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Abstract
In goodness-of-fit tests, the null hypothesis expresses that the true hypothesized
distribution and the observed distribution are the same. Accepting this null hypothesis
will provide some confidence in using the estimated model. Otherwise, the rejection
of such a hypothesis will often not provide any indication of the true distribution.
The main reason for such a result is that traditional goodness-of-fit tests like the tests
based on the Empirical Distribution Function (EDF) or Pearson χ2 goodness-of-fit
tests are not good at identifying the nature or sources of departure from the tested
hypothesis. Smooth tests and generalized smooth tests can be applied as tests with
power that is almost always competitive with alternative tests.

The main objective of this study was to implement smooth goodness-of-fit methods
as an R-Package. Under this objective, a top-level function stGOF was designed,
programmed, and validated. This function allows for many approaches like fixed
order, bootstrap, and data-driven. In addition, four datasets were added to the stGOF
package.

As a result, the stGOF package has been built. A comprehensive and in-depth
explanation was provided in this thesis. In addition, arguments of the functions in
the package were presented as well as validated examples.
Keywords: Smooth test, Goodness-of-fit, stGOF Package
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Chapter 1

Introduction

1.1 Background
One of the main aspects of statistical inference that is of great importance to re-
searchers in variety fields is the validity of the assumed distribution of the data under
investigation. Although the hypothesized distribution of the data can be suggested,
it is frequently different from the actual or observed distribution. For instance, to
test the validity of the Student’s t distribution as a hypothesized distribution, numer-
ous existing techniques could be used like the Kolmogorov-Smirnov (K-S) or the
Cramer- von Mises classes of omnibus tests of goodness-of-fit [3, 16]. These tests
have been widely used to assess the equality of distributions with or without estimated
parameters in one-sample and two-sample issues [4]. The null hypothesis is based on
the assumption that the predicted and observed distributions are same. Acceptance
of this null hypothesis will provide some confidence in using the estimated model.
Otherwise, the rejection of such a hypothesis will not provide any indication of the true
distribution. The main reason for such a result is that traditional goodness-of-fit tests
like the tests based on the Empirical Distribution Function (EDF) or Pearson χ2

goodness-of-fit tests are not good enough to identify the nature or sources of departure
from the tested hypothesis [3].

Pearson’s χ2-test (1900), was really developed to test the goodness-of-fit of discrete
distributions. While when it be used for continuous data, an arbitrarily classification
into k groups is applied. Which means it has limitations [14]. In an attempt to take
advantage of the properties of a continuous distribution, Neyman (1937) observed
that if a probability integral transform based on the probability density function
(PDF) is used under the null hypothesis, all goodness-of-fit tests can be converted
to one type of hypothesis test. Apart from an ANOVA-like decomposition of the
goodness-of-fit test statistic, the smooth test has the advantage of being able to
discover the nature and sources of departure from the null hypothesis for "smooth"
alternatives (alternatives that are extremely near to the null hypothesis). The smooth
test may be used as both an omnibus and a more directed test for more specific
alternatives. This allows, among other things, the smooth test to have higher power
than traditional goodness-of-fit tests.

In 1937, Neyman proposed the smooth test to evaluate a simple null hypothesis
declaring that observations follow a well-known continuous distribution function
F . Smooth tests are based on embedding the hypothesised distribution g within a
large family of distributions, gk, which is indexed by a k-dimensional parameters
vector θt = (θ1, . . . , θk)- in such a way that θ = 0 corresponds to the hypothesised
distribution. Application of the probability integral transformation means that the
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distribution for which we test can always be taken to be uniform. The Legrendre
polynomials are used in his tests. And the components of the smooth test statistic are
used to detect the type of deviation from the hypothesized distribution as a diagnostic.
Such as, the first detects a mean shift, the second a variance shift, the third a change
in skewness and the fourth a change in kurtosis. If the orthonormal set was chosen
differently, then different alternatives would be detected by the components. So, the
orthonormal set should be chosen with the alternatives one wishes to most powerfully
detect in mind.

In addition, Neyman didn’t use score tests [19]. Instead, he required that the tests
derived for the smooth model should be locally uniformly most powerful symmetric,
unbiased and of size α. Unfortunately, only asymptotically are those constraints
realised for the tests suggested. Neyman’s work has been extended by Barton (1956)
and his model. A little progress was made with testing for composite hypotheses.

Rayner & Best (1990)[19] also extended the work of Neyman. The main difference
between Rayner & Best and the others, is that they use orthonormal functions,
while the others used powers of the cumulative distribution function. The tests of the
others require tables of constants to implement and do not have other advantages
of the orthonormal formulation. These advantages include that the components are
often identifiable with known moment-type statistics used in other tests of fit, that
the components are asymptotically independent and that the components have a
convenient asymptotic distribution: the standard normal. For these reasons, the
smooth tests based on orthonormal functions are preferred over other tests [23].

Finally, smooth tests of goodness-of-fit or smooth order k alternative can be defind
as a test which is used to assess the fit of data to a given probability density function
within a class of alternatives that differ ‘smoothly’ from the null model. These
alternatives are characterized by their order. The greater the order the richer the
class of alternatives [21].

1.2 Objectives
In the current study, the main objective was:

• To implement smooth Goodness of Fit Methods as R-Package.

And under this objective, there are several goals to be done

- Design, program, and validate a top-level function stGOF, which can take into
account all approaches like fixed order, bootstrap, and data-driven.

