
School of Transportation Sciences
Master of Transportation Sciences
Master's thesis

Vehicle crash prediction model for signalized intersections in Ghent, Belgium

Yonas Gebreyesus Gebremeskel
Thesis presented in fulfillment of the requirements for the degree of Master of Transportation Sciences, specialization

Traffic Safety

2021
2022

SUPERVISOR :

Prof. dr. Tom BRIJS

MENTOR :

De heer Roeland PAUL



School of Transportation Sciences
Master of Transportation Sciences
Master's thesis

Vehicle crash prediction model for signalized intersections in Ghent, Belgium

Yonas Gebreyesus Gebremeskel
Thesis presented in fulfillment of the requirements for the degree of Master of Transportation Sciences, specialization

Traffic Safety

SUPERVISOR :

Prof. dr. Tom BRIJS

MENTOR :

De heer Roeland PAUL





 
 

PREFACE  

Initially, I intended to work on my master thesis under the topic of  “Safety evaluation of signalized 

intersections in Addis Ababa, Ethiopia.” Unfortunately, because of an unexpected regional crisis (civil 

war) in my region(Which is still ongoing), it was impossible to collect data. Then I discussed this matter 

with my advisor Prof. Tom Brijs. And we decided to work on a new but related topic. As a result, I did my 

master thesis under the new title “Vehicle crash prediction model for Signalized  intersections in Ghent, 

Belgium.” 

The number of road traffic fatalities and injuries has increased at an alarming rate globally and remained a 

major public health issue. In the last decade, middle and high-income countries have made greater progress 

toward reducing road traffic fatalities than low-income countries. In Belgium, the total number of crashes 

resulting in injuries or death from 2010 to 2019 decreased by around 17.6%. While the steady progress, the 

country's traffic death rate remains high compared to the national target. Thus, road traffic crashes remain 

a threat to public health and the country's national economy, and traffic safety has become one of the highest 

priorities of the Belgian government. Intersections are identified among the most dangerous locations for 

traffic crashes. Many factors are believed to associate with the occurrence of a crash at the intersections. 

To ensure safety at intersections and provide effective and efficient interventions, it is crucial to identify 

the main risk factors associated with a crash at the intersections. Moreover, developing a tool for properly 

estimating the number of crashes at such locations is vital. Thus, this study primarily aimed to develop a 

vehicle crash prediction model for urban signalized intersections in Ghent, Belgium. 

I'd like to express my gratitude to Professor Tom Brijs, Roeland Paul, and Wisal Khattak for their 

constructive feedback and guidance throughout the completion of my master thesis. Especially Professor 

Tom Brijs for his understanding of the regional situation and for letting me work on a new topic even though 

it wasn’t easy to get the data due to the confidentiality nature. I want to thank you for your trust in me. I 

would also like to thank Ghent University for the data. Finally, I would like to express my gratitude to the 

Flemish Interuniversity Council (Vlaamse Interuniversitaire Raad/ VLIR-UOS) for fully funding my 

Master's degree program at Hasselt University. 

 

I dedicated my thesis work to those 500,000+ individuals who lost their lives due to the ongoing 

genocidal war on the people of Tigray (The region where I come from) over the past 16 months.  
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SUMMERY  
Global road safety reports evidence that road traffic crashes remain as a major problem, both from the 

public health and socio-economic perspectives worldwide. The burden of a road traffic crash is higher in 

low-income countries than in middle and high-income countries. In the last decade, more progress has been 

shown in middle and high-income countries than in low-income countries toward reducing the number of 

road traffic fatalities.  In Europe, between the years 2010-2019, the number of traffic death decreased from 

67 to 51 fatalities per million inhabitants. In Belgium, the total number of crashes resulting in injuries or 

death from 2010 to 2019  reduced from 45,745 to 37,699. During this period, the number of road traffic 

death declined from 78 to 56 fatalities per million inhabitants, i.e., from 850 to 646. Despite the steady 

progress, the number of traffic death in the country is still significant compared to the national target (no 

more than 420 road deaths in 2020). In 2019 the overall annual cost of road crashes was estimated as EUR 

5.7 billion, or 1.2% of Belgium's GDP. Accordingly, road traffic crashes remain a  threat to public health 

and the country's national economy, and traffic safety has become one of the highest priorities of the Belgian 

government. 

Various studies have shown that intersections are among the most dangerous locations for traffic crashes. 

Factors such as the traffic flow, geometry of the intersection, traffic control, environmental and operational 

characteristics are believed to have an association with the occurrence of a crash at the intersections. Thus, 

this study primarily aimed to develop a vehicle crash prediction model for urban signalized intersections in 

Ghent, Belgium. The main objective of the study is to identify and examine the influence of key risk factors 

contributing to traffic crashes at the signalized intersections and formulate a recommendation to improve 

safety at the signalized intersections. A cross-sectional study design was used in this study. Seventy-seven 

signalized intersections were analyzed using four-year crash data for model development. Ghent University 

provided crash data and traffic count, and road network data.  

Previous works of literature were primarily done to identify possible risk factors contributing to a traffic 

crash at intersections. According to previous works of literature, factors related to traffic characteristics 

(traffic volume on the major and minor roads), traffic control (left-turn lane, right-turn lane, signalization, 

the presence of crosswalk, and post speed limit), Geometric characteristics (number of approaching legs, 

intersection skewness, number of lanes, the width of the median, lane width) found to have a significant 

relationship with the occurrence of the crash at the intersection. 

The Highway Safety Manual (2010) recommended the generalized linear model (GLM) with the negative 

binomial distribution and logarithmic link function as a standard approach to model yearly crash 

frequencies. The GLM uses both power and exponential functions for exposure variables and risk factors, 

respectively. The power function ensures a non-zero positive crash number unless the exposure variable 

(traffic volume) is zero. On the other hand, the exponential function ensures a non-zero or negative crash 

number due to zero or negative values from the linear predictors (regression of risk factors). Thus, the 

generalized linear model (GLM) with the negative binomial distribution and logarithmic link function was 

utilized in this study to develop the crash prediction model for signalized intersections. 
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The Pearson correlation coefficient and the variance inflation factor (VIF) were used to examine correlation 

and multi-collinearity among variables prior to model development. Then,  model validation was performed 

for the developed model. Based on the estimated values found from the model, major risk factors were 

identified with their respective influence on the number of crashes at the signalized intersections. And the 

results were interpreted, discussed` and compared with similar previous studies. Following the 

identification of the main risk factors, the relevant countermeasures and recommendations to improve 

traffic safety at signalized intersections were forwarded. 

Depending on the data availability and previous works of literature, ten variables were considered for model 

development. A significant correlation was found between the traffic volume on the major and minor 

approach, between the left turn lane on the major approach and the right turn lane on the minor approach, 

and between the right turn lane on the minor approach and the number of approaches. Considering the 

Pearson's correlation and collinear analysis results, all variables except the right turn lane on the minor 

approach were selected for the model development.  

First, simple models incorporating only traffic volume were developed using four functional forms.  Almost 

similar model performance results were observed among the simple models. Thus, the researcher decided 

to select all the functional forms to model a fully specified crash prediction model and tried to identify a 

single model with the best fit based on the results from model Goodness of Fit and other model performance 

evaluation criteria. Only 80% (i.e., 61) of signalized intersections were used to develop the fully specified 

crash prediction models. And the remaining 20% (i.e., 16) signalized intersections were used for model 

validation. 

According to the best fit model results,  only five variables, including the sum of the traffic volume on the 

major and minor approaches, the ratio of the traffic volume on the minor approach to traffic volume on the 

the major approach,  the Left-turn lane on the major approach, the Presence of crosswalks on the minor 

approach, and the number of legs/approaches were found to be significant predictor of the total number of 

traffic crash at signalized intersections in Ghent, Belgium. The sum of traffic volume on the major and 

minor approaches, the Presence of crosswalks on the minor approach, and the number of approaching legs 

were positively associated with the number of crashes. Whereas the ratio of the traffic volume on the minor 

approach to the traffic volume on the major approach, and the left-turn lane on the major approach were 

negatively associated to the number of crashes.  
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1. BACKGROUND 

1.1 Introduction 

Road traffic crashes remain as a major problem globally, both from the public health and socio-economic 

perspectives (WHO, 2018). According to the WHO (2018), road traffic deaths significantly increased to 

1.35 million in 2016. Road traffic death is the 8th leading cause of death for all age groups, especially 

children & young adults aged 5 to 29 years (WHO, 2018). The report also indicates a strong association 

between the risk of road traffic death and a country's income level. With an average rate of  27.5  deaths 

per  100,000  population, the road traffic fatality rate in low-income countries is three times greater than in 

high-income countries. The average rate is 8.3 fatalities per 100,000 people (WHO, 2018). Compared to all 

other continents, countries in Africa and southeast Asia have regional rates of road traffic death higher than 

the global rate, with 26.6 and 20.7 deaths per 100,000 population, respectively (WHO, 2018). Countries in 

the Americas and Europe have the lowest regional rates of 15.6 and 9.3 deaths per 100,000 population, 

respectively (WHO, 2018).  

According to WHO (2018)  report, there has been more progress in reducing the number of road traffic 

deaths in middle and high-income countries than in low-income countries. Between the years 2013 to 2016, 

no reductions in the number of road traffic deaths were observed in any low-income countries, whereas 

some reductions were observed in 48 middle and high-income countries (WHO, 2018). In Europe, between 

the years 2010-2019, the number of traffic death decreased from 67 to 51 fatalities per million inhabitants, 

i.e., from 29,611 to 22,700  (European Commission, 2021). Yet, this number is very significant compared 

to the European commission goal, i.e., 15,750 by 2020. However, compared to the other continents in the 

year 2016 in Europe, only 50 road traffic death per one million inhabitants were sustained, while 174 

fatalities per million inhabitants occurred globally(European Commission, 2018). 

In Belgium, the total number of crashes resulting in injuries or death from 2010 to 2019  reduced from 

45,745 to 37,699 (European Commission, 2021). During this period, the number of road traffic death 

declined from 78 to 56 fatalities per million inhabitants, i.e., from 850 to 646 (European Commission, 

2021). Despite the steady progress, the number of traffic death in the country is still significant compared 

to the national target, i.e., no more than 420 road deaths in 2020(International Transportation Forum, 2020). 

In 2019 the overall annual cost of road crashes was estimated as EUR 5.7 billion, or 1.2% of Belgium's 

GDP (International Transportation Forum, 2020). Accordingly, road traffic crashes remain a threat to public 

health and the country's national economy, and traffic safety has become one of the highest priorities of the 

Belgian government (Geurts et al., 2003). 

According to the Highway Safety Manual (2010), “ a crash is defined as a set of events that results in 

injury or property damage, due to the collision of at least one motorized vehicle and may involve a collision 

with another motorized vehicle, a bicyclist, a pedestrian or an object.” Crashes as rare and random events; 

their occurrence is influenced by several factors such as human factors, vehicle factors, and 

roadway/environmental factors (AASHTO, 2010). Thus, identifying and understanding the different 

contributing factors that influence crash occurrence helps to reduce and eliminate traffic fatalities and 

serious injuries (Wang & Zhang, 2017). It is also crucial to examine the nature of the relationship between 

the roadway/environmental factors, operational factors and crashes to understand the causal mechanism 

involved in the traffic crash and better predict their occurrence (Nambuusi et al., 2008). Crash prediction 

models (CPM) are one mechanism used to gain these insights (Eenink et al., 2008).                                                                                                                                                                                                                                                                                                                                                             
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FIGURE 1: Contributing factors to vehicle crashes (AASHTO, 2010). 

Crash prediction models (CPM) are used for various purposes, such as estimating the expected crash 

frequencies from different roadway segments (highways, intersections, interstates, etc.) and identifying 

geometric, environmental, and operational factors that are associated with the occurrence of traffic 

crashes(Nambuusi et al., 2008). Different types of roads meet at an intersection; as a result, there is a chance 

for different crash types to occur at such locations (Nambuusi et al., 2008). Thus, it is vital to differentiate 

models to examine factors associated with the different crash types. In addition, it is also important to 

examine the nature of the relationship between the geometric, environmental, and operational factors and 

the traffic crashes to understand and have a good prediction of the traffic crash. Several approaches have 

been developed to identify factors and elements that affect the safety of the intersections. These include the 

multiple linear regression models, the multiple logistic regression models, Poisson regression models, 

negative binomial regression models, zero-inflated Poisson and negative binomial model, Gamma model,  

random-effects models, and the classification and regression tree (CART) technique. Thus, This study 

mainly aims to develop crash prediction models for signalized intersections that are found in Ghent, 

Belgium. 

