = f(T]9) (1.5)

4
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There are several conceptual and practical issues with Prentice’'s approach. Only some of
them are briefly discussed in this thesis, an extensive discussion is provided by Freedman,
Graubard, and Schatzkin (1992), Buyse and Molenberghs (1998) and Burzykowski (2001). A fun-
damental issue is related to the fourth criterion, which requires proving a null hypothesis. As-
suming a linear model, E(T'|S, Z) = By+[31-S+ 32+ Z, the fourth criterion requires proving 85 = 0.
Failing to reject the corresponding null hypothesis does not prove that 5, = 0 holds. Another
issue pertains to the relation between Prentice’s definition and the four operational criteria.
The operational criteria are only necessary and sufficient for Prentice’s definition in the case
of binary endpoints (Buyse & Molenberghs, 1998). Ignoring above issues, the fourth criterion
is generally still too restrictive. In fact, it requires that the treatment does not act on the true
endpoint, through pathways bypassing the surrogate (Prentice, 1989). Given the complexity of
disease-treatment pathways, it is unrealistic that a single endpoint would fully capture the ef-
fect of the treatment on the true endpoint. Because of these issues, new metrics of surrogacy
were proposed in the single trial setting. These are discussed next.

1.1.2 Building upon Prentice’s Proposal

Freedman, Graubard, and Schatzkin (1992) proposed an extension of Prentice's approach that
moves away from hypothesis testing to estimation. By doing so, Prentice’s fourth criterion
(Equation is relaxed. This is done by estimating the proportion of treatment effect explained

(PE):
B—Bs
B

where g is the treatment effect adjusted for the surrogate endpoint, and $ is the unadjusted
treatment effect. Prentice’s fourth criterion requires that ¢ = 0 or equivalently that PE =
1. That indicates that “100% of the treatment effect is explained" by the surrogate endpoint
(Freedman, Graubard, & Schatzkin, 1992).

If the treatment effect is not fully captured by the surrogate, Prentice’s fourth criterion is
not satisfied. However, the surrogate might still be useful if a large proportion of the treatment
effect is captured by the surrogate. Consequently, a confidence interval can be constructed
around the estimate for PE. If the lower limit is sufficiently large, the surrogate is deemed valid.
This approach seems attractive at first sight because PE has a direct interpretation, and the
conditions required for a surrogate to be valid are more realistic than in Prentice’s approach.
Nonetheless, the confidence interval for PE'is generally too wide to be of much practical value.
Another conceptual issue is that the PFE is not truly a proportion. Indeed, if the direction of the
treatment effect changes after adjusting for the surrogate, PFE is greater than one (Buyse &
Molenberghs, 1998). A more comprehensive appraisal of the PE is given by Alonso et al. (2017,
P. 40)

Later, Buyse and Molenberghs (1998) argued that Prentice’s definition as well as the exten-
sion of Freedman, Graubard, and Schatzkin (1992) are too limited for a complete evaluation of
a surrogate endpoint. Buyse and Molenberghs (1998) therefore proposed two other quantities
for evaluating surrogate endpoints in the single-trial setting: (i) the relative effect (RF) and (ii)
the adjusted association (A4 A).

The RE is motivated by the following consideration of what constitutes a good surrogate:
"the investigators must be able to predict the effect of treatment on the true endpoint based
on the observed effect of treatment on the surrogate" (Buyse & Molenberghs, 1998, p. 1022).
The RE is defined as follows: 5

RE = a (1.7)

PE = (1.6)

where «a is the effect of treatment on the surrogate, and S is the effect of treatment on the true
endpoint (e.g., regression coefficients in a linear model). If RE = 1, the surrogate is termed
perfect at the population level. The AA is defined as the association between S and T after
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adjusting for treatment. The exact definition depends on how this association is measured.
If the association is maximal (i.e., a deterministic relationship), then the surrogate is termed
perfect at the individual level (Buyse & Molenberghs, |1998).

If a bivariate normal linear regression model is assumed for S and T, it can be shown that
the PFE is a composite of RE and AA:

or AA

PFE = E . R_E (18)
with a?p and o—?g the residual variances of T'|Z and S|Z, respectively. The use of the RE and
AA thus allows for a more detailed assessment than PE (Buyse & Molenberghs, 1998). Still,
using the RE to predict the effect of treatment on 7" rests on the unverifiable assumption that
there is a linear regression through the origin. This assumption is unverifiable since only one
observation on this line is available. One solution is to ensure replication at the trial level such
that the regression line is fitted with several data points. This is done in the meta-analytic
approach (Buyse et al.,[2000).

1.2 Contemporary Methods

1.2.1 Meta-Analytic Approach

In the meta-analytic approach, surrogacy is evaluated using patient-level data from multiple
clinical trials. The adjusted association and relative effect are extended to the individual-level
association and the trial-level association, respectively (Buyse et al., 2000). The individual-level
association quantifies the association between the surrogate and true endpoint after adjusting
for trial and treatment. The trial-level association quantifies the association between the trial-
level treatment effects on the surrogate and the true endpoint (Alonso et al., 2017).

The meta-analytic approach is briefly explained here for Gaussian endpoints. Although this
approach is not the subject of this thesis, there are some interesting connections between the
meta-analytic approach and the causal-inference framework. Assume we have data from N
trials with n; patients in the 'th trial. S;; and T;; are the surrogate and true endpoint for the
J'th patient in the 7'th trial. Z;; is the corresponding (binary) treatment indicator. The following
linear mixed model is considered:

Sij|ZZ-j =,uS+mSZ. +(a+ai)Zij +ESZ.]. (1 )

Tij|Zij = pp + my, + (B + ;) Zij + er,, 9
where (Esij76Tij)’ are mean-zero normally distributed correlated error terms. (mg,, mr., a;, b;)
is a random-effects vector that follows a mean-zero normal distribution with an unstructured
covariance matrix. The trial specific intercepts are pg + mg, and ug + myg, for the surrogate
and true endpoint, respectively. The trial specific treatment effects are a + a; and g + b; for
the surrogate and true endpoint, respectively. The individual-level surrogacy is quantified by
the coefficient of determination andiv pertaining to the distribution of ez, conditional on eg, ..
This measure quantifies how well T;; can be predicted based on the observed value of S;; after
adjusting for treatment and trial. The trial-level surrogacy is quantified by the coefficient of
determination Rfmz pertaining to the distribution of b; conditional on mg, and «;. The latter
essentially quantifies how well the treatment effect on the true endpoint can be predicted given
the observed treatment effect on the surrogate endpoint (Buyse et al., 2000).

This approach is appealing because it addresses some of the issues in the early single-trial
setting approaches of Section Moreover, the meta-analytic approach is well-developed for
many types of surrogate and true endpoints (Alonso et al., 2017). However, this approach re-
quires patient-level data from multiple clinical trials which are often not available. Although
summary-level data are generally more readily available (i.e., treatment effect estimates re-
ported in literature), methods for using both patient and summary-level data are not available.
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1.2.2 Principal Stratification

A different approach to evaluating surrogates in the single-trial setting was proposed by Fran-
gakis and Rubin (2002). This approach is based on principal stratification and the notion of
posttreatment variables. In the Neyman-Rubin potential outcomes framework, each patient
has a four-dimensional vector of potential outcomes (Sy, T, S1, T1) with S;, and T}, represent-
ing the outcome of the individual under treatment Z = k. Under the stable unit treatment value
assumption (SUTVA), the following holds

S = 75, + (1 - 2)S,

(1.10)
% = 72Ty + (1 - 2)T}
where S°°* and T°* are the observed outcomes for a patient. SUTVA is generally evident in
clinical trials, but requires extra thought in some contexts, e.g., trials in infectious diseases.
The four-dimensional vector is, however, never fully observed. Only (Sy, Ty)' or (S;,T;)' can be
observed for individual patients. Holland (1986) termed this the fundamental problem of causal-
inference.
Prentice’s approach, and extensions thereof, are based on models that adjust the treatment
effect for the posttreatment variable 5% the observed surrogate endpoint. That adjusted
treatment effect is based on a comparison of

P(T|S =5,2=0) and P(T|S™ =s,7=1). (1.11)

This is not a causal comparison. Under randomized treatment assignment and SUTVA, this
comparison can equivalently be written as a comparison of

P(Ty|So =s) and P(T|S; = s). (1.12)

The sets of individuals that are included in the first and second condition of this comparison
are generally not the same. Because different sets of individuals are being compared, the cor-
responding estimands generally do not have a causal interpretation (Frangakis & Rubin, 2002).
The more fundamental reason why this comparison is not causal, is that one is conditioning on
a posttreatment variable. Randomization ensures that treatment assignment and pretreatment
variables are independent, but not that treatment assignment and posttreatment variables are
independent. For a causal comparison after adjustment for posttreatment variables, Frangakis
and Rubin (2002) proposed to adjust for principal strata of the posttreatment variables (see
further).

Frangakis and Rubin (2002) proposed to evaluate surrogacy based on principal stratification.
Principal stratification allows for a causal comparison when adjusting for posttreatment vari-
ables. The surrogate endpoint is indeed a posttreatment variable. This approach boils down
to controlling for the vector of potential surrogate outcomes (Sy, S1)' instead of the observed
surrogate endpoint 5 The vector (Sp, S1)'"is independent of the treatment assignment for a
randomized experiment, while 5% is generally not. Therefore, a comparison that controls for
(Sp,S1)" is causal, whereas the comparison that controls for 5% s generally not causal. The
following definition of surrogacy is proposed for a principal surrogate (Frangakis & Rubin, 2002,
p. 26).

Definition 1.2.1 (Principal surrogate). S is a principal surrogate for a comparison of the effect of
Z =0versus Z =1 on T if, for all fixed s, the comparison between the ordered sets

{To: Sy =5,=5s} and {T}:Sy=25;=s} (1.13)

results in equality.
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This entails that a causal treatment effect on the true endpoint cannot exist when there is
no causal treatment effect on the surrogate endpoint. In other words, a causal treatment effect
on the true endpoint can only exist when there is a causal treatment effect on the surrogate
(Frangakis & Rubin, 2002). Associative and dissociative effects are also defined in this approach.
The dissociative effect is a comparison between

{Ty:Sy=51=5s} and {Iy:S5y=.5;=s}. (1.14)

From Definition[1.2.7} it follows that the above comparison results in an equality for a principal
surrogate. The associative effect is a comparison between

{Ty: So#S1} and {T1:Sp# S5} (1.15)

These effects have an appealing interpretation. If there is a large dissociative effect, then there
is a large treatment effect on 7" for subjects for whom treatment does not affect S. If there
is a large associative effect, then there is a large causal treatment effect on T' for subjects for
whom treatment also affects S. A small dissociative and a large associative effect are desirable
properties for a surrogate.

Despite the appealing properties of the principal stratification approach, there is an impor-
tant limitation. In practice, the vector (Sy, S;)" is unobservable. Indeed, S, and S; are never
simultaneously observed for the same patient. The comparisons as defined in Equationsfr.13}
[1.15]are thus not identifiable. Several strategies have been proposed to tackle this unidentifia-
bility issue (see also Section . For example, Li, Taylor, and Elliott (2010) reduced the non-
identifiability problem with additional (unverifiable) assumptions and by incorporating prior
belief in a Bayesian model.

It can further be shown that a principal surrogate is not generally a valid surrogate in Pren-
tice's framework and vice versa (Frangakis & Rubin, 2002). The causal-inference approach to
surrogacy as presented in this thesis is based on the principal stratification framework. The
same unidentifiability problem arises thus in the causal-inference approach, but it is addressed
by a sensitivity analysis (see further).

1.3 Related Causal Frameworks

Joffe and Greene (2009, p. 530) view a surrogate outcome as “an outcome for which knowing
the effect of treatment on the surrogate allows prediction of the effect of treatment on the
more clinically relevant outcome". They identify two complementary causal paradigms in which
surrogates can be evaluated: (i) the causal-association (CA) paradigm and (ii) the causal-effects
(CE) paradigm.

1.3.1 Causal-Association Paradigm

In the CA paradigm, “evaluation of a surrogate is based on examination of the association be-
tween the effect of the treatment on the putative surrogate and the effect of the treatment on
the clinical outcome" (Joffe & Greene, 2009, p. 533). This allows for predicting the treatment
effect on the true endpoint based on the observed treatment effect on the surrogate. Both the
meta-analytic and the principal stratification approach resort under this paradigm. The former
concerns trial-level treatment effects in multiple trials, whereas the latter concerns individual
causal effects in a single trial.

Note that these approaches do not model the effect of S on T'. Accordingly, confounding of
the S - T relation is not relevant. In fact, only the Z - S and the Z — T relations are relevant
in the CA paradigm. In randomized trials, these relations are always causal. Thus, no additional
assumptions, other than randomized treatment assignment, are required in the CA paradigm.
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(@) No confounding (b) Confounding

Figure 1.1: Two possible causal diagrams representing causal relations in a surrogate
validation study.