- Add datasets to the R package, such as Pseudo-Random Generator (PRG) , PCB
Concentration, Pulse Rate , and Cultivars [23].

- Add help files for all functions and datasets.
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Chapter 2

Methodology

2.1 Introduction
The history of statistical hypothesis testing is extensive. It was traced back to Bayes
(1763) to Neyman and Pearson (1933). However, it wasn’t until Pearson’s goodness-of-
fit test was published in 1900 that hypothesis testing became widely used. This was
the most significant scientific breakthrough of the twentieth century [6], even after
100 years. Simply stated, Pearson’s (1900) test statistic is calculated as follows:

Pχ2 = Σq
j=1

(Oj − Ej)2

Ej
,

where Oj denotes the observed frequency and Ej is the (expected) frequency that
would be obtained under the distribution of the null hypothesis, for the j th class,
j = 1, 2, . . . , q. The most common outcome of this goodness of fit test has been to give
a p -value that reflects the consistency of the data with the hypothesized distribution.

In addition, other powerful goodness of fit tests are commonly used, such as the
Anderson-Darling, Cramer-von Mises, and Shapiro-Wilk tests.

Angus Data is a very good example introduced by Rayner, Thas, and Best (2011) in
their article[20] to explain the inconsistency with exponentiality when Pearson’s χ2,
Anderson-Darling, Cramer-von Mises, and Shapiro-Wilk tests were applied. Angus[1]
gives 20 operational lifetimes in hours:

6278, 3113, 5236, 11584, 12628, 7725, 8604, 14266, 6125, 9350, 3212, 9003, 3523, 12888,
9460, 13431, 17809, 2812, 11825, 2398.

In testing the null hypothesis that the data follow the exponential distribution, the
Pearson–Fisher test with four classes constructed as in Figure 1, the Anderson-Darling,
Cramer-von Mises, and Shapiro-Wilk tests give bootstrap p-values 0.0126, 0.0065,
0.0058, and 0.0009, respectively. It would appear that the data are not consistent with
exponentiality. They return to the analysis of this data set several times throughout
their article [20].

One issue with traditional goodness-of-fit tests was that the outcome was either
confirm or reject the model. Furthermore, there were no diagnoses, and the tests did
not recommend other models. The smooth test doesn’t have the same issue. The
smooth test approaches can give diagnostics as well as model selection techniques that
produce smooth alternative models.
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Figure 2.1: Histogram and density estimates of the hypothesized exponential distribution (dashed
line) and the improved density (full line) for the Angus lifetimes data. Lifetimes are given in
thousands of hours. The counts in the four classes are 5, 8, 6, and 1.

2.2 Smooth Test Structure
Let X1, . . . , Xn donate an i.i.d. random sample from a distribution with density
function f(x; β), where β is a q × 1 vector of nuisance parameters. In most cases,
the Xi will be simply discrete or continuous. If the distribution is fully specified,
such as the continuous uniform distribution on (0,1), or an exponential distribution
with known rate parameter λ0, then β is empty, and may be omitted. It is more
usual for the distribution to be loosely specified, such as the normal distribution with
unspecified mean µ and unspecified standard deviation σ; in which case β = (µ, σ)T .
To construct a smooth test f(x; β) is first nested in an alternative of order k:

gN
k (x; θ, β) = C(θ, β)exp


k∑

i=1
θihi(x; β)

f(x; β),

where C(θ, β) is a normalizing constant that is assumed to exist, and {hi(x; β)} is
a set of orthonormal functions on f(x; β) with h0(x; β) = 1 for all x. If E0 means
expectation when the model that generated the data is f(x; β), then orthonormality
means E0[hr(X; β)hs(X, β)] = δrs for r and s = 0, 1, . . . . Testing for f(x; β) is
achieved by assessing if the θi are consistent with zero: that is, by testing H0 : θ =
(θi) = 0 against K : θ ̸= 0.

This approach is a generalization of Neyman’s vision [15]: he considered testing
for the continuous uniform distribution and used the Legendre polynomials for the
orthonormal system. The N in gN

k (x; θ, β) is to acknowledge Neyman’s contribution.

To utilize the orthonormality under the null hypothesis the score test of H0 : θ = 0
against K : θ ̸= 0 is used. Information about score tests applied to this setting is
given by Rayner (1997) [18], and Rayner, Thas, and Best (2011) [20]. This leads
to a quadratic form Sk = V T Σ−1V in which V is the score vector and Σ is the
asymptotic covariance matrix of V under the null hypothesis. Using orthonormal
functions in gN

k (x; θ, β) results, in certain circumstances, in components that under the
null hypothesis are asymptotically independent and asymptotically standard normal.
Hence Σ is the identity matrix, the score test statistic Sk is a sum of squares of the
elements of V and has null distribution χ2

k . These circumstances include when testing
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for distributions without nuisance parameters and in testing for distributions from
exponential families.

In the fully specified case use of the score test leads to the same result as Neyman
obtained. However, Neyman[15] used what has become known as the generalized
fundamental lemma of Neyman and Pearson to show that the optimal test is ap-
proximately that which rejects for large values of Sk = V 2

1 + · · · + V 2
k in which

the orthonormal functions hr(X) are the normalized Legendre polynomials and the
components Vr are defined as Vr = Σn

j=1hi(Xj)/
√

n.