1.2 Problem Statement  

Intersections are common places for traffic crashes as a result of several conflict movements and the 

different geometric characteristics of the intersection(Nambuusi et al., 2008). The same author also 

indicates that intersections tend to experience severe traffic crashes resulting from angle and left-turn 

collisions. According to AASHTO (2010), an intersection is defined as “the general area in the road 

network where two or more roads join or cross, and the area includes the roadway and roadside facilities 

for traffic movements.” Several studies have shown that intersections are among the most dangerous 

locations of a roadway segment. Factors such as traffic flow,  the geometry of the intersection, traffic 

control, environmental and operational characteristics are believed to be associated with the occurrence of 

a crash at such location (Abdel-Aty & Keller, 2005; Nambuusi et al., 2008). A study by Nambuusi et al. 

(2008) showed the significance of various variables (factors) related to crashes at intersections. According 

to the author, factors such as traffic flow, traffic control, geometric characteristics, driver characteristics, 

land use, and vehicle types and features are significantly associated with crashes at the intersection.  
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Identifying and understanding the relationship between factors contributing to the crash occurrence helps 

to propose appropriate remedial measures. A great amount of effort has been done to understand the 

relationship between factors contributing to crashes at the intersection over the past years; this includes 

developing analytical methods such as  Generalized Linear Models, improved experimental designs 

(before-after studies, conflict analysis), and on the model functional forms (Mitra & Washington, 2012). 

Tools such as Crash prediction models (CPMs) are one mechanism used to examine the nature of the 

relationship between the factors contributing to the crash and to predict their occurrence better (Eenink et 

al., 2008; Nambuusi et al., 2008).  

The crash prediction model (CPMs), also known as safety performance functions (SPFs), usually denotes 

a multivariate model fitted to crash data to estimate the statistical relationship between the number of 

crashes and factors that are believed to be (casually) related to crash occurrence. Over a specific period, 

CPMs can be used to estimate the expected average crash frequency of roadway facilities. The development 

of CPMs are a crucial process in which a modeler makes essential decisions(Khattak et al., 2021). Hauer 

and Bamfo (1997) emphasized that, in the course of modeling, the modeler will make two major decisions, 

i.e., "(a) What explanatory variables to include in the model equation; and (b) What should be its functional 

form.". The same author also indicates if the correct functional form has not been chosen for the model 

and/or if the appropriate explanatory variables are not used, the entire process on which the method for 

estimating rests crumbles into meaningless. Factors such as the purpose of the CPMs, and the availability, 

quality, and quantity of the data affect the expertise on those decisions(Khattak et al., 2021). 

There are several explanatory variables, yet the selection of explanatory variables appears to depend on the 

availability of the data (Nambuusi et al., 2008). Nevertheless of the choice,  explanatory variables should 

not be based on the data availability only; the explanatory variable should include variables that have been 

found in previous studies to have a major influence on the number of the crash and should not be highly 

correlated with other variables included in the model, and the variable included can be measured in a valid 

and reliable way (Eenink et al., 2008). 

Other than the choice of the explanatory variable, the functional form is also another essential aspect of the 

model since it influences the accuracy and predictive performance of the model, especially in the case of 

the variables representing traffic flow at intersection models given the complexity of traffic interaction to 

be addressed (Ferreira & Couto, 2013). As described in the work by (Chin & Quddus, 2003; Lord & 

Mannering, 2010; Miaou & Lord, 2003),   various statistical techniques, such as empirical Bayes methods 

and generalized linear models, have been applied to model the relationship between road crashes and traffic 

flow at intersections. Regardless of those techniques used, it remains a question of what functional form 

best addresses the essential relationship between crash occurrence and the traffic flow at the intersection, 

given the related complexity of the traffic movements. Miaou and Lord (2003) indicated that defining a 

model that produced a good fit to the data set is no longer challenging as it can be easily accomplished 

using many smoothing techniques and associated software, rather, criteria based on logic (such as reason, 

consistency, and coherency), flexibility, extensibility, and interpretability of the functional form should be 

taking into account in model development. Thus, this paper will present a research effort where crash 

prediction models (CPMs) for signalized intersections specific to Ghent, Belgium, will develop and 

examine to understand and identify the effects of  traffic flow, the geometric/environmental, and operational 

characteristics that significantly contribute to the intersection and intersection-related crashes. 
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1.3 Research Questions   

1. What are the key variables influencing crashes at the signalized intersections? 

2. How are the different variables contributing to the number of crashes at the signalized intersections?  

3. Which regression model best associate the number of crash and the contributing factors? 

4. How can the safety at the signalized intersections be improved? 

1.4 Research Objectives 

The general objective of this study is to develop a crash prediction model for signalized intersections in 

Gent, Belgium. 

The specific objectives of the study will be: 

➢ To identify the key factors contributing to crashes at the signalized intersections. 

➢ To examine the influence of the exposure and explanatory variables on the number of crashes at 

the signalized intersections.  

➢ Formulate a recommendation to improve safety at the signalized intersections.  

1.5 Scope of The Study  

This study is delimited in terms of Geographic location and road facility type. Vehicle crashes that occurred 

at the signalized intersection from 2014 to 2017 will be studied. Moreover, the study will be conducted in 

an urban region (Ghent, Belgium).  

1.6 Limitation of The Study  

This study shared some of the drawbacks of crash prediction modeling studies,  which are omitted variable 

bias and controlling for confounding factors.  

1.7 Conceptual FrameWork of The Study   

The conceptual framework showed a detailed procedure for developing a crash prediction model for urban 

intersections. 
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2. LITERATURE REVIEW   
The literature review primarily aims to acquire background knowledge and insights on predictive models 

by exploring the different predictive variables and the method of regression used in previous studies.  

2.1 Safety at Intersections 

It is not surprising to consider intersections among those locations that possess the highest portion of the 

total crashes on the roads. This is because, at the intersection, the need for instant decision-making, the 

complex urban design, dense and rigorous land use, congesting, heavy traffic, vulnerable road users, and 

many on-and-off-vehicle distractions overload driver's attention which makes it challenging for the drivers 

to operate safely (Khattak et al., 2021). In addition, drivers experience various interactions with crossing 

and turning vehicles, pedestrians, and cyclists in such locations. In the united states, about 43% of all 

crashes occurred at or near intersections (Lord et al., 2005). About 40% of all traffic crash casualties in 

Norway occurred at intersections (Elvik & Vaa, 2004). The annual road crash statistics in Singapore showed 

more than one-third of crashes, i.e., 34.31%, occurred at the intersection during 1992-2002 (Tay & Rifaat, 

2007).  

Several major factors influence crashes at the intersection, including traffic flow, traffic control measures, 

geometric characteristics, and driver characteristics. Various studies have been examining the impact of 

traffic and geometric characteristics on the frequency of crashes at intersections, including traffic flow 

(Ferreira & Couto, 2013), signal timing (Bonneson & Zimmerman, 2006; Wang et al., 2006), lane 

arrangement (Wang et al., 2006), curvature (Savolainen & Tarko, 2005), collision type (Abdel-Aty et al., 

2005; Jagannathan et al., 2006), and intersection approach conditions (Kulmala, 1998; Poch & Mannering, 

1996). In addition, many studies have also been examined the influence of these factors on the severity 

level of crashes at intersections (Abdel-Aty, 2003; Abdel-Aty et al., 2005; Jagannathan et al., 2006). These 

findings are good indicators of the existence of a relationship between the contributing factors and the 

occurrence of crashes at intersections. Understanding the factors contributing to crashes can help improve 

intersections' safety by proposing an appropriate countermeasure(Khattak et al., 2021). 

2.2 Vehicle-Crash Predictive Variables  

2.2.1 The Effect of Traffic Volume on crash frequency  

In estimating the safety performance function for intersections, traffic volume or AADT is one key factor 

that reflects the risk exposure at intersections (Wang et al., 2020). Even though research demonstrated the 

relationship between crashes and AADT as non-linear (Ivan, 2004; Jonsson et al., 2007; Qin et al., 2004), 

their fundamental relationship is more complex than a simple non-linear function and differ by different 

crash type(Ivan, 2004; Qin et al., 2004). 

Khattak et al. (2021) conducted a study to estimate the safety performance function for urban intersections 

in Antwerp, Belgium. The analysis included a total of 760 intersections, of which 198 were signalized and 

562 unsignalised. 470 three-legged and 290 four-legged intersections were analyzed. The study result 

showed a positive association between crash frequency and traffic volume of major and minor intersection 

approaches for almost every severity level and intersection type. 

Alarifi et al. (2017) conducted a study to develop a crash prediction model for Orlando, Florida. The study 

analyzed 247 signalized intersections by including the effect of macro-level data in addition to the 

intersection level data. The study found that the natural log of major and minor AADTs was significant and 
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positively associated with the crash occurrence at signalized intersections. Further, it was recognized that 

traffic volume on the major roads has a higher potential for crash prediction.    

Wang et al. (2020) studied 4-leg intersections on urban and suburban arterials at the State of Connecticut 

to estimate SPF by crash type to account for crash distribution variations using the most recent five-year 

(2015–2019) crash data. Intersections were categorized into all-way stop-controlled and signalized 

intersections. 1095 stop-controlled and 1552 signalized intersections were included in the study. Further, 

signalized intersections were separated into two-lane and multilane intersections. The study findings 

revealed that major road and minor road AADT as the exposure measure performs best in estimating SPF 

for same direction crash, intersecting direction crash, opposite direction crash, and single-vehicle crash.  

A work done by Gomes et al. (2012) to develop crash prediction models for urban intersections located in 

Lisbon, Portugal. Models with covariates and flow-only models were estimated using data collected at 94 

intersections (44 three-legged and 50 four-legged) and crash data from 2004 to 2007. The study result 

showed the total traffic inflow was found to be highly significant for both three-and four-legged 

intersections. In addition, the results showed the ratio between the traffic flow entering in a minor direction 

and the total traffic flow entering the intersections have a positive effect on the safety of three-legged 

intersections. 

Barbosa et al. (2014) did a study to develop a safety performance model for urban intersections of three  

Brazilian cities and investigate the transferability of models between three cities. The models were 

developed for 352 signalized and 132 unsignalised intersections using crash data from 2005 to 2010. The 

study findings showed that the AADT on the major and minor approaches were the most significant 

variables.  

A study by Miranda-Moreno et al. (2011) was done on 519 signalized intersections in Montreal, Quebec, 

Canada, to develop a crash prediction model. As a base model, only traffic volume and pedestrian volume 

were used as a predictor, and it was found that the coefficient for traffic volume and pedestrian volume was 

1.15 and 0.45, respectively. In the same study, the author developed a second model by including built 

environment variables and the traffic volume and pedestrian volume, and it was found a decrease in the 

coefficient both in traffic volume and pedestrian volume, i.e., 0.91 and 0.26, respectively. The author 

outlined that the slight change in coefficients (traffic volume from 1.15 to 0.91 and pedestrian volume from 

0.45 to 0.26) when built environment variables are included in the model may suggest that a considerable 

portion of observed variability is explained by traffic and pedestrian volume.  Wang et al. (2017) conducted 

a recent study on 279 intersections in Florida, USA. The study findings showed that the coefficient for 

traffic volume was 1.19 (for the model including traffic volume and road variables) and 1.15 (when 

macroscopic variables were included in the model). Another study by (Xie et al., 2018) in Hong Kong,  

based on the model fitted from 262 signalized intersections with three years of crash data, and it was 

founded that the coefficient for traffic volume and pedestrian volume 0.27 and 0.21, respectively.   
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FIGURE 3:Regression coefficients for motor vehicles, cyclists, and pedestrians from previous researches (Elvik & Goel, 

2019). 

A summary of the trend in regression coefficient variation for traffic volume, pedestrian volume, and 

cyclists in previous works of literature is shown in figure 3 (Elvik & Goel, 2019). Figure 3 shows the 

maximum and minimum values of regression coefficients reported in studies published before 2000, 

between 2000 and 2009, and between 2010 and later. The tendency for the range of estimated values of the 

coefficients to become more extensive overtime is most evident for motor vehicles, yet it is found for 

cyclists and pedestrians as well. Miranda-Moreno et al. (2011) forwarded possible reasons behind the wide 

variation in the regression coefficient over time resulting from the difference in the number of sample size 

(number of intersections), type of intersections (three-legged, four-legged), number of crash data considered 

for analysis, quality of traffic and crash data, regression methods and many more from one study and to the 

other. 

Finally, the recently accomplished National Cooperative Highway Research Program (NCHRP) 17-62 

project (2017), as cited in (Wang et al., 2020), confirmed that the relationship between AADT and crash 

counts differ among different crash types and crash severities. Thus, the safety performance 

functions(SPFs) estimation should be disaggregated by crash type and severity level. 