As explained in section [1.2.1, the meta-analytic approach examines the relationship across
studies between the treatment effects on the surrogate and true endpoint. Let 5; and «; denote
the treatment effect on respectively 7" and S in the i'th study. This is represented in the causal
graphs of Figure[i.1 The linear regression of 3; on «; is as follows:

E(Bilag) = vo + 71 - . (1.16)

A good surrogate in the meta-analytic approach satisfies 79 = 0 and 7, # 0 where simultane-
ously a large proportion of the variability in j; is explained by «;. In a new trial, a near-zero
treatment effect on the surrogate then implies a near-zero treatment effect on the true end-
point as well. In addition, the fitted regression line can be used to predict the treatment effect
on the true endpoint in a new trial given the observed treatment effect on the surrogate.

This is very similar to the principal surrogacy paradigm. Instead of treating trial-level treat-
ment effects as the building blocks, patient-level treatment effects 77 — T and S; — S are the
primary building blocks in the principal surrogacy paradigm (Joffe & Greene, 2009). The relation
between T} — Tj and S; — Sy is thus of primary interest, e.g., under linearity:

E(Ty = Ty|S1 = So) = no +m - (S1 = So). (1.17)

Principal surrogacy requires there to be no effect on the true endpoint when there is no effect
on the surrogate (Definition 1.2.1): 79 = 0 in Equation Moreover, a non-zero associative
effect entails that n; # 0. Let us redefine a; and 5; as the individual causal effects for patient
i. Then Figuref.1also applies to the principal surrogacy paradigm. This paradigm can thus be
seen as the patient-level analog of the meta-analytic approach.

Note that for the meta-analytic as well as the principal surrogacy framework the results are
valid under both causal diagram[1.13|and [1.16] Unmeasured confounding of the S — T relation
is thus not problematic in these frameworks.

1.3.2 Causal-Effects Paradigm

In the CE paradigm, "knowledge of the effects of the treatment on the surrogate and the sur-
rogate on the clinical outcome is used to predict the effect of the treatment on the clinical
outcome" (Joffe & Greene, 2009, p. 530). Prentice’s approach and an approach based on direct
and indirect effects resort under this paradigm.

Joffe and Greene (2009) show that Prentice’s approach has ideas in common with the parti-
tioning of the effect of a treatmentinto direct and indirect effects. The direct effect of treatment
with respect to a causal intermediate is that part of the effect that is not mediated by the inter-
mediate, in this case the surrogate. This is represented by Z — T'in Figure[t.1] The indirect effect
of treatment is the part that is mediated by the surrogate; this is represented by Z - S - T'in
Figure[i.1

If there is no direct effect, it seems that statistically controlling for S would block any asso-
ciation between Z and T, i.e., Z 1L T|S which is Prentice’s fourth criterion. This is only true if
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causal diagram holds. In general, this is wrong, which was already shown in Section
by using principal stratification. Two other, more intuitive, reasons why this is wrong in general
are given here. First, causal diagram fi.1a]is usually not a complete representation of reality. In
randomized trials, no factor can influence treatment allocation. There can thus be no common
cause for treatment allocation and another variable. However, this does not hold for posttreat-
ment variables such as S. Causal diagram[1.1b]is generally a better representation of reality, but
possibly still a simplification. In causal diagramfi.1b] U represent variables that confound the re-
lation between S and T. When U is not accounted for in the statistical model, conditioning on S
induces a spurious association between Z and T because Sis a collider: Z - S « U - T. Con-
sequently, Prentice’'s framework and extensions thereof can only have causal interpretation if
causal diagram holds. Even so, under this notion of causality, causal effects are defined
under manipulations of S which is problematic in its own right, as discussed next.

Second, statistical control is mixed with experimental control. If there is no direct effect of Z
on T, then physically holding S fixed at a certain value would mean that Z and T’ are statistically
independent under that manipulation (Joffe & Greene, 2009). This is formalized in the notion of
direct and indirect effects, see for example Pearl (2009, Chapter 5). The direct and indirect
effects defined therein require the notion of manipulating Z and S. This is conceptually hard
to justify for S; e.g. what would manipulating time-to-progression mean?

1.3.3 Comparison of the CE and the CA Paradigms

The CE mode of reasoning is mechanistic, it involves a chain of variables in which each variable
causally affects the next one(s). This paradigm thus explains the effect of treatment mechanis-
tically and consequently offers an appealing interpretation of the surrogate: the treatment af-
fects T by affecting S. However, causal effects are defined in terms of manipulations of the sur-
rogate. This is often conceptually hard to justify. Moreover, many methods in the CE paradigm
require very strong assumptions. The CA approach generally does not require additional as-
sumptions besides randomized treatment allocation. The CA approach is, in comparison with
the CE approach, somewhat “black box" in nature because it cannot explain the effect of treat-
ment mechanistically (Joffe & Greene, 2009).

1.4 Causal-Inference Framework

The causal-inference framework is closely connected to the principal surrogacy framework. In
these two frameworks, the same notation and assumptions regarding potential outcomes are
used, although a different definition for what constitutes a "good" surrogate is used in the
causal-inference framework. In the latter, the association between AS and AT is of primary
interest, and a quantification of this association is the primary measure of surrogacy.

1.4.1 Potential Outcomes Framework

In the causal-inference framework, the validation exercise is carried out in a single trial with a
well-defined population. The results of the validation exercise hold, strictly speaking, only in
this well-defined population. Applying these results in a new trial, with a different population
and/or other treatments, would necessarily require a degree of extrapolation. Further, it is
assumed that only two treatments are under evaluation (Z = 0/1) in a parallel study design.
The potential outcomes and underlying assumptions were already introduced in Section
for the principal surrogacy framework.

The individual causal effects are the building blocks of the causal-inference approach (Alonso
et al., 2015). They are defined for the true endpoint as AT = T — T and analogously for the
surrogate endpoint AS = S; — Sy. The individual causal effects cannot be observed, see also
Section although the expected treatment effects, E(AT) and E(AS), are identifiable from
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the observed data if Z Il (Tj, ;). This latter condition is satisfied for randomized trials. The
expected causal treatment effects at the trial level are the primary building blocks in the meta-
analytic approach and were previously denoted by 5; and «; for the ¢'th trial (e.g., Equation

1.4.2 General Approach
Model

Thefirst step in the causal-inference framework is to assume a multivariate model for the vector
of potential outcomes:
(So, To, S1, T1) ~ F(;0) (1.18)

where 0 is the corresponding parameter vector. Not all elements of 8 are identifiable. Only
(So, Ty) or (S1,T1)" can be simultaneously observed. Therefore, only the corresponding bivari-
ate distributions

(S0, To)' ~ F(So, Tp;60) and (Sy,Ty) ~ F(Sy,T1;04) (1.19)

are identifiable. Let 8y and 6, denote the corresponding parameter vectors of these bivariate
distributions. These parameters can be estimated with the observed data, e.g., via maximum
likelihood estimation. Let 6,, be the set of parameters of 8 not contained in 8¢ or 8,. Because
the elements of @,, do not appear in the observable distributions of Equationfi.19} 6,, is uniden-
tifiable. This unidentifiability issue is further addressed through a sensitivity analysis.

Measures of Surrogacy

From this model, measures of surrogacy are derived that are based on the association between
the individual causal effects: AT and AS. These are termed the individual causal association
(ICA). In principle, any association measure can be used to quantify this association. The choice
for a particular association measure depends on the type of endpoints considered (e.g., binary
or continuous). Information theory provides a unifying framework to quantify this association
across settings with different types of endpoints (Alonso et al., 2017).

These measures of surrogacy are functions of the joint distribution of (AS, AT). This joint
distribution is in turn a function of F(-;8) in Equation Because 6,, is not identifiable, the
measures of surrogacy are also not identifiable. There are three ways to address this identifia-
bility issue: (i) use unverifiable assumptions to make the model identifiable, (ii) use a Bayesian
estimation framework with (weakly) informative priors for the unidentifiable parameters, and
(iii) implement a sensitivity analysis in which the ICA is computed across a set of plausible val-
ues for the unidentifiable parameters 6,, (Alonso et al.,[2015). The sensitivity analysis approach
is used in this thesis.

Sensitivity Analysis

The sensitivity analysis consists of a two-step Monte Carlo procedure. Let I" be the parameter
space of 6 in Equation[i.18] In a first step, the region of this parameter space that is compatible
with the observed data is determined; this is the so-called I'; region where I', ¢ T'. Usually,
0o and 6 are fixed at their estimated values, 8, and 8;. Whereas 6,, can vary freely. Note
that in many cases, the values at which 8y and 6, are fixed, restrict the region in which 6,
can vary. Indeed, given 8, and 6, there can be restrictions on ,, to ensure that Equation
still represents a valid distribution: e.g., ensuring a positive definite correlation matrix or cell
probabilities in [0, 1].
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In the second step, a Monte Carlo approach is implemented to study the behavior of the
ICA in this region I'p. This is done by sampling the unidentifiable parameters on I' , and com-
puting the ICA for each sample of unidentifiable parameters (Alonso, [2018). Each pointin I'p
can be conceptualized as a "world" compatible with ours. The behavior of the ICA on I'; thus
completely describes the validity of the putative surrogate across all "worlds" compatible with
the observed data (Alonso et al., 2016).

One further consideration is the introduction of additional restrictions on I' . Based on the
study design or scientific background knowledge, additional restrictions on ', could be justi-
fied. For example, Li, Taylor, and Elliott (2010) used the monotonicity assumption to “assist in
the identifiability". This assumption states that the treatment cannot worsen a patient's con-
dition, as compared to control. This can be assumed for the surrogate and/or true endpoint.
Where a higher value is desirable, the monotonicity assumption is formally written as follows:
Sp = S1 and/or T < Ty. Although these additional restrictions might be justified based on study
design aspects or scientific background knowledge, they cannot be empirically verified. They
are thus always unverifiable and should therefore be used with caution.

1.4.3 Information Theoretic Concepts

The concept of entropy is a key measure in information theory and quantifies the amount of
uncertainty associated with a random variable. Let Y denote a random variable taking values
{y1,v2, ..., ym} With probability mass function P(Y = y;) = p;. The entropy of Y is then defined
as

H(Y) = —-Ey{log P(Y Z p; - log p;. (1.20)

The entropy quantifies the amount of uncertainty assoaated with a random variable. Entropy
is non-negative and invariant under bijective transformations. The joint entropy of (X,Y)"is
defined similarly as H(X,Y) = —Ex y{log P(X,Y)}. The conditional entropy is also defined
similarly as H(Y'|X) = —Ex[Ey{log P(Y|X)}]. For continuous outcomes, the concept of en-
tropy is extended to differential entropy. For a continuous random variable Y with density
function fy(y), the differential entropy h4(Y') is defined as

halY) = =Eflog fy ()} = = [ fly)-log o)y (1.21)

As opposed to entropy, differential entropy can be negative or positive and is coordinate de-
pendent. The joint and conditional entropy are defined analogously as in the discrete case.

A measure of association based on information theory is the mutual information, denoted
by I(X,Y). The mutual information between X and Y quantifies the amount of uncertainty
in Y expected to be removed if the value of X becomes known: I(X,Y) = H(Y) - H(Y|X)
or I(X,Y) = hyg(Y) — hg(Y|X) for the discrete and continuous case, respectively. The mutual
information is symmetric in the sense that it equally well quantifies the amount of uncertainty
in X expected to be removed if the value of Y were known: I(X,Y) = H(X) - H(X|Y) or
I(X,Y) = hg(X) — hg(X|Y). From these definitions, it follows for the continuous case that

I(X,Y) = hg(X) = ha(X]Y)
= ha(Y) = hg(Y|X)

-/ [ e log( (()f()))d W

In the causal-inference framework, the following definition of surrogacy is proposed (Alonso,
2018} p. 3).

(1.22)

Definition 1.4.1 (Surrogacy in the causal-inference framework). In the single-trial setting, we shall
say that S is a good surrogate for T if AS conveys a substantial amount of information on AT.
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The amount of information shared between AT and AS is quantified by the mutual infor-
mation I(AT, AS). It is therefore proposed to assess surrogacy in the causal-inference frame-
work based on the mutual information (Alonso, 2018). The mutual information itself is however
difficult to interpretasitliesin [0, +oo[ for continuous endpoints and in [0, min{ H(AS), H(AT)}]
for discrete endpoints. To obtain a metric of surrogacy with appealing properties, the mutual
information is transformed to a metric that lies in [0, 1]. This transformation depends on the
scale of measurement of both endpoints.

1.4.4 Gaussian-Gaussian Setting

Alonso et al. (2015) addressed the setting where both S and T" are continuous. This approach
is briefly outlined next.

Model

A multivariate normal distribution is assumed for (Ty, T3, Sy, S1)' ~ N(u, X) where

0Ty 9T 9T6Sy 9TuS:
Y= OnTy 9NTi TSy 9TiS:
0S80To  9STi 9S0Sy 985051
05Ty, 08,7y 08,8, 08,8,

and p = (pr,, iz s 115y s, ) - Given these distributional assumptions, the following holds for
the vector of individual causal effects:

Ty =Ty

s, (1.23)

A=AY=(

)~N(p,A,ZA) where A=(_1 L0 0)

0 0 -1 1

with ©a = AX A, pa = (8, ) with 8 = E(AT) = ur, — pr, and o = E(AS) = pg, — pis, -

Surrogacy Measures

The mutual information I(AT, AS), as defined in Equation quantifies the amount of un-
certainty that is expected to be removed in AT when the value of AS becomes known. For the
normal distribution, mutual information and Pearson correlation are equivalent. In the normal
model, the following relationship holds:

I(AT,AS) = —% log(l - pi) where pa = corr(AT, AS). (1.24)

The ICAis therefore defined as the Pearson correlation between AT and AS: pa = corr(AT, AS).
The value for pa has a closed form expression in terms of the parameters in 3.