When there are nuisance parameters an immediate application of this approach often
finds that the asymptotic covariance matrix in the score test is singular. This can
be interpreted as indicating that some of the θi are playing the same role as some of
the nuisance parameters. If θ1, . . . , θq are redundant, a sensible solution is to remove
these parameters from the model, by modifying gk

N (x; θ, β) so that it involves the k
hi(x; β) after the first q:

gN
k (x; θ, β) = C(θ, β)exp


q+k∑

i=q+1
θihi(x; β)

f(x; β),

If β̂0 is the maximum likelihood estimator of β under the null hypothesis and if
V̂r = Σn

j=1hr(Xj ; β̂0)/
√

n then for some distributions including the binomial, Poisson,
exponential, univariate normal, and geometric, the likelihood equations are equivalent
to V̂1 = · · · = V̂q = 0 and the score test statistic simplifies from a general quadratic
form to

Ŝk = V̂ 2
q+1 + · · · + V̂ 2

q+k

The main difference between Rayner, Thas,& Best and the others is that they frequently
use orthonormal functions, while the others used powers of the cumulative distribution
function. The tests of the others require tables of constants to implement and do
not have other advantages of the orthonormal formulation. So, for example, when{

hi(x; β)

}
is a set of Hermite polynomials orthonormal on the normal distribution, V̂3

and V̂4 are standardized versions of the skewness and kurtosis coefficients. When using
the orthonormal polynomials for the univariate Poisson and binomial distributions,
the order two components are standardized versions of the indices of dispersion. In
these cases, the higher order components are thus generalizations of well-established
tests. These advantages include that the components are often identifiable with
known moment-type statistics used in other tests of fit, that the components are
asymptotically independent, and that the components have a convenient asymptotic
distribution: the standard normal. For these reasons, the smooth tests based on
orthonormal functions are preferred over other tests [19, 20].

In the construction of the smooth tests the orthonormal functions
{

hr(x, β)

}
and

the order k must be specified. These two define the class of smooth alternatives{
gN

k (x; θ, β)

}
.

In testing for the continuous uniform distribution Neyman [15] recommended k = 4.
If there is no additional information, this is a bit of sound advice. However, it is
possible to use the data in a data-driven manner.
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The orthonormal functions
{

hr(x, β)

}
should be chosen to best detect the alternatives

of interest. If the null hypothesis specifies the continuous uniform distribution and{
hr(x, β)

}
is considered to be the Legendre polynomials, then the null hypothesis

specifies the probability density function to be a polynomial of degree zero, while the
order k alternative is a polynomial of degree k. However, if a periodic rather than a
polynomial alternative is more compatible with the scenario under which the data are
collected then a more appropriate set of orthonormal functions could be

√
2cos(jπx).

In choosing the orthonormal functions the objective is to specify the alternatives of
interest with smallest possible order to improve the power.

The smooth test construction requires a set of functions hi(x; β) that are orthonormal.
Subsequently it will be shown that using the orthonormal polynomials often results in
convenient and interpretable components [20].

2.3 Interpretation of Components
One of the reasons that explain the popularity of smooth tests is the interpretability
of the components when orthonormal polynomials are used for their construction.
The question is whether or not the components V̂r of the smooth test statistic can be
used to identify the cause of the failure of the null hypothesis. The interpretation of
significant components is important for both formal hypothesis testing and informal
data analysis.

V̂ 2
r is considered to be the score test statistic for testing Hr : θr = 0 VS Kr : θr ̸= 0.

And it gives a random sample from the model C(θr, β) exp{θrhr(x, β)}f(x; β). This
indicates that V̂ 2

r is a detector of θr. The significant large V̂ 2
r not only indicates the

unacceptability of the model f(x; β) but also, it diagnoses the reason of the failure
in that model. This failure occurs due at least to a departure of the data from the
hypothesized probability density function in θr. Unfortunately this argument fails
because it is routine to demonstrate that for virtually any f(x; β) a given V̂ 2

r has
some power to detect parameters other than θr. Nevertheless a significant V̂ 2

r gives
an indication of what might be called an order r deviation from the null model [21].

When testing for distributions from exponential families if the score functions are
linearly related to the orthonormal functions, then maximum likelihood estimation
and method of moments estimation coincide. In these cases for the smooth tests,
estimation of the nuisance parameters is via method of moments estimation, and,
recalling that β is q × 1, the data agrees with the hypothesized distribution in moments
up to the qth. In general, the first significant component beyond the qth would appear
to be diagnostic, as all moments of the data and the hypothesized distribution up to
and including the qth are consistent. However, even this conclusion is suspect: higher
order moments could still be the cause.

All of these issues would be resolved if, in the score test statistics, the asymptotic
covariance matrix was replaced by one that estimated the component variances and
covariances consistently, under both the null and alternative hypotheses. Henze and
Klar [9, 8] worked in this vein, in which the smooth testing problem is treated in a
semiparametric framework.

Unfortunately the simulation studies show that convergence of these ‘rescaled’ compo-
nents to their asymptotic limits is extremely slow, with samples as large as 10,000
required to achieve satisfactory results. Thus, rescaling does not create diagnostic



2.4. Generalized Smooth Tests 7

components and inference. Nevertheless, although in the finite samples that occur in
practice the rescaled components may be somewhat ‘tainted’ by higher order moments,
it is reasonable to say they are more diagnostic than the raw, unscaled components.