2.2.2 The Effect of Intersection Characteristics  

Various studies showed that intersection characteristics (Traffic control and geometric characteristics) 

significantly affect vehicle crashes(Harwood et al., 1995; Harwood et al., 2002; Khattak et al., 2021; Kim 

& Washington, 2006). Accommodating the left turn lane on major roads is possibly the most challenging 

problem in traffic engineering because a left turn can not be made simultaneously while a vehicle is passing 

in the opposite direction. Left turn lanes were found to be effective in reducing total crashes at intersections 

(Zhou et al., 2010).  

A before-after study was conducted to evaluate the safety effect of installing left-turn lanes in Connecticut. 

Installing left-turn lanes decreased crashes in some cases but not in all situations. The same author pointed 

out that adding left-turn lanes were less effective at reducing crashes under conditions associated with high 

traffic intensity, traffic signals, and four-legged intersections(Rimiller et al., 2003). Another study showed 



 
  

10 
 

a crash reduction from 77% to 18% due to the installation of left-turn lanes (Gluck et al., 1999). A study by 

Maze et al. (1994) to assess the safety of left-turn treatment at high speed signalized intersections showed 

adding left-turn lanes were found to reduce crash rate by 6% with permitted phasing and by 35% with 

protected /permitting phasing. A study was conducted by Zhou et al. (2010) to examine the safety effects 

of exclusive left-turn lane installation at unsignalized intersections and driveways, the study results showed 

adding left-turn lanes for rural two lanes, three-leg intersections, and urban four-lane intersections creates 

a safer condition for the same direction crashes, including rear-end, turning, and sideswipe crashes.  

A study was done by De Pauw et al. (2015) to investigate the safety effects of protected left-turn phasing 

at signalized intersections in Flanders, Belgium. The study included 103 signalized intersections with left-

turn. The study results showed a significant decrease in the number of injury crashes by -46% and a 

reduction of left-turn crashes by  -60%. The same study also indicates that the number of rear-end injuries 

did not change significantly after implementing a protected left-turn signal. However, a large effect was 

identified for more severe crashes, i.e., -66%.  

Only a few studies have been conducted on the safety effectiveness of right-turn lanes. A study by Harwood 

et al. (2002) showed a 5% reduction in a crash due to right-turn lane alone, one approach in a rural stop-

controlled intersection, and a 10% reduction along both major approaches. A study conducted for three-leg 

unsignalized intersections along rural two-lane highways showed that a right-turn lane increases 

intersection-related crashes by 27% (Vogt & Bared, 1998).  

Kim and Washington (2006) try to justify the reason for the inconsistency in the safety effects of the left-

turn lane by the potential of endogeneity of left-turn lanes that earlier researchers have not controlled. They 

recommended that the installation of left-turn lanes was regularly endogenous and affected by crash counts 

and traffic volume. Accounting endogeneity of left-turn lanes reduced angle crashes (Kim & Washington, 

2006). 

Signalizations are often installed in urban intersections to improve traffic operations, signal coordination, 

safety, and perceived risks. Various safety studies of intersection signalization have been conducted 

worldwide. A study was undertaken by McGee et al. (2003) in North America to evaluate the safety effect 

of signalization of 22 three-armed and 100 four-armed intersections in urban areas. The study results 

showed that the number of injury crashes was reduced by 14% at three-armed intersections and 23% at 

four-armed intersections. Many studies indicated signalization of intersections decreased the number of 

right-angle crashes while it was observed an increased in rear-end crashes; recent studies in the U.S. found 

a reduction in right-angle crashes by 34-77 % and an increment of rear-end crashes by 38-58 %(Elvik et 

al., 2009; Harkey, 2008; McGee et al., 2003). Jensen and ApS (2010) conducted a before-after study to 

evaluate the safety effects of signalization of 54 intersections in the central part of Copenhagen, Denmark. 

The study analyzed 35 four-armed, 18 three-armed, and 1 five-armed intersections using data from 1997-

1999. Intersections were converted from yield control to signal control. The study found that signalization 

of intersections significantly reduced total crashes by 39% and injuries by 23% for four-armed intersections. 

The reduction estimated for three-armed intersections was insignificant, i.e., 21% and 17% for crashes and 

injuries, respectively. In the estimation for the five-armed intersection, the number of crashes decreases 

significantly, safety at the five-armed intersection has most probably improved after the installation of 

signalization. 
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Crosswalks are provided to guide pedestrians along roadways and to increase drivers' awareness of 

pedestrians. Various study results provide conflicting conclusions regarding whether the provision of 

marked crosswalks improves pedestrians' safety at the intersection. Several studies showed that marked 

crosswalks reduce crash rates in some cases by as much as 50% (Smith & Knoblauch, 1987; Wilson, 1967) 

as cited in (Harwood et al., 2002). On the other hand, early studies on crosswalks conducted by (Herms, 

1970; Smith & Knoblauch, 1987), as cited in Harwood et al. (2002), found approximately an increase of 

twice as many pedestrian crashes occurred in marked crosswalks as in unmarked crosswalks and an increase 

of 86% of a pedestrian crash after crosswalks were marked. Khattak et al. (2021) conducted a study to 

estimate the safety performance function for urban intersections in Antwerp, Belgium. The study findings 

showed that in signalized intersections, the presence of a sidewalk on the minor approaches had a significant 

positive association with the crash rate only when it was present on both approaches, but it was not 

significant when crosswalks provided only on one of the minor approaches. The author also found that the 

estimated coefficients were often more than double for intersections with crosswalks on both minor 

approaches than intersections on one approach only.  Herms highlighted the increase in crash rates resulting 

from marked crosswalks may "not be due to the crosswalk being marked as much as it is a reflection on the 

pedestrian's attitude and behavior when using the marked crosswalk." Other factors which might influence 

the safety of marked crosswalks incorporate visibility, intersection type, and signal timing. 

A study was conducted by Zegeer et al. (2001) on 1000 marked and 1000 unmarked crosswalks at 

unsignalized intersections & mid-block locations in 30 U.S. cities. The study findings showed that at 

uncontrolled locations with more than two-lane where the average daily traffic is low, i.e., ADT<12,000, a 

marked crosswalk alone didn't induce a statistically significant difference in pedestrian crash rate. Whereas,  

on multilane roads with high ADT, i.e., ADT>12,000, a marked crosswalk without any other enhancement 

showed statistically significant higher pedestrian crash rates than the pedestrian crash rates on unmarked 

crosswalks. The same author also found that multilane roads with raised median in either marked or 

unmarked crosswalks induced lower crash rates compared to roads with no raised median. Even though the 

provision of crosswalks mainly affects pedestrian safety, it is worth noticing that the vehicle crash rate may 

also be affected.  Heurn (1988), as cited in (Harwood et al., 2002), indicated that rear-end collisions increase 

after crosswalks are marked. Accordingly, the need for crosswalk provision should be analyzed from 

pedestrians and vehicular safety perspectives.  

Most of the time, median refuge islands are found at the center of roadways, along with crosswalks to 

provide pedestrians with a safe place to wait for gaps in traffic while crossing a wide roadway.  Several 

studies showed favorable benefits of median refuge islands (Bacquie & Egan, 2001; Zegeer et al., 2005) 

found statistically significant lower pedestrian crash rates. A recent study by Pulugurtha et al. (2012) found 

a statistically significant increase in the proportion of drivers yielding to pedestrians & the distance drivers 

yielded to pedestrians. The presence of median refuge islands results in a statistically significant reduction 

in mean speed (King et al., 2003). 

It is reasonable to assume that as the posted speed limit on an intersection approach increases, the likelihood 

and severity of crashes also increase. Higher post speed limits are usually related to higher approach speeds, 

as it takes longer to bring an approaching vehicle to a complete stop. As a result, drivers must respond more 

swiftly to potential conflicts at intersections. The relationship between the speed at intersections and safety 

is speculated frequently, but few studies exist to clearly identify what that relationship might be. Salifu 

(2004)  developed a crash prediction model to study the relationship between the number of crashes, traffic 

flow, traffic control, and geometric characteristics for urban intersections in Ghana. The study analyzed 91 
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intersections, of which 57 were three-arms and 34 were four-arm unsignalized intersections using three 

years of crash data. The study results showed that the high speed of vehicles approaching the intersections 

along the major road increases vehicle crashes.  

In previous studies, there is broad agreement that four-leg intersections have more crashes than equivalent 

three-leg intersections. This finding is logical since four-leg intersections have more conflict points than 

three-leg intersections, which means there are more chances for a crash to happen in four-leg intersections. 

A study by (Bauer & Harwood, 1996), as cited in Harwood et al. (2002), found that four-leg stop-controlled 

intersections in rural and urban areas experienced approximately twice as many crashes as in three-leg 

intersections. The same author stated explicitly rural four-leg stop-controlled intersections accommodated 

an average of 1.1 crashes yearly, while three-leg intersections experienced 0.6 crashes per year; similarly, 

four-leg stop-controlled intersections in urban areas experienced 2.2 crashes yearly, while 1.3 crashes were 

experienced at three-leg intersections per year. Another study by Harwood et al. (1995) showed the 

variation in the rate of a crash as a function of the median width, i.e., four-leg intersections with narrow 

medians had about twice as many crashes as three-leg intersections and more than five times as many 

crashes as three-leg intersections with wide medians. An early study by David and Norman (1975) Showed 

that in urban areas, a stop-controlled intersection with a total traffic volume less than 20,000 veh/day at 

entering, the crash frequency for both three and four-leg intersections varied similarly. But for intersections 

with total traffic volume at entering above 20,000 veh/day, the crash frequency at the four-leg intersection  

were twice as many as three-leg intersections.  

In relation to the number of intersection legs, the angle between the intersection legs has long been 

considered to affect the safety performance of the intersection. Intersecting roadways should be oriented at 

a 90-degree angle as much as possible. Intersection design, on the other hand, can diverge from this 

desirable configuration and resulting in a skewed intersection. A study was conducted by Nightingale et al. 

(2017) to determine the effect of intersection skewness on crash frequency for rural stop-controlled 

intersections on high-speed two-lane highways in the state of Lowa.  The study separately analyzed three 

and four-leg intersections to estimate crash frequency as a function of AADT, skew angle, and other 

geometric characteristics. The study results showed that crash frequency consistently increase with skew 

angle, i.e., a 10-degree deviation from 90 degrees resulted in 3% more crashes at three-leg intersections and 

4% more crashes at the four-leg intersection. A study by Khattak et al. (2021) found that intersection 

skewness was statistically significant for the total crash, injury, and fatal crashes in the case of signalized 

intersections.  The study findings also indicated more crashes were expected on intersections with high 

skewness level than intersections with no or low level of skewness. Another study by (Kumfer et al., 2019) 

examined the effects of intersection angle on intersection safety. The study analyzed three-leg and four-leg 

stop-controlled intersections with two-lane and multilane major legs using crash data of seven years and 

five years from Minnesota and Ohio. The study results showed that more than half of the intersection types 

experience the highest number of predicted crashes when the intersection angle lays between 50 to 60 

dgrees. 

The width and number of approach lanes of an intersection are other crucial geometric characteristics that 

affect the safety performance of an intersection. According to a study by Khattak et al. (2021), the estimated 

crash frequency was shown to be influenced by the number of approach lanes of unsignalized intersections 

only, especially in the case of property damage only  (PDO) crashes and total crashes. The same author also 

found that the association between the number of through lanes and the expected crash was significant and 

positive, i.e., an increase in the number of through lanes resulted in more crashes. Bauer and Harwood 
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(1996) found that for urban four-leg signalized intersections, the crash frequency tends to be higher with an 

increase in the number of approach lanes; whereas, for unsignalized intersections in both rural and urban 

areas, the rate of crash tends to be higher for intersections with one approach lane and lower at intersections 

with two and more approach lanes. (Poch & Mannering, 1996; Wang et al., 2006) showed that as the number 

of approach lanes increases, the number of crashes also increases at intersections.  It is difficult to determine 

if any of the observed safety effects are due to the number of lanes or the traffic volume on the approach 

when using a demand-related design parameter like the number of lanes(Harwood et al., 2002). Similar to 

the number of lanes, the width of the approach lane also affects intersection safety. A study by  (Harwood 

et al., 1995; Harwood et al., 2002) showed that an increase in approach width to an intersection reduces the 

crash rate along with the approach. 

To summarize, exposure and explanatory variables that have been found to have significant relation with 

crash risks and frequency are summarized in the table below.  The variables are also proposed for use in 

the model development for this study. 