A generalization of the Pearson correlation measure in the normal model is the so-called
squared informational coefficient of correlation (SICC) Ri introduced by Joe (1989) and Linfoot

(1957): AT AS

Ri =1 - ¢ 2HATAS), (1.25)
For normally distributed outcomes, p2A and Ri are identical. This new measure is always in
the interval [0, 1], is invariant under bijective transformations, and takes value zero if and only
if AT and AS are independent (Alonso, |2018). This measure will also be used in subsequent

sections to quantify the ICA in the survival-survival setting.
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Sensitivity Analysis

As already alluded to before, not all parameters of the multivariate normal model are identifi-
able. The covariances og,1y, 05,1, 01,17, aNd 05,5, in ¥ are not identifiable from the observed
data. Consequently, pa is not identifiable from the data. As mentioned in Section this
identifiability issue is tackled by a sensitivity analysis. The identifiable parameters are fixed at
their estimated values. The I' 5 region for the unidentifiable correlations is the regionin[-1, 17
such that the resulting covariance matrix, %, is positive definite. This entails that the identifiable
parameters restrict I'p.
The sensitivity analysis implemented in Alonso et al. (2015) proceeds as follows.

1. Select a grid of values G = {g1, 92, ..., gx} in [—1, 1] for the unidentifiable correlations.

2. The identifiable correlations are fixed at their estimated values. Generate ¥ matrices by
considering all combinations emanating from G for the unidentifiable correlations.

3. From these generated X matrices, only the positive definite ones are retained.
4. For every positive definite matrix, pa is computed.

The sequence of values for pa that is obtained in this way "quantifies the ICA across all plausi-
ble worlds, that is, across those scenarios where the assumptions made for the unidentifiable
correlations are compatible with the observed data" (Van der Elst, Molenberghs, & Alonso, |2016)
p. 1283). The behavior of pa can consequently be used to assess the sensitivity of the results
with respect to unverifiable assumptions.

1.4.5 Multivariate Surrogates

Most surrogate evaluation methods allow for considering only one surrogate endpoint. How-
ever, given the complex nature of many diseases and the various therapeutic pathways through
which a treatment can affect the clinical outcome, it might be unreasonable to expect that only
one surrogate can capture the entire treatment effect on the true endpoint. It is therefore
expected that multiple surrogates, characterising distinct aspects of the disease-treatment in-
teractions, improve the prediction of the individual causal effect on the true endpoint (Van der
Elst et al.,2019).

Van der Elst et al. (2019) extended the Gaussian-Gaussian setting to a setting with a multi-
variate continuous surrogate endpoint. They found that in some scenarios, the range for the
ICA becomes small when multiple surrogate endpoints are considered simultaneously. This is
especially the case when the identifiable correlations are strong. In such situations, the "identi-
fiability problem is no longer an issue from a practical perspective as the qualitative conclusion
of the analysis is the same in all plausible realities compatible with the identifiable correlations"
(Van der Elst et al.,|2019, p. 306).



Chapter 2

Vine Copulas

The models proposed in this thesis for the survival-survival setting in the causal-inference
framework are based on vine copulas. To make this thesis self-contained, the necessary the-
oretical concepts regarding vine copulas are described in this chapter. First, bivariate copulas
are introduced. These have already been used for surrogate evaluation in the meta-analytic
framework for several types of endpoints (Alonso et al., 2016; Burzykowski, 2001). Second, vine
copulas are introduced as a flexible way of constructing multivariate copulas with bivariate cop-
ulas as building blocks. Finally, a 4-dimensional D-vine copula is proposed on which all further
models are based.

2.1 Bivariate Copulas

2.1.1 Definitions and Properties

Copulas are d-dimensional multivariate distribution functions where each variable’s marginal
distribution is uniform on the interval [0, 1]. Copulas are used to describe dependence between
random variables, independent of the marginal distributions. Definitions for bivariate copulas
are given here, but these can be extended to d-dimensional copulas as well.

Definition 2.1.1 (Bivariate copula). C :[0,1]* - [0, 1] is a bivariate copula if

1. For every u,v in [0, 1]:
C(u,0)=C(0,v) =0

2. Forevery u,vin[0,1]:
C(u,1)=u and C(l,v)=wv

3. Forevery ui,us,vi,v9 in[0,1]suchthat0 < u; <ups <land 0 <wvy vy < 10

C(ug,v9) = Clug, v1) = Cluy,va) + Clug,v1) 2 0

The corresponding copula density, ¢, is obtained by partial differentiation:
2
~ Judv

Sklar's theorem provides the theoretical foundation for the application of copulas (Sklar,
1959). It in essence states that any multivariate distribution function can be written in terms
of the marginal distribution functions and a copula that describes the dependence structure.
Sklar's theorem for a bivariate copula is given here.

c(u, v) C(u,v). (2.1)

15
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Theorem 2.1.1 (Sklar's theorem). Let X be a 2-dimensional random vector with joint distribution
function F, marginal distribution functions Fy and F,, and marginal density functions f, and f,.
Then there exists a copula C such that for all x, y in ] — 0o, +00[

Fz,y) = C{Fi(z), F2(y)}- (2.2)

If Fy and Fy are continuous, then C' is unique. The associated density function follows from the
copula density and marginal densities:

flz,y) = c{Fi(z), Fa(y)} - filz) - faly). (2.3)

The converse is also true. Given a copula C and marginals F; and Fy, Equation [2.2] defines
a joint distribution function with margins F; and Fs.

Conditional densities and distributions can be directly derived from the corresponding cop-
ula and marginal densities. The proofs are given in Czado (2019 p. 20).

Lemma 2.1.1 (Conditional densities and distribution functions of bivariate distributions in terms
of their copula). The conditional density and distribution function can be rewritten as

fap(@ly) = c{Fi(x), Fa(y)} - fal2) (2.4)
and

0
Fz|y($|y) = %C{Fl(xL v}|v=F2(y)

) (2.5)
= mC{Fﬂ%’), FQ(Z/)}-

2.1.2 Survival Copula

In survival analysis, it is natural to focus on survival functions instead of distribution functions
(Burzykowski, 2001). Let X and Y be continuous random variables with joint distribution func-
tion F(z,y) = Cxy{Fx(z), Fy(y)}. Let S(z,y) = P(X > z,Y > y) be the corresponding joint
survival function. Let Sy and Sy be the marginal survival functions for X and Y, respectively.
Then

S(z,y) = Sx(x) + Sy (y) - 1 + F(z,y)

= Sx($) + Sy(y) -1+ CXY{FX(CC)’ FY(y)}

A new copula Cyy : [0,1]% - [0, 1] is defined as follows

Cxy(u,v)=u+v-1+Cxy(l-u,1-0). (2.6)
Let u = Sx(z) and v = Sy(y), then
S(x,y) = Cxy{Sx(z), Sy (y)} (2.7)

The new copula Cyy : [0,1]° - [0, 1] is further referred to as the survival copula.

Lemma 2.1.2 (Density corresponding to the survival copula). The joint density of (X,Y) is the
product of the survival copula density and marginal densities

fxy(z,y) = exy{Sx(z), Sy (v)} - fx(x)- fr(y) (2.8)

where the survival copula density is defined as follows
i 9 -
exy{Sx(z), Sy(y)} = Sud Cxy (t, V)|u=5y (2),0=5y (1) (2.9)

The proof is given in Appendix[A.1]

Survival copulas are convenient in that they can simplify expressions that frequently occurs
in survival analysis. For example, if both X and Y are right censored, their likelihood contribu-
tion follows from the joint survival function S(z, y) which is directly expressed in terms of the
survival copula and marginal survival functions (Equation[2.7).
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2.1.3 Rotated Copulas

A given parametric copula, ¢(u, v), can be further extended by rotating the copula with 90, 180
or 270 degrees.

* 90° coo(u,v) = ¢(1 —v,u)
* 180°: Clgo(u, ’U) = C(l -u,1- ’U)
* 270° coro(u,v) = ¢(v,1 —u)

The survival copulaisin fact a 180° rotation copula: ¢(u, v) = ¢1g0(u, v). Some parametric copulas
can only model positive association, e.g., the Clayton copula. Such parametric copulas can still
be used to model negative association by allowing rotations.

2.2 Vine Copulas

Vine copulas constitute a flexible class of copula models. In this class, multivariate copulas are
constructed using only bivariate copulas as building blocks. These building blocks are combined
to a valid multivariate copula by appropriate conditioning (Czado, [2019). The same notation as
in Czado (2019) is further used.

The starting point for vine copulas is the decomposition of a multivariate joint density func-
tion into a product of conditional densities. Let (X1, ..., X4) be a set of variables with joint dis-
tribution function F; 4 and joint density function f; ;. The joint density function can be
decomposed as follows

fr,d@e, o ma) = fapn, a1 (@ale, o waa1) - fi g (@, 2aon)

(2.170)

d
{H LT 1 A xt—1)} X fi(xq).
=2

Here, f(+]-) and F(:|-) refer to conditional density and distribution functions, respectively.

In what follows, we need the notion of copulas associated with bivariate conditional distribu-
tions (in contrast to bivariate conditional distributions on the copula scale). These are defined
as follows (Czado, 2019, p. 88).

Definition 2.2.1 (Copulas associated with bivariate conditional distributions). Let (X1, ..., Xy4)
be a set of random variables.

* Let D be a set of indices from {1, ..., d} not including i and j. The copula associated with the
bivariate conditional distribution (X;, X;)' given that X p = @ p is denoted by C;;.p(-,; xp).

* In contrast, the conditional distribution function of (U;, U;)' = (FXi(Xz-), Fy (X j))' givenUp =
up is expressed as C;;p(-,-; wp) with bivariate density function c;jp(-,;up).

* For distinct indices i, 7 and D = {iy, ..., i;} with i < j and i, < ... < i}, we use the abbreviation
¢ij:p = ¢ o {Fyp(zilep), Fjip(z;lep); w4} (2.1)

where Fp(x;|xp) is the conditional distribution function of X; given that Xp = xp, and
analogously for Fj p(x;|xp).
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In general, the copula C;j.p(-,-;xp) is different from the bivariate distribution function
Cijip(+, s xp). Since Cyjp(-,+;xp) is the bivariate distribution function of U;, U;|Up, the cor-
responding margins U;|Up and U;|Up are generally not uniform. This bivariate distribution
function is thus generally not a copula. Note that C;;.p(+,; xp) is a copula by definition it
thus always has uniform margins.

The notation introduced above allows us to further decompose the joint density function
in Equation [2.10]as follows (Czado, 2019, p. 89).

Theorem 2.2.1 (Drawable vine (D-vine) density). Every joint density f, .4 can be decomposed as

d—1 d—j d
fialx, ., xg) = H Ciitji(i+1),....(i+1) {H fk(l’k)} (2.12)
j=1 i=1 k=1

where we used the abbreviation introduced in Equation The distribution associated with this
density decomposition is called a drawable vine (D-vine).

Note that, in the most general case, ¢; ;.p depends on the conditioning value zp. However,
in all that follows, the simplifying assumption is made (Czado, 2019, p. 90). Under this assump-
tion, Equation 2.12]changes from a joint density decomposition to a joint density construction.

Definition 2.2.2 (Simplifying assumption for D-vines). If
¢ij.0 {Fip(zilep), Fip(z;|ep); wp} = ¢ijip {Fiplailep), Fjjp(z;lep)} (2.13)

holds for all x p,; and i, j and D are chosen to occur in Equation then the corresponding D-vine
distribution is called simplified.

This means that the copula associated with the bivariate conditional distribution does not
depend on the conditioning value(s). The "conditional" dependence structure therefore does
not depend on the conditioning value(s), although there remains a dependence on the con-
ditioning value(s) through the univariate distribution functions F;p and Fjp. The simplifying
assumption is nicely illustrated in the multivariate Gaussian copula. In a multivariate normal
distribution

X1 E12)

X1, X5) ~N Jp2),X) where Y=
(X1, X = N (. )’ 3) (-

the distribution of X; conditional on X5 = a is
-1 -1
Xi1|Xz=a~ N(Nl + XY (a - p2), X1 - E12222221)~

The covariance matrix of the conditional distribution does not depend on the conditioning value
X, = a. Put differently, the dependence structure of the conditional distribution does not
depend on the conditioning value X, = a. This confirms that the simplifying assumption is
satisfied for the Gaussian copula.

The density of D-vines requires the evaluation of conditional distribution functions. Indeed,
the copulas associated with bivariate conditional distributions are the building blocks in the D-
vine copula. As can be seen from Equation Fp(z;|xp)and Fjp(z;|xp) are required in the
construction of ¢;;.p. For the bivariate case, the relation between the bivariate copula and the
conditional distribution function is given by Lemmal[2.1.1 For extensions to higher dimensions,
these conditional distribution functions are obtained through recursion (Czado, 2019, p. 92).