In the power studies, powers based on the rescaled components are often less than
those based on the unscaled components, and where power gains are achieved it is
often at the expense of power loss for alternatives elsewhere in the parameter space[20].

2.4 Generalized Smooth Tests
A smooth model’s score test statistic is a quadratic form in the components. If the
null hypothesis specifies a probability density function from an exponential family of
distributions, the score test statistic Ŝk often has the appealing form of being a sum
of squares of components that are asymptotically independent and asymptotically
standard normal under the null hypothesis.

When the distribution is not from the exponential families, this convenient form cannot
be expected. Distributions like the zero-inflated Poisson, extreme-value, negative
binomial, and generalized Pareto distributions are examples of that. As the components
are not even asymptotically uncorrelated, the significance of one component may
be associated with the significance of others. And this is the difficulty for these
distributions. Generally, it is not helpful to use, for example, the Gram-Schmidt
transformation to diagonalize the asymptotic covariance matrix; the interpretation of
those components would be usually impossible.

An alternative approach is to use the generalized score test can be applied when the
score test does not produce a test statistic that is a sum of squares of components.
The generalized smooth tests use the generalized score tests, with the q × 1 nuisance
parameter β being estimated by solving Vr = 0, for r = 1, . . . , q. The solution β̂0
is a method of moments estimator. These estimators are not usually fully efficient,
and their use often means estimating efficiency is sacrificed to gain interpretable
components.

A generalized score test statistic is of the form Ṽ T Σ̃−1Ṽ , where Σ̃ is a consis-
tent estimator of the asymptotic covariance matrix of the score Ṽ . A Cholesky
decomposition of Σ̃−1 gives Σ̃−1 = MMT , where M is upper triangular. Putting
Ṽ ∗ = MT Σ̃ = (Ṽ ∗

q+1, . . . , Ṽ ∗
q+k)

T gives Ṽ T Σ̃−1Ṽ = Ṽ T Ṽ . Thus, the generalized score
test statistic is of the form (Ṽ ∗

q+1, . . . , Ṽ ∗
q+k)

2. As for most distributions of interest a
multivariate central limit theorem applies and Ṽ ∗ has asymptotic covariance matrix
the identity, the elements Ṽ ∗

r of Ṽ ∗ are asymptotically independent and asymptotically
standard normal [20].

As MT is lower triangular, Ṽ ∗
r is the sum of the first r elements of Ṽ ∗ . It follows

that the discussion about whether or not the components Ṽ ∗
r in the smooth test are

diagnostic applies equally to the components Ṽ ∗
r in the generalized smooth test.

The conclusion is that when testing for any distribution, the generalized score test
and Cholesky decomposition together yield components that are equally as convenient
as those resulting from the score test when testing for distributions from exponential
families. Moreover, because of their construction using the Cholesky decomposition, a
significant Cholesky component Ṽ ∗

r suggests the data and the model agree in moments
up to the rth, although the significance may be due to moments up to the 2rth.



8 Chapter 2. Methodology

The only caveat on this approach is that the orthonormal polynomial of order r
requires the existence of the first 2r moments of the null distribution.

Thus, for example, using this approach it is not possible to directly test for the Cauchy,
which has no moments of any order. One option would be to use the probability
integral transformation to essentially test for the continuous uniform distribution on
(0, 1). However, the resulting components are then difficult to interpret in terms of
the original null hypothesis.

2.5 Data-Driven Smooth Test
The determination of the order is one of the difficulties associated with the alternative
of order k defined previously. Even if there are higher order inconsistencies, the
hypothesized distribution may be suitable for most purposes. This can be reflected
roughly in the first four moments if the data should correspond with the hypothesized
distribution in four parameters.

If an order four smooth test for normality accepts the null hypothesis there may be
some non-normality that a higher order test may have detected. However, given the
known robustness of the analysis of variance, whatever slight non-normality there may
be in data is almost certainly of no consequence.

In the case of finite samples, the order k can have a significant impact on the test’s
power. The test will provide effective protection against a wide variety of alternatives
if k is set to a large value. However, as k increases, the ability to identify any particular
alternative in the parameter space will be decreased. Contrariwise, if k is chosen to be
small, the test will be fairly directional, providing strong protection against a small
set of alternatives but none against the rest. As a result, it’s essential to understand
which alternatives are the most crucial.

Inglot, Kallenberg, & Ledwina (1997) [10] let the data make the decision about the
order k. If Lk is the likelihood of a random sample of size n from a distribution that
is an alternative of order k it would be natural to maximize Lk by choice of k in
some set, say 1, 2, . . . , d, where d is specified before sighting the data. Here d is the
maximum order one is prepared to accept. However, this procedure would simply
choose k = d. A penalty term is needed to discourage complexity. The Bayesian
information criterion (BIC)

BICK = −2log Lk + k log n

is proposed as a model selection rule to determine the order. The optimal order, say
K, is taken to be the smallest order that maximizes BICk. The test statistic is then
chosen to be the sum of squares of the first K components, as previously defined.
As the order is no longer a predetermined constant but a random variable, the test
statistic Ŝk is no longer asymptotically χ2 distributed. However, asymptotically the
selected order converges to one in probability under the null hypothesis, and thus Ŝk

asymptotically has a χ2
1 null distribution. The procedure of Ledwina and co-workers

allows the maximal order to depend on the sample size n. When d increases with n
at a certain rate their construction makes the data-driven test omnibus consistent
against every fixed alternative. As the convergence is rather slow, critical values and
p-values are best determined using re-sampling methods.
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These data-driven smooth tests are powerful competitors. It would be absurd to
expect them to have more power than all given order smooth tests since they safeguard
against mis-specifying the order.