TABLE 1:Identified important exposure and explanatory variables for vehicle crash risk and frequency estimation from 

previous research 

Category Variables Unit Reference 

Traffic characteristics  Traffic volume AADT (Khattak et al., 2021; 

Nambuusi et al., 2008; 

Wang et al., 2020) 

Traffic control  Left turn lane 

 

Yes/no (Harwood et al., 2002; 

Nambuusi et al., 2008; 

Zhou et al., 2010) 

 Right turn lane  Yes/no (Harwood et al., 2002; 

Nambuusi et al., 2008) 

 Signalization  Yes/no (Elvik et al., 2009; 

Harkey, 2008; McGee 

et al., 2003) 

 Presence of crosswalk Yes/no (Harwood et al., 2002; 

Khattak et al., 2021) 

 Post speed limit  Km/hr (Nambuusi et al., 2008) 

Geometric 

characteristics  

Number of legs  3 to 5 (Harwood et al., 1995; 

Harwood et al., 2002) 

 Intersection skewness  Yes/no (Khattak et al., 2021; 

Kumfer et al., 2019) 

 Number of approach lanes  1 to 5 (Harwood et al., 2002; 

Nambuusi et al., 2008) 

 

 

 

 

 

 

Lane width  Meter (Harwood et al., 1995; 

Harwood et al., 2002; 

Nambuusi et al., 2008) 
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2.3 Vehicle Crashes and The Regression Methods  

2.3.1 Data and Methodological Approaches  

 Researchers have studied and identified issues related to data and methodology in crash frequency 

modeling as primary sources of error in terms of incorrectly specifying statistical models, which results in 

an erroneous crash frequency and wrong inference of explanatory variables (Lord & Mannering, 2010). 

According to the review and explanation done by Lord and Mannering (2010), these methodological and 

data-related issues are summarized below.  

 

Over-dispersion: It is worth noticing that the variance of crash-frequency data exceeds the mean of the 

crash counts. This is problematic since the properties of most common count-data modeling approach (the 

Poisson regression model) are limited to the mean and variance to be equal. Estimating a common Poisson 

model with overdispersed data can result in biased and inconsistent parameter estimates, leading to 

erroneous inferences about the variables determining crash frequencies(Lord & Bonneson, 2007). 

 

Under-dispersion: most of the time, it is not common characteristics of crash data to be under-dispersion, 

i.e., the sample mean value will be greater than the variance. Previous studies have shown that traditional 

count-data models result in incorrect parameter estimation in the presence of under-dispersed data (Oh et 

al., 2006).  

Time-varying explanatory variables: Explanatory variables may vary dramatically over time, but the fact 

that crash frequency is considered only over some period of time might result in ignoring the potential 

within-period variation in explanatory variables, which leads to loss of potentially crucial explanatory 

information. This can induce error in the model estimation because of unobserved heterogeneity 

(Washington et al., 2020). 

Under-reporting: There is a potentially serious issue with the under-reporting of crashes since less severe 

crashes are less likely to appear in crash databases. Although the degree of under-reporting for each severity 

level is often unknown, recent research has demonstrated that count-data models are prone to producing 

biased estimates when under-reporting is not taken into account during the model-estimation process(Ma, 

2009). 

Omitted-variables bias:  

It might be too easy to develop a model with few explanatory variables (for example, using traffic flow as 

the only explanatory variable in the model). However, ignoring significant explanatory variables, with other 

traditional statistical estimating approaches, leads to biased parameter estimates, resulting in erroneous 

inferences and crash-frequency predictions. This is especially true if the omitted variable is correlated with 

other variables in the specification (Lord & Mannering, 2010). 

Functional form: Functional forms of a model establish a link between dependent and explanatory variables 

and are an essential part of the modeling process.  Most count-data models assume that explanatory 

variables have a linear effect on dependent variables. Non-linear functions, on the other hand, appear better 

to characterize the relationship between crash frequencies and explanatory variables (Miaou & Lord, 2003). 

2.3.2 Modeling Approaches  

Previously, a wide variety of methods have been applied over the years to deal with the data and 

methodological issues associated with crash frequency. This includes Poisson, Negative binomial, Poisson-

lognormal, Zero-inflated Poisson, Negative Binomial, Gamma, Generalized estimating, Random-effects, 
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Random-parameters equation, and Bivariate/multivariate models(Lord & Mannering, 2010). The table 

below summarizes model approaches used by recent researchers for crash predicting models. 

 TABLE 2:Summary of previous research analyzing crash-frequency data 

Models Previous researches 

Poisson Daniels et al. (2011), Wali et al. (2018) 

Negative binomial  Torbic et al. (2010),(Daniels et al., 2011; Miranda-

Moreno et al., 2011; Pulugurtha et al., 2013), Elvik 

et al. (2009), Strauss et al. (2014) 

Poisson-lognormal  Siddiqui et al. (2012), Xie et al. (2018) 

Zero-inflated Poisson and negative binomial Lee et al. (2019), Cai et al. (2018) 

Gamma model Daniels et al. (2011) 

Random Parameter Negative Binomial Wali et al. (2018),Wang et al. (2017) 

Random Parameter Poisson Wali et al. (2018) 

Mixed-effects negative binomial Lee et al. (2019) 

Multilevel Poissonlognormal (MPLN) joint (Alarifi et al., 2017) 

 

Poisson regression model 

Since crash-frequency data are non-negative integers, applying standard ordinary least-squares regression 

(which assumes a continuous dependent variable) is not appropriate. The dependent variables are non-

negative integers, so most recent research has used the Poisson regression model as an initial starting point 

(Lord & Mannering, 2010).  In the Poisson regression model, the probability of a given road entity i 

(Segment/ intersection) having yi (a non-negative integer) crashes per some period is given by:  

       𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
       (1) 

Where, P(yi) is the probability of road segment i having yi crashes over time, and λi is the Poisson parameter 

of roadway entity i. λi is equal to the expected number of crashes per year E[yi]  of roadway entity i. The 

most common factional form of λi is 𝛌𝒊 = 𝑬𝑿𝑷(𝛃𝑿𝒊)where Xi is a vector of an explanatory variable of 

roadway i and 𝜷 is an estimable vector parameter(Lord & Mannering, 2010).  Although the model was 

used as an initial starting point for crash analysis in the past, recent studies found that the Poisson regression 

approach encountered potential problems. One constraint is that the mean must be equal with the variance, 

i.e., this model can not handle over and under-dispersion crash data(Lord & Mannering, 2010). 

The negative binomial (Poisson-gamma) regression model 

A new model called the negative binomial (Poisson-gamma) regression model was introduced to overcome 

possible over-dispersion in the data. The model assumes that the Poisson parameter follows a gamma 

probability distribution. Rewriting the Poisson parameter as 𝛌𝒊 = 𝑬𝑿𝑷(𝛃𝑿𝒊 + ℇ𝒊), where the EXP(ℇi ) is 

a gamma-distributed error with mean one and variance α yields the negative binomial model. The added 

term allow the variance to differ from the mean as 𝑉𝐴𝑅[𝑦𝑖] = 𝐸[𝑦𝑖][1 + α𝐸[𝑦𝑖]] = 𝐸[𝑦𝑖] + α𝐸[𝑦𝑖]2. 

Thus, the Poisson model is a special form of the negative binomial regression model when α approaches 

zero. The parameter α is the over-dispersion parameter(Miaou & Lord, 2003). The negative binomial model 

is used widely in crash-frequency modeling. However, the model possesses some limitations in handling 
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under-dispersion data and problems regarding dispersion-parameter-estimation when data have a low 

sample-mean value and small sample size(Lord & Mannering, 2010) 

Poisson-lognormal model 

Recent researchers used the Poisson-lognormal model as an alternative to the negative binomial model for 

modeling crash data (Miaou & Lord, 2003). Both models are similar, but the term EXP(ℇi ) used to compute 

the Poisson parameter in the Poisson-lognormal model is lognormal rather than gamma-distribution(Lord 

& Mannering, 2010). Poisson-lognormal model is more flexible than negative binomial; however, model 

estimation is more complex because Poisson lognormal does not have a closed-form and can still be affected 

by small sample sizes and small sample-mean values (Miaou & Lord, 2003). 

Zero-inflated Poisson and negative binomial  

Zero-inflated models were developed to handle data with a considerable amount of zeros or more zeros 

than a typical Poisson or negative binomial/ Poisson-gamma model would predict. The model operates by 

splitting the dataset into two, one a crash-free (that handles for the excess zero data which Poisson/ negative 

binomial models cannot handle to model), and the second a crash-prone propensity of roadway facility. The 

binary logit or probit model can be used to determine the probability of roadway facilities being in zero or 

non-zero states (Washington et al., 2010). Despite its broad application to handle data characterized by 

significant excess zeros, (Lord & Bonneson, 2007) argued this model could not accurately describe the 

crash-data generation process since the zero or safe state has a long-term mean of zero.   

Gamma model 

The Gamma model was proposed to analyze crash data exhibited under dispersion (Oh et al., 2006). This 

model can handle both over-and under-dispersion, and when the variance seems to be equal to the mean of 

the number of crashes, it reduces to the Poisson model(Lord & Mannering, 2010). This model can perform 

well statistically. However, it is still a dual-state model with one state having a long-term mean equal to 

zero(Lord & Mannering, 2010).  

2.4 Conclusion  

To summarize, as evidenced by previous studies, it was shown that factors related to traffic characteristics 

(traffic volume on the major and minor roads), traffic control (including major and minor left-turn lanes, 

right-turn lanes, signalization, the presence of crosswalks, and post speed limit), Geometric characteristics 

(such as number of approaching legs, intersection skewness, number of lanes both on major and minor 

roads, the width of the median, lane width on major and minor roads) believed to contribute to the crash at 

the intersection. Depending on the crash data characteristics and the assumed functional form, a wide range 

of modeling approaches, (including the Poisson regression model, negative binomial, Poisson lognormal, 

Zero-inflated negative binomial, and gamma model)  have been fitted to crash data to estimate the statistical 

relationship between the number of crashes and factors that are believed to be (casually) related to crash 

occurrence. The negative binomial gamma distribution model is a widely used modeling approach that 

overcomes mainly the problem of over-dispersion in crash data. 
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3. METHODOLOGY 

3.1 Study Area 

The study was conducted on 77 signalized intersections in Ghent, Belgium. Ghent is a port city in the 

northwest part of Belgium, with  469,000 inhabitants in 2021 and an average population density of 1655 

h/km² (Statbel,2021). The city economy is highly determined by its port (i.e., the third-largest port in 

Belgium) and tourism as a result of medieval monuments and architecture (Marlinde Koopmans et al., 

2012). Ghent is a vibrant city accommodating local residents, students, commuters, and tourists. Every day, 

thousands of individuals are on the move, resulting in a significant deal of traffic; this induces an increase 

in all traffic flow putting greater pressure on public spaces (Stad Gent, 2021). In order to maintain the city's 

accessibility and livability in the future, the city administration is heavily investing in sustainable mobility 

to reduce the impact of air pollution and improve road safety (Stad Gent, 2021).  

 

3.2 Study Design  

Most crash frequency models have traditionally used a cross-sectional data format. Because this format 

overlooks the long-term relationship between crashes and their contributing factors (Ambros et al., 2018). 

A cross-sectional study design was used to conduct this study.  

 
 
 
 

 

FIGURE 4: Map of Ghent, Belgium (Vectorstock). 
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3.3  Data Collection and Preparation 

This study utilized data provided by Ghent University. The provided dataset consists of four years of crash 

data (2014-2017), a road network map, and a traffic flow network map. The crash data included information 

about crash severity,  geographical coordinates of the crash location, time and date of the crash, type of the 

vehicle involved and their number,  and driver data. The Crash data categorized traffic crashes into three 

categories, i.e., (1) traffic crash with injuries (including slight and severe injuries), (2) traffic crash with 

fatalities, and (3) traffic crash with property damage only (PDO).  Between the years 2014 to 2017, in the 

city, a total of 19,973 crashes were reported. The majority of the reported traffic crashes were Property 

damage only, i.e., 14,588, followed by 5364 traffic crashes with injury, and 21 traffic crashes with a fatality. 

The road network map shows all the road networks in the city, including information such as road type, the 

status of the road, owner of the road, and other road-related information. The traffic flow network map 

shows the number of vehicles flowing through the road network but not for the entire road network. The 

traffic flow count was based on three types of vehicles, i.e.,  passengers car, light trucks, and heavy trucks, 

either in one or two directions. Thus, as the first step, data processing and preparation have to be done to 

prepare the data required for analysis.  

Step 1: Data processing and preparation 

The entire data processing step was done using QGIS software. Since traffic flow volume is identified as a 

major predictor of crashes, as shown in chapter two, the traffic flow map was used as a base map to start 

with data processing. Then, by overlaying the traffic flow network map on the road network map, the entire 

road network was filtered into a new layer by excluding roads that do not have traffic flow data. Then, the 

new road network map with only traffic volume data was used for further process. Initially, the road network 

map doesn’t contain any information regarding the location of intersections and intersection related 

characteristics. Thus, the researcher has to look for a method to identify the intersection on the road network 

map (i.e., the new road network map with traffic volume data). The researcher considered the AASHTO 

highway safety manual definition for intersections which defines an intersection as  “the general area in 

the road network where two or more roads join or cross and the area includes the roadway and roadside 

facilities for traffic movements.” as initial thought to identify intersections on the road network, i.e., when 

two lines are intersecting or crossing there is a chance of that location to be an intersection on the road 

network, then with the help of vector analysis line intersecting tool, lines intersecting each other were 

identified and marked on the road network map. The road network map was made by joining line segments; 

as a result, the software identified two lines joining each other as intersecting lines. Thus, the researcher 

tries to locate and mark only lines that intersect or cross each other. Then, With the help of Google satellite 

plugin in QGIS, the point of intersection was checked if it is an actual intersection or not; this was done by 

overlaying the road network map with the marked point of intersection on the google satellite image layer. 

