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Abstract

The endpoint that is used in a clinical trial is a key factor determining the trial’s cost, complexityand duration. Ideally, the clinically most relevant endpoint is used, this is the so-called trueendpoint. However, such endpoints often comewith important issues. Alternatively, substituteendpoints could be used that address these issues; these are so-called surrogate endpoints.However, a surrogate endpoint should first be evaluated to ensure that it is an appropriatereplacement for the true endpoint. Many methods have been proposed for this evaluationprocess.In this thesis, the causal-inference approach to the evaluation of surrogate endpoints isextended to the setting with a time-to-event surrogate and true endpoint. The quality of thesurrogate endpoint is quantified by the individual causal association (ICA), which is itself basedon information-theoretic concepts. Rank-based measures for the ICA are also considered. Aflexiblemodel based on a D-vine copula is proposed for the vector of potential outcomes. How-ever, due to the so-called fundamental problem of causal inference, the proposed model isnot identifiable. These identifiability issues are tackled by a sensitivity analysis that results inbounds for the ICA. In this sensitivity analysis, the unidentifiable parameters are sampled fromthe region of the parametric space of the model that is compatible with the observed data.Further, additional assumptions are proposed that restrict this region to obtain tighter boundsfor the ICA. The proposed methods are illustrated with an analysis of pooled data from fourovarian cancer trials. This analysis provides convincing evidence that progression-free survivalis a good surrogate for overall survival in these four trials.
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Introduction

Drug development is a lengthy, complex, and costly process, entrenched with a high degree ofuncertainty whether the drug will actually succeed (Pankevich et al., 2014). An important con-tributing factor is the nature of the endpoint that is used to assess the treatment’s efficacy.The true endpoint is the best possible indicator for treatment efficacy, or to put it differently,the clinically "most relevant" endpoint (Alonso, Van der Elst, & Meyvisch, 2017). However, trueendpoints may have important issues. For instance, the true endpoint might require a longfollow-up time such as overall survival (OS) in early cancer types. Amongst other things, a longfollow-up time can cause posttreatment confounding and an increased chance of missing data.In addition, the evaluation of treatment efficacy is delayed, which delays a possible market au-thorization and patient access to a potentially effective treatment. Other issues include the trueendpoint being costly to measure (e.g., certain imaging modalities) or having a low incidence(e.g., pregnancy in severe luteinizing hormone deficiency) (Van Der Elst, 2016).Given the challenges surrounding the true endpoints in some trials, a seemingly attractivestrategy is to replace the true endpoint by a "substitute endpoint" in which these issues are notpresent. Such a substitute endpoint is termed a surrogate endpoint (or surrogate). The potentialof surrogate endpoints is widely recognized by regulatory agencies and medical researchers.Between 2010 and 2012, the FDA approved 45% of new drugs based on a surrogate endpoint(FDA, 2018). The surrogate endpoints that are deemed acceptable by the FDA are very diverse;a sample of those endpoints is given in Table 1 (FDA, 2022). Of course, not just any alternativeendpoint can replace the true endpoint. At first sight, a strong association between the sur-rogate and true endpoint seems to be a sufficient criterion to justify the replacement of thetrue endpoint. This is however a common misconception that has had serious consequencesin the past (Alonso et al., 2017). For example, long-term hormone replacement therapy hasbeen found to lower "bad" cholesterol and raise "good" cholesterol in women; where high lev-els of "bad" cholesterol increase the cardiovascular risk and high levels of "good" cholesteroldecrease the cardiovascular risk. At the same time, this therapy also increased the cardiovas-
Table 1: Example of surrogate endpoints that the FDA considers as acceptable, adopted fromFDA (2022).
Disease or Use Patient Population Surrogate Endpoint
Anthrax vaccine Persons at high risk of exposure to an-thrax Anti-protective antigen antibody
Hematologicalmalignancies Patients with Acute LymphoblasticLeukemia Serum asparaginase
Hematologicalmalignancies Patients with diffuse large B-cell lym-phoma Event-free survival (EFS)
Solid tumors Patients with nonmetastatic castrate-resistant prostate cancer Metastasis-free survival
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cular risk (for the Women’s Health Initiative Investigators et al., 2002). Hence, cholesterol levelwas not a valid surrogate for cardiovascular risk in that setting. These unfortunate experienceshighlight the need for a proper statistical evaluation of surrogate endpoints.The statistical evaluation of surrogate endpoints is a non-trivial endeavor. Indeed, variousmethods have been proposed over the last three decades, some of which are now known tobe insufficient. Nowadays, the meta-analytic approach is the "gold standard" for the statisticalevaluation of surrogate endpoints. However, its use is hindered in some settings by its strongdata requirements. Indeed, this approach requires patient-level data frommultiple clinical trials(Alonso et al., 2017).More recently, Alonso et al. (2015) proposed a new approach for the evaluation of surrogateendpoints, based on causal-inference ideas. This approach is further referred to as the causal-
inference framework. As opposed to themeta-analytic framework, this framework only requirespatient-level data from a single clinical trial. This framework is however not as well-developedas the meta-analytic framework. Indeed, it has only been developed for the gaussian-gaussianand binary-binary setting (Alonso et al., 2015, 2016). In this thesis, the causal-inference frame-work is extended to the survival-survival setting. In essence, the setting where a time-to-eventsurrogate is evaluated for a time-to-event true endpoint.In the first chapter, a brief overview of different surrogate evaluation methods is given. Themodels proposed in this thesis are based on vine copulas, therefore, the necessary theoreticconcepts regarding vine copulas are described in chapter 2. Next, models for the survival-survival setting in the causal-inference framework are proposed in chapter 3. These methodsare illustrated in chapter 4 with data from clinical trials in advanced ovarian cancer. Finally,some concluding remarks are formulated.
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Chapter 1

Overview of Surrogate Validation
Methods

Since Prentice’s seminal paper in 1989, the evaluation of surrogate endpoints has receivedmuch attention in the statistical literature (Prentice, 1989). The initially proposedmethods weregrounded in the single-trial setting and are now recognized to be insufficient for a proper eval-uation of surrogate endpoints. Some of the subsequent methods are grounded in the multi-ple trial setting and are now recognized as the gold standard. Other contemporary methodsare still grounded in the single-trial setting and are based on causal-inference ideas. A briefoverview of different surrogate evaluation methods is given in this chapter. In the last section,the causal-inference framework is introduced. In the remainder of this thesis, the surrogateand true endpoint are respectively denoted by S and T . The treatment is denoted by Z.
1.1 Early Single-Trial Setting Approaches

1.1.1 Prentice’s Definition

Prentice (1989, p. 432) defined a surrogate endpoint as "a response variable for which a testof the null hypothesis of no relationship to the treatment groups is also a valid test of thecorresponding null hypothesis based on the true endpoint". This is formalized as follows:
f (S∣Z) = f (S) ⇔ f (T ∣Z) = f (T ). (1.1)

This definition is appealing at first sight. It corresponds to how a surrogate is intended to beused in practice: instead of testing the treatment effect on the true endpoint, the treatment ef-fect is tested on the surrogate endpoint. Indeed, according to Prentice’s definition, a treatmenteffect on the surrogate is a necessary and sufficient condition for a treatment effect on the trueendpoint. Prentice (1989) proposed four operational criteria to evaluate whether the definitionin Equation 1.1 is fulfilled for a given surrogate and true endpoint. The first two criteria requirea treatment effect on both the surrogate and true endpoint.
f (S∣Z) ≠ f (S) (1.2)
f (T ∣Z) ≠ f (T ) (1.3)

The third criterion requires the surrogate and true endpoint to be statistically dependent.
f (T ∣S) ≠ f (T ) (1.4)

This entails that the surrogate is prognostic, a condition that any reasonable surrogate shouldsatisfy (Buyse et al., 2000). The fourth criterion requires the treatment to be irrelevant in pre-dicting the true endpoint given the surrogate endpoint.
f (T ∣S,Z) = f (T ∣S) (1.5)

4



1.1. EARLY SINGLE-TRIAL SETTING APPROACHES 5
There are several conceptual and practical issues with Prentice’s approach. Only some ofthem are briefly discussed in this thesis, an extensive discussion is provided by Freedman,Graubard, and Schatzkin (1992), Buyse and Molenberghs (1998) and Burzykowski (2001). A fun-damental issue is related to the fourth criterion, which requires proving a null hypothesis. As-suming a linearmodel,E(T ∣S,Z) = β0+β1 ⋅S+β2 ⋅Z , the fourth criterion requires proving β2 = 0.Failing to reject the corresponding null hypothesis does not prove that β2 = 0 holds. Anotherissue pertains to the relation between Prentice’s definition and the four operational criteria.The operational criteria are only necessary and sufficient for Prentice’s definition in the caseof binary endpoints (Buyse & Molenberghs, 1998). Ignoring above issues, the fourth criterionis generally still too restrictive. In fact, it requires that the treatment does not act on the trueendpoint, through pathways bypassing the surrogate (Prentice, 1989). Given the complexity ofdisease-treatment pathways, it is unrealistic that a single endpoint would fully capture the ef-fect of the treatment on the true endpoint. Because of these issues, new metrics of surrogacywere proposed in the single trial setting. These are discussed next.

1.1.2 Building upon Prentice’s Proposal

Freedman, Graubard, and Schatzkin (1992) proposed an extension of Prentice’s approach thatmoves away from hypothesis testing to estimation. By doing so, Prentice’s fourth criterion(Equation 1.5) is relaxed. This is done by estimating the proportion of treatment effect explained(PE):
PE =

β − βS
β

(1.6)
where βS is the treatment effect adjusted for the surrogate endpoint, and β is the unadjustedtreatment effect. Prentice’s fourth criterion requires that βS = 0 or equivalently that PE =

1. That indicates that “100% of the treatment effect is explained" by the surrogate endpoint(Freedman, Graubard, & Schatzkin, 1992).If the treatment effect is not fully captured by the surrogate, Prentice’s fourth criterion isnot satisfied. However, the surrogate might still be useful if a large proportion of the treatmenteffect is captured by the surrogate. Consequently, a confidence interval can be constructedaround the estimate forPE. If the lower limit is sufficiently large, the surrogate is deemed valid.This approach seems attractive at first sight because PE has a direct interpretation, and theconditions required for a surrogate to be valid are more realistic than in Prentice’s approach.Nonetheless, the confidence interval for PE is generally too wide to be of much practical value.Another conceptual issue is that the PE is not truly a proportion. Indeed, if the direction of thetreatment effect changes after adjusting for the surrogate, PE is greater than one (Buyse &Molenberghs, 1998). A more comprehensive appraisal of the PE is given by Alonso et al. (2017,p. 40)Later, Buyse and Molenberghs (1998) argued that Prentice’s definition as well as the exten-sion of Freedman, Graubard, and Schatzkin (1992) are too limited for a complete evaluation ofa surrogate endpoint. Buyse and Molenberghs (1998) therefore proposed two other quantitiesfor evaluating surrogate endpoints in the single-trial setting: (i) the relative effect (RE) and (ii)the adjusted association (AA).The RE is motivated by the following consideration of what constitutes a good surrogate:"the investigators must be able to predict the effect of treatment on the true endpoint basedon the observed effect of treatment on the surrogate" (Buyse & Molenberghs, 1998, p. 1022).The RE is defined as follows:
RE =

β
α (1.7)

where α is the effect of treatment on the surrogate, and β is the effect of treatment on the trueendpoint (e.g., regression coefficients in a linear model). If RE = 1, the surrogate is termed
perfect at the population level. The AA is defined as the association between S and T after



1.2. CONTEMPORARY METHODS 6
adjusting for treatment. The exact definition depends on how this association is measured.If the association is maximal (i.e., a deterministic relationship), then the surrogate is termed
perfect at the individual level (Buyse & Molenberghs, 1998).If a bivariate normal linear regression model is assumed for S and T , it can be shown thatthe PE is a composite of RE and AA:

PE =
σT
σS

⋅
AA

RE
(1.8)

with σ2T and σ2S the residual variances of T ∣Z and S∣Z , respectively. The use of the RE and
AA thus allows for a more detailed assessment than PE (Buyse & Molenberghs, 1998). Still,using the RE to predict the effect of treatment on T rests on the unverifiable assumption thatthere is a linear regression through the origin. This assumption is unverifiable since only oneobservation on this line is available. One solution is to ensure replication at the trial level suchthat the regression line is fitted with several data points. This is done in the meta-analyticapproach (Buyse et al., 2000).
1.2 Contemporary Methods

1.2.1 Meta-Analytic Approach

In the meta-analytic approach, surrogacy is evaluated using patient-level data from multipleclinical trials. The adjusted association and relative effect are extended to the individual-level
association and the trial-level association, respectively (Buyse et al., 2000). The individual-levelassociation quantifies the association between the surrogate and true endpoint after adjustingfor trial and treatment. The trial-level association quantifies the association between the trial-level treatment effects on the surrogate and the true endpoint (Alonso et al., 2017).The meta-analytic approach is briefly explained here for Gaussian endpoints. Although thisapproach is not the subject of this thesis, there are some interesting connections between themeta-analytic approach and the causal-inference framework. Assume we have data from Ntrials with ni patients in the i’th trial. Sij and Tij are the surrogate and true endpoint for the
j ’th patient in the i’th trial. Zij is the corresponding (binary) treatment indicator. The followinglinear mixed model is considered:

Sij∣Zij = µS +mSi
+ (α + ai)Zij + ϵSij

Tij∣Zij = µT +mTi
+ (β + bi)Zij + ϵTij

(1.9)
where (ϵSij

, ϵTij
)′ are mean-zero normally distributed correlated error terms. (mSi

,mTi
, ai, bi)′is a random-effects vector that follows a mean-zero normal distribution with an unstructuredcovariance matrix. The trial specific intercepts are µS + mSi

and µT + mTi
for the surrogateand true endpoint, respectively. The trial specific treatment effects are α + ai and β + bi forthe surrogate and true endpoint, respectively. The individual-level surrogacy is quantified bythe coefficient of determination R2

indiv pertaining to the distribution of ϵTij
conditional on ϵSij

.This measure quantifies how well Tij can be predicted based on the observed value of Sij afteradjusting for treatment and trial. The trial-level surrogacy is quantified by the coefficient ofdetermination R2
trial pertaining to the distribution of bi conditional on mSi

and αi. The latteressentially quantifies howwell the treatment effect on the true endpoint can be predicted giventhe observed treatment effect on the surrogate endpoint (Buyse et al., 2000).This approach is appealing because it addresses some of the issues in the early single-trialsetting approaches of Section 1.1. Moreover, the meta-analytic approach is well-developed formany types of surrogate and true endpoints (Alonso et al., 2017). However, this approach re-quires patient-level data from multiple clinical trials which are often not available. Althoughsummary-level data are generally more readily available (i.e., treatment effect estimates re-ported in literature), methods for using both patient and summary-level data are not available.
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1.2.2 Principal Stratification