It is recognized that it is computationally easier to work with a modified BICk, ŜK + k
log n.

An alternative penalty term is Aikaike’s information criterion (AIC)

AICK = −2log Lk + 2k

or its modified form ŜK + 2k. BICk penalizes complex models more heavily than
AICk. The point is that many different model selection rules are possible. In different
circumstances different rules will be appropriate. The approach of Ledwina and co-
workers requires technical proofs for each selection criterion, and the rate of convergence
of the maximal order also depends on the criterion, the class of distributions and the
orthonormal functions. A more flexible method, and one of wider applicability, but
one which does not result in omnibus consistent tests, is done by Inglot and Ledwina
[11]. They fix the maximal order, and they also consider subset selection. This means
that for a given maximal order, say d, the model selection criterion can select any
subset of indexes from 1, . . . , d and the data-driven test statistic is then built from
the corresponding components Vj with j in the selected index set.

2.6 Model selection
Suppose now that the order k of a smooth alternative has been determined, and a
smooth or generalized smooth test of this order applied. The moment interpretation
of the components of these tests may not provide helpful insight. The insignificant θ̂r

in the order k alternative could be replaced by zero, significant θ̂r by their method of
moments estimators θ̂r, and β by its method of moments estimator under the null
hypothesis, β̃0. This ’plug-in’ estimator seems intuitively reasonable, but there are
better options.

Two approaches were described by Rayner and co-workers [21]. Model selection
through hypothesis testing and model selection using model selection criteria. To
describe these, first suppose Sh = {1, 2, . . . , d} is an index set called the horizon.
Consider Neyman smooth models of the form

gN
k (x; θ, β) = C(θS , β)exp

 ∑
i∈S

θihi(x; β)

f(x; β),

in which S ⊂ Sh, θS = {θi : i ∈ S} and in which, as before, C(θS ; β) is a normal-
izing constant and hi(x; β) is a set of functions orthonormal on f(x; β). Clearly
gN

Sh
(x; θSh

, β) is the most complex model that is prepared to accept. A horizon of
four clearly limits the maximal order more than 1 of 44 does. The probability density
functions here are non-negative but require the determination of C(θS ; β), if indeed it
exists. In iterative work it is far more convenient to work with the Barton smooth
models

gN
k (x; θ, β) =

1 +
∑
i∈S

θihi(x; β)

f(x; β),
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Working with Barton models, and adjusting for non-negativity using the methods
proposed is the favorite approach.

The first approach to be described is similar to the familiar forward selection and
backward elimination techniques used in regression analysis. In forward selection at
the uth step the model is gB

S (x; θS , β) and we consider whether or not to add a single
θi term to the model, where θi ∈ θSu , for every possible θi.

A slightly modified score test is derived to test each of these hypotheses. If any are
significant at a predetermined level, then the θi corresponding to the most significant
test is added to the model. Backward elimination is similar, with the least significant
θi being eliminated from successively reduced models until only significant terms
remain in the model. The score test statistics change at each iteration, and each
requires the consistent variance estimate mentioned in the previous section [20].
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Chapter 3

The stGOF package overview

The stGOF package provides functions for performing smooth tests of goodness of fit,
and for computing orthonormal polynomials. It also provides functions for calculating
the maximum likelihood estimates MLE and method of moments estimates MME of
distributions. The top-level function stGOF can perform the smooth test with fixed
order and the data-driven smooth test that are described in Rayner et al. (2009).

The latest (under development) version of the stGOF package is also available and can
be installed in R(>=3.1) from the github repository of the project as follows:

#Package devtools must be installed
install.packages("devtools")
devtools::install_github("krakla/stGOF")
library(stGOF)

The function is structured around one top-level function, stGOF and some other
functions like the function which is used in calculating the test statistic, test_stat,
and the orth_poly function which generates polynomials that are orthonormal to
the density function of a specified distribution. Some distributions are indexed
by nuisance parameters which may be estimated from sample observations. Both
maximum likelihood estimation and method of moments estimation are implemented.

3.1 stGOF function
The stGOF function performs the smooth test for the one-sample goodness-of-fit prob-
lem as described by Rayner et al.(2009). Both simple and composite null hypotheses
can be tested. The maximum likelihood (MLE) and the method of moments (MME)
methods for nuisance parameter estimation are implemented. In addition, the function
can be applied in case of fixed order or in the case of the data-driven version. The
function is considered to be as the following:
stGOF <- function(formula, data = NA, order = NULL, method = "MLE",

rescale = FALSE, B = NULL, max.order = 0,
horizon = "", criterion = "", output = TRUE)

There are 10 arguments in stGOF. Four arguments must to be provided:

• formula: A formula is used to specify the data vector and the hypothesized
distribution. And it should be written as data ∼ distr, where distr the
distribution to be tested, and must be one of "unif", "pois" "exp", "norm", or
"logis".
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• data: A numeric vector of sample observations.

• method: Indicates the method for parameter estimation and must be one of
"MLE" (default), or "MME".