Theorem 2.2.2 (Recursion for conditional distribution functions). Let X be a random variable
and'Y be a random vector which have an absolutely continuous joint distribution. Let Y; be a com-
ponent of Y and denote the sub-vector of Y with Y; removed by Y _;. In this case, the conditional
distribution function of X given'Y =y, Fx|(-|y), satisfies the following recursion

Py (ly) ICx v,y (FX|Y_j(m|y—j)uFYJ-|Y_]-(yj|y—j)) )
Jy) = 214
e Oy, v, (wily-)
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where Cx y,.y_,(+,-|y_;) denotes the copula corresponding to (X, Y;) given thatY _; = y_;.

2.3 Four-Dimensional D-vine Copula

In this section, a joint model based on a D-vine copula is proposed for (Sy, Ty, S1,71)". Although
the D-vine copula is not the only type of vine copula, it is a natural choice to model the vector
of potential outcomes, as further explained.

2.3.1 Vine Copula Model Formulation

The D-vine copula is a natural way to model the distribution of (Sy, T, S1,7%)’, and to derive
the observable bivariate distribution and density functions. The corresponding D-vine copula
construction is given in Equation The joint density function of (S, Ty, S, T1)" is denoted
by fi234 = fs,1,s,7,- The copula densities for the observable bivariate distributions of (So, Tp)'
and (S, T})" are denoted by ¢12 = ¢g,7;, and ¢4 = cg, 1, respectively.

fiosa =fi-fo - fa- fa

*C12°C23 " C34 (2.15)
*C13;2  C24;3

* C14;23

The full expressions of the individual components of the D-vine construction in Equation
are given in Table [C.1in Appendix|C For ease of notation, the short-hand notation of Equation
is further used instead of the expressions in Table[C.1]

2.3.2 Comments on this Model

This (D-vine copula) construction of the joint density, fis34, iS very appealing in the causal-
inference framework for several reasons.

Separation of association from margins. The marginal distributions are specified completely
separately from the association structure in this model. The marginal distributions are identi-
fiable, whereas the association structure is only partly identifiable.

This is as opposed to shared frailty proportional-hazards models where the variance of the
frailty could be interpreted as a measure of association. In such a model, this variance also
depends on violations of the proportional-hazards assumption and more generally misspecifi-
cations of the hazard function. Indeed, if there is no association, but the hazard is misspecified,
the variance of the frailty distribution can be far from zero.

Flexible association structure. The association structure is very flexible in a D-vine copula.
Any copula function can be used for ¢;;,p. The Gaussian copula can also be represented as a
D-vine copula. Let ¢34 be the multivariate copula density for f034. If all six bivariate copula
densities in Equation [2.15 are bivariate Gaussian copula densities, then c;534 is @ multivariate
Gaussian copula density. The D-vine copula is thus a generalization of the multivariate Gaus-
sian copula.

Separation in identifiable and unidentifiable parameters. The vector (Sy, Ty, S, T1)' is never
(fully) observed, only (Sy, Ty) or (S1,T}) can be observed. Therefore, the likelihood emanating
from the entire vector of potential outcomes cannot be used directly. Instead, the “observed-
data" likelihood emanates from the joint density fi234 marginalized over (Sy, Ty)' or (Si,T1)'.
Conveniently, these marginalized densities follow immediately from the D-vine construction
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Table 2.1: Observable vectors and their associated distribution functions.

Treatment Obs. Data Distribution Function

Z=0 (So, To) Fso1(s0,t0) = Csy {Fs(50), Fry (to)}
= Oz

Z=1 (S1, 1) Fs,m(s1,t1) = Cs,m {Fs,(s1), Fry (t1)}
=y

Table 2.2: Observable vectors and their associated density functions.

Treatment Obs. Data Density Function

Z=0 (So, To)' fsom(s0:to) = csy.m {Fso(s0), Fry (to)} - fs,(s0) + fr (o)
=ci2- f1 fo

Z=1 (S, T1)  fe,m(st,t) = csm {Fs,(s1), Fry(t1)} -fs,(s1) - fry (1)
=c34° f3° fa

in Equation2.15] The corresponding marginalized distribution and density functions are given
respectively in Table2.1and

Note that these marginalized densities do not follow immediately for other vine copula con-
structions such as C-vines. This is problematic because the observed-data likelihood is then
determined via the integral of fi534 over the unobserved outcomes. Generally, the observed-
data likelihood then depends on all components of the vine copula construction. As a conse-
guence, there is then no separation in identifiable and unidentifiable association parameters.
In fact, only the D-vine copula model presented here, and variations thereof where the cop-
ula for (Sp, Tp)' and (Sy,T1)' is present in the first tree (second line in Equation .15), have this
property of separation in identifiable and unidentifiable parameters.



Chapter 3

Models

In this chapter, the models for (Sy, Ty, S1, T1)' are introduced in more detail. First, a model that
does not take into account time orderings is proposed. Next, a similar model which takes into
account possible time orderings is proposed.

3.1 No Time Ordering

The models that do not impose time orderings directly follow from the D-vine copula construc-
tion given in Equation In this section, the likelihood contributions for observations are
derived. This is required to conduct maximum likelihood estimation of the model. Next, differ-
ent measures of surrogacy in this model are discussed. These quantify the association between
the individual causal effects on the surrogate and true endpoint. Finally, a sensitivity analysis
is explained to address the lack of identifiability of the joint model.

3.1.1 Likelihood
Observed-data Likelihood

Only (Sy, Ty) or (S, T})' are observed with possible (right) censoring. Therefore, the observed-
data likelihood emanates from f;93, marginalized over (Sy, Tp) or (S1,T})". The corresponding
distribution and density functions follow directly from the components of the D-vine construc-
tion, see Tablez.1and Note that further on, survival copulas will be used as explained in
Section.1.2} This simplifies the expressions for right censored data.

Let the observed vector for patient i be (s;, 5 ;, t;, 014, 2;). Let s; and ¢; be the, possibly right
censored, observed values for the surrogate and true endpoint, respectively. In what follows,
independent censoring is always assumed. The corresponding event indicators are 6, ; and ¢ ;
where d, ; = 1 if the surrogate event is observed and ¢, ; = 0 otherwise, analogously for §; ;. The
treatment indicator z; can only take two values: 0 or 1 for control and experimental treatment,
respectively. The possible likelihood contributions for patient i with z; = k are as follows.

o if (5577; = (57577; =1:

L; = fs, m.(si ;)
= cs, 1, {Ssi(80), St (i)} - fs,(si) - [ (t2)

The second equality follows from lemma2.1.2

(3.1)

21
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« ifd;; =1andd; = 0:

L; =ffsk,Tk(8i,t)dt

9Cs, T,

= fs,(s:) 955 {Ss, (si), Sty (t:)}

(3.2)

The full derivation is given in Appendix|A.2}

L= [7 [ fomls st
t'L S

= Sg, 1.(si, i)
= Cs, 1, {95, (si), St (t:)}

. if (5371' = (5t7i =0:
(3.3)

« if 0,; =0and &; = 1}

L; =ﬁfsk,Tk(87ti)d8

ocC
= fn(t;) - %TT]C {Ss,(si), S (ta)}

(3.4)

The full derivation is entirely analogous to the second case where §,; = 1 and d; ; = 0.

In this thesis, four parametric copulas are considered: Gaussian, Clayton, Gumbel and Frank.
The expressions for these copulas, copula densities and partial derivatives of copulas are given
in Appendix For the marginal density and survival functions, any (survival) distribution
can be used. In what follows, the Royston-Parmar survival model is used as marginal survival
function because of its great flexibility.

Identifiability of Parameters

The likelihood contributions for control patients depend on parameters corresponding to f,
fa, and ¢qo. Similarly, the likelihood contributions for treated patients depend on parameters
corresponding to fs, f4, and cs4. This is also shown in Table.1and [2.2] Because the likelihood
contributions for control patients have no parameters in common with the likelihood contri-
butions for the treated patients, the likelihood can be maximized in the control and treated
groups separately.

The parameters corresponding to ca3, ¢13:2, c24:3, @and 4,23 do not appear in the likelihood
contributions of either group. Indeed, they also do not appear in the observable distribution
functions and densities in Table 2.1 and Given the observed data, they can thus not be
estimated. Hence, they are unidentifiable. This issue is addressed by a sensitivity analysis with
respect to the unidentifiable parameters. This is discussed in Section[3.1.3]

The interpretation of these unidentifiable components is summarized in Table Note
that the simplifying assumption is made (Definition 2.2.2). This means that in Table the
dependence structure does not depend on the conditioning value(s). Nonetheless, the bivariate
conditional distribution generally depends on the conditioning value(s) through the conditional
distribution functions (see also the remarks following Definition [2.2.2).

'This case implies that the patient remains under observation for the surrogate (e.g. PFS), but not for the true
endpoint (e.g. OS). In some study designs, this may be possible. However, this case should generally be regarded
with suspicion, and it should be checked whether the study design allows for this.
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Table 3.1: Interpretation of the unidentifiable components of the D-vine copula model. The
(D-vine) joint density construction is given in Equation using short-hand notation. The full
expressions for the individual components are given in Table[C.1/in Appendix|C]

Component Interpretation

Co3 Dependence structure of (Tj, S1)

€13:2 Dependence structure of (S, S1)|To
C24:3 Dependence structure of (Ty, T1)|S:
C14;23 Dependence structure of (Sy, T1)| Ty, St

3.1.2 Measures of Surrogacy
Density of Primary Interest

The ICA is based on the association between the individual causal effects on the surrogate and
true endpoint, although other definitions for individual causal effects are also possible. From
the joint density function, fas a7(ds, d;), any association measure can in principle be computed.
This joint density function follows from applying the deconvolution formula for differences
twice.

Definition 3.1.1 (Deconvolution formula for differences). The density of Z =Y — X follows from
the joint density of (X,Y)" as follows

f)= [ vl )i 33

The joint density function can thus be obtained by calculating following double integral. The
construction of fia34 = fs, 7,5, 7, Was discussed in the previous chapter.

Fasar(d,,6,) = /: f: Frosals £, + 6.t + 5,)dsdt (3.6)

This is, however, a complex expression with generally no closed-form solution. Further on, it
is discussed how this is solved by numerical approximation. In some special cases, this expres-
sion has a closed-form solution, e.g., if the joint distribution of (Sy, Ty, S, T1)" is multivariate
normal. This property has been used to derive closed-form expressions for different measures
of surrogacy when both endpoints are normally distributed (Alonso et al., 2015} Van der Elst
et al.,[2021a} Van der Elst et al.,[2019).

It is nevertheless straightforward to sample from fag a7(s, ;) by sampling (S, To, S1, T1)
from fi034 and computing the individual causal effects. The rvinecopulib R-package provides
flexible functions to sample efficiently from vine copulas (Nagler & Vatter, 2022). Therefore, the
ICA is further computed by sampling.

Individual Causal Association: Kendall’'s 7 and Spearman’s p

Kendall's 7 and Spearman'’s p are used to quantify the association between AS, and AT'. They
are defined as follows.

Definition 3.1.2 (Spearman'’s p). Consider three i.i.d. realisations of (X,Y)' denoted by (X1,Y;),
(X5, Ys) and (X3,Y3). Spearman’s p is then defined as

ps = 3[P{(X1 — Xo)(Y1 = Y3) > 0} = P{(X; — Xo)(Y1 - Y3)}]. (3.7)
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Definition 3.1.3 (Kendall's 7). Consider two i.i.d. realisations of (X,Y) denoted by (X1,Y;) and
(X, Y5)". Kendall’s T is then defined as

7= P{(X1 - X3)(Y1 - Y3) > 0} - P{(X1 - Xo)(Y1 - Y2)}. (3.8)

Kendall's 7 and Spearman'’s p liein[-1, 1] and are equal to zero when X and Y are indepen-
dent. Both Kendall's 7 and Spearman'’s p are also independent from the marginal distributions
of X and Y. These measures thus only depend on the copula Cxy.

As noted before, the density of (AS, AT)" is generally intractable to obtain. Therefore,
Kendall's 7 and Spearman’s p are computed by a Monte Carlo procedure instead of analytically.
In order to compute any measure of association, all parameters of fi234 need to be known (or
estimated). As explained before, not all parameters are identifiable. This is addressed in a sen-
sitivity analysis by sampling the unidentifiable parameters, discussed in Section[3.1.3] For now,
assume that in the following procedure all parameters of f934 are known (or estimated). The
procedure to compute Kendall's 7 and Spearman’s p then proceeds as follows:

1. Sample the copula data vector, (Us,,Ur,,Us,,Ur,), from the copula Cja34 of fia34 N
times. This is implemented in the rvinecop function from the rvinecopula R-package
(Nagler & Vatter, 2022).

2. The copula data from the previous step are transformed to the appropriate scale by the
probability integral transform with the corresponding marginal distribution functions:

1 -1 -1 -1 -1 1
(S0, To. 81, T1) = (Fs, (Us,). Fr, (Uz,), Fs, (Us, ), Fr, (Ur)) -
The data thus obtained are i.i.d. samples from fi234.