A different approach to evaluating surrogates in the single-trial setting was proposed by Fran-gakis and Rubin (2002). This approach is based on principal stratification and the notion ofposttreatment variables. In the Neyman-Rubin potential outcomes framework, each patienthas a four-dimensional vector of potential outcomes (S0, T0, S1, T1)′ with Sk and Tk represent-ing the outcome of the individual under treatmentZ = k. Under the stable unit treatment valueassumption (SUTVA), the following holds
S
obs

= ZS0 + (1 − Z)S1
T
obs

= ZT0 + (1 − Z)T1
(1.10)

where Sobs and T obs are the observed outcomes for a patient. SUTVA is generally evident inclinical trials, but requires extra thought in some contexts, e.g., trials in infectious diseases.The four-dimensional vector is, however, never fully observed. Only (S0, T0)′ or (S1, T1)′ can beobserved for individual patients. Holland (1986) termed this the fundamental problem of causal-
inference.Prentice’s approach, and extensions thereof, are based onmodels that adjust the treatment
effect for the posttreatment variable Sobs, the observed surrogate endpoint. That adjustedtreatment effect is based on a comparison of

P (T ∣Sobs
= s, Z = 0) and P (T ∣Sobs

= s, Z = 1). (1.11)
This is not a causal comparison. Under randomized treatment assignment and SUTVA, thiscomparison can equivalently be written as a comparison of

P (T0∣S0 = s) and P (T1∣S1 = s). (1.12)
The sets of individuals that are included in the first and second condition of this comparisonare generally not the same. Because different sets of individuals are being compared, the cor-responding estimands generally do not have a causal interpretation (Frangakis & Rubin, 2002).The more fundamental reason why this comparison is not causal, is that one is conditioning ona posttreatment variable. Randomization ensures that treatment assignment and pretreatmentvariables are independent, but not that treatment assignment and posttreatment variables areindependent. For a causal comparison after adjustment for posttreatment variables, Frangakisand Rubin (2002) proposed to adjust for principal strata of the posttreatment variables (seefurther).Frangakis and Rubin (2002) proposed to evaluate surrogacy based on principal stratification.Principal stratification allows for a causal comparison when adjusting for posttreatment vari-ables. The surrogate endpoint is indeed a posttreatment variable. This approach boils downto controlling for the vector of potential surrogate outcomes (S0, S1)′ instead of the observed
surrogate endpoint Sobs. The vector (S0, S1)′ is independent of the treatment assignment for a
randomized experiment, while Sobs is generally not. Therefore, a comparison that controls for
(S0, S1)′ is causal, whereas the comparison that controls for Sobs is generally not causal. Thefollowing definition of surrogacy is proposed for a principal surrogate (Frangakis & Rubin, 2002,p. 26).
Definition 1.2.1 (Principal surrogate). S is a principal surrogate for a comparison of the effect of
Z = 0 versus Z = 1 on T if, for all fixed s, the comparison between the ordered sets

{T0 ∶ S0 = S1 = s} and {T1 ∶ S0 = S1 = s} (1.13)
results in equality.
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This entails that a causal treatment effect on the true endpoint cannot exist when there isno causal treatment effect on the surrogate endpoint. In other words, a causal treatment effecton the true endpoint can only exist when there is a causal treatment effect on the surrogate(Frangakis & Rubin, 2002). Associative and dissociative effects are also defined in this approach.The dissociative effect is a comparison between

{T0 ∶ S0 = S1 = s} and {T1 ∶ S0 = S1 = s}. (1.14)
From Definition 1.2.1, it follows that the above comparison results in an equality for a principalsurrogate. The associative effect is a comparison between

{T0 ∶ S0 ≠ S1} and {T1 ∶ S0 ≠ S1}. (1.15)
These effects have an appealing interpretation. If there is a large dissociative effect, then thereis a large treatment effect on T for subjects for whom treatment does not affect S. If thereis a large associative effect, then there is a large causal treatment effect on T for subjects forwhom treatment also affects S. A small dissociative and a large associative effect are desirableproperties for a surrogate.Despite the appealing properties of the principal stratification approach, there is an impor-tant limitation. In practice, the vector (S0, S1)′ is unobservable. Indeed, S0 and S1 are neversimultaneously observed for the same patient. The comparisons as defined in Equations 1.13-1.15 are thus not identifiable. Several strategies have been proposed to tackle this unidentifia-bility issue (see also Section 1.4.2). For example, Li, Taylor, and Elliott (2010) reduced the non-identifiability problem with additional (unverifiable) assumptions and by incorporating priorbelief in a Bayesian model.It can further be shown that a principal surrogate is not generally a valid surrogate in Pren-tice’s framework and vice versa (Frangakis & Rubin, 2002). The causal-inference approach tosurrogacy as presented in this thesis is based on the principal stratification framework. Thesame unidentifiability problem arises thus in the causal-inference approach, but it is addressedby a sensitivity analysis (see further).
1.3 Related Causal Frameworks
Joffe and Greene (2009, p. 530) view a surrogate outcome as “an outcome for which knowingthe effect of treatment on the surrogate allows prediction of the effect of treatment on themore clinically relevant outcome". They identify two complementary causal paradigms inwhichsurrogates can be evaluated: (i) the causal-association (CA) paradigm and (ii) the causal-effects(CE) paradigm.
1.3.1 Causal-Association Paradigm

In the CA paradigm, “evaluation of a surrogate is based on examination of the association be-tween the effect of the treatment on the putative surrogate and the effect of the treatment onthe clinical outcome" (Joffe & Greene, 2009, p. 533). This allows for predicting the treatmenteffect on the true endpoint based on the observed treatment effect on the surrogate. Both themeta-analytic and the principal stratification approach resort under this paradigm. The formerconcerns trial-level treatment effects in multiple trials, whereas the latter concerns individualcausal effects in a single trial.Note that these approaches do not model the effect of S on T . Accordingly, confounding ofthe S → T relation is not relevant. In fact, only the Z → S and the Z → T relations are relevantin the CA paradigm. In randomized trials, these relations are always causal. Thus, no additionalassumptions, other than randomized treatment assignment, are required in the CA paradigm.
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(b) Confounding
Figure 1.1: Two possible causal diagrams representing causal relations in a surrogatevalidation study.

As explained in section 1.2.1, the meta-analytic approach examines the relationship acrossstudies between the treatment effects on the surrogate and true endpoint. Let βi andαi denotethe treatment effect on respectively T and S in the i’th study. This is represented in the causalgraphs of Figure 1.1. The linear regression of βi on αi is as follows:
E(βi∣αi) = γ0 + γ1 ⋅ αi. (1.16)

A good surrogate in the meta-analytic approach satisfies γ0 ≈ 0 and γ1 ≠ 0 where simultane-ously a large proportion of the variability in βi is explained by αi. In a new trial, a near-zerotreatment effect on the surrogate then implies a near-zero treatment effect on the true end-point as well. In addition, the fitted regression line can be used to predict the treatment effecton the true endpoint in a new trial given the observed treatment effect on the surrogate.This is very similar to the principal surrogacy paradigm. Instead of treating trial-level treat-ment effects as the building blocks, patient-level treatment effects T1 − T0 and S1 − S0 are theprimary building blocks in the principal surrogacy paradigm (Joffe &Greene, 2009). The relationbetween T1 − T0 and S1 − S0 is thus of primary interest, e.g., under linearity:
E(T1 − T0∣S1 − S0) = η0 + η1 ⋅ (S1 − S0). (1.17)

Principal surrogacy requires there to be no effect on the true endpoint when there is no effecton the surrogate (Definition 1.2.1): η0 = 0 in Equation 1.17. Moreover, a non-zero associativeeffect entails that η1 ≠ 0. Let us redefine αi and βi as the individual causal effects for patient
i. Then Figure 1.1 also applies to the principal surrogacy paradigm. This paradigm can thus beseen as the patient-level analog of the meta-analytic approach.Note that for the meta-analytic as well as the principal surrogacy framework the results arevalid under both causal diagram 1.1a and 1.1b. Unmeasured confounding of the S → T relationis thus not problematic in these frameworks.
1.3.2 Causal-Effects Paradigm

In the CE paradigm, "knowledge of the effects of the treatment on the surrogate and the sur-rogate on the clinical outcome is used to predict the effect of the treatment on the clinicaloutcome" (Joffe & Greene, 2009, p. 530). Prentice’s approach and an approach based on directand indirect effects resort under this paradigm.Joffe and Greene (2009) show that Prentice’s approach has ideas in common with the parti-tioning of the effect of a treatment into direct and indirect effects. The direct effect of treatmentwith respect to a causal intermediate is that part of the effect that is not mediated by the inter-mediate, in this case the surrogate. This is represented byZ → T in Figure 1.1. The indirect effectof treatment is the part that is mediated by the surrogate; this is represented by Z → S → T inFigure 1.1.If there is no direct effect, it seems that statistically controlling for S would block any asso-ciation between Z and T , i.e., Z ⫫ T ∣S which is Prentice’s fourth criterion. This is only true if
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causal diagram 1.1a holds. In general, this is wrong, which was already shown in Section 1.2.2by using principal stratification. Two other, more intuitive, reasons why this is wrong in generalare given here. First, causal diagram 1.1a is usually not a complete representation of reality. Inrandomized trials, no factor can influence treatment allocation. There can thus be no commoncause for treatment allocation and another variable. However, this does not hold for posttreat-ment variables such as S. Causal diagram 1.1b is generally a better representation of reality, butpossibly still a simplification. In causal diagram 1.1b,U represent variables that confound the re-lation between S and T . WhenU is not accounted for in the statistical model, conditioning on Sinduces a spurious association between Z and T because S is a collider: Z → S ← U → T . Con-sequently, Prentice’s framework and extensions thereof can only have causal interpretation ifcausal diagram 1.1a holds. Even so, under this notion of causality, causal effects are definedunder manipulations of S which is problematic in its own right, as discussed next.Second, statistical control is mixedwith experimental control. If there is no direct effect ofZon T , then physically holding S fixed at a certain value wouldmean thatZ and T are statisticallyindependent under that manipulation (Joffe & Greene, 2009). This is formalized in the notion ofdirect and indirect effects, see for example Pearl (2009, Chapter 5). The direct and indirecteffects defined therein require the notion of manipulating Z and S. This is conceptually hardto justify for S; e.g. what would manipulating time-to-progression mean?
1.3.3 Comparison of the CE and the CA Paradigms

The CE mode of reasoning is mechanistic, it involves a chain of variables in which each variablecausally affects the next one(s). This paradigm thus explains the effect of treatment mechanis-tically and consequently offers an appealing interpretation of the surrogate: the treatment af-fects T by affecting S. However, causal effects are defined in terms ofmanipulations of the sur-rogate. This is often conceptually hard to justify. Moreover, many methods in the CE paradigmrequire very strong assumptions. The CA approach generally does not require additional as-sumptions besides randomized treatment allocation. The CA approach is, in comparison withthe CE approach, somewhat “black box" in nature because it cannot explain the effect of treat-ment mechanistically (Joffe & Greene, 2009).
1.4 Causal-Inference Framework
The causal-inference framework is closely connected to the principal surrogacy framework. Inthese two frameworks, the same notation and assumptions regarding potential outcomes areused, although a different definition for what constitutes a "good" surrogate is used in thecausal-inference framework. In the latter, the association between ∆S and ∆T is of primaryinterest, and a quantification of this association is the primary measure of surrogacy.
1.4.1 Potential Outcomes Framework

In the causal-inference framework, the validation exercise is carried out in a single trial with awell-defined population. The results of the validation exercise hold, strictly speaking, only inthis well-defined population. Applying these results in a new trial, with a different populationand/or other treatments, would necessarily require a degree of extrapolation. Further, it isassumed that only two treatments are under evaluation (Z = 0/1) in a parallel study design.The potential outcomes and underlying assumptions were already introduced in Section 1.2.2for the principal surrogacy framework.The individual causal effects are thebuilding blocks of the causal-inference approach (Alonsoet al., 2015). They are defined for the true endpoint as ∆T = T1 − T0 and analogously for thesurrogate endpoint ∆S = S1 − S0. The individual causal effects cannot be observed, see alsoSection 1.2.2, although the expected treatment effects, E(∆T ) and E(∆S), are identifiable from
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the observed data if Z ⫫ (T0, T1). This latter condition is satisfied for randomized trials. Theexpected causal treatment effects at the trial level are the primary building blocks in the meta-analytic approach and were previously denoted by βi and αi for the i’th trial (e.g., Equation1.16).
1.4.2 General Approach

Model

The first step in the causal-inference framework is to assumeamultivariatemodel for the vectorof potential outcomes:
(S0, T0, S1, T1)′ ∼ F (⋅;θ) (1.18)

where θ is the corresponding parameter vector. Not all elements of θ are identifiable. Only
(S0, T0)′ or (S1, T1)′ can be simultaneously observed. Therefore, only the corresponding bivari-ate distributions

(S0, T0)′ ∼ F (S0, T0;θ0) and (S1, T1)′ ∼ F (S1, T1;θ1) (1.19)
are identifiable. Let θ0 and θ1 denote the corresponding parameter vectors of these bivariatedistributions. These parameters can be estimated with the observed data, e.g., via maximumlikelihood estimation. Let θn be the set of parameters of θ not contained in θ0 or θ1. Becausethe elements of θn do not appear in the observable distributions of Equation 1.19, θn is uniden-tifiable. This unidentifiability issue is further addressed through a sensitivity analysis.
Measures of Surrogacy

From thismodel, measures of surrogacy are derived that are based on the association betweenthe individual causal effects: ∆T and ∆S. These are termed the individual causal association(ICA). In principle, any association measure can be used to quantify this association. The choicefor a particular association measure depends on the type of endpoints considered (e.g., binaryor continuous). Information theory provides a unifying framework to quantify this associationacross settings with different types of endpoints (Alonso et al., 2017).These measures of surrogacy are functions of the joint distribution of (∆S,∆T ). This jointdistribution is in turn a function of F (⋅;θ) in Equation 1.18. Because θn is not identifiable, themeasures of surrogacy are also not identifiable. There are three ways to address this identifia-bility issue: (i) use unverifiable assumptions to make the model identifiable, (ii) use a Bayesianestimation framework with (weakly) informative priors for the unidentifiable parameters, and(iii) implement a sensitivity analysis in which the ICA is computed across a set of plausible val-ues for the unidentifiable parameters θn (Alonso et al., 2015). The sensitivity analysis approachis used in this thesis.
Sensitivity Analysis