• output: Logical item; if TRUE (default) an extensive output of the smooth test
is given, otherwise, no output is given.

Other arguments are required depending on the case in which the smooth test is to be
carried out. For instance, in the case of performing the smooth test with the Henze
and Klar rescaling of the components (bootstrap version with fixed order), then three
more arguments should be exist. And they are:

• order: The order of the test

• rescale: If rescale=TRUE the empirical variance is used to rescale the
components with the Henze and Klar rescaling method.

• B: The number of bootstrap runs/iterations for p-value calculation

If rescale=FALSE (default), then the theoretical variance under the null hypothesis
is used. This is case of the regular smooth test with a fixed order. If B=NULL then the
asymptotic chi-squared distribution is used for p-value calculation.

If the order is not specified, the data-driven smooth test is applied. And other
arguments are needed here like:

• max.order: The maximum order of the test

• horizon: horizon="order" (default) refers to order-selection, and horizon="subset"
refers to subset selection.

• criterion: A character specifying the model selection criterion: "AIC" (default),
or "BIC".

The workflow diagram in Figure 3.1 of the stGOF function describes how the function
works. The first step is to check if the order is fixed or not. If the order is not fixed,
then the data-driven function stGOF_DD will be run. Otherwise, if the order is fixed,
there are two options. To perform the regular smooth test which means the theoretical
variance under the null hypothesis is used. Or rescale the components by using the
empirical variance as described in Henze and Klar rescaling method [9, 8].

For more understanding of the running sequence of the functions under stGOF function
work, we present the workflow of the regular stGOF function as the example in Figure
3.2. Suppose the funcation is runing to perform the smooth test for PRG data with
a fixed order = 4 and "MLE" as the estimation method of the parameters. Then the
function will be as the following:
stGOF(PRG ~ unif, PRG, order = 4, method = "MLE")

The workflow schema shows that the regular stGOF_R function will start to embed
under the top-level function stGOF. Then the unif_MLE function runs to return
the MLE estimators for the uniform distribution. These estimators will be pluged-
in the orth_poly function which contains all the sub-functions that calculate the
orthonormal polynomial for the chosen distribution by calling its function (Here, it
calls the unif_orth). After calculating the orthonormal polynomial, we use it in the
test_stat to return the results of test statistics.
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Figure 3.1: stGOF function workflow

This scheme is in order to generalize the top-level function and implement the methods
in a generic way. And that means there is no need to program the smooth test from
scratch for a new distribution when we aim for further extending of the R package
with other distributions. The only functions that will be added or modified are the
functions related to the suggested distribution like the estimation function and the
orthonormal polynomial functions.

In addition, there are no major changes to the function if the components are rescaled
using the empirical variance or if the data-driven approach is applied. Only one
additional function runs before the statistic calculation function to return the bootstrap
results.

Figure 3.2: Regular stGOF function workflow
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3.2 data
Besides the top-level function stGOF, the package contains four databases that will be
utilized later to build, develop, and validate functions in this package. To explore the
list of the names of the datasets in the stGOF package

#names of data sets in the stGOF package
(data(package = "stGOF"))$results[, "Item"]

[1] "cultivars" "PCB" "PRG" "pulse"

3.2.1 Pseudo-Random Generator Data - PRG

The generation of random numbers is important in many areas. For instance, in
modern cryptographic algorithms ’good’ random numbers are needed. Good random
number generators are also essential in many sciences, e.g., in physics and, of course,
in statistics, where it is common practice today to assess empirically the validity of
theoretical distribution theory by means of a simulation experiment in which statistics
are calculated on repeatedly generated random samples from a given distribution.
A device that generates true random numbers is hard to achieve. A true random
generator is, for instance, based on a radioactive source, but it is unrealistic to have
this built into every computer. Therefore, computer scientists, mathematicians, and
engineers have created algorithms that generate pseudo-random numbers. These
algorithms are based on a sound mathematical theory, and despite their deterministic
nature they generate sequences of numbers that come close to true random number
sequences. Apart from having as much randomness in the sequence as possible, pseudo-
random generators ’sample’ the numbers from a particular distribution. Often this
is the uniform distribution over [0, 1]. Whenever a new pseudo-random generator is
developed, it should be tested. Using the terminology of Knuth (1969) [13], two types
of tests exist: theoretical and empirical tests. The former are based on algorithmic
properties and their application does not need to let the algorithm generate sequences
of pseudo-random numbers. The result of the test is a score of the randomness.
The empirical tests, on the other hand, are basically statistical goodness-of-fit tests
that should be applied to a generated sequence. These tests are used to test the null
hypothesis that the generated numbers are indeed sampled from a uniform distribution
over [0, 1] [2]. Atkinson (1980) is a reference in the statistical literature describing the
problem. A nice reference in the computer science literature in which goodness-of-fit
tests are applied to several pseudo-random generators, is Entacher and Leeb(1995) [5].

As an example we examine the quality of the uniform pseudo-random generator, the
histogram and the boxplot in Figure 3.3 present the PRG dataset because it would be
quite useless to list all 100,000 numbers in the dataset.