Then, after once points were identified as intersections, the researcher further checked again if the identified 

intersections had complete traffic flow data in all legs or not, and those intersections with no traffic flow 

data at least in one leg were excluded. Then with this process, the researcher managed to locate 266 

intersections on the road network. Then, the next step was to identify intersections with signalization. 

Google map and google road with Google 3D view were used to identify signalized intersections. Then, 

with this process, 77 signalized intersections out of the 266 intersections were identified as signalized 

intersections.  
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Once signalized intersections were identified, the next data processing step was assigning crashes into an 

intersection and intersection-related crashes.   Although there is no clear definition of an intersection-related 

crash, different researchers use different criteria to define intersection-related crashes based on intersection 

influence area. Harwood et al. (2002)  considered all intersection-related crashes within 250 ft of each 

intersection to evaluate the safety effectiveness of providing dedicated left- and right-turn lanes for at-grade 

intersections. A study by Joksch and Kostyniuk (1998) to examine the relationship between crash counts 

and traffic volume at intersections in the states of Michigan, California, and Minnesota using a maximum 

of 350 ft length of influence area. Mitra et al. (2007) study to examine spatial variables' effect on intersection 

crash occurrence considered intersection-related crashes by including the intersection's influence area 

within 250 ft long from the center of intersection along any leg of the intersection. Thus, this study decided 

to use the HSM guidelines to define intersection-related crashes by using an intersection influence area of 

70m length from the center of the intersection along all the legs. Accordingly, all crashes that have occurred 

within the boundary of an intersection area (A) are designated as intersection crashes. On the other hand, 

crashes on the road segment (B) were considered only as intersection related crashes if it falls within the 

influence area of the intersection and when there was no other road facility within the influence area (for 

example, there was a situation where a neighboring unsignalized intersection located within the influence 

area of a signalized intersection, so in that case crashes located nearby to the unsignalized intersection were 

excluded from consideration as intersection related crashes for the signalized intersection under 

consideration). In a case where two signalized intersections were situated closely, and overlapping of 

intersection influence area occurred, intersection related crashes were assigned to the nearby intersection.  

Thus, with the help of QGIS software, a 70m buffer zone was drawn as an intersection influence area in 

each signalized intersection on the road network map. Then, crash data was overlaid on the road network 

map with intersection buffer zone, and crashes located outside of the buffer zone were excluded. Only 

crashes situated within the buffer zone were designated as intersection and intersection-related crashes. 

With this process, the researcher examined each signalized intersection to see how crashes situated inside 

the intersection influence area. In some signalized intersections, crashes were situated neither in boundary 

(A) nor region (B); even in some cases, crashes were situated inside resident buildings. Thus, in cases like 

this, crashes were excluded from consideration. A total of 1338 crashes were assigned as intersection and 

intersection-related crashes as a result of the above definitions and considerations. Of which 748 crashes 

were property only damage, 586 were traffic crashes with injuries, and 4 traffic crashes with fatalities.  

 

FIGURE  6:Definition of Roadway Segments and Intersections (AASHTO, 2010). 
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Traffic volume data 

In this stage, the traffic flow network map was processed. Only mid-block traffic flow counts along all the 

intersection legs were considered. Traffic counts on the rest of the road network were excluded. Traffic 

flow counts were available in one or two directions of the road network, depending on the type of road. The 

traffic count data consisted of counts of three types of vehicles, i.e., passenger cars, light trucks, and heavy 

trucks. As a first step, the total number of vehicles was determined by summing up the three types of 

vehicles (total number of vehicle=passenger cars + light truck vehicles + heavy truck vehicles). And then, 

the total number of vehicles count was divided by 365 in order to convert the traffic count into Average 

Annual Daily Traffic (AADT). The calculated AADT was only in one direction. For the roads with two 

directions flow, the total AADT was calculated by adding the AADT in the respective directions. Then the 

calculated AADTs were assigned to the corresponding intersections. In cases where the AADTs on the two 

major and minor road legs of a four-leg intersection and the two major road legs of a three-leg intersection 

are different, the AASHTO’s highway safety manual recommendations were used. According to the HSM 

(2010),  if the AADTs on the two major-road legs of an intersection differ, the larger of the two AADT 

value is used. If the AADTs on the two minor-road legs of a four-leg intersection differ, then the larger of 

the two AADT value is used. For three-leg intersections, the AADT of the single minor-road leg is used.   

3.4 Study Population  

Step 2: Sample selection 

The current study purposely selected all signalized intersections identified in previous steps. A total of 77 

signalized intersections were identified, of which 39 were four-leg and 38 three-leg. 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE  7: Signalized intersections (Author). 
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3.5 Identification of Risk Factors 

Step 3: Identifying possible risk factors/variables 

 Three main criteria were considered to select variables based on the highway safety manual (2010).  

1. Variables that have found in previous studies to wield a major influence on the number of crashes. 

2. The variable included can be measured validly and reliably.  

3. The variables should not be highly correlated with other variables included in the model. (This 

requirement will be checked in step 4). 

Based on the previous literature review and the data given,  ten variables that qualified the first two 

requirements were selected under two main categories; exposure variables (traffic flow) and intersection 

characteristics variables (explanatory variables, traffic control variables). The exposure variable includes 

the AADT on major and minor approaches, and eight variables describing the characteristics of the 

intersection were selected. The variables include; average lane width on major and minor approaches,  left-

turn lane on major approaches, right-turn lane on minor approaches, the presence of crosswalks on major 

and minor approaches, number of approaches/legs, and intersection skewness. Intersections were divided 

into skewed and un-skewed intersections depending on the angle formed when two or more roads meet. 

Intersections with an angle other than 90 degrees were considered as skewed intersections.  

Intersection characteristics data (i.e., explanatory variables, traffic control variables) were collected 

extensively using  Google satellite image, Google Maps and road, and google earth pro software. A 

summary of the selected variables are shown in the table below. 

TABLE 3: Summary of variables description 

Category Variables Unit 

Exposure variables AADT on major approaches AADT 

AADT on minor approaches AADT 

 

 

 

Intersection 

characteristics 

variables 

Average lane width on major approaches Meter 

Average lane width on minor approaches Meter  

Left-turn lane on the major approach 

 

0 to 2 

Right-turn lane on the minor approach 

 

0 to 2 

Presence of crosswalks on major approaches 0 to 2 

Presence of crosswalks on minor approaches 0 to 2 

Number of legs  3 to 4 

Intersection skewness  Yes/no 

A summary and description of the variables (Level) selected for the vehicle crash prediction model for 

signalized intersections in this study are presented in appendix A. 
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3.6 Model Development 

Step 4: Model development  

Correlation  

The Highway safety manual (2010) states that variables exhibiting high correlation within explanatory 

variables should be avoided from the model. Thus, it is essential to check for correlation among explanatory 

variables to identify important contributing factors (Miranda-Moreno et al., 2011). The Pearson coefficient 

of correlation and the variance inflation factor (VIF) were utilized to avoid the problem of multicollinearity. 

The Pearson coefficient of correlation determines whether two variables are correlated or not. If the Pearson 

correlation coefficient is between -0.3 and +0.3, the variables have a weak correlation(Pulugurtha et al., 

2012). When two variables are identified to have a high correlation, the one with the weakest significance 

for crash involvement was excluded from the model. VIF, on the other hand, was utilized to identify 

collinearity among variables in the fitted model. A VIF value greater than ten implies significant 

multicollinearity problems among variables (Chen et al., 2016). The variable with the highest value was 

eliminated from the model if the VIF value was greater. SPSS version 28 software was used to conduct the 

analysis. 

Modeling approach and model development 

In this stage, the predictive model was developed. Crash prediction models are multivariate models that 

relate the number of crashes with exposure (Traffic flow) and explanatory variables (road geometry, land 

use, traffic control) (AASHTO, 2010). Since crash occurrence is described as a random, discrete and non-

negative event, the Poisson regression model appears to be more suitable. Still, this model has a strict 

limitation, i.e., the mean must be equal to the variance, which is rare in the case of traffic crash data. 

Previous studies identified that crash data has a significant over-dispersion, i.e., the variance of the data is 

usually greater than the mean (Lord & Mannering, 2010). The Highway Safety Manual (2010) recommends 

the generalized linear model (GLM) with the negative binomial distribution and logarithmic link function 

as a standard approach to model yearly crash frequencies. The GLM with the negative binomial distribution 

provides a relatively reliable distribution for studying random, discrete, and non-negative events such as 

crashes(Khattak et al., 2021). In NB (negative binomial) regression model, the probability of roadway entity 

i having yi crashes per  period of time is defined as; 

       𝑃(𝑦𝑖) =
𝐸𝑋𝑃(−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
                    (2) 

         λ𝑖 = 𝐸𝑋𝑃(β𝑋𝑖 + ℇ𝑖)                                                                                                       (3) 

Where; 

yi = the number of crashes for segment i in year t 

β = a vector of the estimable parameters 

Xi = a vector of the explanatory variables  

EXP(ℇ𝑖) =  a gamma-distributed error term with mean 1 and variance α. 

The GLM uses both power and exponential functions for exposure variables and risk factors, respectively. 

The power function ensures a non-zero positive crash number unless the exposure variable (traffic volume) 
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is zero. On the other hand, the exponential function ensures a non-zero or negative crash number due to 

zero or negative values from the linear predictors (regression of risk factors), even if the sum of the linear 

function results in a zero or negative value, it will not result in a zero or negative crash value since the linear 

function is the exponent of the exponential function, (i. e., 𝑒∑ 𝑦𝑖 𝑥𝑖) with value  𝑒0  being one and 𝑒−𝑥 Non-

negative number. Thus, the generalized linear model (GLM) with the negative binomial distribution and 

logarithmic link function (equation 3) was used in this study to develop the crash prediction model for 

signalized intersections. SPSS software version 28 was used to fit the model. 

𝜇𝑖  = 𝛽0 ∗ 𝑄𝑀𝐴
𝛽1 ∗ 𝑄𝑀𝐼

𝛽2 ∗ 𝑒∑ 𝛽𝑖𝑥𝑖                                                                       (3) 

Where 𝜇𝑖  = predicted number of crashes at intersection type i 

           QMA= number of vehicles entering an intersection from the major road 

           QMI=  number of vehicles entering an intersection from the minor road 

            xi=  vector value of risk factor i other than the number of vehicles  

            𝛽0= intercept  

            𝛽1 𝑎𝑛𝑑 𝛽2= The effect of traffic volume on the expected number of crashes (elasticity) 

             𝛽𝑖= parameter to be estimated and represent the effect of risk factor i 

Generally, separate models for different intersection types and crash types are often suggested than one 

model for all intersection types since they provide a better fit and description of the data. It is recommended 

to fit disaggregated models than aggregated models if data on intersection types and crash types are 

available(Eenink et al., 2008). Therefore, this study intended to develop separate models for total injuries 

(injuries and fatality) and property damage only (PDO) for three and four-legged signalized intersections. 

3.7 Model Validation and Goodness of Fit 

Step 5: Model evaluation  

Since the main objective of the study is to develop a crash prediction model that will realistically estimate 

the crash frequency at the signalized intersection, the model’s goodness of fit and its statistical adequacy 

has to be checked. Different methods were used to assess the goodness of fit for predictive models. In this 

study, Mean absolute deviation (MAD), Mean squared prediction error (MSPE), and Mean prediction bias 

(MPB)  was used to validate the goodness of fit of the developed model see (Oh et al., 2003). Mean absolute 

deviation (MAD) provides a measure of the average misprediction of the model, a value close to zero 

suggests that, on average, the model predicts the observed data well. On the other hand, Mean squared 

prediction error (MSPE) was used to assess the error associated with divation. MAD is given by; 

𝑀𝐴𝐷 =
∑ |𝜇 ̂−𝑦𝑖|𝑛

𝑖=1

𝑛
        (4) 

Where: 𝜇 ̂= Predicted number of crashes per year for the site i 

           𝑦𝑖= observed number of crashes per year for the site i 

          n= number of sites  
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In addition to MAD and MSPE, the mean prediction bise (MPB) was used to determine the magnitude and 

the direction of average model bias.  A value close to zero suggests that, on average, the model predicts the 

observed data well. On the other hand, a positive value indicates that the model overestimates the observed 

number of crashes and a negative value indicates an underestimation of the observed number of crashes.  