The sensitivity analysis consists of a two-step Monte Carlo procedure. Let Γ be the parameterspace of θ in Equation 1.18. In a first step, the region of this parameter space that is compatiblewith the observed data is determined; this is the so-called ΓD region where ΓD ⊂ Γ. Usually,
θ0 and θ1 are fixed at their estimated values, θ̂0 and θ̂1. Whereas θn can vary freely. Notethat in many cases, the values at which θ0 and θ1 are fixed, restrict the region in which θncan vary. Indeed, given θ̂0 and θ̂1, there can be restrictions on θn to ensure that Equation 1.18still represents a valid distribution: e.g., ensuring a positive definite correlation matrix or cellprobabilities in [0, 1].
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In the second step, a Monte Carlo approach is implemented to study the behavior of theICA in this region ΓD. This is done by sampling the unidentifiable parameters on ΓD and com-puting the ICA for each sample of unidentifiable parameters (Alonso, 2018). Each point in ΓDcan be conceptualized as a "world" compatible with ours. The behavior of the ICA on ΓD thuscompletely describes the validity of the putative surrogate across all "worlds" compatible withthe observed data (Alonso et al., 2016).One further consideration is the introduction of additional restrictions on ΓD. Based on thestudy design or scientific background knowledge, additional restrictions on ΓD could be justi-fied. For example, Li, Taylor, and Elliott (2010) used the monotonicity assumption to “assist inthe identifiability". This assumption states that the treatment cannot worsen a patient’s con-dition, as compared to control. This can be assumed for the surrogate and/or true endpoint.Where a higher value is desirable, the monotonicity assumption is formally written as follows:

S0 ≤ S1 and/or T0 ≤ T1. Although these additional restrictionsmight be justified based on studydesign aspects or scientific background knowledge, they cannot be empirically verified. Theyare thus always unverifiable and should therefore be used with caution.
1.4.3 Information Theoretic Concepts

The concept of entropy is a key measure in information theory and quantifies the amount ofuncertainty associated with a random variable. Let Y denote a random variable taking values
{y1, y2, ..., ym} with probability mass function P (Y = yi) = pi. The entropy of Y is then definedas

H(Y ) = −EY {logP (Y )} = −
m

∑
i=1

pi ⋅ log pi. (1.20)
The entropy quantifies the amount of uncertainty associated with a random variable. Entropyis non-negative and invariant under bijective transformations. The joint entropy of (X,Y )′ isdefined similarly as H(X,Y ) = −EX,Y {logP (X,Y )}. The conditional entropy is also definedsimilarly as H(Y ∣X) = −EX[EY {logP (Y ∣X)}]. For continuous outcomes, the concept of en-tropy is extended to differential entropy. For a continuous random variable Y with densityfunction fY (y), the differential entropy hd(Y ) is defined as

hd(Y ) = −E{log fY (Y )} = −∫ fY (y) ⋅ log fY (y)dy. (1.21)
As opposed to entropy, differential entropy can be negative or positive and is coordinate de-pendent. The joint and conditional entropy are defined analogously as in the discrete case.A measure of association based on information theory is the mutual information, denotedby I(X,Y ). The mutual information between X and Y quantifies the amount of uncertaintyin Y expected to be removed if the value of X becomes known: I(X,Y ) = H(Y ) − H(Y ∣X)or I(X,Y ) = hd(Y ) − hd(Y ∣X) for the discrete and continuous case, respectively. The mutualinformation is symmetric in the sense that it equally well quantifies the amount of uncertaintyin X expected to be removed if the value of Y were known: I(X,Y ) = H(X) − H(X∣Y ) or
I(X,Y ) = hd(X) − hd(X∣Y ). From these definitions, it follows for the continuous case that

I(X,Y ) = hd(X) − hd(X∣Y )
= hd(Y ) − hd(Y ∣X)

= ∫ ∫ f (x, y) ⋅ log ( f (x, y)
f (x)f (y) ) dxdy.

(1.22)

In the causal-inference framework, the following definition of surrogacy is proposed (Alonso,2018, p. 3).
Definition 1.4.1 (Surrogacy in the causal-inference framework). In the single-trial setting, we shall
say that S is a good surrogate for T if∆S conveys a substantial amount of information on∆T .
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The amount of information shared between ∆T and ∆S is quantified by the mutual infor-mation I(∆T,∆S). It is therefore proposed to assess surrogacy in the causal-inference frame-work based on themutual information (Alonso, 2018). Themutual information itself is howeverdifficult to interpret as it lies in [0,+∞[ for continuous endpoints and in [0,min{H(∆S), H(∆T )}]for discrete endpoints. To obtain a metric of surrogacy with appealing properties, the mutualinformation is transformed to a metric that lies in [0, 1]. This transformation depends on thescale of measurement of both endpoints.

1.4.4 Gaussian-Gaussian Setting

Alonso et al. (2015) addressed the setting where both S and T are continuous. This approachis briefly outlined next.
Model

A multivariate normal distribution is assumed for (T0, T1, S0, S1)′ ∼ N (µ,Σ) where

Σ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

σT0T0
σT0T1

σT0S0
σT0S1

σT1T0
σT1T1

σT1S0
σT1S1

σS0T0
σS0T1

σS0S0
σS0S1

σS1T0
σS1T1

σS1S0
σS1S1

⎞
⎟⎟⎟⎟⎟⎟
⎠

and µ = (µT0
, µT1

, µS0
, µS1

)′. Given these distributional assumptions, the following holds forthe vector of individual causal effects:
∆ = AY = (T1 − T0

S1 − S0
) ∼ N (µ∆,Σ∆) where A = (−1 1 0 0

0 0 −1 1
) (1.23)

with Σ∆ = AΣA
′, µ∆ = (β, α)′ with β = E(∆T ) = µT1

− µT0
and α = E(∆S) = µS1

− µS0
.

Surrogacy Measures

The mutual information I(∆T,∆S), as defined in Equation 1.22, quantifies the amount of un-certainty that is expected to be removed in∆T when the value of∆S becomes known. For thenormal distribution, mutual information and Pearson correlation are equivalent. In the normalmodel, the following relationship holds:
I(∆T,∆S) = −

1

2
log(1 − ρ2∆) where ρ∆ = corr(∆T,∆S). (1.24)

The ICA is therefore defined as the Pearson correlationbetween∆T and∆S: ρ∆ = corr(∆T,∆S).The value for ρ∆ has a closed form expression in terms of the parameters in Σ.A generalization of the Pearson correlation measure in the normal model is the so-calledsquared informational coefficient of correlation (SICC) R2
h introduced by Joe (1989) and Linfoot(1957):

R
2
h = 1 − e

−2I(∆T,∆S)
. (1.25)

For normally distributed outcomes, ρ2∆ and R2
h are identical. This new measure is always inthe interval [0, 1], is invariant under bijective transformations, and takes value zero if and onlyif ∆T and ∆S are independent (Alonso, 2018). This measure will also be used in subsequentsections to quantify the ICA in the survival-survival setting.
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Sensitivity Analysis

As already alluded to before, not all parameters of the multivariate normal model are identifi-able. The covariances σS0T1
, σS1T0

, σT0T1
and σS0S1

in Σ are not identifiable from the observeddata. Consequently, ρ∆ is not identifiable from the data. As mentioned in Section 1.4.2, thisidentifiability issue is tackled by a sensitivity analysis. The identifiable parameters are fixed attheir estimated values. The ΓD region for the unidentifiable correlations is the region in [−1, 1]4such that the resulting covariancematrix,Σ, is positive definite. This entails that the identifiableparameters restrict ΓD.The sensitivity analysis implemented in Alonso et al. (2015) proceeds as follows.
1. Select a grid of values G = {g1, g2, ..., gk} in [−1, 1] for the unidentifiable correlations.
2. The identifiable correlations are fixed at their estimated values. Generate Σmatrices byconsidering all combinations emanating from G for the unidentifiable correlations.
3. From these generated Σmatrices, only the positive definite ones are retained.
4. For every positive definite matrix, ρ∆ is computed.

The sequence of values for ρ∆ that is obtained in this way "quantifies the ICA across all plausi-ble worlds, that is, across those scenarios where the assumptions made for the unidentifiablecorrelations are compatible with the observed data" (Van der Elst, Molenberghs, & Alonso, 2016,p. 1283). The behavior of ρ∆ can consequently be used to assess the sensitivity of the resultswith respect to unverifiable assumptions.
1.4.5 Multivariate Surrogates

Most surrogate evaluation methods allow for considering only one surrogate endpoint. How-ever, given the complex nature ofmany diseases and the various therapeutic pathways throughwhich a treatment can affect the clinical outcome, it might be unreasonable to expect that onlyone surrogate can capture the entire treatment effect on the true endpoint. It is thereforeexpected that multiple surrogates, characterising distinct aspects of the disease-treatment in-teractions, improve the prediction of the individual causal effect on the true endpoint (Van derElst et al., 2019).Van der Elst et al. (2019) extended the Gaussian-Gaussian setting to a setting with a multi-variate continuous surrogate endpoint. They found that in some scenarios, the range for theICA becomes small when multiple surrogate endpoints are considered simultaneously. This isespecially the case when the identifiable correlations are strong. In such situations, the "identi-fiability problem is no longer an issue from a practical perspective as the qualitative conclusionof the analysis is the same in all plausible realities compatible with the identifiable correlations"(Van der Elst et al., 2019, p. 306).



Chapter 2

Vine Copulas

The models proposed in this thesis for the survival-survival setting in the causal-inferenceframework are based on vine copulas. To make this thesis self-contained, the necessary the-oretical concepts regarding vine copulas are described in this chapter. First, bivariate copulasare introduced. These have already been used for surrogate evaluation in the meta-analyticframework for several types of endpoints (Alonso et al., 2016; Burzykowski, 2001). Second, vinecopulas are introduced as a flexible way of constructingmultivariate copulas with bivariate cop-ulas as building blocks. Finally, a 4-dimensional D-vine copula is proposed on which all furthermodels are based.
2.1 Bivariate Copulas

2.1.1 Definitions and Properties

Copulas are d-dimensional multivariate distribution functions where each variable’s marginaldistribution is uniformon the interval [0, 1]. Copulas are used to describe dependence betweenrandom variables, independent of the marginal distributions. Definitions for bivariate copulasare given here, but these can be extended to d-dimensional copulas as well.
Definition 2.1.1 (Bivariate copula). C ∶ [0, 1]2 → [0, 1] is a bivariate copula if

1. For every u, v in [0, 1]:
C(u, 0) = C(0, v) = 0

2. For every u, v in [0, 1]:
C(u, 1) = u and C(1, v) = v

3. For every u1, u2, v1, v2 in [0, 1] such that 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1:

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0

The corresponding copula density, c, is obtained by partial differentiation:
c(u, v) = ∂

2

∂u∂v
C(u, v). (2.1)

Sklar’s theorem provides the theoretical foundation for the application of copulas (Sklar,1959). It in essence states that any multivariate distribution function can be written in termsof the marginal distribution functions and a copula that describes the dependence structure.Sklar’s theorem for a bivariate copula is given here.

15
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Theorem 2.1.1 (Sklar’s theorem). LetX be a 2-dimensional random vector with joint distribution
function F , marginal distribution functions F1 and F2, and marginal density functions f1 and f2.
Then there exists a copula C such that for all x, y in ] −∞,+∞[

F (x, y) = C{F1(x), F2(y)}. (2.2)
If F1 and F2 are continuous, then C is unique. The associated density function follows from the
copula density and marginal densities:

f (x, y) = c {F1(x), F2(y)} ⋅ f1(x) ⋅ f2(y). (2.3)
The converse is also true. Given a copula C and marginals F1 and F2, Equation 2.2 definesa joint distribution function with margins F1 and F2.Conditional densities and distributions can be directly derived from the corresponding cop-ula and marginal densities. The proofs are given in Czado (2019, p. 20).

Lemma2.1.1 (Conditional densities anddistribution functions of bivariate distributions in termsof their copula). The conditional density and distribution function can be rewritten as
fx∣y(x∣y) = c {F1(x), F2(y)} ⋅ f2(x) (2.4)

and

Fx∣y(x∣y) =
∂

∂v
C{F1(x), v}∣v=F2(y)

=
∂

∂F2(y)
C{F1(x), F2(y)}.

(2.5)

2.1.2 Survival Copula

In survival analysis, it is natural to focus on survival functions instead of distribution functions(Burzykowski, 2001). Let X and Y be continuous random variables with joint distribution func-tion F (x, y) = CXY {FX (x), FY (y)}. Let S(x, y) = P (X > x, Y > y) be the corresponding jointsurvival function. Let SX and SY be the marginal survival functions for X and Y , respectively.Then
S(x, y) = SX (x) + SY (y) − 1 + F (x, y)

= SX (x) + SY (y) − 1 + CXY {FX (x), FY (y)}.

A new copula C̃XY ∶ [0, 1]2 → [0, 1] is defined as follows
C̃XY (u, v) = u + v − 1 + CXY (1 − u, 1 − v). (2.6)

Let u = SX (x) and v = SY (y), then
S(x, y) = C̃XY {SX (x), SY (y)}. (2.7)

The new copula C̃XY ∶ [0, 1]2 → [0, 1] is further referred to as the survival copula.
Lemma 2.1.2 (Density corresponding to the survival copula). The joint density of (X,Y ) is the
product of the survival copula density and marginal densities

fXY (x, y) = c̃XY {SX (x), SY (y)} ⋅ fX (x) ⋅ fY (y) (2.8)
where the survival copula density is defined as follows

c̃XY {SX (x), SY (y)} =
∂
2

∂u∂v
C̃XY (u, v)∣u=SX (x),v=SY (y). (2.9)

The proof is given in Appendix A.1.Survival copulas are convenient in that they can simplify expressions that frequently occursin survival analysis. For example, if bothX and Y are right censored, their likelihood contribu-tion follows from the joint survival function S(x, y) which is directly expressed in terms of thesurvival copula and marginal survival functions (Equation 2.7).
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2.1.3 Rotated Copulas

A given parametric copula, c(u, v), can be further extended by rotating the copula with 90, 180or 270 degrees.
• 90°: c90(u, v) = c(1 − v, u)
• 180°: c180(u, v) = c(1 − u, 1 − v)
• 270°: c270(u, v) = c(v, 1 − u)

The survival copula is in fact a 180° rotation copula: c̃(u, v) = c180(u, v). Some parametric copulascan only model positive association, e.g., the Clayton copula. Such parametric copulas can stillbe used to model negative association by allowing rotations.
2.2 Vine Copulas
Vine copulas constitute a flexible class of copula models. In this class, multivariate copulas areconstructedusing only bivariate copulas as building blocks. These building blocks are combinedto a valid multivariate copula by appropriate conditioning (Czado, 2019). The same notation asin Czado (2019) is further used.The starting point for vine copulas is the decomposition of a multivariate joint density func-tion into a product of conditional densities. Let (X1, ..., Xd) be a set of variables with joint dis-tribution function F1,...,d and joint density function f1,...,d. The joint density function can bedecomposed as follows

f1,...,d(x1, ..., xd) = fd∣1,...,d−1(xd∣x1, .., xd−1) ⋅ f1,...,d−1(x1, ..., xd−1)
= ...