3.2.2 PCB Concentration Data

In a study on the effect of environmental pollutants on animals, Risebrough (1972)
gives data on the concentration of several chemicals in the yolk lipids of pelican eggs.
The data considered here are the PCB (polychlorinated biphenyl) concentrations for
65 Anacapa birds. In the original study the mean PCB concentration in Anacapa eggs
was compared to the mean concentration in eggs of other birds. Here we concentrate
on the Anacapa eggs [22]. A histogram and a boxplot are presented in Figure 3.4
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(a) (b)

Figure 3.3: The histogram (left) and the boxplot (right) of the pseudo-random generator
data

3.2.3 Pulse Rate Data

At a hospital the pulse rates of 50 patients were measured in beats per minute. The
data are taken from Hand et al. (1994) [7]. Figure 3.5 shows the histogram and the
boxplot of the pulse rate data.

3.2.4 Cultivars Data

The cultivars dataset is taken from Karpenstein-Machen et al. (1994) and Karpenstein-
Machan and Maschka (1996) [12]. It has also been analyzed by Piepho (2000) [17].
The dataset contains the yields (in tons per hectare) of two triticale cultivars: Alamo
and Modus. Yields on both cultivars are obtained in 19 different environments. For
each environment, a fertility score (“Ackerzahl” (AZ)) was recorded. A histogram and
boxplot of the data are shown in Figure 3.6

3.3 Examples
In this section we test the functions of the stGOF package. In the next examples we
test the composite null hypothesis that the PCB concentration data come from a
normal distribution. We test this hypothesis first with a traditional smooth test based
on the efficient scores. Because the normal distribution belongs to the exponential
family, and MME and MLE coincide, it does not matter which

√
n-consistent estimation

scheme we choose. The output below shows the R-code and the results of two smooth
tests with fixed orders k = 6 and k = 7. All p -values are obtained from the asymptotic
χ2 approximation, but the results based on the simulated null distribution give the
same conclusions.
stGOF(PCB ~ norm, PCB, order = 3, method = "MLE")

## Results of the Smooth test
## Ho: Normal against 3 th order alternative
## Parameter estimation method: MLE
## Parameter estimates: 210 72.26383 ( mean sd )
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(a) (b)

Figure 3.4: The histogram (left) and the boxplot (right) of the PCB data

##
## All p-values are obtained by the asymptotical chi-square approximation
##
## Smooth test statistic S_k : 5.4369
## p-value : 0.01972
##
## 3 th component V_k = 2.33172 p-value = 0.01972

The function returns several outputs, such as the parameter estimates, the smooth
test statistic, the p -value, and the component. As presented, the first two components
are exactly zero because MME and MLE coincide. We read p = 0.01972 for k = 3th-order
smooth test, and conclude at the 5% level of significance that the null hypothesis of
normality is rejected.
stGOF(PCB ~ norm, PCB, order = 6, method = "MLE")

## Results of the Smooth test
## Ho: Normal against 6 th order alternative
## Parameter estimation method: MLE
## Parameter estimates: 210 72.26383 ( mean sd )
##
## All p-values are obtained by the asymptotical chi-square approximation
##
## Smooth test statistic S_k : 10.1826
## p-value : 0.03746
##
## 3 th component V_k = 2.33172 p-value = 0.01972
## 4 th component V_k = 2.03024 p-value = 0.04233
## 5 th component V_k = 0.43434 p-value = 0.66404
## 6 th component V_k = -0.65966 p-value = 0.50947

The same conclusion when the order become k = 6. The null hypothesis of normality
at the 5% level of significance is rejected. However, if k = 7 were chosen, as in the
next example, then the smooth test would have p-value equal to 0.060 which does not
imply the rejection of the null hypothesis at the 5% level of significance. The reason
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(a) (b)

Figure 3.5: The histogram (left) and the boxplot (right) of the pulse rate data

may be found by looking at the p-values of the individual component tests. The third-
and the fourth-order component tests have small p-values, but as the order increases,
the p-values increase too. This is a typical illustration of the dilution effect.
stGOF(PCB ~ norm, PCB, order = 7, method = "MLE")

## Results of the Smooth test
## Ho: Normal against 7 th order alternative
## Parameter estimation method: MLE
## Parameter estimates: 210 72.26383 ( mean sd )
##
## All p-values are obtained by the asymptotical chi-square approximation
##
## Smooth test statistic S_k : 10.5948
## p-value : 0.06003
##
## 3 th component V_k = 2.33172 p-value = 0.01972
## 4 th component V_k = 2.03024 p-value = 0.04233
## 5 th component V_k = 0.43434 p-value = 0.66404
## 6 th component V_k = -0.65966 p-value = 0.50947
## 7 th component V_k = -0.642 p-value = 0.52087

We previously used the p-values of the individual component tests, but we argued
extensively that the components should be rescaled to recover their full diagnostic
property. The method of Henze and Klar has been explained in Section 2.3 to
represent the nuisance parameters. The following code and output concern these
rescaled component tests (using the rescale=TRUE option in the stSOF function by
the bootstrap with 1000 runs).