3. From these sampled vectors, compute the individual causal effects

(AS,AT) = (S, = So, Ty - Tp)".

4. Compute the sample estimates for 7 and p,. If NV is sufficiently large, these estimates
approximate the true values.
Individual Causal Association: Information-Theoretic Approach

A third measure for the ICA is based on information theory. It is the squared informational co-
efficient of correlation (Joe, 1989; Linfoot, 1957), further referred to as RZ. This association mea-
sure was defined previously in the Gaussian-Gaussian setting, Equation[t.25] As for Kendall's 7
and Spearman’s p, R,zl is computed numerically through a slightly different Monte Carlo proce-
dure:

1. Sample the copula data vector, (USOaUTOaUSpUTl)I: from the copula Cig34 Of fio34 N
times. This is implemented in the rvinecop function from the rvinecopula R-package
(Nagler & Vatter, 2022).

2. The copula data from the previous step are transformed to the appropriate scale by the
probability integral transform with the corresponding marginal distribution functions:

' -1 -1 -1 -1 !
(So, To, S1,T1) = (Fso (Usy), Fr, (Ur,), Fs, (Us,), Fr, (UTl)) :
The data thus obtained are an i.i.d. sample from fi534.
3. From these sampled vectors, compute the individual causal effects

(AS,AT) = (S, - So, Ty - Tp) .
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4. Transform the sampled (AS, AT) to pseudo-copula data (Czado, 2019). The marginal
distribution functions are approximated by the empirical distribution functions: F s and

Far. o R ,
(Uas, Uar) = (Fas(AS), Ear(AT))

5. Estimate the copula density with a kernel estimator with the kdecop function from the
kdecopula R-package (Nagler, 2018).

6. Given the estimated copula density from the previous step, the mutual information is
computed through quasi Monte Carlo integration with the dep_measures function from
the kdecopula R-package (Nagler, |2018).

In principle the transformation from (AS, AT) to (Uas, Uar) is not necessary. Because
efficient functions are available in R to compute the mutual information for stochastic vectors
with uniform margins, the samples are transformed to uniform scales. The probability integral
transform is a monotone transformation and the mutual information is invariant to monotone
transformations. Thus, the transformation to pseudo-copula data does not change the mutual
information.

Note that three choices influence the accuracy of this procedure. First, a larger N will in-
crease the accuracy. As NV increases, the copula density will be more precisely estimated in step
5. Second, the choice of the kernel estimator also influences the accuracy (Nagler, |[2018). Third,
the number of quasi Monte Carlo samples in step 6 determines how precisely the mutual in-
formation is computed for the copula density estimate. In all further analyses presented in this
thesis, the number of Monte Carlo and quasi Monte Carlo samples (step 1 and 6, respectively)
are set equal to each other.

Accuracy

The accuracy of these procedures to compute Spearman’s p, Kendall's 7, and Ri is studied
through simulations in Appendix D] The "true" value is considered to be the value that is com-
puted with 100.000 (quasi) Monte Carlo samples. The accuracy of the procedure with fewer
samples is quantified in terms of the standard deviation based on 50 replications. In consider-
ation of the uncertainty due to the unidentifiability of some parameters, a standard deviation
of 0.01 is deemed acceptable. This precision is reached with N = 2000 (quasi) Monte Carlo
samples.

3.1.3 Sensitivity Analysis

The different measures for the ICA, as defined above, can be computed if all parameters in
f1234 are known or estimated. However, not all parameters are identifiable. This is resolved
by fixing the identifiable parameters at their estimated values and sampling the unidentifiable
parameters from a certain distribution that is compatible with the observed data. For each
sample of unidentifiable parameters, all parameters of fi534 are “known", and the ICA can thus
be computed. First, it is discussed how the unidentifiable vine copula parameters can be sam-
pled. Second, it is discussed how additional assumptions regarding unidentifiable parameters
can be incorporated into the sensitivity analysis.

Vine Copula Parameters

A distribution has to be specified to sample the unidentifiable copula parameters from. If the
unidentifiable parameters are defined on an interval with finite limits a and b, then a straightfor-
ward choice is to sample the parameters from U(a, b). This is for example the case for Gaussian
copulas where the correlation parameters lie in [-1,1]. For other copulas, one or two of the
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limits might be infinite. A different approach is needed there. The approach that is presented
here, is applicable for 1 parameter copulas where all copulas of the D-vine decomposition are
of the same parametric form. This can easily be extended to the case where the copulas of the
D-vine decomposition are not all of the same parametric form.

Sampling vine copula parameters. The unidentifiable association parameters, in terms of
Spearman’s p, are sampled from a uniform distribution: p . ~ U(-1,1). The sampled parame-
ters on Spearman’s p scale are then transformed to the scale of the original copula parameter
6. . Ifthe unidentifiable copulas allow for positive and negative associations, this approach suf-
fices. However, some copulas only allow for positive association, e.g., the Clayton copula where
ps is restricted to [0, 1]. This entails that we implicitly assume all unidentifiable associations to
be positive in the sensitivity analysis. This is not warranted in general and frequently contra-
dictory to the goal of the sensitivity analysis. The sensitivity analysis is intended to explore the
(range of) values for the ICA that are compatible with the observed data. Copulas such as the
Clayton copula can still be used in the sensitivity analysis with a slight modification. If the Clay-
ton copula is rotated by 90 or 270 degrees, p is restricted to [-1,0] (see also Section [2.1.3). In
addition to sampling the unidentifiable copula parameters from p... ~ U(0, 1), rotation param-
eters are sampled from a uniform discrete distribution with four elements (0, 90, 180, 270).

This approach generates samples for the unidentifiable parameters that are compatible with
the (estimated) identifiable parameters. One may wish to incorporate additional assumptions
in the sensitivity analysis. We could impose restrictions on the unidentifiable copula param-
eters. However, these parameters have an obscure interpretation as all of them, except one,
relate to copulas associated with conditional bivariate distributions. Next, it is discussed how
"interpretable" restrictions can be imposed on the marginal association structure.

Additional Assumptions

An attractive approach for incorporating assumptions on unidentifiable association parame-
ters is to consider the marginal unidentifiable association parameters, instead of the unidenti-
fiable (conditional) copula parameters. However, the joint density is defined in terms of (con-
ditional) copula parameters, and the relation with the marginal association parameters is in
general not clear. As before, an approach based on sampling is proposed here.

For each vector of sampled unidentifiable parameters fi134 is known. The marginal Kendall's
7's are then computed by sampling. Next, only the sampled sets of unidentifiable parame-
ters are retained that satisfy the restrictions on the marginal association parameters, i.e., the
marginal Kendall's 7's. Two sets of restrictions are proposed.

Monotonicity. All (unidentifiable) marginal associations are positive. Hence, every sample
where at least one of the marginal Kendall's 7's is negative, is discarded. This condition is writ-
ten formally as follows:

min(7s, s, , 77, 14+ TS0, 11> TS4,75) > O (3.9)

where 7. . refers to the marginal Kendall's 7 between the respective potential outcomes.

Weaker Cross-Association. This restriction says that the association between potential out-
comes across treatment groups is weaker than within treatment groups. This condition is writ-
ten formally as follows:

min(7s, 7y, 7s, 1) > max(7s, 1, Ts, 1, )- (3.10)

These assumptions are discussed extensively in Section[4.2.2]in relation to the case study.
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3.2 Time Ordering

The models presented above do not incorporate time orderings. This is not very problematic
if the probability mass of the (fitted) joint distribution is small in the region that does not ad-
here to these time orderings. This is not guaranteed by the model proposed in the previous
section. Therefore, a model is needed that explicitly takes into account the time orderings in
the data. The approach proposed here is appropriate for a surrogate-true endpoint pair with
the following time orderings: Sy < Ty, S; < 17 where P(Sy = Tp) > 0 and P(S; = T1) > 0. PFS is
such a surrogate. PFS is always smaller than or equal to OS. Moreover, there is a proportion of
patients that die without progression such that P(Sy = Ty) > 0 and P(S; = T3) > 0.

The general approach in this section is to model the surrogate indirectly. A joint model
for time-to-progression (TTP) and OS is proposed where TTP is dependently censored by OS.
From this joint model for TTP and OS, the joint distribution of PFS and OS is derived. Based on
the distribution of PFS and OS, the measures of surrogacy are computed. Of course, this also
applies to surrogates other than PFS and TTP that are defined similarly.

3.2.1 Semi-Competing Risks

The joint modelling of variables such as TTP and OS has been extensively described and dis-
cussed in literature. This data structure has been termed semi-competing risks, though it has
been described earlier by an illness-death model (Fine, Jiang, & Chappell, 2001).

Let S be the time to the surrogate endpointﬂ T the time to the true endpoinlﬂ and C the
time to independent censoring. As before, Z is the binary treatment indicator where Z = 0/1.
In what follows, independent censoring is always assumed.

In the semi-competing risks framework, the observed data consist of (X;, 5;-X, Y;, 6iy, Z;) for
patient ¢ = 1,...,n. The observed data are a random sample from (X, 5X,Y, 5Y,Z) where
X = min(S,7,C), §° = I(X = S), Y = min(T,C) and 6 = I(Y = T). The particularity of
the semi-competing risks framework is an asymmetry which is not present in the competing
risks framework. Indeed, S is dependently censored by the minimum of 7" and C, whereas T is
independently censored by C'. This entails that the joint distribution of (S, T') is only observable
on the upper wedge, i.e., the region where S < T'. The notation in terms of X and Y is, however,
not further used.

3.2.2 Likelihood
Observable Likelihood

Let the observed vector for patient i be (s;, ds ;, t;, 014, 2;), where the elements are defined as
in Section The only difference is that .S is now dependently censored by T'. In essence, S
now refers TTP instead of PFS. This entails that if the patient dies before the surrogate event
is observed, d,; = 0; whereas, in the previous section, the following would hold in that case:
5371' =1.

Note that in this framework, a latent value for S is assumed if S > T. As noted before,
the joint distribution is only observable for S < T'. The fitted joint distribution for S > T is
thus unverifiable. However, this is not problematic if only "verifiable quantities" are of interest,
more specifically, if only quantities derived from the fitted joint distribution which are verifiable
with the observed data are used.

Let 7}, be the time to the potential true endpoint event (e.g., death) for Z = k, Sy the time
to the potential surrogate event (e.g., progression), and S; = min(Sy, T},) the potential time to
the composite event (e.g., PF'S). Under independent censoring, the marginal survival function

*This is often referred to as the non-terminal event in the semi-competing risks literature.
3This is often referred to as the terminal event in the semi-competing risks literature.
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for T}, can be derived from the fitted joint model. In addition, the marginal survival function for
Sy, is observable and can be derived from the joint distribution of (S, 7},) as follows:

P(S;; > z) = P(min(Sy, T},) > z) (3.11)
=P(Sk>l’,Tk>[B). 3

Finally, the joint survival function of (S}, T}) is also observable.

P(S; > x, Ty, > t) = P(min(S, T},) > z, Tj, > t)
=P(Sk >x, Ty, > x, T >t) (3.12)
= P(Sy > =, Ty > max(z, t)).

Consistent with the definitions for PF'S, TTP and OS, let S* = PFS, S = TTP and T =
OS. Then it is clear that the model is fitted using TTP and OS, but the joint distribution for
(PFS,0S) can be derived from this model, as shown by Equation Moreover, this latter
joint distribution is used in deriving surrogacy measures. The latent variable specification is
not problematic for these surrogacy analyses as the joint survival function in Equation (3.12]is
observable.

Identifiability of Parameters

Note that in this framework, the bivariate distributions for (PF'S, OS) that derive from the fitted
models do not rely on unverifiable assumptions, even though latent variables are used. It would
be a mistake, however, to directly interpret the fitted association measures between TT P and
OS. For example, one should not interpret the Kendall's 7 derived from the estimated copula
parameters of ¢;5 and ¢34 in Equation Indeed, such association measures rely on the
assumption that the specification of the model is correct for S > T'. This is unverifiable, and S
is not well-defined for S > T'. Lee et al. (2015) set S equal to oo in that case to emphasize that
it is not well-defined. Using that notation would complicate the model specification, but would
not alter the observable part of the model. That notation is therefore not used.

As before, the association between potential outcomes across treatment groups still relies
on unverifiable assumptions. This is again addressed by a sensitivity analysis. The same com-
ments as in Section [3.1.1still hold here.

3.2.3 Measures of Surrogacy

All further comments made in Section[3.1.2land[3.1.3]also apply for the models with time order-
ings. The only difference is that the sampling procedure is slightly different as detailed next.

Sampling
One can sample from fi934 to obtain a sample of (S(’]", Ty, ST, T1) as follows:

1. Sample the copula data vector, (Us,, Uz, Us,, Up, )', from the copula C1g34 Of fi934. This is
implemented in the rvinecop function from the rvinecopula R-package (Nagler & Vatter,
2022).