= {
d

∏
t=2

ft∣1,...,t−1(xt∣x1, ..., xt−1)} × f1(x1).
(2.10)

Here, f (⋅∣⋅) and F (⋅∣⋅) refer to conditional density and distribution functions, respectively.In what follows, we need the notion of copulas associated with bivariate conditional distribu-
tions (in contrast to bivariate conditional distributions on the copula scale). These are definedas follows (Czado, 2019, p. 88).
Definition 2.2.1 (Copulas associated with bivariate conditional distributions). Let (X1, ..., Xd)
be a set of random variables.

• Let D be a set of indices from {1, ..., d} not including i and j. The copula associated with the
bivariate conditional distribution (Xi, Xj)′ given thatXD = xD is denoted by Cij;D(⋅, ⋅;xD).

• In contrast, the conditional distribution function of (Ui, Uj)′ = (FXi
(Xi), FXj

(Xj))
′
givenUD =

uD is expressed as Cij∣D(⋅, ⋅;uD) with bivariate density function cij∣D(⋅, ⋅;uD).

• For distinct indices i, j andD = {i1, ..., ik} with i < j and i1 < ... < ik we use the abbreviation

ci,j;D = ci,j;D {Fi∣D(xi∣xD), Fj∣D(xj∣xD);xd} (2.11)
where Fi∣D(xi∣xD) is the conditional distribution function of Xi given that XD = xD , and
analogously for Fj∣D(xi∣xD).
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In general, the copula Cij;D(⋅, ⋅;xD) is different from the bivariate distribution function

Cij∣D(⋅, ⋅;xD). Since Cij∣D(⋅, ⋅;xD) is the bivariate distribution function of Ui, Uj∣UD , the cor-responding margins Ui∣UD and Uj∣UD are generally not uniform. This bivariate distributionfunction is thus generally not a copula. Note that Cij;D(⋅, ⋅;xD) is a copula by definition 2.2.1; itthus always has uniform margins.The notation introduced above allows us to further decompose the joint density functionin Equation 2.10 as follows (Czado, 2019, p. 89).
Theorem 2.2.1 (Drawable vine (D-vine) density). Every joint density f1,...,d can be decomposed as

f1,...,d(x1, ..., xd) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

d−1

∏
j=1

d−j

∏
i=1

ci,i+j;(i+1),...,(i+j−1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋅ {

d

∏
k=1

fk(xk)} (2.12)
where we used the abbreviation introduced in Equation 2.11. The distribution associated with this
density decomposition is called a drawable vine (D-vine).

Note that, in the most general case, ci,j;D depends on the conditioning value xD. However,in all that follows, the simplifying assumption is made (Czado, 2019, p. 90). Under this assump-tion, Equation 2.12 changes from a joint density decomposition to a joint density construction.
Definition 2.2.2 (Simplifying assumption for D-vines). If

ci,j;D {Fi∣D(xi∣xD), Fj∣D(xj∣xD);xD} = ci,j;D {Fi∣D(xi∣xD), Fj∣D(xj∣xD)} (2.13)
holds for all xD; and i, j andD are chosen to occur in Equation 2.12, then the corresponding D-vine
distribution is called simplified.

This means that the copula associated with the bivariate conditional distribution does notdepend on the conditioning value(s). The "conditional" dependence structure therefore doesnot depend on the conditioning value(s), although there remains a dependence on the con-ditioning value(s) through the univariate distribution functions Fi∣D and Fj∣D. The simplifyingassumption is nicely illustrated in the multivariate Gaussian copula. In a multivariate normaldistribution
(X1,X2)′ ∼ N ((µ1,µ2)′,Σ) where Σ = (Σ11 Σ12

Σ21 Σ22
) ,

the distribution ofX1 conditional onX2 = a is
X1∣X2 = a ∼ N (µ1 + Σ12Σ

−1
22 (a − µ2),Σ11 − Σ12Σ

−1
22Σ21) .

The covariancematrix of the conditional distribution does not dependon the conditioning value
X2 = a. Put differently, the dependence structure of the conditional distribution does notdepend on the conditioning value X2 = a. This confirms that the simplifying assumption issatisfied for the Gaussian copula.The density of D-vines requires the evaluation of conditional distribution functions. Indeed,the copulas associated with bivariate conditional distributions are the building blocks in the D-vine copula. As can be seen from Equation 2.11, Fi∣D(xi∣xD) and Fj∣D(xj∣xD) are required in theconstruction of cij;D. For the bivariate case, the relation between the bivariate copula and theconditional distribution function is given by Lemma 2.1.1. For extensions to higher dimensions,these conditional distribution functions are obtained through recursion (Czado, 2019, p. 92).
Theorem 2.2.2 (Recursion for conditional distribution functions). Let X be a random variable
and Y be a random vector which have an absolutely continuous joint distribution. Let Yj be a com-
ponent of Y and denote the sub-vector of Y with Yj removed by Y −j . In this case, the conditional
distribution function ofX given Y = y, FX∣y(⋅∣y), satisfies the following recursion

FX∣Y (⋅∣y) =
∂CX,Yj ;Y −j

(FX∣Y −j
(x∣y−j), FYj ∣Y −j

(yj∣y−j))
∂FYj ∣Y −j

(yj∣y−j)
(2.14)
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where CX,Yj ;Y −j

(⋅, ⋅∣y−j) denotes the copula corresponding to (X,Yj)′ given that Y −j = y−j .

2.3 Four-Dimensional D-vine Copula

In this section, a joint model based on a D-vine copula is proposed for (S0, T0, S1, T1)′. Althoughthe D-vine copula is not the only type of vine copula, it is a natural choice to model the vectorof potential outcomes, as further explained.
2.3.1 Vine Copula Model Formulation

The D-vine copula is a natural way to model the distribution of (S0, T0, S1, T1)′, and to derivethe observable bivariate distribution and density functions. The corresponding D-vine copulaconstruction is given in Equation 2.15. The joint density function of (S0, T0, S1, T1)′ is denotedby f1234 = fS0T0S1T1
. The copula densities for the observable bivariate distributions of (S0, T0)′and (S1, T1)′ are denoted by c12 = cS0T0

and c34 = cS1T1
, respectively.

f1234 =f1 ⋅ f2 ⋅ f3 ⋅ f4

⋅ c12 ⋅ c23 ⋅ c34

⋅ c13;2 ⋅ c24;3

⋅ c14;23

(2.15)

The full expressions of the individual components of the D-vine construction in Equation 2.15are given in Table C.1 in Appendix C. For ease of notation, the short-hand notation of Equation2.15 is further used instead of the expressions in Table C.1.
2.3.2 Comments on this Model

This (D-vine copula) construction of the joint density, f1234, is very appealing in the causal-inference framework for several reasons.
Separation of association frommargins. Themarginal distributions are specified completelyseparately from the association structure in this model. The marginal distributions are identi-fiable, whereas the association structure is only partly identifiable.This is as opposed to shared frailty proportional-hazards models where the variance of thefrailty could be interpreted as a measure of association. In such a model, this variance alsodepends on violations of the proportional-hazards assumption and more generally misspecifi-cations of the hazard function. Indeed, if there is no association, but the hazard is misspecified,the variance of the frailty distribution can be far from zero.
Flexible association structure. The association structure is very flexible in a D-vine copula.Any copula function can be used for cij;D. The Gaussian copula can also be represented as aD-vine copula. Let c1234 be the multivariate copula density for f1234. If all six bivariate copuladensities in Equation 2.15 are bivariate Gaussian copula densities, then c1234 is a multivariateGaussian copula density. The D-vine copula is thus a generalization of the multivariate Gaus-sian copula.
Separation in identifiable andunidentifiableparameters. The vector (S0, T0, S1, T1)′ is never(fully) observed, only (S0, T0)′ or (S1, T1)′ can be observed. Therefore, the likelihood emanatingfrom the entire vector of potential outcomes cannot be used directly. Instead, the “observed-data" likelihood emanates from the joint density f1234 marginalized over (S0, T0)′ or (S1, T1)′.Conveniently, these marginalized densities follow immediately from the D-vine construction
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Table 2.1: Observable vectors and their associated distribution functions.

Treatment Obs. Data Distribution Function
Z = 0 (S0, T0)′ FS0,T0

(s0, t0) = CS0,T0
{FS0

(s0), FT0
(t0)}

= C12

Z = 1 (S1, T1)′ FS1,T1
(s1, t1) = CS1,T1

{FS1
(s1), FT1

(t1)}
= C34

Table 2.2: Observable vectors and their associated density functions.
Treatment Obs. Data Density Function
Z = 0 (S0, T0)′ fS0,T0

(s0, t0) = cS0,T0
{FS0

(s0), FT0
(t0)} ⋅fS0

(s0) ⋅ fT0
(t0)

= c12 ⋅ f1 ⋅ f2

Z = 1 (S1, T1)′ fS1,T1
(s1, t1) = cS1,T1

{FS1
(s1), FT1

(t1)} ⋅fS1
(s1) ⋅ fT1

(t1)
= c34 ⋅ f3 ⋅ f4

in Equation 2.15. The corresponding marginalized distribution and density functions are givenrespectively in Table 2.1 and 2.2.Note that thesemarginalized densities do not follow immediately for other vine copula con-structions such as C-vines. This is problematic because the observed-data likelihood is thendetermined via the integral of f1234 over the unobserved outcomes. Generally, the observed-data likelihood then depends on all components of the vine copula construction. As a conse-quence, there is then no separation in identifiable and unidentifiable association parameters.In fact, only the D-vine copula model presented here, and variations thereof where the cop-ula for (S0, T0)′ and (S1, T1)′ is present in the first tree (second line in Equation 2.15), have thisproperty of separation in identifiable and unidentifiable parameters.



Chapter 3

Models

In this chapter, the models for (S0, T0, S1, T1)′ are introduced in more detail. First, a model thatdoes not take into account time orderings is proposed. Next, a similar model which takes intoaccount possible time orderings is proposed.
3.1 No Time Ordering
The models that do not impose time orderings directly follow from the D-vine copula construc-tion given in Equation 2.15. In this section, the likelihood contributions for observations arederived. This is required to conduct maximum likelihood estimation of the model. Next, differ-entmeasures of surrogacy in thismodel are discussed. These quantify the association betweenthe individual causal effects on the surrogate and true endpoint. Finally, a sensitivity analysisis explained to address the lack of identifiability of the joint model.
3.1.1 Likelihood

Observed-data Likelihood

Only (S0, T0)′ or (S1, T1)′ are observed with possible (right) censoring. Therefore, the observed-data likelihood emanates from f1234 marginalized over (S0, T0)′ or (S1, T1)′. The correspondingdistribution and density functions follow directly from the components of the D-vine construc-tion, see Table 2.1 and 2.2. Note that further on, survival copulas will be used as explained inSection 2.1.2. This simplifies the expressions for right censored data.Let the observed vector for patient i be (si, δs,i, ti, δt,i, zi). Let si and ti be the, possibly rightcensored, observed values for the surrogate and true endpoint, respectively. In what follows,independent censoring is always assumed. The corresponding event indicators are δs,i and δt,iwhere δs,i = 1 if the surrogate event is observed and δs,i = 0 otherwise, analogously for δt,i. Thetreatment indicator zi can only take two values: 0 or 1 for control and experimental treatment,respectively. The possible likelihood contributions for patient i with zi = k are as follows.
• if δs,i = δt,i = 1:

Li = fSk,Tk
(si, ti)

= cSk,Tk
{SSk

(si), STk
(ti)} ⋅ fSk

(si) ⋅ fTk
(ti)

(3.1)
The second equality follows from lemma 2.1.2.

21
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• if δs,i = 1 and δt,i = 0:

Li = ∫
∞

ti

fSk,Tk
(si, t)dt

= fSk
(si) ⋅

∂CSk,Tk

∂SSk

{SSk
(si), STk

(ti)}
(3.2)

The full derivation is given in Appendix A.2.
• if δs,i = δt,i = 0:

Li = ∫
∞

ti

∫
∞

si

fSk,Tk
(s, t)dsdt

= SSk,Tk
(si, ti)

= CSk,Tk
{SSk

(si), STk
(ti)}

(3.3)

• if δs,i = 0 and δt,i = 1
1:

Li = ∫
∞

si

fSk,Tk
(s, ti)ds

= fTk
(ti) ⋅

∂CSk,Tk

∂STk

{SSk
(si), STk

(ti)}
(3.4)

The full derivation is entirely analogous to the second case where δs,i = 1 and δt,i = 0.
In this thesis, four parametric copulas are considered: Gaussian, Clayton, Gumbel and Frank.The expressions for these copulas, copula densities and partial derivatives of copulas are givenin Appendix A.3. For the marginal density and survival functions, any (survival) distributioncan be used. In what follows, the Royston-Parmar survival model is used as marginal survivalfunction because of its great flexibility.
Identifiability of Parameters

The likelihood contributions for control patients depend on parameters corresponding to f1,
f2, and c12. Similarly, the likelihood contributions for treated patients depend on parameterscorresponding to f3, f4, and c34. This is also shown in Table 2.1 and 2.2. Because the likelihoodcontributions for control patients have no parameters in common with the likelihood contri-butions for the treated patients, the likelihood can be maximized in the control and treatedgroups separately.The parameters corresponding to c23, c13;2, c24;3, and c14;23 do not appear in the likelihoodcontributions of either group. Indeed, they also do not appear in the observable distributionfunctions and densities in Table 2.1 and 2.2. Given the observed data, they can thus not beestimated. Hence, they are unidentifiable. This issue is addressed by a sensitivity analysis withrespect to the unidentifiable parameters. This is discussed in Section 3.1.3.The interpretation of these unidentifiable components is summarized in Table 3.1. Notethat the simplifying assumption is made (Definition 2.2.2). This means that in Table 3.1, thedependence structure does not dependon the conditioning value(s). Nonetheless, the bivariateconditional distribution generally depends on the conditioning value(s) through the conditionaldistribution functions (see also the remarks following Definition 2.2.2).

1This case implies that the patient remains under observation for the surrogate (e.g. PFS), but not for the trueendpoint (e.g. OS). In some study designs, this may be possible. However, this case should generally be regardedwith suspicion, and it should be checked whether the study design allows for this.
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Table 3.1: Interpretation of the unidentifiable components of the D-vine copula model. The(D-vine) joint density construction is given in Equation 2.15 using short-hand notation. The fullexpressions for the individual components are given in Table C.1 in Appendix C.