The output shows that first, the p -value of order k smooth test equal 0.029. Then in
the next lines the components are shown and the p-values. Whereas we previously
concluded that the third and the fourth order component tests gave significant results.
Now, we must conclude that they are not significant at the 5% level. This may look
like a contradiction. There are two possible explanations.
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(a) (b)

Figure 3.6: The histogram (left) and the boxplot (right) of the cultivars data

set.seed(11)
stGOF(PCB ~ norm, PCB, order = 6, method = "MLE", B = 1000,

rescale = TRUE)

## Results of the Smooth test
## Ho: Normal against 6 th order alternative
## Parameter estimation method: MLE
## Parameter estimates: 210 72.26383 ( mean sd )
##
## All p-values are obtained by the bootstrap with 1000 runs
##
##
## Smooth test statistic S_k : 10.1826
## p-value : 0.029
##
## 3 th component V_k = 1.49321 p-value = 0.154
## 4 th component V_k = 1.21281 p-value = 0.088
## 5 th component V_k = 0.35025 p-value = 0.704
## 6 th component V_k = -0.97439 p-value = 0.31

The first is that the skewness and the kurtosis of the PCB concentration distribution
agree with those of the normal distribution, and that it was falsely suggested by the
non rescaled component tests due to an incorrect standardisation of the components.
A second explanation might be that the use of the empirical variance estimator in
the rescaled component test introduces additional variance, which further implies a
loss in power. Thus maybe the large p -values of the rescaled component tests are a
consequence of a smaller power. Which one of the two arguments is correct is still not
clear at this point.

Another problem still left unanswered. Which analysis should be trusted, the smooth
test with k < 7 or with k = 7? There is no preferable choice. The best answer is
to let the data select the order k. The adaptive smooth test (data-driven approach)
can be applied with max.order=7, criterion = "BIC" and the order selection rule
horizon="order"
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set.seed(11)
stGOF(PCB ~ norm, PCB, method = "MLE", B = 1000, max.order = 7,

horizon="order", criterion="BIC")

## Results of the Smooth test
## Result for Data-Driven Smooth goodness-of-fit test
## Null hypothesis: norm against 7 th order alternative
## Parameter estimation method: MLE
## Parameter estimates: 210 72.26383 ( mean sd )
##
## Horizon: order
## Selection criterion: BIC
##
## All p-values are obtained by the bootstrap with 1000 runs
##
## Data-Driven Smooth test statistic S_k = 5.43692 p-value = 0.034
## Selected model: 3

The p -value of this data-driven smooth test is 0.034. Based on this adaptive test we
decide to reject the null hypothesis of normality at the 5% level of significance. The
BIC criterion selected only the 3rd-order term. Although the test statistic that was
used here is not properly scaled to guarantee the diagnostic property, we may at least
have trust in the overall conclusion: rejection of the null hypothesis of normality.

Finally, to illustrate the smooth test for a discrete distribution, we test the null hypoth-
esis that the pulse rate data of Subsection 3.2.3 comes from a Poisson distribution.
Note that for the Poisson distribution the MLE and MME coincide. The null hypothesis
is tested by means of a smooth test of order k = 6, and the first component is exactly
zero by the estimation process. The computation of the p -value the asymptotic χ2

approximation is chosen.
stGOF(pulse ~ pois, pulse, order = 6, method = "MLE")

## Results of the Smooth test
## Results of the Smooth test
## Ho: Poisson against 6 th order alternative
## Parameter estimation method: MLE
## Parameter estimates: 82.3 ( lambda )
##
##
## All p-values are obtained by the asymptotical chi-square approximation
##
## Smooth test statistic S_k : 20.9846
## p-value : 0.00082
##
## 2 th component V_k = -0.24605 p-value = 0.80564
## 3 th component V_k = 3.04171 p-value = 0.00235
## 4 th component V_k = 3.24207 p-value = 0.00119
## 5 th component V_k = 0.66246 p-value = 0.50768
## 6 th component V_k = -0.84982 p-value = 0.39543

From the output we read that the p -value of the order k smooth test equals p =
0.0008 < 0.05, and therefore we conclude at the 5% level of significance that the
observations do not come from a Poisson distribution. A closer look at the individual
components may shed some light on how the distribution differs from the Poisson
distribution. Here the third- and the fourth-order components show very large values.
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This suggests that the pulse rate distribution has a different skewness and a different
kurtosis from a Poisson distribution with mean equal to 82.3.

3.4 Validation & Improvement
To achieve the best performance of the functions in the stGOF, the top-level function
had to be redesigned several times. In addition, many conditions were modified or
dropped besides improving the bootstrap part in the rescale and data-driven approaches.
Also, reducing the time was taken into account in the process of improvement.

To validate the functions, each function was checked individually. As well as taking into
account the examination of functions to work together in a consistent and compatible
with the workflow of the package. The results mentioned in chapter 4 of the book
"Comparing Distributions" by Thas (2010) [23] were adopted as a reference to
compare with the results produced by the stGOF function. We found insignificant
differences between the results in the book and the results produced by our function.
And the reason behind that is the bootstrap functions in the book were without
reference/seed.
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Chapter 4

Conclusion

Smooth and generalized smooth goodness of fit tests are a good choice as tests with
power that is nearly always comparable to alternative tests. stGOF is a package which
is build, developed to perform the smooth test. This package contains functions for
performing smooth tests of goodness of fit and for computing orthonormal polynomials.
Smooth tests with a fixed order are performed as well as the data-driven versions.
Structure of the smooth test, and the interpretation of the components were discussed
in chapter 2. In addition, Data-driven approach was presented to explain the order
selection.

A comprehensive explanation of all arguments of the top-level function with validated
and compared practical examples. This work can be developed and improved by
adding functions for other distributions to be test the null hypothesis. Also, it can be
uploaded and published to be available on CRAN mirrors.
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