MPB is given by; 

𝑀𝑃𝐵 =
∑ (𝜇 ̂−𝑦𝑖)𝑛

𝑖=1

𝑛
                       (5) 

Where: 𝜇 ̂ is the fitted value of 𝑦𝑖 With sample size n.  

Step 6: Model interpretation and recommendation 

Based on the estimated values found from the model, major risk factors were identified with their respective 

influence on the number of crashes at the signalized intersections. And finally, the results were interpreted, 

and the coefficients of explanatory variables were compared with similar previous studies on crash 

prediction models at intersections. Following the identification of the main risk factors, the relevant 

countermeasures and recommendations to improve traffic safety at signalized intersections were forwarded. 
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4. DATA ANALYSIS 
This chapter discusses about variables considered in this study, the correlation between the variables, and 

model development. 

4.2 Descriptive Analysis  

The mean, variance, minimum, maximum, and standard deviation values of the identified variables are 

summarized in tables (4) below. A total of 77 signalized intersections were considered in the study. 

  

TABLE 4: Descriptive statistics of the Response variable, Exposure variables and Intersection 

characteristics variables (n=77) 

Category Variables  Minimum Maximum Mean Std. 

Deviation 

A. Response 

variables  

Total crash 0 15 5.04 3.401 

B. Exposure 

variables  

AADT on the major 

approach 

5093 35,738 14,802 6566.132 

AADT on the minor 

approach 

6 31,578 8880 6307.587 

 

 

 

 

C. Intersection 

characteristics 

variables 

Average lane width on 

the major approach 

2.78 3.81 3.107 .171 

Average lane width on 

the minor  approach 

1.98 3.39 2.974 .229 

Left turn lane on the 

major approach 

On each side: 37 

On one side: 15 

No dedicated lane: 25 

Right turn lane on the 

minor approach 

On each side: 23 

On one side: 10 

No dedicated lane: 44 

Presence of crosswalks 

on the major approach 

On each side: 49 

On one side: 15 

No crosswalk: 13 

Presence of crosswalks 

on the minor approach 

On each side: 35 

On one side:29 

No crosswalk: 13 

Number of 

legs/approaches 

Four legs:39 

Three legs: 38 

Intersection skewness yes: 35 

No: 42 
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4.2 Exploratory Data Analysis  

4.2.1 Correlation  

A Pearson correlation analysis was done to check for correlation between the independent variables. A 

Pearson coefficient value of 0.5 (moderate relationship) were used as a threshold. Thus, for variables with 

a Pearson coefficient value above 0.5, one variable with a better significance in predicting vehicle crashes 

was selected. A summary of the Pearson correlation results between the independent variables are shown 

in table 5. 

Based on the Pearson correlation results, a significant correlation was observed between the Annual 

Average Daily Traffic (AADT) on the major and minor approaches with a Pearson coefficient value of 

0.798. A significant correlation was also observed between the left turn lane on major approach and the 

right turn lane on the minor approach with a Pearson coefficient value of 0.820. And a significant correlation 

was observed between the right turn lane on the minor approach and the number of approaches with a 

Pearson coefficient value of -0.613.    

In addition to the Pearson coefficient,  the variance inflation factor (VIF) was used to check for 

multicollinearity within the independent variables. The collinearity analysis showed that a maximum 

variance inflation factor (VIF) value of 4.121, which is less than 10, implies no significant multicollinearity 

problems among the variables (Chen et al., 2016). A summary of the collinearity analysis is shown in 

appendix B.  Finally, based on Pearson's correlation and collinearity analysis results, all variables except 

the right turn lane on the minor approach were selected for the model development.  
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TABLE 5: Pearson correlation 

Correlations 

 AADT_maj AADT_min  ALW_maj ALW_min LTL_maj RTL_min CW_maj CW_min No 

approaches 

Skewness  

AADT_maj Pearson C. --          

AADT_min Pearson C. .794** --         

Sig.  <.001          

ALW_maj Pearson C. .056 .099 --        

Sig.  .631 .390         

ALW_min Pearson C. .177 .176 .221 --       

Sig.  .123 .125 .053        

LTL_maj Pearson C. -.161 -.218 -.010 .122 --      

Sig.  .162 .056 .929 .292       

RTL_min Pearson C. -.131 -.112 -.025 .135 .820** --     

Sig.  .257 .332 .830 .242 <.001      

CW_maj  Pearson C. -.022 .033 -.071 -.136 -.084 -.050 --    

Sig.  .851 .775 .538 .237 .466 .665     

CW_min Pearson C. -.271* -.124 -.091 -.135 -.190 -.117 .475** --   

Sig.  .017 .283 .430 .240 .097 .310 <.001    

No 

approaches 

Pearson C .256* .278* -.002 -.132 -.070 -.613** .162 .117 --  

Sig.  .024 .014 .986 .254 <.001 <.001 .160 .311   

Skewness Pearson C. .196 .161 -.052 .022 -.016 -.020 .158 .214 .119 -- 

Sig.  .087 .161 .655 .852 .889 .863 .170 .062 .304  

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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4.3 Negative Binomial Model Development  

In this section, a summary of the results from the Negative Binomial GLM were discussed. As explained 

in the methodology, the researcher intended to develop two separate models for the two types of crashes, 

i.e., Property Damage Only crashes (PDO) and Injury and Fatality crashes (IF). But unfortunately, model 

results for Injury and Fatality crashes showed statistically insignificant results. Both Poisson and Negative 

binomial GLM were used separately to develop a model for the Injury and Fatality crashes, but the model 

results showed statistically insignificant results in both cases.  The SPSS model output results are 

summarized in Appendix C. As a result, instead of disregarding injury and fatality crash data from the 

dataset,  the researcher decided to combine the two types of crashes, i.e., (Total crash= Property Damage 

Only crashes+ Injury and Fatality crashes)  and tried to fit a single model for the total crash. Only 80% (i.e., 

61) of signalized intersections were used to develop the fully specified crash prediction models. And the 

remaining 20% (i.e., 16) signalized intersections were used for model validation. 

4.3.1 Negative Binomial Model Development For Total Crash 

Before starting model development, the distribution of the response variable data was first checked. This 

helps in deciding to choose which model to use. The analysis result showed that the response variable (Total 

crash) has a higher value of variance (11.564) than the mean (5.04); this implies there is an overdispersion 

in the response variable. Various literature recommended to assume negative binomial distribution for count 

data with overdispersion. Thus, the negative binomial GLM model with loglink was used for the model 

fitting.  

The modeling process was started by recalling the correlation and collinearity analysis results for the 

variables.   As indicated in table 5, a high correlation was found between AADT on the major approach and 

AADT on the minor approach, between the left-turn lane on the major approach and right-turn lane on the 

minor approach, and between right turn lane and the number of approaches. Thus, considering the 

significance of the AADT on the minor approach for the response variable, the researcher agreed to combine 

the  AADT on the major and minor approaches using various functional forms rather than discarding this 

variable, and the variable right turn lane on the minor approach was excluded. Since there were no 

significant correlations and collinearity problems between other variables, all the remaining variables were 

considered for model development.  

Before directly going to a multivariate model fit, the researcher agreed to develop simple models 

incorporating only the exposure variable (i.e., AADT on major and minor approaches). Simple models have 

wide applications considering the transferability of crash prediction models for other regions. Miaou and 

Lord (2003) used different functional forms to combine the average annual daily traffic on the major and 

minor approaches. According to Miaou and Lord (2003), four functional forms are considered as the most 

popular forms to combine the average annual daily traffic on the major and minor approaches. These are; 

FF1: ln 𝜇 = 𝛽0   +  𝛽1 ln(𝑄𝑀𝐴 + 𝑄𝑀𝐼 )         (6) 

FF2:   ln 𝜇 = 𝛽0   + 𝛽1 ln(𝑄𝑀𝐴) + 𝛽2 ln( 𝑄𝑀𝐼 )                    (7) 

FF3: ln 𝜇 = 𝛽0   +  𝛽1 ln(𝑄𝑀𝐴 ∗ 𝑄𝑀𝐼 )        (8) 

FF4: ln 𝜇 = 𝛽0   +  𝛽1 ln(𝑄𝑀𝐴 + 𝑄𝑀𝐼 ) + 𝛽2 ln(
𝑄𝑀𝐼

𝑄𝑀𝐴
)      (9)  

Where:  QMA= number of vehicles entering an intersection from the major road 

             QMI =  number of vehicles entering an intersection from the minor road 
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Thus, simple models were developed using the four functional forms (FF) as a first step toward model 

development. All signalized intersections were included for the development of the simple models. The 

SPSS model estimation results for the four functional forms are shown in the table below. 

TABEL 6: Model estimation results for the four functional forms (simple models, n=77) 

 FF1 FF2 FF3 FF4 
 β p-value β p-value β p-value β p-value 

Intercept -1.782 0.172 -2.891 0.065 -0.442 0.626 -2.146 0.153 
𝐥𝐧(𝑸𝑴𝑨 + 𝑸𝑴𝑰 ) 0.340 0.009     0.374 0.011 

𝐥𝐧(𝑸𝑴𝑨)   0.468 0.016     

𝐥𝐧( 𝑸𝑴𝑰 )   0.004 0.960     

𝐥𝐧(𝑸𝑴𝑨 ∗ 𝑸𝑴𝑰 )     0.112 0.023   

𝐥𝐧(
𝑸𝑴𝑰

𝑸𝑴𝑨
) 

      -0.040 0.627 

Dispersion 0.198  0.187  0.207  0.197  

Log 

Likelihood 

-191.043  -190.020  -191.757  -190.924  

AIC 388.086  388.040  389.513  389.848  

BIC 395.117  397.416  396.545  399.223  

 

From the four simple models, to select a functional form with better performance, measures of Goodness 

of Fit and other model performance evaluation measures were checked for the simple models—table 7 

below shows the model performance evaluation measures used in this study. The bolded values are the 

desirable values. 

TABEL 7: Measures of model performance (Goodness of Fit) for the simple models 

 FF1 FF2 FF3 FF4 

Deviance  86.248 86.296 86.040 86.164 

MAD 2.4285 2.4025 2.4805 2.4155 

MSPE 10.3246 10.1428 10.7662 10.2077 

MPB -0.0129 0.0389 -0.0129 0.0259 

Calibration 

Factor  

0.9948 0.9923 1.0026 1.0025 

 

Based on the Goodness of fit and other model performance evaluation measures, almost similar results were 

observed between the four functional forms. Thus, the researcher decided to select all the functional forms 

for further modeling process. The researcher also believes choosing all the four functional forms instead of 

a single form will help to examine whether the functional forms would continue to perform similarly in the 

presence of other covariates or if a single best model would be revealed.  
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Only 80% (i.e., 61) of signalized intersections were used to develop the fully specified crash prediction 

models. And the remaining 20% (i.e., 16) signalized intersections were used for model validation. Initially, 

all the variables(covariates)  except the right turn lane on the minor approach were used simultaneously to 

develop a Negative Binomial Generalized Linear Model (NBGLM). However, most of the explanatory 

variables were found to be insignificant. This could be because of the variation in variable level between 

the independent variables or because of the small size of the dataset. As a result, the forward selection 

process was used to fit the Generalized Linear Models. As a first step, covariates were separately used for 

model development. From this step, only covariates such as (AADT, left turn lane on the major approach, 

the presence of crosswalk on both approaches, the number of legs/approaches, and skewness) were found 

to be significant. And then, as a second step, only those significant covariates from step one were used 

simultaneously. From this step, only covariates such as  AADT, left turn lane on the major approach, the 

presence of crosswalk on the minor approach,  and the number of legs/approaches were found to be 

significant.  Then, in step three, only significant covariates from step two were combined with the 

insignificant covariates from step one. And then, in step four, only significant covariates from step three 

were incorporated again with insignificant covariates from step two. This process continued until the best 

model fit was found. Then, in the end, only five variables were found significant for signalized intersections 

at 5% confidence levels. 
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A summary of parameter estimation for the variables (covariates) by the four functional forms are shown 

in table (8) below. From the table below it can be clearly  shown that coefficient estimations across all the 

functional forms are almost similar for the explanatory variables.    