Component Interpretation
c23 Dependence structure of (T0, S1)
c13;2 Dependence structure of (S0, S1)∣T0
c24;3 Dependence structure of (T0, T1)∣S1
c14;23 Dependence structure of (S0, T1)∣T0, S1

3.1.2 Measures of Surrogacy

Density of Primary Interest

The ICA is based on the association between the individual causal effects on the surrogate andtrue endpoint, although other definitions for individual causal effects are also possible. Fromthe joint density function, f∆S,∆T (δs, δt), any associationmeasure can in principle be computed.This joint density function follows from applying the deconvolution formula for differencestwice.
Definition 3.1.1 (Deconvolution formula for differences). The density of Z = Y −X follows from
the joint density of (X,Y )′ as follows

fZ (z) = ∫
+∞

−∞
fXY (x, x + z)dx. (3.5)

The joint density function can thus be obtained by calculating following double integral. Theconstruction of f1234 = fS0,T0,S1,T1
was discussed in the previous chapter.

f∆S,∆T (δs, δt) =∫
∞

0
∫

∞

0
f1234(s, t, s + δs, t + δt)dsdt (3.6)

This is, however, a complex expressionwith generally no closed-form solution. Further on, itis discussed how this is solved by numerical approximation. In some special cases, this expres-sion has a closed-form solution, e.g., if the joint distribution of (S0, T0, S1, T1)′ is multivariatenormal. This property has been used to derive closed-form expressions for different measuresof surrogacy when both endpoints are normally distributed (Alonso et al., 2015; Van der Elstet al., 2021a; Van der Elst et al., 2019).It is nevertheless straightforward to sample from f∆S,∆T (δs, δt) by sampling (S0, T0, S1, T1)from f1234 and computing the individual causal effects. The rvinecopulib R-package providesflexible functions to sample efficiently from vine copulas (Nagler & Vatter, 2022). Therefore, theICA is further computed by sampling.
Individual Causal Association: Kendall’s τ and Spearman’s ρ

Kendall’s τ and Spearman’s ρ are used to quantify the association between∆S, and∆T . Theyare defined as follows.
Definition 3.1.2 (Spearman’s ρ). Consider three i.i.d. realisations of (X,Y )′ denoted by (X1, Y1)′,
(X2, Y2)′ and (X3, Y3)′. Spearman’s ρ is then defined as

ρs = 3 [P {(X1 −X2)(Y1 − Y3) > 0} − P {(X1 −X2)(Y1 − Y3)}] . (3.7)
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Definition 3.1.3 (Kendall’s τ ). Consider two i.i.d. realisations of (X,Y )′ denoted by (X1, Y1)′ and
(X2, Y2)′. Kendall’s τ is then defined as

τ = P {(X1 −X2)(Y1 − Y2) > 0} − P {(X1 −X2)(Y1 − Y2)} . (3.8)
Kendall’s τ and Spearman’s ρ lie in [−1, 1] and are equal to zero whenX and Y are indepen-dent. Both Kendall’s τ and Spearman’s ρ are also independent from the marginal distributionsofX and Y . These measures thus only depend on the copula CXY .As noted before, the density of (∆S,∆T )′ is generally intractable to obtain. Therefore,Kendall’s τ and Spearman’s ρ are computed by aMonte Carlo procedure instead of analytically.In order to compute any measure of association, all parameters of f1234 need to be known (orestimated). As explained before, not all parameters are identifiable. This is addressed in a sen-sitivity analysis by sampling the unidentifiable parameters, discussed in Section 3.1.3. For now,assume that in the following procedure all parameters of f1234 are known (or estimated). Theprocedure to compute Kendall’s τ and Spearman’s ρ then proceeds as follows:
1. Sample the copula data vector, (US0

, UT0
, US1

, UT1
)′, from the copula C1234 of f1234 Ntimes. This is implemented in the rvinecop function from the rvinecopula R-package(Nagler & Vatter, 2022).

2. The copula data from the previous step are transformed to the appropriate scale by theprobability integral transform with the corresponding marginal distribution functions:
(S0, T0, S1, T1)′ = (F −1

S0
(US0

), F −1
T0

(UT0
), F −1

S1
(US1

), F −1
T1

(UT1
))′ .

The data thus obtained are i.i.d. samples from f1234.
3. From these sampled vectors, compute the individual causal effects

(∆S,∆T )′ = (S1 − S0, T1 − T0)′.

4. Compute the sample estimates for τ and ρs. If N is sufficiently large, these estimatesapproximate the true values.
Individual Causal Association: Information-Theoretic Approach

A third measure for the ICA is based on information theory. It is the squared informational co-efficient of correlation (Joe, 1989; Linfoot, 1957), further referred to asR2
h. This associationmea-sure was defined previously in the Gaussian-Gaussian setting, Equation 1.25. As for Kendall’s τand Spearman’s ρ, R2

h is computed numerically through a slightly different Monte Carlo proce-dure:
1. Sample the copula data vector, (US0

, UT0
, US1

, UT1
)′, from the copula C1234 of f1234 Ntimes. This is implemented in the rvinecop function from the rvinecopula R-package(Nagler & Vatter, 2022).

2. The copula data from the previous step are transformed to the appropriate scale by theprobability integral transform with the corresponding marginal distribution functions:
(S0, T0, S1, T1)′ = (F −1

S0
(US0

), F −1
T0

(UT0
), F −1

S1
(US1

), F −1
T1

(UT1
))′ .

The data thus obtained are an i.i.d. sample from f1234.
3. From these sampled vectors, compute the individual causal effects

(∆S,∆T )′ = (S1 − S0, T1 − T0)′.



3.1. NO TIME ORDERING 25
4. Transform the sampled (∆S,∆T )′ to pseudo-copula data (Czado, 2019). The marginaldistribution functions are approximated by the empirical distribution functions: F̂∆S and
F̂∆T .

(U∆S , U∆T )′ = (F̂∆S(∆S), F̂∆T (∆T ))
′

5. Estimate the copula density with a kernel estimator with the kdecop function from the
kdecopula R-package (Nagler, 2018).

6. Given the estimated copula density from the previous step, the mutual information iscomputed through quasi Monte Carlo integration with the dep_measures function fromthe kdecopula R-package (Nagler, 2018).
In principle the transformation from (∆S,∆T )′ to (U∆S , U∆T )′ is not necessary. Becauseefficient functions are available in R to compute the mutual information for stochastic vectorswith uniformmargins, the samples are transformed to uniform scales. The probability integraltransform is a monotone transformation and the mutual information is invariant to monotonetransformations. Thus, the transformation to pseudo-copula data does not change the mutualinformation.Note that three choices influence the accuracy of this procedure. First, a larger N will in-crease the accuracy. AsN increases, the copula density will bemore precisely estimated in step5. Second, the choice of the kernel estimator also influences the accuracy (Nagler, 2018). Third,the number of quasi Monte Carlo samples in step 6 determines how precisely the mutual in-formation is computed for the copula density estimate. In all further analyses presented in thisthesis, the number of Monte Carlo and quasi Monte Carlo samples (step 1 and 6, respectively)are set equal to each other.

Accuracy

The accuracy of these procedures to compute Spearman’s ρ, Kendall’s τ , and R2
h is studiedthrough simulations in Appendix D. The "true" value is considered to be the value that is com-puted with 100.000 (quasi) Monte Carlo samples. The accuracy of the procedure with fewersamples is quantified in terms of the standard deviation based on 50 replications. In consider-ation of the uncertainty due to the unidentifiability of some parameters, a standard deviationof 0.01 is deemed acceptable. This precision is reached with N = 2000 (quasi) Monte Carlosamples.

3.1.3 Sensitivity Analysis

The different measures for the ICA, as defined above, can be computed if all parameters in
f1234 are known or estimated. However, not all parameters are identifiable. This is resolvedby fixing the identifiable parameters at their estimated values and sampling the unidentifiableparameters from a certain distribution that is compatible with the observed data. For eachsample of unidentifiable parameters, all parameters of f1234 are “known", and the ICA can thusbe computed. First, it is discussed how the unidentifiable vine copula parameters can be sam-pled. Second, it is discussed how additional assumptions regarding unidentifiable parameterscan be incorporated into the sensitivity analysis.
Vine Copula Parameters

A distribution has to be specified to sample the unidentifiable copula parameters from. If theunidentifiable parameters are defined on an interval with finite limits a and b, then a straightfor-ward choice is to sample the parameters fromU (a, b). This is for example the case for Gaussiancopulas where the correlation parameters lie in [−1, 1]. For other copulas, one or two of the
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limits might be infinite. A different approach is needed there. The approach that is presentedhere, is applicable for 1 parameter copulas where all copulas of the D-vine decomposition areof the same parametric form. This can easily be extended to the case where the copulas of theD-vine decomposition are not all of the same parametric form.
Sampling vine copula parameters. The unidentifiable association parameters, in terms ofSpearman’s ρ, are sampled from a uniform distribution: ρ..;. ∼ U (−1, 1). The sampled parame-ters on Spearman’s ρ scale are then transformed to the scale of the original copula parameter
θ..;.. If the unidentifiable copulas allow for positive and negative associations, this approach suf-fices. However, some copulas only allow for positive association, e.g., the Clayton copula where
ρs is restricted to [0, 1]. This entails that we implicitly assume all unidentifiable associations tobe positive in the sensitivity analysis. This is not warranted in general and frequently contra-dictory to the goal of the sensitivity analysis. The sensitivity analysis is intended to explore the(range of) values for the ICA that are compatible with the observed data. Copulas such as theClayton copula can still be used in the sensitivity analysis with a slight modification. If the Clay-ton copula is rotated by 90 or 270 degrees, ρs is restricted to [−1, 0] (see also Section 2.1.3). Inaddition to sampling the unidentifiable copula parameters from ρ⋅⋅;⋅ ∼ U (0, 1), rotation param-eters are sampled from a uniform discrete distribution with four elements (0, 90, 180, 270).
This approach generates samples for the unidentifiable parameters that are compatible withthe (estimated) identifiable parameters. One may wish to incorporate additional assumptionsin the sensitivity analysis. We could impose restrictions on the unidentifiable copula param-eters. However, these parameters have an obscure interpretation as all of them, except one,relate to copulas associated with conditional bivariate distributions. Next, it is discussed how"interpretable" restrictions can be imposed on the marginal association structure.
Additional Assumptions

An attractive approach for incorporating assumptions on unidentifiable association parame-ters is to consider the marginal unidentifiable association parameters, instead of the unidenti-fiable (conditional) copula parameters. However, the joint density is defined in terms of (con-ditional) copula parameters, and the relation with the marginal association parameters is ingeneral not clear. As before, an approach based on sampling is proposed here.For each vector of sampledunidentifiable parameters f1234 is known. Themarginal Kendall’s
τ ’s are then computed by sampling. Next, only the sampled sets of unidentifiable parame-ters are retained that satisfy the restrictions on the marginal association parameters, i.e., themarginal Kendall’s τ ’s. Two sets of restrictions are proposed.
Monotonicity. All (unidentifiable) marginal associations are positive. Hence, every samplewhere at least one of the marginal Kendall’s τ ’s is negative, is discarded. This condition is writ-ten formally as follows:

min(τS0,S1
, τT0,T1

, τS0,T1
, τS1,T0

) > 0 (3.9)
where τ⋅,⋅ refers to the marginal Kendall’s τ between the respective potential outcomes.
Weaker Cross-Association. This restriction says that the association between potential out-comes across treatment groups is weaker than within treatment groups. This condition is writ-ten formally as follows:

min(τS0,T0
, τS1,T1

) > max(τS0,T1
, τS1,T0

). (3.10)

These assumptions are discussed extensively in Section 4.2.2 in relation to the case study.
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3.2 Time Ordering
The models presented above do not incorporate time orderings. This is not very problematicif the probability mass of the (fitted) joint distribution is small in the region that does not ad-here to these time orderings. This is not guaranteed by the model proposed in the previoussection. Therefore, a model is needed that explicitly takes into account the time orderings inthe data. The approach proposed here is appropriate for a surrogate-true endpoint pair withthe following time orderings: S0 ≤ T0, S1 ≤ T1 where P (S0 = T0) > 0 and P (S1 = T1) > 0. PFS issuch a surrogate. PFS is always smaller than or equal to OS. Moreover, there is a proportion ofpatients that die without progression such that P (S0 = T0) > 0 and P (S1 = T1) > 0.The general approach in this section is to model the surrogate indirectly. A joint modelfor time-to-progression (TTP) and OS is proposed where TTP is dependently censored by OS.From this joint model for TTP and OS, the joint distribution of PFS and OS is derived. Based onthe distribution of PFS and OS, the measures of surrogacy are computed. Of course, this alsoapplies to surrogates other than PFS and TTP that are defined similarly.
3.2.1 Semi-Competing Risks

The joint modelling of variables such as TTP and OS has been extensively described and dis-cussed in literature. This data structure has been termed semi-competing risks, though it hasbeen described earlier by an illness-death model (Fine, Jiang, & Chappell, 2001).Let S be the time to the surrogate endpoint2, T the time to the true endpoint3, and C thetime to independent censoring. As before, Z is the binary treatment indicator where Z = 0/1.In what follows, independent censoring is always assumed.
In the semi-competing risks framework, the observed data consist of (Xi, δ

X
i , Yi, δ

Y
i , Zi) forpatient i = 1, ..., n. The observed data are a random sample from (X, δX , Y, δY , Z) where

X = min(S, T, C), δX = I(X = S), Y = min(T,C) and δY = I(Y = T ). The particularity ofthe semi-competing risks framework is an asymmetry which is not present in the competingrisks framework. Indeed, S is dependently censored by the minimum of T and C , whereas T is
independently censored by C. This entails that the joint distribution of (S, T ) is only observableon the upper wedge, i.e., the regionwhere S ≤ T . The notation in terms ofX and Y is, however,not further used.
3.2.2 Likelihood

Observable Likelihood

Let the observed vector for patient i be (si, δs,i, ti, δt,i, zi), where the elements are defined asin Section 3.1.1. The only difference is that S is now dependently censored by T . In essence, Snow refers TTP instead of PFS. This entails that if the patient dies before the surrogate eventis observed, δs,i = 0; whereas, in the previous section, the following would hold in that case:
δs,i = 1.Note that in this framework, a latent value for S is assumed if S > T . As noted before,the joint distribution is only observable for S ≤ T . The fitted joint distribution for S > T isthus unverifiable. However, this is not problematic if only "verifiable quantities" are of interest,more specifically, if only quantities derived from the fitted joint distribution which are verifiablewith the observed data are used.Let Tk be the time to the potential true endpoint event (e.g., death) for Z = k, Sk the timeto the potential surrogate event (e.g., progression), and S∗

k = min(Sk, Tk) the potential time tothe composite event (e.g., PFS). Under independent censoring, the marginal survival function
2This is often referred to as the non-terminal event in the semi-competing risks literature.3This is often referred to as the terminal event in the semi-competing risks literature.
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for Tk can be derived from the fitted joint model. In addition, the marginal survival function for
S
∗
k is observable and can be derived from the joint distribution of (Sk, Tk) as follows:

P (S∗
k > x) = P (min(Sk, Tk) > x)

= P (Sk > x, Tk > x). (3.11)
Finally, the joint survival function of (S∗

k , Tk) is also observable.
P (S∗

k > x, Tk > t) = P (min(Sk, Tk) > x, Tk > t)
= P (Sk > x, Tk > x, Tk > t)
= P (Sk > x, Tk > max(x, t)).