2. These copula data from the previous step are transformed to the appropriate scale by the
probability integral transform with the corresponding marginal distribution functions:

1 -1 -1 -1 -1 1
(So, Tp, S1,T1) = (Fso (Us, ), Frr, (Ury), Fs, (Us, ), Fry (UTl)) -

The data thus obtained is an i.i.d. sample from f1234.
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3. Compute
(So.To, ST, T1)' = (min(Sy, Ty), Tp, min(Sy, 1), T1) .

Note that this model formulation is somewhat like random-effects models. Such models
are constructed by assuming a latent random-effect distribution which is in itself not observ-
able. However, the "consequences" of the random effects are observable as they lead to an
observable marginal distribution which is the target of inference. In our approach, a latent
value for Sy is assumed if S > T}, which is not observable. However, the “consequences" are
observable as it leads to an observable distribution for (S,:, T;.)', which is the target of inference.
In addition, simulating data from a random-effects model is similar to simulating data from our
model. One can sample from a random-effects model by first sampling the random effects and
then sampling from the conditional distributions given the random effects. This yields a sam-
ple from the observable marginal distribution. In our approach, we first sample (Sy, Ty, S1,71)'.
Then we derive (Sj, Ty, S7, 7). Note that the second step is deterministic in our approach, but
not when sampling from a random-effects model.

3.2.4 Sensitivity Analysis

The sensitivity analysis proceeds in the same way as for the model without time orderings.
However, extra care is needed with respect to the additional assumptions. In Section [3.1.3
assumptions were proposed for the marginal association parameters in terms of Kendall's 7.
For the model with time orderings, these marginal association parameters are defined in terms
of S; and T}, and are computed by sampling as described above. These parameters are not the
same as the Kendall's 7 parameters corresponding to ¢;5 and c34. Indeed, the latter are defined
on the (latent) scale of S}, but not on the scale of S}:.

3.3 Further Remarks

The models without time orderings are simpler than the models of this section. It is however
difficult to compare the fit of models of this section with models without time orderings. The re-
sponse variable is defined differently, so the maximized likelihoods cannot be compared across
these two types of models. In any case, if there exist time orderings in the data, models that
take these restrictions into account are more appropriate. The model with time orderings could
still be preferred because of its relative simplicity. Moreover, even if the model of this section
provides a much better fit, the conclusions with regards to surrogacy might be the same as
for the simpler model. A very compelling reason to prefer the models with time orderings, is
that additional restrictions (i.e., the time orderings) can reduce the uncertainty in the sensitivity
analysis.



Chapter 4

Case Study: Advanced Ovarian Cancer

The methods introduced in the previous sections are applied to a data set, further referred to
as the ovarian cancer data.

4.1 Data Description

The ovarian cancer data combine the data that were collected in four double-blind random-
ized clinical trials in advanced ovarian cancer (Omura et al.,1991). In these trials, the objective
was to examine the efficacy of cyclophosphamide plus cisplatin (CP) versus cyclophosphamide
plus adriamycin plus cisplatin (CAP) to treat advanced ovarian cancer. The four individual trials
failed to show a significant effect of CAP on survival. However, a meta-analysis of the pooled
data showed a significant survival benefit. These data have been used previously in the meta-
analytic framework, where center was used as unit of analysis (Buyse et al., |2000). In what
follows, all data are pooled and the hierarchy originating from the four trials is ignored.

The ovarian cancer data contain the PFS and OS for 1192 patients. These data are freely avail-
able through the Surrogate R-package (Van der Elst et al.,[2021b). One patient is excluded from
further analysis because the recorded PFS is larger than the recorded OS. All further analyses
are thus based on 1191 observations.

4.2 Surrogacy Analysis

4.2.1 Model Fitting

The four copula models described previously (Gaussian, Frank, Gumbel, Clayton) are fitted
to these data through maximizing the likelihood as detailed in Section For illustrative
purposes, both the models with and without time orderings are considered, although the for-
mer should be preferred because it makes full use of the data structure. The corresponding
marginal distribution functions are modelled with a Royston-Parmar model with three internal
knots. More details on this survival model are given in Appendix[B| The fitted models are sum-
marized in Table[4.1by the corresponding maximized log-likelihoods together with the Kendall's
T association measures corresponding to the fitted copulas, ¢1o and cs4. The best fitting mod-
els, with and without time orderings, are the Clayton copula models. The further surrogacy
analysis is therefore based on those two fitted models.

The goodness-of-fit is checked for both Clayton copula models. In Appendix [E.1 the KM
estimates are plotted with the corresponding model-based estimates of the survival functions.
The model-based estimates match the KM estimates closely which indicates that the model fit
is good. Moreover, the estimated strength of association is similar across different choices for
the identifiable copulas (712 and 734 in Table[4.1).
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Table 4.1: Fitted models with margins based on the Royston-Parmar survival model with 3
internal knots. 715 and 73,4 are the Kendall's 7 measures corresponding to the fitted
identifiable copulas, ¢15 and c34. Note that the identifiable copulas are survival copulas. [(:; é):
maximized log-likelihood.

Model l(, é) T12 T34
Ordering Copula

Gaussian  -3110.87 0.77 0.83

. Clayton  -3063.41 0.79 0.86

No Ordering Frank -3067.00 0.80 0.85

Gumbel -3068.44 0.79 0.84

Gaussian  -3223.76 0.72 0.79

Ordering Clayton  -3150.92 0.75 0.81

Frank -3171.03 0.75 0.85

Gumbel -3209.78 0.74 0.80

Table 4.2: Results of the sensitivity analysis for R,2Z in the ovarian cancer data. Every row is
based on n replications. M: monotonicity assumption, W-CA: weaker cross-association

assumption.
Ordering  Assumptions n Range of Ri [p1, Pog] median
- 5000 [0.745,0.992] [0.842, 0.991] 0.981
Ordering M 2234 [0.745,0.991] [0.817, 0.990] 0.969
W-CA 4785 [0.813,0.992] [0.882, 0.991] 0.981
M + W-CA 2107 [0.813,0.991] [0.857, 0.990] 0.971
- 5000 [0.662,0.992] [0.782,0.990] 0.975
. M 2210 [0.662, 0.990] [0.744,0.987] 0.958
No Ordering W-CA 4661 [0.701,0.992] [0.833,0.990] 0.975
M + W-CA 2037 [0.701,0.990] [0.797, 0.987] 0.961

4.2.2 Sensitivity Analysis

The results of the sensitivity analyses are presented here for Ri. Only Clayton copulas as unob-
servable copulas are further considered, with rotations of 0, 90, 180 and 270 degrees. In Table
the results of the sensitivity analyses are given for all sets of assumptions and restrictions
discussed previously. The corresponding frequency distributions are visualized in Figure
Irrespective of whether time orderings are taken into account and any additional assumptions,
the results of the sensitivity analyses indicate that Ri is large in all scenarios compatible with
the observed data.

Similar results are obtained when the ICA is quantified with Spearman’s p or Kendall's 7,
as shown in Appendix [E.2l However, the lower limits for the ICA are considerably smaller for
Spearman'’s p and Kendall's 7. These are different measures of association, so differences are
expected, although the magnitude of these differences warrants some further consideration.
When the follow-up stops at about 14 years, a considerable number of patients have not experi-
enced any event (see plots in Appendix[E.1). The fitted survival functions beyond the end of the
study are thus merely based on extrapolation. Moreover, the fitted survival functions become
very flat after about 10 years. According to the fitted models, a considerable proportion of pa-
tients will therefore have a very large time-to-event. This also implies that very large individual
causal effects are possible. This is problematic as it is mostly based on extrapolation beyond
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the end of the study. The rank-based measures of association are not sensitive to these very
large values, but the Ri is possibly much more sensitive. The results for Ri should thus be
interpreted with extra care and ideally together with the rank-based measures.

The results of this case study also show that it is beneficial to take the time orderings ex-
plicitly into account. Indeed, looking at Table one can see that the range is consistently
shifted upwards when time orderings are taken into account, comparing the ranges under cor-
responding assumptions. This equivalently holds for the percentiles and medians in Table[4.2]

The additional assumptions can also have a considerable influence on the results. Assuming
monotonicity has practically no effect on the results. While assuming weaker cross-association,
with or without monotonicity, restricts the ranges considerably. These interpretations can also
be derived from the histograms in Figure[4.1, though it should be noted that these histograms
cannot be interpreted as posterior distributions. They rather represent the range of values for
R}QL that are compatible with the observed data.

It is judged that both the monotonicity and weaker cross-association assumptions are real-
istic in this case study, as explained next.

Monotonicity in this case study means, roughly speaking, that patients that do better than
average on CP (Z = 0), are also expected to do better than average on CAP (Z = 1) for both PFS
and OS. There are certainly situations where the monotonicity assumption would not be well-
justified. For example, consider a trial where chemotherapy is compared with immunotherapy.
Also assume that there exists a genetic marker that is associated with prognosis; if the marker
is present, prognosis is worse. In addition, if this marker is present, the immunotherapy will be
very effective, otherwise the immunotherapy is not effective. The effectiveness of chemother-
apy does not depend on any marker. In this case, a patient with a worse than average outcome
on chemotherapy is more likely to have this marker. Consequently, this patient will tend to do
better than average on immunotherapy. There is thus a negative association in this example,
violating the monotonicity assumption.

Weaker cross-association is a less clear-cut assumption than monotonicity. It can however be
justified more generally than monotonicity. We assume that a potential outcome is determined
by two components in addition to inherent variability: (i) prognostic factors and (ii) treatment-
specific predictive factors. The prognostic factors induce a positive association between poten-
tial outcomes across and within treatments. Indeed, prognostic factors are expected to affect all
potential outcomes in the same direction. They could be represented as a shared-frailty term
for the four potential outcomes. Treatment-specific predictive factors only affect the potential
outcomes under the same treatment. As in the immunotherapy example above, in particular
disease (sub)types, some treatments may work better. This component causes a dilution of
the association across treatments, but not within treatments. This component could be rep-
resented as a treatment specific shared-frailty term. Hence, if this component is present, one
would expect the weaker cross-association assumption to hold.

Justifying these assumptions should be done in agreement with field experts. The justifica-
tion of these assumptions for the ovarian cancer data was not done together with field experts
and should as such be read.

Under these assumptions and taking time orderings into account, the fourth row of Table
contains the most relevant results. There, the R; is bounded between 0.813 and 0.991.
The corresponding Spearman’s p is bounded between 0.545 and 0.996, and the corresponding
Kendall's 7 is bounded between 0.389 and 0.956 (Table[E.2land[E.1in Appendix[E). These results
indicate that the ICA is strong across "all realities" compatible with the observed data.
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(b) Without time orderings

Figure 4.1: Frequency distribution of Ri in the sensitivity analysis for different assumptions
regarding the unidentifiable associations. Each histogram contains n replications.
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Figure 4.2: Plot of n = 5000 replications of the sensitivity analysis with time orderings taken
into account without additional assumptions. The vertical line is at 7 = 0.816 which is the
minimum of TSE Ty and st 1, - Note that TSE T and Tg*1, are not the values as reported in

TabIe Rather, these values represent the association between S; and T}, as detailed in
Section[3.2.3] The points corresponding to replications where the weaker cross-association
assumption is satisfied, are colored blue.

4.2.3 Further Exploration

Inthe previous subsection, an all-or-nothing approach is followed regarding additional assump-
tions in the sensitivity analysis. Alternatively, one can make no additional assumptions, but ex-
plore how the ICA varies with varying values of unidentifiable quantities. In this subsection, we
further explore how the ICA varies with the average cross-association

Tsr T, T TS T,
0’ 1’
ToA= — (4.1

for the model that takes the time orderings into account. In Figure 4.2} n = 5000 replica-
tions of the sensitivity analysis without additional assumptions are plotted. The average cross-
association is plotted against the Ri. There is a relationship between both. Indeed, for a neg-
ative average cross-association, R,QL tends to be very strong. Conversely, the Ri tends to be
weaker for a positive cross-association. The vertical line indicates the minimum of 74+ 7, and
Tsr,1y- Under the weaker cross-association assumption, the average cross-association should
be smaller than this value. In fact, the weaker cross-association assumption is slightly more re-
strictive than this because both 7g, 1, and 7g, 1, should be smaller than min(7g, 1, ,7s, 1), not
only the average 7¢ 4.

Using this plot, one could judge which values are plausible for the ICA. This introduces an
extra degree of flexibility at the cost of increased subjectivity. Figure[4.2]also shows why inter-
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preting the shapes of the histograms in Figure[4.1might be misleading. One might judge values
of 7 4 close to zero as very unlikely, but still possible. Thus, the corresponding Ri values should
be included in the results of the sensitivity analysis. However, as is clear from Figure 4.2} most
replications lie in that region. This does not mean that such values are more likely than those
in the sparser regions of Figure Hence, these histograms should not be interpreted as
reflecting the "posterior uncertainty".

From Figure one can also deduce that for 7 4 close to 1, the R,Zl might become too small
for the surrogate to be useful. However, bounds obtained this way are of little relevance if they
are based on underlying associations that are impossible. In most cases, even relatively weak
assumptions on 74 could provide useful bounds. In this line of thought, one might prespecify a
minimum value for the ICA for the surrogate to be deemed valid. Then, the restrictions needed
on 1¢4 to reach this lower bound can be determined. One can then judge how plausible it
is that the putative surrogate is a valid surrogate, based on the plausibility of the "required"
restrictions thus found.