TABEL 8:Model estimation results for the four functional forms (full models, n=61) 

 FF1 FF2 FF3 FF4 

  β p-value β p-value β p-value β p-value 

Intercept  -2.125 0.107 -4.297 0.006 -0.276 0.784 -3.712 0.011 

𝐥𝐧(𝑸𝑴𝑨 + 𝑸𝑴𝑰 )  0.314 0.013     0.451 <0.001 

𝐥𝐧(𝑸𝑴𝑨)    0.629 <0.001     

𝐥𝐧( 𝑸𝑴𝑰 )    -0.092 0.146     

𝐥𝐧(𝑸𝑴𝑨 ∗ 𝑸𝑴𝑰 )      0.073 0.162   

𝐥𝐧(
𝑸𝑴𝑰

𝑸𝑴𝑨
) 

       -0.150 0.023 

LTL_maj 

 Base 

LTL_maj=0 

LTL_maj=2 -0.549 0.010 -0.569 0.007 -0.538 0.013 -0.578 0.006 

LTL_maj=1 0.043 0.829 0.076 0.699 0.018 0.931 0.068 0.730 

CW_min 

 Base CW_min=0 

CW_min=2 0.360 0.061 0.482 0.014 0.301 0.125 0.466 0.018 

CW_Min=1 0.301 0.405 0.468 0.194 0.230 0.535 0.446 0.216 

No. Of Legs 

Base three legs=0 

No. Legs=4 0.606 0.001 0.603 0.001 0.616 0.001 0.625 <0.001 

Dispersion  0.013  3.746E-9  0.027  3.613E-8  

Log-Likelihood  -131.049  -128.258  -132.920  -128.935  

AIC  278.099  274.516  281.938  275.869  

BIC  294.986  293.514  298.726  294.867  
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In order to choose the fully specified crash prediction model that best fits the data, Goodness of fit and other 

model performance evaluation measures were calculated for each model. Table 9 shows the model 

performance evaluation measures used in this study. Thus, according to the Goodness of fit and other model 

performance evaluation measures from table 8 and 9, it is clear that the model with functional form 4 (FF-

4) showed the best fit over the other models. The bolded values are the desirable value. 

TABEL 9: Measures of model performance (Goodness of Fit) for the fully specified models 

  FF1 FF2 FF3 FF4 

Deviance 67.858 67.458 68.002 66.105 

MAD 2.4590 2.6393 2.4918 2.6065 

MSPE 10.7868 11.9508 10.9180 11.4262 

MPB -0.6229 -0.6721 -0.6229 -0.6065 

Calibration 

factor  

1.1258 1.1371 1.1258 1.1221 

 

Once the model with the best fit was identified,  interpretation and discussions were given according to the 

results obtained from the best fit model (i.e., FF-4). Accordingly, the best model fit incorporates the 

exposure variable  (AADT) and three intersection characteristics variables (i.e., left-turn lane on the major 

approach, Presence of crosswalk on the minor approach and the number of legs/approaches).  

Based on the fitted NBGLM, a positive and significant relationship was found between the expected crash 

frequency and the total number of vehicles on the major and minor approaches. On the other hand, a 

negative and significant association was found between the expected crash frequency and the ratio of the 

number of vehicles on the minor approach to the number of vehicles on the major approach (i.e., Qmi/Qma), 

but this needs interpretation. When the proportion between the traffic volume on the minor approaches to 

the traffic volume on the major approaches increases, the expected crashes will decrease. This means, for a 

given signalized intersection, when the traffic volume is highly concentrated on the major approach only, 

there is a higher chance of the vehicles being involved in a crash compared to the same signalized 

intersection with proportional distribution of traffic volume on major and minor approaches. A simulation 

was done for a random signalized intersection from the sample size to clarify this interpretation see  

Appendix E. 

The relationship between the “left turn lane on the major approach” and the expected crash was found 

negative and significant when the left turn lanes are provided on each side of the major road. Compared to 

a signalized intersection without a left-turn lane, the logarithmic expected crash frequency in signalized 

intersection with Left turn lane on each side of the major approach will be less by a factor of 0.578. 

Signalized intersections with only one side left turn lane on the major approach were found insignificant 

compared to signalized intersections without a left-turn lane. Based on the research findings, providing a 

left-turn lane on each side of the major approach will decrease the expected crash at signalized intersections.  
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The relationship between the presence of crosswalks on the minor approach and expected crash frequency 

for signalized intersections was found positive and significant. Compared to a signalized intersection 

without marked crosswalks, the logarithmic expected crash frequency in signalized intersection with 

crosswalks along each side of the minor road will be greater by a factor of 0.466.   

The association between the number of legs/approaches and the expected crash frequency was found to be 

positive and significant. The logarithmic expected crash frequency for four-leg signalized intersections will 

be greater by a factor of 0.625  than for three-leg signalized intersections.  

TABLE 10: Coefficient estimates detailed  (model-4, FF-4) 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 

Wald Chi-

Square df Sig. 

(Intercept) -3.712 1.4530 -6.560 -.864 6.526 1 .011 

Ln(Qmaj+Qmin) .451 .1352 .186 .716 11.126 1 <.001 

Ln(Qmin/Qmaj) -.150 .0656 -.278 -.021 5.204 1 .023 

[Left turn lane on the 

major approach =2] 

-.578 .2107 -.991 -.165 7.531 1 .006 

[Left turn lane on the 

major approach =1] 

.068 .1968 -.318 .454 .120 1 .730 

[Left turn lane on the 

major approach =0] 

0a . . . . . . 

[Presence of crosswalks 

on the minor approach=2] 

.466 .1967 .080 .851 5.604 1 .018 

[Presence of crosswalks 

on the minor approach=1] 

.446 .3602 -.260 1.152 1.531 1 .216 

[Presence of crosswalks 

on the minor approach=0] 

0a . . . . . . 

[Number of 

legs/approaches =1] 

.625 .1864 .259 .990 11.235 1 <.001 

[Number of 

legs/approaches =0] 

0a . . . . . . 

(Scale) 1b       

(Negative binomial) 3.613E-8c . . .    

 

The model outperformed the simple model of ln 𝜇 = 𝛽0   + 𝛽1 ln(𝑄𝑀𝐴 + 𝑄𝑀𝐼 ) + 𝛽2 ln(
𝑄𝑀𝐼

𝑄𝑀𝐴
). Moreover, 

the likelihood ratio chi-square test indicates that the model was a significant improvement in fit over a null 

(no predictor) model (P<.001). The full SPSS model output results are shown in Appendix D. The 

transformed form of the model is shown as follows: 

 



 
  

34 
 

Best fit model: (Model 4) 

𝑙𝑛(Total number of crashes)𝑖 =(-3.712)+0.451*𝑙𝑛(AADT on the major approach + AADT on the minor 

approach) – 0.15 *𝑙𝑛(AADT on the minor approach/ AADT on the major approach) -0.578 ∗ (Left turn 

lane on the major approach) + 466∗ (Presence of crosswalks on the minor approach) + 0.625∗ (Number 

of legs/approaches) 

4.4 Model validation  

Model validation was done using the best fit model (Model-4) for the remaining 16 signalized intersections. 

Accordingly, number of  predicted crashes were calculated using the equation from model-4 for each of the 

16 signalized intersections. And then, by comparing the observed crash and the calculated predicted crash 

of each intersection, the measures of Goodness of Fit were calculated to validate the model performance. 

Table 11 below summarizes the results of the Goodness of fit measures. According to the HSM, calibration 

factors are calculated to see the relative performance of the models. The calibration factor is defined as the 

ratio of the sum of the observed number of crashes to the sum of the predicted expected number of crashes 

for all sites. A calibration factor with the value of unity shows that the model performance is satisfactory 

for the given dataset.  

Model 4 (FF-4) 

𝐥𝐧 𝛍 = (−𝟑. 𝟕𝟏𝟐) + 𝟎. 𝟒𝟓𝟏 𝐥𝐧(𝐐𝐌𝐀 + 𝐐𝐌𝐈 ) − 𝟎. 𝟏𝟓 𝐥𝐧(
𝐐𝐌𝐈

𝐐𝐌𝐀
) – 0.578(LTLmaj)+0.466(CWmin)+0.625(No Approaches) 

TABLE 11: Measures of model performance (Goodness of Fit) 

MAD 1.8057 

MSPE 6.1685 

MPB 0.2299 

Calibration Factor  0.9162 
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FIGURE 8: Model validation 
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5. DISCUSSION  
This chapter discusses the key research findings of the study in the context of the research questions. 

Recalling the analysis result from chapter four, it was observed that there was an overdispersion in the 

response variable. Previous works of literature recommended to assume negative binomial distribution for 

count data with overdispersion. Thus, the negative binomial GLM model with loglink was used for the 

model fitting in this study.  

According to the study results (Best model fit), factors related to traffic characteristics (the sum of traffic 

volume on the major and minor approaches and the ratio of traffic volume on minor approach to major 

approach), traffic control (left-turn lane on the major approach, and the presence of crosswalk on the major 

approach), Geometric characteristics (number of approaches) found to be key predictors of crashes at the 

signalized intersection in the city of Ghent, Belgium.   

The sum of the traffic volume on the major and minor approaches have a positive association with the 

expected crash frequency at the signalized intersection. This means that for a one percent increase in the 

sum of traffic volume on both approaches, the expected crash increases by a factor of 0.629. This was 

expected as it was also reported in previous studies by (Alarifi et al., 2017; Barbosa et al., 2014; Gomes et 

al., 2012; Khattak et al., 2021; Wang et al., 2020). On the other hand,  the ratio of traffic volume on minor 

approach to the major approach found to have a negative association with the expected crashes at the 

signalized intersection. This implies that for a given signalized intersection, when there is a proportional 

traffic flow in the major and minor approaches, the expected crash will be reduced (i.e., for a one percent 

increase in the ratio traffic volume on the minor approach to the major approach the expected crash 

frequency decrease by a factor of 0.569).  

The research findings also demonstrate that when left turn lanes are provided in both directions of the major 

approach, the number of expected crash occurrences at the signalized intersection will be reduced. 

Compared to a signalized intersection without a left-turn lane, the logarithmic expected crash frequency in 

signalized intersection with Left turn lane on each side of the major approach will be less by a factor of 

0.578. This was not a surprise since various previous studies (De Pauw et al., 2015; Gluck et al., 1999; 

Harwood et al., 1995; Zhou et al., 2010) also reported a negative association between Left-turn lane and 

the expected crash frequency. 

The presence of a crosswalk on the minor approach has a positive relationship with the expected crash 

frequency at the signalized intersection when provided in both direction of the minor approach. In 

comparison to a signalized intersection without marked crosswalks, the logarithmic expected crash 

frequency in signalized intersection with crosswalks along each side of the minor road will be greater by a 

factor of 0.466.   Previous studies by (Harwood et al., 2002; Herms, 1970; Khattak et al., 2021; Smith & 

Knoblauch, 1987) also report a positive relationship between the presence of crosswalks and crash 

frequency at signalized intersections.  

The association between the number of legs/approaches and the expected crash frequency was found to be 

positive. The logarithmic expected crash frequency for four-leg signalized intersections will be greater by 

a factor of 0.625  than for three-leg signalized intersections. According to research findings in this study, 

four-leg intersections can increase the expected crash frequency by around 60% compared to three-leg 

intersections. This finding was logical since four-leg intersections have more conflict points than three-leg 

intersections, which means there are more chances for a crash to happen in four-leg intersections.  This was 
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not a surprise compared with the broad agreement that four-leg intersections have more crashes than 

equivalent three-leg intersections. Previous research findings by (Bauer & Harwood, 1996; Harwood et al., 

1995; Harwood et al., 2002) also revealed similar results. Apart from the above key predictive variables, 

some variables which were previously found to be significant in other studies were either insignificant or 

not considered in this study because of the small sample size and lack of data. Moreover,  in this study, it 

was observed that most of the research results were conceded with the research findings of previous studies. 
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6. CONCLUSION AND RECOMMENDATION 
In this chapter, according to the research findings, a general conclusion was drawn, and recommendations 

were forwarded to improve the safety of signalized intersections in Ghent, Belgium.  

6.1 Conclusion  

This research attempted to make an effort to develop a motorized vehicle crash prediction model for 

signalized intersections for the city of Ghent, Belgium. Initially, it was intended to develop two separate 

models for Property Damage Only crashes (PDO) and for Injuries and Fatality crashes(IF). However, due 

to the small sample size and the number of observations in the data set, statistically insignificant results 

were observed for the Injuries and fatality crashes. As a result, rather than ignoring the second model, the 

author decided to combine the two types of crashes and develop a single crash prediction model for a total 

crash using four types of functional forms. 

A negative binomial generalized linear model (NBGLM) with loglink were used to fit a model. First, before 

directly going to a multivariate model fit, the researcher developed simple models that incorporate only the 

exposure variable (i.e., AADT on major and minor approaches) using four functional forms. Then, from 

the four simple models developed, to choose a functional form with better performance, measures of 

Goodness of Fit were checked for the simple models. However, similar results were observed among the 

four simple models. Thus, the researcher decided to select all the functional forms to model a fully specified 

crash prediction model.  By doing this, the researcher believes choosing all the four functional forms instead 

of a single form will help to examine whether the functional forms would continue to perform similarly in 

the presence of other covariates or if a single best model would be revealed. Only 80% (i.e., 61) of 

signalized intersections were used to develop the fully specified crash prediction models. And the remaining 

20% (i.e., 16) signalized intersections were used for model validation. 