(3.12)

Consistent with the definitions for PFS, TTP and OS, let S∗
= PFS, S = TTP and T =

OS. Then it is clear that the model is fitted using TTP and OS, but the joint distribution for
(PFS,OS) can be derived from this model, as shown by Equation 3.12. Moreover, this latterjoint distribution is used in deriving surrogacy measures. The latent variable specification isnot problematic for these surrogacy analyses as the joint survival function in Equation 3.12 isobservable.
Identifiability of Parameters

Note that in this framework, the bivariate distributions for (PFS,OS) that derive from the fittedmodels do not rely on unverifiable assumptions, even though latent variables are used. It wouldbe a mistake, however, to directly interpret the fitted association measures between TTP and
OS. For example, one should not interpret the Kendall’s τ derived from the estimated copulaparameters of c12 and c34 in Equation 2.15. Indeed, such association measures rely on theassumption that the specification of the model is correct for S > T . This is unverifiable, and Sis not well-defined for S > T . Lee et al. (2015) set S equal to ∞ in that case to emphasize thatit is not well-defined. Using that notation would complicate the model specification, but wouldnot alter the observable part of the model. That notation is therefore not used.As before, the association between potential outcomes across treatment groups still relieson unverifiable assumptions. This is again addressed by a sensitivity analysis. The same com-ments as in Section 3.1.1 still hold here.
3.2.3 Measures of Surrogacy

All further comments made in Section 3.1.2 and 3.1.3 also apply for the models with time order-ings. The only difference is that the sampling procedure is slightly different as detailed next.
Sampling

One can sample from f1234 to obtain a sample of (S∗
0 , T0, S

∗
1 , T1)′ as follows:

1. Sample the copula data vector, (US0
, UT0

, US1
, UT1

)′, from the copula C1234 of f1234. This isimplemented in the rvinecop function from the rvinecopula R-package (Nagler & Vatter,2022).
2. These copula data from the previous step are transformed to the appropriate scale by theprobability integral transform with the corresponding marginal distribution functions:

(S0, T0, S1, T1)′ = (F −1
S0

(US0
), F −1

T0
(UT0

), F −1
S1

(US1
), F −1

T1
(UT1

))′ .

The data thus obtained is an i.i.d. sample from f1234.
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3. Compute

(S∗
0 , T0, S

∗
1 , T1)′ = (min(S0, T0), T0,min(S1, T1), T1)′ .

Note that this model formulation is somewhat like random-effects models. Such modelsare constructed by assuming a latent random-effect distribution which is in itself not observ-able. However, the "consequences" of the random effects are observable as they lead to anobservable marginal distribution which is the target of inference. In our approach, a latentvalue for Sk is assumed if Sk > Tk which is not observable. However, the “consequences" areobservable as it leads to an observable distribution for (S∗
k , Tk)

′, which is the target of inference.In addition, simulating data from a random-effects model is similar to simulating data from ourmodel. One can sample from a random-effects model by first sampling the random effects andthen sampling from the conditional distributions given the random effects. This yields a sam-ple from the observable marginal distribution. In our approach, we first sample (S0, T0, S1, T1)′.Then we derive (S∗
0 , T0, S

∗
1 , T1)′. Note that the second step is deterministic in our approach, butnot when sampling from a random-effects model.

3.2.4 Sensitivity Analysis

The sensitivity analysis proceeds in the same way as for the model without time orderings.However, extra care is needed with respect to the additional assumptions. In Section 3.1.3,assumptions were proposed for the marginal association parameters in terms of Kendall’s τ .For themodel with time orderings, thesemarginal association parameters are defined in termsof S∗
k and Tk and are computed by sampling as described above. These parameters are not thesame as the Kendall’s τ parameters corresponding to c12 and c34. Indeed, the latter are definedon the (latent) scale of Sk, but not on the scale of S∗

k .
3.3 Further Remarks
The models without time orderings are simpler than the models of this section. It is howeverdifficult to compare the fit ofmodels of this sectionwithmodels without time orderings. The re-sponse variable is defined differently, so themaximized likelihoods cannot be compared acrossthese two types of models. In any case, if there exist time orderings in the data, models thattake these restrictions into account aremore appropriate. Themodel with time orderings couldstill be preferred because of its relative simplicity. Moreover, even if the model of this sectionprovides a much better fit, the conclusions with regards to surrogacy might be the same asfor the simpler model. A very compelling reason to prefer the models with time orderings, isthat additional restrictions (i.e., the time orderings) can reduce the uncertainty in the sensitivityanalysis.



Chapter 4

Case Study: Advanced Ovarian Cancer

The methods introduced in the previous sections are applied to a data set, further referred toas the ovarian cancer data.
4.1 Data Description
The ovarian cancer data combine the data that were collected in four double-blind random-ized clinical trials in advanced ovarian cancer (Omura et al., 1991). In these trials, the objectivewas to examine the efficacy of cyclophosphamide plus cisplatin (CP) versus cyclophosphamideplus adriamycin plus cisplatin (CAP) to treat advanced ovarian cancer. The four individual trialsfailed to show a significant effect of CAP on survival. However, a meta-analysis of the pooleddata showed a significant survival benefit. These data have been used previously in the meta-analytic framework, where center was used as unit of analysis (Buyse et al., 2000). In whatfollows, all data are pooled and the hierarchy originating from the four trials is ignored.The ovarian cancer data contain the PFS andOS for 1192 patients. These data are freely avail-able through the Surrogate R-package (Van der Elst et al., 2021b). One patient is excluded fromfurther analysis because the recorded PFS is larger than the recorded OS. All further analysesare thus based on 1191 observations.
4.2 Surrogacy Analysis

4.2.1 Model Fitting

The four copula models described previously (Gaussian, Frank, Gumbel, Clayton) are fittedto these data through maximizing the likelihood as detailed in Section 3.1.1. For illustrativepurposes, both the models with and without time orderings are considered, although the for-mer should be preferred because it makes full use of the data structure. The correspondingmarginal distribution functions are modelled with a Royston-Parmar model with three internalknots. More details on this survival model are given in Appendix B. The fitted models are sum-marized in Table 4.1 by the correspondingmaximized log-likelihoods togetherwith the Kendall’s
τ association measures corresponding to the fitted copulas, c12 and c34. The best fitting mod-els, with and without time orderings, are the Clayton copula models. The further surrogacyanalysis is therefore based on those two fitted models.The goodness-of-fit is checked for both Clayton copula models. In Appendix E.1, the KMestimates are plotted with the corresponding model-based estimates of the survival functions.The model-based estimates match the KM estimates closely which indicates that the model fitis good. Moreover, the estimated strength of association is similar across different choices forthe identifiable copulas (τ12 and τ34 in Table 4.1).
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Table 4.1: Fitted models with margins based on the Royston-Parmar survival model with 3internal knots. τ12 and τ34 are the Kendall’s τ measures corresponding to the fittedidentifiable copulas, c12 and c34. Note that the identifiable copulas are survival copulas. l(⋅; θ̂):maximized log-likelihood.

Model l(⋅; θ̂) τ12 τ34Ordering Copula

No Ordering
Gaussian -3110.87 0.77 0.83Clayton -3063.41 0.79 0.86Frank -3067.00 0.80 0.85Gumbel -3068.44 0.79 0.84

Ordering
Gaussian -3223.76 0.72 0.79Clayton -3150.92 0.75 0.81Frank -3171.03 0.75 0.85Gumbel -3209.78 0.74 0.80

Table 4.2: Results of the sensitivity analysis for R2
h in the ovarian cancer data. Every row isbased on n replications. M: monotonicity assumption, W-CA: weaker cross-associationassumption.

Ordering Assumptions n Range of R2
h [p1, p99] median

Ordering
- 5000 [0.745, 0.992] [0.842, 0.991] 0.981M 2234 [0.745, 0.991] [0.817, 0.990] 0.969W-CA 4785 [0.813, 0.992] [0.882, 0.991] 0.981M + W-CA 2107 [0.813, 0.991] [0.857, 0.990] 0.971

No Ordering
- 5000 [0.662, 0.992] [0.782, 0.990] 0.975M 2210 [0.662, 0.990] [0.744, 0.987] 0.958W-CA 4661 [0.701, 0.992] [0.833, 0.990] 0.975M + W-CA 2037 [0.701, 0.990] [0.797, 0.987] 0.961

4.2.2 Sensitivity Analysis

The results of the sensitivity analyses are presented here forR2
h. Only Clayton copulas as unob-servable copulas are further considered, with rotations of 0, 90, 180 and 270 degrees. In Table4.2, the results of the sensitivity analyses are given for all sets of assumptions and restrictionsdiscussed previously. The corresponding frequency distributions are visualized in Figure 4.1.Irrespective of whether time orderings are taken into account and any additional assumptions,the results of the sensitivity analyses indicate that R2

h is large in all scenarios compatible withthe observed data.Similar results are obtained when the ICA is quantified with Spearman’s ρ or Kendall’s τ ,as shown in Appendix E.2. However, the lower limits for the ICA are considerably smaller forSpearman’s ρ and Kendall’s τ . These are different measures of association, so differences areexpected, although the magnitude of these differences warrants some further consideration.When the follow-up stops at about 14 years, a considerable number of patients have not experi-enced any event (see plots in Appendix E.1). The fitted survival functions beyond the end of thestudy are thus merely based on extrapolation. Moreover, the fitted survival functions becomevery flat after about 10 years. According to the fitted models, a considerable proportion of pa-tients will therefore have a very large time-to-event. This also implies that very large individualcausal effects are possible. This is problematic as it is mostly based on extrapolation beyond
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the end of the study. The rank-based measures of association are not sensitive to these verylarge values, but the R2

h is possibly much more sensitive. The results for R2
h should thus beinterpreted with extra care and ideally together with the rank-based measures.The results of this case study also show that it is beneficial to take the time orderings ex-plicitly into account. Indeed, looking at Table 4.2, one can see that the range is consistentlyshifted upwards when time orderings are taken into account, comparing the ranges under cor-responding assumptions. This equivalently holds for the percentiles and medians in Table 4.2.The additional assumptions can also have a considerable influence on the results. Assumingmonotonicity has practically no effect on the results. While assuming weaker cross-association,with or without monotonicity, restricts the ranges considerably. These interpretations can alsobe derived from the histograms in Figure 4.1, though it should be noted that these histogramscannot be interpreted as posterior distributions. They rather represent the range of values for

R
2
h that are compatible with the observed data.It is judged that both the monotonicity and weaker cross-association assumptions are real-istic in this case study, as explained next.

Monotonicity in this case study means, roughly speaking, that patients that do better thanaverage on CP (Z = 0), are also expected to do better than average on CAP (Z = 1) for both PFSand OS. There are certainly situations where the monotonicity assumption would not be well-justified. For example, consider a trial where chemotherapy is compared with immunotherapy.Also assume that there exists a genetic marker that is associated with prognosis; if the markeris present, prognosis is worse. In addition, if this marker is present, the immunotherapy will bevery effective, otherwise the immunotherapy is not effective. The effectiveness of chemother-apy does not depend on anymarker. In this case, a patient with a worse than average outcomeon chemotherapy is more likely to have this marker. Consequently, this patient will tend to dobetter than average on immunotherapy. There is thus a negative association in this example,violating the monotonicity assumption.
Weaker cross-association is a less clear-cut assumption thanmonotonicity. It can however bejustifiedmore generally thanmonotonicity. We assume that a potential outcome is determinedby two components in addition to inherent variability: (i) prognostic factors and (ii) treatment-
specific predictive factors. The prognostic factors induce a positive association between poten-tial outcomes across andwithin treatments. Indeed, prognostic factors are expected to affect allpotential outcomes in the same direction. They could be represented as a shared-frailty termfor the four potential outcomes. Treatment-specific predictive factors only affect the potentialoutcomes under the same treatment. As in the immunotherapy example above, in particulardisease (sub)types, some treatments may work better. This component causes a dilution ofthe association across treatments, but not within treatments. This component could be rep-resented as a treatment specific shared-frailty term. Hence, if this component is present, onewould expect the weaker cross-association assumption to hold.
Justifying these assumptions should be done in agreement with field experts. The justifica-tion of these assumptions for the ovarian cancer data was not done together with field expertsand should as such be read.Under these assumptions and taking time orderings into account, the fourth row of Table4.2 contains the most relevant results. There, the R2

h is bounded between 0.813 and 0.991.The corresponding Spearman’s ρ is bounded between 0.545 and 0.996, and the correspondingKendall’s τ is bounded between 0.389 and 0.956 (Table E.2 and E.1 in Appendix E). These resultsindicate that the ICA is strong across "all realities" compatible with the observed data.
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(a) With time orderings

(b) Without time orderings
Figure 4.1: Frequency distribution of R2

h in the sensitivity analysis for different assumptionsregarding the unidentifiable associations. Each histogram contains n replications.