4.2.4 Number of Replications

The data were reanalysed in a sensitivity analysis with n = 100,000 replications to examine
how close the previous 5000 replications would be to the lower and upper bounds. The re-
analysis only considered Spearman’s p because of computational limitations. These additional
results are reported in Table[E.1in Appendix[E} The upper bounds for 5000 replications are very
close to those for 100,000 replications, whereas there are some differences between the respec-
tive lower bounds. The lower bound for 5000 replications (no assumptions or monotonicity) is
0.447, while the respective lower bound for 100.000 replications is 0.379. However, when the
additional weaker cross-association assumption is made, the difference is minimal. Indeed, the
lower bound for 5000 replications (weaker cross-association, with or without monotonicity) is
0.545, while the respective lower bound for 100.000 replications is 0.528

4.3 Conclusion

There is convincing evidence that PFS is a valid surrogate for OS for the treatment of advanced
ovarian cancer with CP and CAP. Assuming monotonicity and weaker cross-association, the
individual causal association is strong across all scenarios compatible with the observed data,
regardless of the measure used to quantify the association.



Discussion and Conclusion

Discussion

Assumptions Underlying Proposed Methodology

The explicit and implicit assumptions underlying the causal-inference framework and methods
presented in this thesis, are discussed in some detail here.

In the definition of the potential outcomes, SUTVA is assumed. This is a standard assump-
tion underlying methods that use Rubin’s causal model. This assumption consists of two parts:
(i) no interference and (ii) no hidden variations of treatments (Imbens & Rubin, [2015). The no in-
terference part of SUTVA requires that the treatment applied to one patient does not affect the
outcome for other patients. In most clinical trials, this holds. But there are some settings where
this might be problematic, e.g., large vaccine trials where vaccination of one patient indirectly
protects other patients. The no hidden variations of treatments part of SUTVA requires that an
individual receiving a specific treatment level cannot receive different forms of that treatment.
In clinical trials, the treatment formulation and administration are strictly controlled, so this
part of SUTVA generally holds in clinical trials. Without SUTVA, the potential outcomes are not
well defined, and the causal-inference approach cannot be applied as presented in this thesis.

The causal-inference approach also implicitly assumes a non-zero variability in the individ-
ual causal effects in the population. At first sight, this implicit assumption may seem trivial.
Nonetheless, some statistical methods "rely" on a zero variability in the individual causal effects.
For example, the sharp null hypothesis of no treatment effect states that for each patientin the
experiment both values of the potential outcomes are identical. Although this sharp null hy-
pothesis is for many applications too strong, it is important to realize that a non-zero variability
in the individual causal effects a realistic, but not a trivial assumption. In principle, in a trial
with a zero average treatment effect, there can still be a non-zero variability in the individual
causal effects if both treatments have distinct effects which cancel out on average. The meth-
ods presented in this thesis can thus still be applied in such “negative" trials. However, if both
treatments have exactly the same effect on each patient, then the sharp null hypothesis of no
treatment effect is satisfied. In that case, the methods presented in this thesis are no longer
valid as there is no variability in the individual causal effects.

The implicit assumption of a non-zero variability in the individual causal effects in the causal-
inference framework has an analog in the meta-analytic framework. Indeed, it is required in the
latter framework that there is variability in the trial-level treatment effects. Without variability
in the trial-level treatment effects on the surrogate, o, a prediction function By = f(ag) cannot
be estimated (for values other than «;).

The D-vine density is in general a density decomposition. Any joint density can be decom-
posed in this way. Using D-vines thus does not necessarily constitute an assumption. However,
in the models presented in this thesis, the simplifying assumption for D-vines is made. In that
case, the D-vine constitutes a joint density construction, but not in general a joint density decom-
position. The sensitivity analysis is thus restricted in the sense that the measure of surrogacy
is explored across joint densities compatible with the observed data where the simplifying as-
sumption holds. Moreover, in the case study, only Clayton copulas (and rotations thereof) were
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considered as the unidentifiable copulas. Arguably, this set of densities is still broad enough
for the results of the sensitivity analysis to be useful.

Limitations

In this thesis, the ICA was quantified using three measures (Ri, Spearman’s p and Kendall's
7) with a focus on RZ. It is for any of these measures difficult to provide general guidelines
regarding the magnitude that is sufficient for a surrogate to be valid. The analysis presented
in this thesis can be considered as a quantitative component complementary to other clinical
and biological arguments in evaluating a surrogate.

Evaluating a surrogate in the single-trial setting comes with inherent limitations. Indeed, the
results of the validation exercise are, strictly speaking, only valid in the well-defined population
of the trial in which the validation exercise is carried out. This is of limited use as the goal of
evaluating surrogates is usually to justify their use in new clinical trials. To justify such an ex-
trapolation, clinical and biological arguments are required. This could be problematic because
the therapies used in new trials are frequently not yet well-studied, and unexpected things can
happen.

The ICA in the causal-inference framework is an "individual-level analog" of the trial-level
surrogacy in the meta-analytic framework, but they still represent distinct measures of sur-
rogacy that can lead to different conclusions. Trial-level surrogacy quantifies how well the
trial-level treatment effect on the true endpoint can be predicted in a new trial based on the
observed treatment effect on the surrogate endpoint. This formulation corresponds exactly
to the goal of surrogate endpoints. In the causal-inference framework, trial-level treatment ef-
fects are replaced with individual causal effects. The surrogacy measure in the causal-inference
framework thus quantifies how well the individual causal effect on the true endpoint can be pre-
dicted based on the (non-observable) individual causal effect on the surrogate endpoint. This
is not directly relevant to the use of surrogates in practice. It is only relevant if one believes that
good prediction at the level of individual causal effects extends to trial-level effects. In principle,
accurate predictions can be possible in one level, but not the other.

As the discussion above indicates, the causal-inference framework should not be regarded
as a substitute for the meta-analytic framework, but rather a complementary framework. In-
deed, the meta-analytic framework is considered as the gold standard for evaluating surrogate
endpoints. Still, in the early stages of drug development, limited data are available, possibly
only from a single trial. In principle, the meta-analytic approach could still be considered by
using e.g. centers as units of analysis, instead of trials. Such alternative clustering units are,
however, not always available. In those cases, the causal-inference framework can be consid-
ered while still acknowledging its limitations.

Future Research

The causal-inference framework to surrogacy evaluation is an approach that only relatively
recently gained more attention. It is therefore not as well-developed as the well-established
meta-analytic approach which was proposed more than 20 years ago. Consequently, there are
still many possibilities for future research in the causal-inference framework.

Many types of surrogate and true endpoint combinations have not yet been addressed in
the causal-inference framework. Some relevant combinations are briefly discussed here. Tu-
mor response is a putative surrogate for OS. Tumor response can be binary, ordinal, or con-
tinuous. Arguably, a continuous surrogate is more promising as it is more informative than
binary or ordinal endpoints. The methods presented in this thesis can be easily adapted for
the continuous-survival setting. Indeed, one could use marginals for the surrogate endpoints
that are defined on the entire real line instead of marginals based on survival models that are
only defined for Sj > 0.
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Another possible direction of future research is to extend the proposed methods to multi-
variate surrogates. These surrogates can be both of a continuous or time-to-event type. The
D-vine copula model can be readily extended to 6 dimensions for 2 surrogates, 8 dimensions
for 3 surrogates and so on. However, Kendall's 7 and Spearman’s p do not readily extend to
measure the association between AT and (AS;, ..., AS;). The SICC directly extends to mea-
sure this association, although this would be computationally prohibitive if the same numerical
methods as in this thesis are used.

Conclusion

In this thesis, the causal-inference framework for validating surrogate endpoints was extended
to the setting with time-to-event surrogate and time-to-event true endpoints. These methods
were applied to the ovarian cancer data. The analysis found convincing evidence that PFS is
a good surrogate for OS in advanced ovarian cancer patients when the efficacy of cyclophos-
phamide plus cisplatin is compared with cyclophosphamide plus cisplatin plus adriamycin.

R-code

The R-code is available from github.com/florianstijven/Master-Thesis. All analyses presented
in this thesis can be replicated with the available R-code.

Data

The ovarian cancer data are freely available in the Surrogate R package (Van der Elst et al.,
2021Db).


github.com/florianstijven/Master-Thesis
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Appendix A

Proofs and Derivations

A.1 Density Corresponding to the Survival Copula

Lemma A.1.1 (Density corresponding to the survival copula). The joint density of (X,Y)" is the
product of the survival copula density and marginal densities.

fxv(z,y) = exy{Sx(z), Sy (y)} - fx(z)- fr(y) (A1)
where the survival copula density is defined as follows

B o -
exy{Sx(x), Sy(y)} = Sud Cxy (1, )| u=8x (z),0=Sy (y)- (A.2)

Proof. The copula density cxy follows from the “ordinary" copula C'xy

82
1-u)o(l-v
82

(1= w)d(1 -v)
92 (A3)
= mCXy(U,’U)—U—U+ 1

9 -
= MCXY(Ua U)

= éxy(u,v).

exy(l—u,1-v)= Cxy(l-u,1-v)

( )

0
5 Cxy(u,v)—u-v+1

The joint density of (X, Y)" follows from the “ordinary" copula density and corresponding
marginal densities:

fxv(@,y) = exy{Fx(z), Fy (y)} - fx(x)- fy(y). (A.4)
Let u = Sx(z) and v = Sy (y), then the following holds by Equation|A.3
exy{Fx(z), Fy (y)} = exy{Sx(z), Sy (v)} (A.5)

and thus replacing the ordinary copula density with the survival copula density in Equation|A.4
gives the following result

Ixy(z,y) = exy{Sx(x), Sy ()} - fx(x)- fy(y). (A.6)

O

41



A.2. LIKELIHOOD CONTRIBUTION FOR PARTLY CENSORED DATA 42

A.2 Likelihood Contribution for Partly Censored Data

The full derivation for the likelihood contribution of observations where only one of the two
endpoints are censored, is given here. Let é,; = 1 and 6,; = 0 for patient i. The likelihood
contribution for such observations is derived as follows.

L; =/:ofsk,Tk(Si,t)dt

=/:chk,Tk (S5, (5:), St (t:)} - Fs (i) - fr, (t:)t
&Cs,

=], e (Ssulsi) Snlta)}dt

 Os t; ot

)
- _gcsk:Tk {Ssk(si)’ STk(ti)}
)
= 555 Ui {Ss.(si), Sn (8} -
k
= fo(5i) - — o {Ss.(s:), 91, (t:)

{Ssk(si)v STk(ti)} dt (A7)

dSs,
ds

The second equality follows from lemma In the other steps, the rules of differentiation
and integration are applied. The use of the survival copula results in convenient expressions
for the observed likelihood for right censored data.

A.3 Copulas

The entire derivations for the partial derivatives are given in Sorrell et al. (2022, Supplemen-
tary Information) for the Clayton, Gumbel, and Frank copula. The derivations for the Gaussian
copula are given in Fu et al. (2013).

A.3.1 Clayton
The Clayton copula is given by

-0 -0 -1
Clu,v)=(u +v -1)79. (A.8)
The first derivatives of the Clayton copula are as follows:
0C(u,v) C’(u,v)e+1
ou 0% (A.9)
and
0C(u,v) C(u,v)g+1
. SR (A.10)
The second derivative of the Clayton copula is
&c 6 +1)C(u, v)**!
(w,0) _ (0+1)C(u.v) an

auav u9+1,U9+1
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A.3.2 Gumbel

The Gumbel copula is given by
C(u,v) = exp [— {(— log u)e + (—log v)e}] : (A.12)
The first derivatives of the Gumbel copula are as follows

OC(u,v)  Clu,v)(-logu)’™

= (A.13)
Ou u(=1og C(u, v))?~" 3
and
dC(u,v)  Clu,v)(-logv)’™
= =R (A.14)
v v(—log C(u,v))
The second derivative of the Gumbel copula is
9*Clu,v)  Clu,v)(-log u)g_l(— log 0)9_1(0 - 1-1log C(u,v))
= 59T . (A.15)
Judv uv(—log C(u,v))
A.3.3 Frank
The Frank copula is given by
Clu,v) = -2 1o L {1-e?) - =" 1-e")} (A.16)
s = 0 g 1 6_9 . .
The first derivatives of the Frank copula are as follows
oC _ _0C(u)
éu, ) _ 1-e : (A17)
U 1-e"
and P
oC(u,v) 1-¢ """
R T (A.18)
The second derivative of the Frank copula is
820(”&7 ’U) ~ 9690(u,v)(€00(u,v) _ 1) (A 19)
oudv (eeu _ 1)(601; _ 1) ’ )
A.3.4 Gaussian
The Gaussian copula is given by
w[o7 (u), ® (v)]. (A.20)
The first derivatives of the Gaussian copula are as follows
oC(u,v) o, [‘I’_I(U)v ‘I’_l(v)]
— (A.21)
Ou ¢ {27 (u)}
and _ . .
oC(u,v) o[ (u), @7 (v)]
= (A.22)

ou g {o7V(u))
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where
o, I:(I)—l(u)’ (I)—l(v)] _ 3‘1’(1_0,U|,0)
0D~ (u) (A23)
_ -1 -1
=o{o7 ) [ el ). )i
and
: -1 -1 _ OV(u,vlp)
v, [‘1) (u), @ (U)] = 0v 1)
(A.24)
=07} [, dale™ o). i
The second derivative of the Gaussian copula is
9 ! ’@—1
PClu,v) V{27 (), 87 (v)lo) )

oudv o {7 (u)H{o (v)}

where ¢(.) is the standard normal pdf and ¥ (.|p) is the standard bivariate normal pdf with cor-
relation coefficient as p.