4.2. SURROGACY ANALYSIS 34

Figure 4.2: Plot of n = 5000 replications of the sensitivity analysis with time orderings takeninto account without additional assumptions. The vertical line is at τ = 0.816 which is theminimum of τS∗
0,T0

and τS∗
1,T1

. Note that τS∗
0,T0

and τS∗
1,T1

are not the values as reported in
Table 4.1. Rather, these values represent the association between S∗

k and Tk as detailed inSection 3.2.3. The points corresponding to replications where the weaker cross-associationassumption is satisfied, are colored blue.
4.2.3 Further Exploration

In the previous subsection, an all-or-nothing approach is followed regarding additional assump-tions in the sensitivity analysis. Alternatively, one can make no additional assumptions, but ex-plore how the ICA varies with varying values of unidentifiable quantities. In this subsection, wefurther explore how the ICA varies with the average cross-association
τCA =

τS∗
0,T1

+ τS∗
1,T0

2
. (4.1)

for the model that takes the time orderings into account. In Figure 4.2, n = 5000 replica-tions of the sensitivity analysis without additional assumptions are plotted. The average cross-association is plotted against the R2
h. There is a relationship between both. Indeed, for a neg-ative average cross-association, R2
h tends to be very strong. Conversely, the R2

h tends to beweaker for a positive cross-association. The vertical line indicates the minimum of τS∗
0,T0

and
τS∗

1,T1
. Under the weaker cross-association assumption, the average cross-association shouldbe smaller than this value. In fact, the weaker cross-association assumption is slightly more re-strictive than this because both τS0,T1

and τS1,T0
should be smaller than min(τS0,T0

, τS1,T1
), notonly the average τCA.Using this plot, one could judge which values are plausible for the ICA. This introduces anextra degree of flexibility at the cost of increased subjectivity. Figure 4.2 also shows why inter-



4.3. CONCLUSION 35
preting the shapes of the histograms in Figure 4.1 might bemisleading. Onemight judge valuesof τCA close to zero as very unlikely, but still possible. Thus, the correspondingR2

h values shouldbe included in the results of the sensitivity analysis. However, as is clear from Figure 4.2, mostreplications lie in that region. This does not mean that such values are more likely than thosein the sparser regions of Figure 4.2. Hence, these histograms should not be interpreted asreflecting the "posterior uncertainty".From Figure 4.2, one can also deduce that for τCA close to 1, theR2
h might become too smallfor the surrogate to be useful. However, bounds obtained this way are of little relevance if theyare based on underlying associations that are impossible. In most cases, even relatively weakassumptions on τCA could provide useful bounds. In this line of thought, onemight prespecify aminimum value for the ICA for the surrogate to be deemed valid. Then, the restrictions neededon τCA to reach this lower bound can be determined. One can then judge how plausible itis that the putative surrogate is a valid surrogate, based on the plausibility of the "required"restrictions thus found.

4.2.4 Number of Replications

The data were reanalysed in a sensitivity analysis with n = 100, 000 replications to examinehow close the previous 5000 replications would be to the lower and upper bounds. The re-analysis only considered Spearman’s ρ because of computational limitations. These additionalresults are reported in Table E.1 in Appendix E. The upper bounds for 5000 replications are veryclose to those for 100,000 replications, whereas there are somedifferences between the respec-tive lower bounds. The lower bound for 5000 replications (no assumptions or monotonicity) is0.447, while the respective lower bound for 100.000 replications is 0.379. However, when theadditional weaker cross-association assumption ismade, the difference isminimal. Indeed, thelower bound for 5000 replications (weaker cross-association, with or without monotonicity) is0.545, while the respective lower bound for 100.000 replications is 0.528
4.3 Conclusion
There is convincing evidence that PFS is a valid surrogate for OS for the treatment of advancedovarian cancer with CP and CAP. Assuming monotonicity and weaker cross-association, theindividual causal association is strong across all scenarios compatible with the observed data,regardless of the measure used to quantify the association.



Discussion and Conclusion

Discussion

Assumptions Underlying Proposed Methodology

The explicit and implicit assumptions underlying the causal-inference framework andmethodspresented in this thesis, are discussed in some detail here.In the definition of the potential outcomes, SUTVA is assumed. This is a standard assump-tion underlying methods that use Rubin’s causal model. This assumption consists of two parts:(i) no interference and (ii) no hidden variations of treatments (Imbens & Rubin, 2015). The no in-
terference part of SUTVA requires that the treatment applied to one patient does not affect theoutcome for other patients. Inmost clinical trials, this holds. But there are some settings wherethis might be problematic, e.g., large vaccine trials where vaccination of one patient indirectlyprotects other patients. The no hidden variations of treatments part of SUTVA requires that anindividual receiving a specific treatment level cannot receive different forms of that treatment.In clinical trials, the treatment formulation and administration are strictly controlled, so thispart of SUTVA generally holds in clinical trials. Without SUTVA, the potential outcomes are notwell defined, and the causal-inference approach cannot be applied as presented in this thesis.The causal-inference approach also implicitly assumes a non-zero variability in the individ-ual causal effects in the population. At first sight, this implicit assumption may seem trivial.Nonetheless, some statistical methods "rely" on a zero variability in the individual causal effects.For example, the sharp null hypothesis of no treatment effect states that for each patient in theexperiment both values of the potential outcomes are identical. Although this sharp null hy-pothesis is for many applications too strong, it is important to realize that a non-zero variabilityin the individual causal effects a realistic, but not a trivial assumption. In principle, in a trialwith a zero average treatment effect, there can still be a non-zero variability in the individualcausal effects if both treatments have distinct effects which cancel out on average. The meth-ods presented in this thesis can thus still be applied in such “negative" trials. However, if bothtreatments have exactly the same effect on each patient, then the sharp null hypothesis of notreatment effect is satisfied. In that case, the methods presented in this thesis are no longervalid as there is no variability in the individual causal effects.The implicit assumption of a non-zero variability in the individual causal effects in the causal-inference framework has an analog in themeta-analytic framework. Indeed, it is required in thelatter framework that there is variability in the trial-level treatment effects. Without variabilityin the trial-level treatment effects on the surrogate, αi, a prediction function β̂0 = f (α0) cannotbe estimated (for values other than αi).The D-vine density is in general a density decomposition. Any joint density can be decom-posed in this way. Using D-vines thus does not necessarily constitute an assumption. However,in the models presented in this thesis, the simplifying assumption for D-vines is made. In thatcase, the D-vine constitutes a joint density construction, but not in general a joint density decom-
position. The sensitivity analysis is thus restricted in the sense that the measure of surrogacyis explored across joint densities compatible with the observed data where the simplifying as-sumption holds. Moreover, in the case study, only Clayton copulas (and rotations thereof) were
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considered as the unidentifiable copulas. Arguably, this set of densities is still broad enoughfor the results of the sensitivity analysis to be useful.
Limitations

In this thesis, the ICA was quantified using three measures (R2
h, Spearman’s ρ and Kendall’s

τ ) with a focus on R2
h. It is for any of these measures difficult to provide general guidelinesregarding the magnitude that is sufficient for a surrogate to be valid. The analysis presentedin this thesis can be considered as a quantitative component complementary to other clinicaland biological arguments in evaluating a surrogate.Evaluating a surrogate in the single-trial setting comeswith inherent limitations. Indeed, theresults of the validation exercise are, strictly speaking, only valid in the well-defined populationof the trial in which the validation exercise is carried out. This is of limited use as the goal ofevaluating surrogates is usually to justify their use in new clinical trials. To justify such an ex-trapolation, clinical and biological arguments are required. This could be problematic becausethe therapies used in new trials are frequently not yet well-studied, and unexpected things canhappen.The ICA in the causal-inference framework is an "individual-level analog" of the trial-levelsurrogacy in the meta-analytic framework, but they still represent distinct measures of sur-rogacy that can lead to different conclusions. Trial-level surrogacy quantifies how well thetrial-level treatment effect on the true endpoint can be predicted in a new trial based on theobserved treatment effect on the surrogate endpoint. This formulation corresponds exactlyto the goal of surrogate endpoints. In the causal-inference framework, trial-level treatment ef-fects are replacedwith individual causal effects. The surrogacymeasure in the causal-inferenceframework thus quantifies howwell the individual causal effect on the true endpoint can be pre-dicted based on the (non-observable) individual causal effect on the surrogate endpoint. Thisis not directly relevant to the use of surrogates in practice. It is only relevant if one believes thatgood prediction at the level of individual causal effects extends to trial-level effects. In principle,accurate predictions can be possible in one level, but not the other.As the discussion above indicates, the causal-inference framework should not be regardedas a substitute for the meta-analytic framework, but rather a complementary framework. In-deed, the meta-analytic framework is considered as the gold standard for evaluating surrogateendpoints. Still, in the early stages of drug development, limited data are available, possiblyonly from a single trial. In principle, the meta-analytic approach could still be considered byusing e.g. centers as units of analysis, instead of trials. Such alternative clustering units are,however, not always available. In those cases, the causal-inference framework can be consid-ered while still acknowledging its limitations.

Future Research

The causal-inference framework to surrogacy evaluation is an approach that only relativelyrecently gained more attention. It is therefore not as well-developed as the well-establishedmeta-analytic approach which was proposed more than 20 years ago. Consequently, there arestill many possibilities for future research in the causal-inference framework.Many types of surrogate and true endpoint combinations have not yet been addressed inthe causal-inference framework. Some relevant combinations are briefly discussed here. Tu-mor response is a putative surrogate for OS. Tumor response can be binary, ordinal, or con-tinuous. Arguably, a continuous surrogate is more promising as it is more informative thanbinary or ordinal endpoints. The methods presented in this thesis can be easily adapted forthe continuous-survival setting. Indeed, one could use marginals for the surrogate endpointsthat are defined on the entire real line instead of marginals based on survival models that areonly defined for Sk > 0.
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Another possible direction of future research is to extend the proposed methods to multi-variate surrogates. These surrogates can be both of a continuous or time-to-event type. TheD-vine copula model can be readily extended to 6 dimensions for 2 surrogates, 8 dimensionsfor 3 surrogates and so on. However, Kendall’s τ and Spearman’s ρ do not readily extend tomeasure the association between ∆T and (∆S1, ...,∆Sk)′. The SICC directly extends to mea-sure this association, although this would be computationally prohibitive if the same numericalmethods as in this thesis are used.

Conclusion
In this thesis, the causal-inference framework for validating surrogate endpoints was extendedto the setting with time-to-event surrogate and time-to-event true endpoints. These methodswere applied to the ovarian cancer data. The analysis found convincing evidence that PFS isa good surrogate for OS in advanced ovarian cancer patients when the efficacy of cyclophos-phamide plus cisplatin is compared with cyclophosphamide plus cisplatin plus adriamycin.
R-code

The R-code is available from github.com/florianstijven/Master-Thesis. All analyses presentedin this thesis can be replicated with the available R-code.
Data

The ovarian cancer data are freely available in the Surrogate R package (Van der Elst et al.,2021b).

github.com/florianstijven/Master-Thesis
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Appendix A

Proofs and Derivations

A.1 Density Corresponding to the Survival Copula

Lemma A.1.1 (Density corresponding to the survival copula). The joint density of (X,Y )′ is the
product of the survival copula density and marginal densities.

fXY (x, y) = c̃XY {SX (x), SY (y)} ⋅ fX (x) ⋅ fY (y) (A.1)
where the survival copula density is defined as follows

c̃XY {SX (x), SY (y)} =
∂
2

∂u∂v
C̃XY (u, v)∣u=SX (x),v=SY (y). (A.2)

Proof. The copula density cXY follows from the “ordinary" copula CXY

cXY (1 − u, 1 − v) =
∂
2

∂(1 − u)∂(1 − v)CXY (1 − u, 1 − v)

=
∂
2

∂(1 − u)∂(1 − v) C̃XY (u, v) − u − v + 1

=
∂
2

∂u∂v
C̃XY (u, v) − u − v + 1

=
∂
2

∂u∂v
C̃XY (u, v)

= c̃XY (u, v).

(A.3)

The joint density of (X,Y )′ follows from the “ordinary" copula density and correspondingmarginal densities:
fXY (x, y) = cXY {FX (x), FY (y)} ⋅ fX (x) ⋅ fY (y). (A.4)

Let u = SX (x) and v = SY (y), then the following holds by Equation A.3
cXY {FX (x), FY (y)} = c̃XY {SX (x), SY (y)} (A.5)

and thus replacing the ordinary copula density with the survival copula density in Equation A.4gives the following result
fXY (x, y) = c̃XY {SX (x), SY (y)} ⋅ fX (x) ⋅ fY (y). (A.6)
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A.2 Likelihood Contribution for Partly Censored Data
The full derivation for the likelihood contribution of observations where only one of the twoendpoints are censored, is given here. Let δs,i = 1 and δt,i = 0 for patient i. The likelihoodcontribution for such observations is derived as follows.

Li = ∫
∞

ti

fSk,Tk
(si, t)dt

= ∫
∞

ti

cSk,Tk
{SSk

(si), STk
(ti)} ⋅ fSk

(si) ⋅ fTk
(ti)dt

= ∫
∞

ti

∂
2
CSk,Tk

∂s∂t
{SSk

(si), STk
(ti)} dt

=
∂

∂s
∫

∞

ti

∂CSk,Tk

∂t
{SSk

(si), STk
(ti)} dt

= −
∂

∂s
CSk,Tk

{SSk
(si), STk

(ti)}

= −
∂

∂SSk

CSk,Tk
{SSk

(si), STk
(ti)} ⋅

dSSk

ds

= fSk
(si) ⋅

∂CSk,Tk

∂SSk

{SSk
(si), STk

(ti)}

(A.7)

The second equality follows from lemma 2.1.2. In the other steps, the rules of differentiationand integration are applied. The use of the survival copula results in convenient expressionsfor the observed likelihood for right censored data.
A.3 Copulas
The entire derivations for the partial derivatives are given in Sorrell et al. (2022, Supplemen-tary Information) for the Clayton, Gumbel, and Frank copula. The derivations for the Gaussiancopula are given in Fu et al. (2013).
A.3.1 Clayton

The Clayton copula is given by
C(u, v) = (u−θ + v−θ − 1)−

1
δ . (A.8)

The first derivatives of the Clayton copula are as follows:
∂C(u, v)
∂u

=
C(u, v)θ+1

uθ+1
(A.9)

and
∂C(u, v)
∂u

=
C(u, v)θ+1

vθ+1
. (A.10)

The second derivative of the Clayton copula is
∂
2
C(u, v)
∂u∂v

=
(θ + 1)C(u, v)2θ+1

uθ+1vθ+1
. (A.11)
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A.3.2 Gumbel

The Gumbel copula is given by
C(u, v) = exp [− {(− log u)θ + (− log v)θ}] . (A.12)

The first derivatives of the Gumbel copula are as follows
∂C(u, v)
∂u

=
C(u, v)(− log u)θ−1

u(− logC(u, v))θ−1
(A.13)

and
∂C(u, v)
∂v

=
C(u, v)(− log v)θ−1

v(− logC(u, v))θ−1
. (A.14)

The second derivative of the Gumbel copula is
∂
2
C(u, v)
∂u∂v

=
C(u, v)(− log u)θ−1(− log v)θ−1(θ − 1 − logC(u, v))

uv(− logC(u, v))2θ−1
. (A.15)

A.3.3 Frank

The Frank copula is given by
C(u, v) = −

1

θ
log [ 1

1 − e−θ
{(1 − e−θ) − (1 − e−θu)(1 − e−θv)}] . (A.16)

The first derivatives of the Frank copula are as follows
∂C(u, v)
∂u

=
1 − eθC(u,v)

1 − eθu
(A.17)

and
∂C(u, v)
∂u

=
1 − eθC(u,v)

1 − eθv
. (A.18)

The second derivative of the Frank copula is
∂
2
C(u, v)
∂u∂v

=
θe

θC(u,v)(eθC(u,v) − 1)
(eθu − 1)(eθv − 1)

. (A.19)

A.3.4 Gaussian

The Gaussian copula is given by
Ψ [Φ−1(u),Φ−1(v)] . (A.20)

The first derivatives of the Gaussian copula are as follows
∂C(u, v)
∂u

=

Ψ̇u [Φ−1(u),Φ−1(v)]
ϕ {Φ−1(u)}

(A.21)
and

∂C(u, v)
∂u

=

Ψ̇v [Φ−1(u),Φ−1(v)]
ϕ {Φ−1(u)}

(A.22)
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where

Ψ̇u [Φ−1(u),Φ−1(v)] = ∂Ψ(u, v∣ρ)
∂Φ−1(u)

= ϕ {Φ−1(u)}∫
∞

Φ−1(v)
ϕ(x∣Φ−1(u), ρ)dx

(A.23)

and
Ψ̇v [Φ−1(u),Φ−1(v)] = ∂Ψ(u, v∣ρ)

∂Φ−1(v)

= ϕ {Φ−1(v)}∫
∞

Φ−1(u)
ϕ(x∣Φ−1(v), ρ)dx.