Appendix B

Royston-Parmar Model

Royston and Parmar (2002) extended the Weibull proportional hazards model and log-logistic
proportional odds model to a flexible parametric modelling procedure. In this thesis, only the
first is considered and explained here. The hazard at time ¢, h(t; ), in a Weibull proportional
hazards model (PH) is

h(t; x) = ho(t) exp(8'z) (B.1)

where hg(t) = /\Wﬂ_l is the baseline hazard function. v and X are the shape and scale parame-
ters of the corresponding Weibull distribution. The log-cumulative hazard of this model is

log H(t; z) = B'z; + log A + vlog t. (B.2)

Let n = B'x; Yo = log A\, 71 = v and z = logt. The log-cumulative hazard can thus be rewritten
as

log H(t; @) =9 + 71+ 2 +1). (B.3)
For the Weibull proportional-hazards model, the log-cumulative hazard is thus linearin z = log t.
If the distribution of T'| X = x departs from the Weibull distribution, then log H(t; ) will be

related to x by a non-linear function s + n = s(z; ) + n where s = 79 + 71 - z in the conventional
Weibull PH model. The survival, density and hazard functions of this extended model are

S(t;y,n) = exp{—exp(s + 1)} (B.4)
d
f(t;v,n) = exp{s — exp(s)} - d—i (B.5)
d
it y.m) = exp(s) - = (B.6)

The approach in the Royston-Parmar model is to model s(z;~) as a natural cubic spline
function. This entails that the baseline log-cumulative hazard is modelled as a natural cubic
splines function of log time.

Natural cubic splines are defined as cubic splines constrained to be linear beyond the bound-
ary knots k,,;,, and k... These boundary knots are placed at the extreme uncensored log sur-
vival times in the Royston-Parmar model. In addition, m distinct internal knots k; < ... < k;,,
with k., < k1 and k,,, < k4., are specified. These are specified based on the centiles of the
distribution of uncensored log survival times as shown in[B.1} Given the boundary and internal
knots the natural cubic spline is written as

s(2;7) = 70 + M2 + 7201(2) + -+ Va1 vm(2) (B.7)
where v;(z) is the j'th basis function. This basic function is defined as follows

’Uj(Z) = (Z - kj)i - )‘j(z - kmm)?— - (1 - )‘j)(z - kmaa:)i (88)
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Table B.1: Placement of internal knots in the Royston-Parmar model. (Adapted from (Royston
& Parmar, |2002))

m Centiles
1 50
2 33 67

3 25 50 75

where

khnax _'kﬁ
Aj= T — and (z - a); = max(0, z — a). (B.9)
Algebraic details on the natural cubic splines can be found in Appendix B of Royston and Par-
mar (2002). The Royston-Parmar model can be fitted with maximum likelihood. The likelihood

contributions of observations follow directly from Equation [B.4 and [B.5|for censored and un-

censored observations, respectively. Note that j—; = % from Equation is easily obtained
ds - dUJ(CU)
d_ - ’Yl + ZQ’Y] d[B
Jm (B.10)
2 2 2
=y + y Y8 = k) = M (@ = Fmin)s = 3(1 = \)(@ = Fnaa)s]
j=2

This model can be fitted with the flexsurvspline function from the flexsurv R-package
(Jackson, 2016). In addition, this package provides additional useful functions for the Royston-
Parmar model such as functions to compute the density and survival function.

As detailed above, the Royston-Parmar model reduces to the Weibull distribution when
there are zero internal knots. However, there are different parameterisations of the Weibull
distribution available; the connections between the Weibull parameters for different parame-
terisations and the Royston-Parmar parameters are given next.

Parameterisation 1

The Weibull distribution is parameterised as in the above derivations.

-z’

flas A\, y) = /\*ya,ﬁ_le and  h(z; \,7) = A7t7_1 (B.11)

The relation with the Royston-Parmar model parameters is as follows:

A=¢€" and 5 =1. (B.12)

Parameterisation 2

The Weibull distribution is parameterised as in dweibull from the R stats package.

- z\F k-1
Fla: k) = ;(f)k YelB) and hfasak) = ;({) (B.13)

The relation with the Royston-Parmar model parameters is as follows:

0

A=e m and k=n. (B.14)



Appendix C

Vine Copulas

Table C.1: Full expressions of the components of the D-vine construction in Equation

Component Expression

f1 = f5,(50)

f2 = fr,(to)

I3 = fs,(s1)

J4 = fr.(t1)

Cr2 = 5,1 1F 5, (50), Fy (to)}

C23 = ¢y, {Fry (to), Fs, (s1)}

C34 = cs, 1y {Fs, (s1), Fry (1)}

€132 = 55,5::70 {Fs0l10 (50| To = to), Fs, 1, (s1]To = to)}

C24;3 = cry. 138 {Frolss (tolS1 = s1), Fryps, (61151 = s1)}

C14;23 = C8o,115To,51 1FS0|To,51 (501 T0 = to, S1 = $1), Pry1y=to,81=s, (t11To = to, S1 = 51)}
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Appendix D

Monte Carlo Integration

A simulation study is conducted to asses the accuracy of the Monte Carlo integration procedure
to compute Kendall's 7, Spearman’s p and Ri. The parameters for the marginal distributions
are given in Table[D.1 Clayton copulas are used as identifiable copulas. The corresponding as-
sociation parameter is fixed at 6 = 6, which corresponds to 7 = 0.75. As unidentifiable copulas,
four options are considered. For each option, all four unidentifiable copulas are assumed to be
one of the following parametric copulas: Gaussian, Clayton, Frank or Gumbel. The Spearman’s
pvalues for corresponding copulas across these four options are set equal to each other. These
are given in the second column of TableD.2] The corresponding copula parameters are given
in the third to sixth columns. No time orderings are assumed.

The results are given in Table[D.3] The number of Monte Carlo samples from f;234 and quasi
Monte Carlo samples in the dep_measures function are set equal to each other, and further de-
noted by N. All measures are computed 50 times under the same settings to examine how
variable the computations are. The values in this table are the means across these 50 compu-
tations, and the corresponding standard deviations. Only the computation for N = 100.000 is
not repeated; this can be considered as the true value.

The standard deviations in Table show that the Monte Carlo procedure increases in
precision as N increases. If a standard deviation of 0.01 is deemed acceptable, then N = 2000
results in a sufficient precision. In consideration of the uncertainty due to the unidentifiability
of some parameters, this precision is deemed acceptable.

The computed measures of surrogacy are all very close to each other. This indicates that
the specific choice for the parametric form of the unidentifiable copulas doesn’t influence the
measures of surrogacy much, if the Spearman’s p values of the corresponding copulas are the
same.

Table D.1: Parameters for the marginal distributions of the simulation study. A and k are the
scale and shape parameters of the Weibull distribution, respectively.

Outcome A k  E(Y)
So 0.368 2 0.326
S1 0.472 2 0.419
To 0.607 2 0.538
T 0.687 2 0.609
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Table D.2: The unidentifiable copula parameters are fixed at these values. *: 9o degree

rotation copula.

Copula Ps Copula Parameter: 6 ..
Gaussian Clayton Frank Gumbel
€93 -0.266 -0.277 0.436* -1.650  1.218*
C13:2 0.372 0.387 0.683 2.399 1.343
Co4:3 0.572 0.591 1.375 4.164 1.692
C14:23 0.908 0.916 5.916  12.896 3.895
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Table D.3: Results of the simulations to assess the accuracy of the Monte Carlo integration. N

is the number of MC samples from fi234, and also the number of quasi MC samples to

compute Ri with the dep_measures function. The approximated value is the mean over the
50 simulations, and SD is the corresponding standard deviation.

Approximated value (SD)

Unid. Cop. N Ds T R;

500 0.864 (0.016) 0.688 (0.018) 0.808 (0.019)
Gaussian 1000 0.863 (0.010) 0.685 (0.011)  0.804 (0.011)
2000 0.864 (0.007) 0.685 (0.008) 0.803 (0.008)
5000 0.865 (0.005) 0.687 (0.006) 0.804 (0.006)

100.000 0.866 (NA) 0.689 (NA) 0.803 (NA)
500 0.869 (0.014) 0.692(0.016) 0.818 (0.017)
Clavton 1000 0.869 (0.009) 0.691(0.010) 0.815 (0.010)
y 2000 0.870 (0.006) 0.691(0.008) 0.815 (0.008)
5000 0.871(0.004) 0.693(0.005) 0.817(0.005)

100.000 0.873 (NA) 0.694 (NA) 0.815 (NA)
500 0.866 (0.015) 0.688 (0.018) 0.807 (0.02)
Frank 1000 0.866 (0.009) 0.687(0.010) 0.804 (0.010)
2000 0.866 (0.007) 0.687(0.008) 0.803 (0.008)
5000 0.868 (0.005) 0.688 (0.006) 0.805 (0.005)

100.000 0.868 (NA) 0.689 (NA) 0.803 (NA)
500 0.863 (0.016) 0.686 (0.019) 0.806 (0.019)
Gumbel 1000 0.862 (0.01) 0.683 (0.011) 0.803 (0.010)
2000 0.862 (0.008) 0.683(0.009) 0.803(0.009)
5000 0.863 (0.005) 0.685 (0.006) 0.803 (0.006)

100.000 0.865 (NA) 0.686 (NA) 0.802 (NA)




Appendix E

Additional Results Ovarian Cancer
Data

E.1 Goodness of Fit

The KM estimates are plotted with the corresponding model-based estimates of the survival
functions in Figure[E.1 The model based estimates follow the KM estimates closely, which indi-
cates that the model fit is good.

For the model without time-orderings, the marginal survival functions as plotted in Figure
follow directly from the fitted model. This also holds for the marginal survival functions for
OS in the model with time orderings, Figure [E.1a] However, in the model with time orderings,
the marginal survival functions for PFS follow from the fitted model by Equation|3.11

E.2 Results for Other Surrogacy Measures

In the main text, only the results for Ri are reported. The same results for Spearman’s p and
Kendall's 7 are reported here in Table [E.1 and respectively. Additionally, the results of the
sensitivity analysis with 100.000 replications, instead of 5000, are reported in Table[E.1

Table E.1: Results of the sensitivity analysis for the ovarian cancer data for Spearman’s p.
Every row is based on n replications. M: monotonicity assumption, W-CA: weaker
cross-association assumption.

Ordering  Assumptions n Range of p, [p1, Pog] median
- 5000  [0.447,0.998] [0.673,0.995] 0.978
Ordering M 2234  [0.447,0.996] [0.587,0.992] 0.955
W-CA 4785  [0.545,0.998] [0.759,0.995] 0.978
M + W-CA 2107 [0.545, 0.996] [0.711, 0.992] 0.957
- 5000 [0.296, 0.997] [0.627, 0.994] 0.972
. M 2210 [0.296, 0.993] [0.555, 0.987] 0.931
No Orderin
8 W-CA 4661  [0.605,0.997] [0.754,0.994] 0.972
M + W-CA 2037 [0.605, 0.993] [0.712, 0.987] 0.936
- 100.000 [0.379, 0.999] [0.685,0.995] 0.978
Ordering M 43.673 [0.379,0.998] [0.612,0.992]  0.954
W-CA 95.926 [0.528, 0.999] [0.763,0.995] 0.978
M + W-CA 41.581 [0.528, 0.998] [0.715, 0.992] 0.956
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Table E.2: Results of the sensitivity analysis for the ovarian cancer data for Kendall's 7. Every
row is based on n replications. M: monotonicity assumption, W-CA: weaker cross-association

assumption.
Ordering  Assumptions n Range of 7 [p1, Pog] median
- 5000 [0.305,0.972] [0.521, 0.952] 0.901
Ordering M 2234 [0.305,0.956] [0.433,0.941] 0.854
W-CA 4785 [0.389,0.972] [0.607,0.953] 0.902
M + W-CA 2107 [0.389, 0.956] [0.563,0.942] 0.858
- 5000 [0.151,0.959] [0.468, 0.942] 0.887
. M 2210  [0.151,0.941] [0.401, 0.927] 0.821
No Orderin
& W-CA 4661 [0.452, 0.959] [0.599, 0.942] 0.887
M + W-CA 2037 [0.452,0.941] [0.557, 0.928] 0.828
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Figure E.1: Goodness of fit for the fitted Clayton copula models. The Kaplan-Meier estimates

of the survival functions for PFS and OS are given as solid black lines with the pointwise 95%

confidence interval as dashed black lines. The model-based survival functions are shown by
solid red lines.
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