(A.24)

The second derivative of the Gaussian copula is
∂
2
C(u, v)
∂u∂v

=

ψ {Φ−1(u),Φ−1(v)∣ρ}
ϕ {Φ−1(u)} {Φ−1(v)}

. (A.25)
where ϕ(.) is the standard normal pdf and ψ(.∣ρ) is the standard bivariate normal pdf with cor-relation coefficient as ρ.



Appendix B

Royston-Parmar Model

Royston and Parmar (2002) extended the Weibull proportional hazards model and log-logisticproportional odds model to a flexible parametric modelling procedure. In this thesis, only thefirst is considered and explained here. The hazard at time t, h(t;x), in a Weibull proportionalhazards model (PH) is
h(t;x) = h0(t) exp(β′

x) (B.1)
where h0(t) = λγtγ−1 is the baseline hazard function. γ and λ are the shape and scale parame-ters of the corresponding Weibull distribution. The log-cumulative hazard of this model is

logH(t;x) = β
′
xi + log λ + γ log t. (B.2)

Let η = β
′
xi, γ0 = log λ, γ1 = γ and z = log t. The log-cumulative hazard can thus be rewrittenas

logH(t;x) = γ0 + γ1 ⋅ z + η. (B.3)
For theWeibull proportional-hazardsmodel, the log-cumulative hazard is thus linear in z = log t.If the distribution of T ∣X = x departs from the Weibull distribution, then logH(t;x) will berelated to x by a non-linear function s + η = s(z;γ) + η where s = γ0 + γ1 ⋅ z in the conventionalWeibull PH model. The survival, density and hazard functions of this extended model are

S(t;γ, η) = exp{− exp(s + η)} (B.4)
f (t;γ, η) = exp{s − exp(s)} ⋅ ds

dt
(B.5)

h(t;γ, η) = exp(s) ⋅ ds
dt
. (B.6)

The approach in the Royston-Parmar model is to model s(z;γ) as a natural cubic splinefunction. This entails that the baseline log-cumulative hazard is modelled as a natural cubicsplines function of log time.Natural cubic splines are defined as cubic splines constrained to be linear beyond thebound-ary knots kmin and kmax. These boundary knots are placed at the extreme uncensored log sur-vival times in the Royston-Parmar model. In addition, m distinct internal knots k1 < ... < km,with kmin < k1 and km < kmax, are specified. These are specified based on the centiles of thedistribution of uncensored log survival times as shown in B.1. Given the boundary and internalknots the natural cubic spline is written as
s(z;γ) = γ0 + γ1z + γ2v1(z) + ... + γm+1vm(z) (B.7)

where vj(z) is the j ’th basis function. This basic function is defined as follows
vj(z) = (z − kj)3+ − λj(z − kmin)3+ − (1 − λj)(z − kmax)3+ (B.8)
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Table B.1: Placement of internal knots in the Royston-Parmar model. (Adapted from (Royston& Parmar, 2002))

m Centiles
1 502 33 673 25 50 75

where
λj =

kmax − kj
kmax − kmin

and (z − a)+ = max(0, z − a). (B.9)
Algebraic details on the natural cubic splines can be found in Appendix B of Royston and Par-mar (2002). The Royston-Parmar model can be fitted with maximum likelihood. The likelihoodcontributions of observations follow directly from Equation B.4 and B.5 for censored and un-
censored observations, respectively. Note that ds

dx
=

ds(x;γ)
dx

from Equation B.5 is easily obtained
ds

dx
= γ1 +

m

∑
j=2

γj
dvj(x)
dx

= γ1 +
m

∑
j=2

γj[3(x − kj)2+ − 3λj(x − kmin)2+ − 3(1 − λj)(x − kmax)2+].
(B.10)

This model can be fitted with the flexsurvspline function from the flexsurv R-package(Jackson, 2016). In addition, this package provides additional useful functions for the Royston-Parmar model such as functions to compute the density and survival function.As detailed above, the Royston-Parmar model reduces to the Weibull distribution whenthere are zero internal knots. However, there are different parameterisations of the Weibulldistribution available; the connections between the Weibull parameters for different parame-terisations and the Royston-Parmar parameters are given next.
Parameterisation 1

The Weibull distribution is parameterised as in the above derivations.
f (x;λ, γ) = λγxγ−1e−λx

γ and h(x;λ, γ) = λγtγ−1 (B.11)
The relation with the Royston-Parmar model parameters is as follows:

λ = e
γ0 and γ = γ1. (B.12)

Parameterisation 2

The Weibull distribution is parameterised as in dweibull from the R stats package.
f (x;λ, k) = k

λ
(x
λ
)
k−1

e
−( x

λ
)k and h(x;λ, k) = k

λ
( t
λ
)
k−1 (B.13)

The relation with the Royston-Parmar model parameters is as follows:
λ = e

−
γ0
γ1 and k = γ1. (B.14)



Appendix C

Vine Copulas

Table C.1: Full expressions of the components of the D-vine construction in Equation 2.15.
Component Expression
f1 = fS0

(s0)
f2 = fT0

(t0)
f3 = fS1

(s1)
f4 = fT1

(t1)
c12 = cS0,T0

{FS0
(s0), FT0

(t0)}
c23 = cT0,S1

{FT0
(t0), FS1

(s1)}
c34 = cS1,T1

{FS1
(s1), FT1

(t1)}
c13;2 = cS0,S1;T0

{FS0∣T0
(s0∣T0 = t0), FS1∣T0

(s1∣T0 = t0)}
c24;3 = cT0,T1;S1

{FT0∣S1
(t0∣S1 = s1), FT1∣S1

(t1∣S1 = s1)}
c14;23 = cS0,T1;T0,S1

{FS0∣T0,S1
(s0∣T0 = t0, S1 = s1), FT1∣T0=t0,S1=s1(t1∣T0 = t0, S1 = s1)}
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Appendix D

Monte Carlo Integration

A simulation study is conducted to asses the accuracy of theMonte Carlo integration procedureto compute Kendall’s τ , Spearman’s ρ and R2
h. The parameters for the marginal distributionsare given in Table D.1. Clayton copulas are used as identifiable copulas. The corresponding as-sociation parameter is fixed at δ = 6, which corresponds to τ = 0.75. As unidentifiable copulas,four options are considered. For each option, all four unidentifiable copulas are assumed to beone of the following parametric copulas: Gaussian, Clayton, Frank or Gumbel. The Spearman’s

ρ values for corresponding copulas across these four options are set equal to each other. Theseare given in the second column of Table D.2. The corresponding copula parameters are givenin the third to sixth columns. No time orderings are assumed.The results are given in Table D.3. The number ofMonte Carlo samples from f1234 and quasiMonte Carlo samples in the dep_measures function are set equal to each other, and further de-noted by N . All measures are computed 50 times under the same settings to examine howvariable the computations are. The values in this table are the means across these 50 compu-tations, and the corresponding standard deviations. Only the computation for N = 100.000 isnot repeated; this can be considered as the true value.The standard deviations in Table D.3 show that the Monte Carlo procedure increases inprecision as N increases. If a standard deviation of 0.01 is deemed acceptable, then N = 2000results in a sufficient precision. In consideration of the uncertainty due to the unidentifiabilityof some parameters, this precision is deemed acceptable.The computed measures of surrogacy are all very close to each other. This indicates thatthe specific choice for the parametric form of the unidentifiable copulas doesn’t influence themeasures of surrogacy much, if the Spearman’s ρ values of the corresponding copulas are thesame.

Table D.1: Parameters for the marginal distributions of the simulation study. λ and k are thescale and shape parameters of the Weibull distribution, respectively.
Outcome λ k E(Y )

S0 0.368 2 0.326
S1 0.472 2 0.419
T0 0.607 2 0.538
T1 0.687 2 0.609
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Table D.2: The unidentifiable copula parameters are fixed at these values. *: 90 degreerotation copula.
Copula ρs Copula Parameter: θ..;.Gaussian Clayton Frank Gumbel
c23 -0.266 -0.277 0.436* -1.650 1.218*
c13;2 0.372 0.387 0.683 2.399 1.343
c24;3 0.572 0.591 1.375 4.164 1.692
c14;23 0.908 0.916 5.916 12.896 3.895

Table D.3: Results of the simulations to assess the accuracy of the Monte Carlo integration. Nis the number of MC samples from f1234, and also the number of quasi MC samples tocompute R2
h with the dep_measures function. The approximated value is the mean over the50 simulations, and SD is the corresponding standard deviation.

Approximated value (SD)
Unid. Cop. N ρs τ R

2
h

Gaussian
500 0.864 (0.016) 0.688 (0.018) 0.808 (0.019)1000 0.863 (0.010) 0.685 (0.011) 0.804 (0.011)2000 0.864 (0.007) 0.685 (0.008) 0.803 (0.008)5000 0.865 (0.005) 0.687 (0.006) 0.804 (0.006)100.000 0.866 (NA) 0.689 (NA) 0.803 (NA)

Clayton
500 0.869 (0.014) 0.692 (0.016) 0.818 (0.017)1000 0.869 (0.009) 0.691 (0.010) 0.815 (0.010)2000 0.870 (0.006) 0.691 (0.008) 0.815 (0.008)5000 0.871 (0.004) 0.693 (0.005) 0.817 (0.005)100.000 0.873 (NA) 0.694 (NA) 0.815 (NA)

Frank
500 0.866 (0.015) 0.688 (0.018) 0.807 (0.02)1000 0.866 (0.009) 0.687 (0.010) 0.804 (0.010)2000 0.866 (0.007) 0.687 (0.008) 0.803 (0.008)5000 0.868 (0.005) 0.688 (0.006) 0.805 (0.005)100.000 0.868 (NA) 0.689 (NA) 0.803 (NA)

Gumbel
500 0.863 (0.016) 0.686 (0.019) 0.806 (0.019)1000 0.862 (0.01) 0.683 (0.011) 0.803 (0.010)2000 0.862 (0.008) 0.683 (0.009) 0.803 (0.009)5000 0.863 (0.005) 0.685 (0.006) 0.803 (0.006)100.000 0.865 (NA) 0.686 (NA) 0.802 (NA)



Appendix E

Additional Results Ovarian Cancer
Data

E.1 Goodness of Fit
The KM estimates are plotted with the corresponding model-based estimates of the survivalfunctions in Figure E.1. The model based estimates follow the KM estimates closely, which indi-cates that the model fit is good.For the model without time-orderings, the marginal survival functions as plotted in FigureE.1b, follow directly from the fittedmodel. This also holds for themarginal survival functions forOS in the model with time orderings, Figure E.1a. However, in the model with time orderings,the marginal survival functions for PFS follow from the fitted model by Equation 3.11.
E.2 Results for Other Surrogacy Measures

In the main text, only the results for R2
h are reported. The same results for Spearman’s ρ andKendall’s τ are reported here in Table E.1 and E.2, respectively. Additionally, the results of thesensitivity analysis with 100.000 replications, instead of 5000, are reported in Table E.1.

Table E.1: Results of the sensitivity analysis for the ovarian cancer data for Spearman’s ρ.Every row is based on n replications. M: monotonicity assumption, W-CA: weakercross-association assumption.
Ordering Assumptions n Range of ρs [p1, p99] median

Ordering
- 5000 [0.447, 0.998] [0.673, 0.995] 0.978M 2234 [0.447, 0.996] [0.587, 0.992] 0.955W-CA 4785 [0.545, 0.998] [0.759, 0.995] 0.978M + W-CA 2107 [0.545, 0.996] [0.711, 0.992] 0.957

No Ordering
- 5000 [0.296, 0.997] [0.627, 0.994] 0.972M 2210 [0.296, 0.993] [0.555, 0.987] 0.931W-CA 4661 [0.605, 0.997] [0.754, 0.994] 0.972M + W-CA 2037 [0.605, 0.993] [0.712, 0.987] 0.936

Ordering
- 100.000 [0.379, 0.999] [0.685, 0.995] 0.978M 43.673 [0.379, 0.998] [0.612, 0.992] 0.954W-CA 95.926 [0.528, 0.999] [0.763, 0.995] 0.978M + W-CA 41.581 [0.528, 0.998] [0.715, 0.992] 0.956

50



E.2. RESULTS FOR OTHER SURROGACY MEASURES 51

Table E.2: Results of the sensitivity analysis for the ovarian cancer data for Kendall’s τ . Everyrow is based on n replications. M: monotonicity assumption, W-CA: weaker cross-associationassumption.
Ordering Assumptions n Range of τ [p1, p99] median

Ordering
- 5000 [0.305, 0.972] [0.521, 0.952] 0.901M 2234 [0.305, 0.956] [0.433, 0.941] 0.854W-CA 4785 [0.389, 0.972] [0.607, 0.953] 0.902M + W-CA 2107 [0.389, 0.956] [0.563, 0.942] 0.858

No Ordering
- 5000 [0.151, 0.959] [0.468, 0.942] 0.887M 2210 [0.151, 0.941] [0.401, 0.927] 0.821W-CA 4661 [0.452, 0.959] [0.599, 0.942] 0.887M + W-CA 2037 [0.452, 0.941] [0.557, 0.928] 0.828
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(a) With time orderings

(b) Without time orderings
Figure E.1: Goodness of fit for the fitted Clayton copula models. The Kaplan-Meier estimatesof the survival functions for PFS and OS are given as solid black lines with the pointwise 95%confidence interval as dashed black lines. The model-based survival functions are shown bysolid red lines.
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