According to the best-fitted model, only five variables, including the sum of the traffic volume on the major 

and minor approaches, the ratio of the traffic volume on the minor approach to the major approach,  the 

Left-turn lane on the major approach, the Presence of crosswalks on the minor approach, and the number 

of legs/approaches were found to be significant. The sum of traffic volume(AADTs) on the major and minor 

approaches was positively associated with the expected crash frequency.   On the other hand, a negative 

and significant association was found between the expected crash and the ratio of the number of vehicles 

on the minor approach to the number of vehicles on the major approach (i.e., Qmi/Qma). 

A negative association was found between the expected crash frequency and the left-turn lane on the major 

approach (when provided on each side of the major approach). A positive relation was found between the 

presence of marked crosswalks on the minor approach and the expected crash frequency. This could be due 

to the number of vehicle-pedestrian interactions; for signalized intersections with marked crosswalks on 

each side of the minor approach, there will be more vehicle-pedestrian interaction points. Thus, when the 

number of interaction points increases, the risk of exposure to crashes also increases. A positive relationship 

was observed between the expected crash frequency and the number of legs/approaches at the signalized 

intersections.  
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6.2 Recommendations And Direction For Future Studies  

It is evident that the cumulative result of the mitigation action taking on the three contributing factors (i.e., 

road users, vehicles, and road system) can ensure the safety of signalized intersections. According to the 

research findings in this study, a proportional traffic volume flow on both major and minor approaches will 

reduce the chance of vehicle crashes.  Moreover,  the provision of providing a left-turn lane on each side of 

the major approach will help in reducing the occurrence of crashes at the signalized intersections. Thus, 

incorporating a left-turn lane on each side of the major approach for new signalized intersections will have 

a positive impact on reducing traffic crashes.  

 Usually, pedestrian crosswalks are provided to create safe crossing zones for Pedestrians. But it has to be 

also taken into account that when crosswalks are provided, it can also increase the risk of exposure to 

crashes, as shown in this study. As a result, the following countermeasures should be considered when 

crosswalks are provided: 

➢ Crosswalks should be provided on the narrow width of the minor road segment rather than on the 

intersection's neck. This helps to shorten the time taken to cross the road and reduce the exposure 

of pedestrians on the road.    

➢ Adopting Leading Pedestrian Interval (LPI) in the traffic signal timing. The Leading Pedestrian 

Interval (LPI) allows pedestrians to enter the crosswalk at the signalized intersection 3-7 seconds 

before vehicles are given a green indication (Federal Highway Administration, 2021). This way, 

pedestrians can better establish their presence in the crosswalk before vehicles have priority to turn 

right or left.  

➢ Installing Pedestrian countdown signals at signalized intersections with high pedestrian activities. 

➢ Installing advanced pedestrian warning signs and higher visibility crosswalks. 

➢ Installation of traffic calming devices.  

➢ Providing raised crosswalks. This can be used to ramp up crosswalks and also used as a traffic 

calming technique.  

In this study, it was also observed that four-leg signalized intersections increase the expected crash 

frequency by around 60% compared to three-leg signalized intersections. Thus, in relation to three-leg 

Signalized intersections, great attention should be given to incorporate proven safety countermeasures 

recommended in this and other studies for constructing new four-leg signalized intersections.  

The current study attempted to make an effort to develop a vehicle crash prediction model based on only 

data provided on traffic crashes, traffic count, and road network. No data were provided regarding the 

location of intersections and intersection characteristics data. The author developed a methodology to locate 

intersections from the road network data and to collect intersection-related data. This might have an effect 

on the selection of the number of samples and the quality of the data. The author also tried to include most 

of the variables that were found significant in previous studies, but because of data unavailability, some co-

founding factors( such as speeding) were not included in the study. In addition, some intersection 

characteristics data were collected using Google satellite images and google earth; this also affects the data 

quality and precision (Lane width and intersection angle of skewness). On top of this, the developed crash 

prediction model only considered traffic flow and intersection characteristics data; other essential 

contributor factors such as road user and vehicle factors were not included. Considering the above 

limitations, the author believed that a better vehicle crash prediction model for signalized intersections 

could be developed by providing additional data and by incorporating road user and vehicle factors.  
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APPENDIX  

Appendix-A: List and description of variables proposed for model development  

Category Variable Description Unit Variable level Buffer 

zone 

 

Dependent 

variables  

PDO_crashes  Average property 

damage only 

crashes  

Count - 70m 

IF_crashes  Average injury and 

fatality crashes  

Count - 70m 

 

Exposure 

variables 

 

AADT_Maj AADT on the 

major approach  

AADT - n/a 

AADT_Min AADT on the 

minor approach  

AADT - n/a 

 

 

 

 

 

 

Intersection 

characteristics 

variables 

LTL_Maj Left turn lane on 

the major approach  

0 to  2 2- on each side 

1- on one side 

0-no dedicated lane 

n/a 

RTL_min  Right turn lane on 

the minor approach 

0 to  2 2- on each side 

1- on one side 

0-no dedicated lane 

n/a 

CW_Maj  Presence of 

crosswalks on the 

major approach  

0 to  2 2- on each side 

1- on one side 

0-no crosswalk  

n/a 

CW_Min Presence of 

crosswalks on the 

minor approach 

0 to  2 2- on each side 

1- on one side 

0-no crosswalk  

n/a 

Legs Number of 

legs/approaches  

3 or 4 1-four leg 

0-three leg  

n/a 

Skewness Intersection 

skewness 

Yes or no  1-yes  

0-no 

n/a 

ALW_Maj Average lane 

width on the major 

approach  

Meter  - n/a 

ALW_Min Average lane 

width on the minor  

approach 

Meter  - n/a 
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Appendix B: A summary of collinearity analysis  

Model Unstandardized 

Coefficients 

Collinearity Statistics 

B Std. Error Tolerance VIF 

1 (Constant) 2.213 6.114   

AADT on the major 

approach 

.000 .000 .315 3.173 

AADT on the minor 

approach 

-5.482E-5 .000 .337 2.966 

Average lane width on 

the major approach 

-.242 1.716 .933 1.072 

Average lane width on 

the minor  approach 

.098 1.317 .874 1.145 

Left turn lane on the 

major approach 

-.874 .646 .243 4.121 

Right turn lane on the 

minor approach 

-.869 .710 .310 3.227 

Presence of crosswalks 

on the major approach 

-.048 .428 .735 1.360 

Presence of crosswalks 

on the minor approach 

.775 .432 .613 1.630 

Number of 

legs/approaches 

1.612 .831 .458 2.183 

Intersection skewness .169 .607 .864 1.158 
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Appendix C: SPSS Model  Output results For Injury and fatality crashes  

Generalized Linear Models (Poisson) 

 

Model Information 

Dependent Variable Average injury and fatality 

crashes 

Probability Distribution Poisson 

Link Function Log 

 

Case Processing Summary 

 N Percent 

Included 72 100.0% 

Excluded 0 0.0% 

Total 72 100.0% 

 

 

 

 

 

 

 

 

 

 

DATASET ACTIVATE DataSet2. 

* Generalized Linear Models. 

GENLIN IF_crashes BY LTL_Maj RTL_Min CW_Maj CW_Min Legs Skewness 

(ORDER=DESCENDING) WITH AADT_Maj  

    ALW_Maj ALW_Min 

  /MODEL AADT_Maj ALW_Maj ALW_Min LTL_Maj RTL_Min CW_Maj CW_Min Legs 

Skewness INTERCEPT=YES 

 DISTRIBUTION=POISSON LINK=LOG 

  /CRITERIA METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 

MAXSTEPHALVING=5  

    PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYSISTYPE=3(WALD) 

CILEVEL=95 CITYPE=WALD  

    LIKELIHOOD=FULL 

  /MISSING CLASSMISSING=EXCLUDE 

  /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION. 
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Goodness of Fita 

 Value df Value/df 

Deviance 38.478 58 .663 

Scaled Deviance 38.478 58  

Pearson Chi-Square 37.960 58 .654 

Scaled Pearson Chi-Square 37.960 58  

Log Likelihoodb -114.313   

Akaike's Information Criterion 

(AIC) 

256.626 
  

Finite Sample Corrected AIC 

(AICC) 

263.995 
  

Bayesian Information Criterion 

(BIC) 

288.500 
  

Consistent AIC (CAIC) 302.500   

Dependent Variable: Average injury and fatality crashes 

Model: (Intercept), AADT on the major approach , Average lane width on 

the major approach , Average lane width on the minor  approach, Left turn 

lane on the major approach , Right turn lane on the minor approach, 

Presence of crosswalks on the major approach , Presence of crosswalks 

on the minor approach, Number of legs/approaches , Intersection 

skewnessa 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 

 

Omnibus Testa 

Likelihood Ratio 

Chi-Square df Sig. 

19.812 13 .100 
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Parameter Estimates 

Parameter B Std. Error Hypothesis Test Exp(B) 

Wald Chi-

Square 

df Sig. 

(Intercept) .776 1.6861 .212 1 .645 2.174 

AADT on the major 

approach 

1.132E-5 1.5000E-5 .569 1 .450 1.000 

Average lane width on the 

major approach 

.248 .4385 .319 1 .572 1.281 

Average lane width on the 

minor  approach 

-.399 .3992 1.000 1 .317 .671 

[Left turn lane on the 

major approach =2] 

.236 .2153 1.198 1 .274 1.266 

[Left turn lane on the 

major approach =1] 

.493 .2669 3.405 1 .065 1.636 

[Left turn lane on the 

major approach =0] 

0a . . . . 1 

[Right turn lane on the 

minor approach=2] 

-1.072E-5 .2520 .000 1 1.000 1.000 

[Right turn lane on the 

minor approach=1] 

.085 .2241 .144 1 .705 1.089 

[Right turn lane on the 

minor approach=0] 

0a . . . . 1 

[Presence of crosswalks 

on the major approach =2] 

-.297 .3117 .907 1 .341 .743 

[Presence of crosswalks 

on the major approach =1] 

.175 .2880 .368 1 .544 1.191 

[Presence of crosswalks 

on the major approach =0] 

0a . . . . 1 

[Presence of crosswalks 

on the minor approach=2] 

.169 .2567 .436 1 .509 1.185 

[Presence of crosswalks 

on the minor approach=1] 

-.936 .6027 2.413 1 .120 .392 

[Presence of crosswalks 

on the minor approach=0] 

0a . . . . 1 

[Number of 

legs/approaches =1] 

.320 .2366 1.826 1 .177 1.377 
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Dependent Variable: Average injury and fatality crashes 

Model: (Intercept), AADT on the major approach , Average lane width on the major approach , 

Average lane width on the minor  approach, Left turn lane on the major approach , Right turn 

lane on the minor approach, Presence of crosswalks on the major approach , Presence of 

crosswalks on the minor approach, Number of legs/approaches , Intersection skewness 

a. Set to zero because this parameter is redundant. 

b. Fixed at the displayed value. 
 
Generalized Linear Models (Negative binomial) 

Model Information 

Dependent Variable Average injury and fatality 

crashes 

Probability Distribution Negative binomial (1) 

Link Function Log 

[Number of 

legs/approaches =0] 

0a . . . . 1 

       

[Intersection skewness=1] -.041 .1751 .056 1 .814 .960 

[Intersection skewness=0] 0a . . . . 1 

(Scale) 1b      

* Generalized Linear Models. 

GENLIN IF_crashes BY LTL_Maj RTL_Min CW_Maj CW_Min Legs Skewness 

(ORDER=DESCENDING) WITH AADT_Maj  

  ALW_Maj ALW_Min 

  /MODEL AADT_Maj ALW_Maj ALW_Min LTL_Maj RTL_Min CW_Maj CW_Min Legs 

Skewness INTERCEPT=YES 

 DISTRIBUTION=NEGBIN(MLE) LINK=LOG 

  /CRITERIA METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 

MAXSTEPHALVING=5  

    PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYSISTYPE=3(WALD) 

CILEVEL=95 CITYPE=WALD  

    LIKELIHOOD=FULL 

  /MISSING CLASSMISSING=EXCLUDE 

  /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION. 
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Case Processing Summary 

 N Percent 

Included 72 100.0% 

Excluded 0 0.0% 

Total 72 100.0% 

 

Goodness of Fita 

 Value df Value/df 

Deviance 11.539 58 .199 

Scaled Deviance 11.539 58  

Pearson Chi-Square 10.946 58 .189 

Scaled Pearson Chi-Square 10.946 58  

Log Likelihoodb -145.910   

Akaike's Information Criterion 

(AIC) 

319.821 
  

Finite Sample Corrected AIC 

(AICC) 

327.189 
  

Bayesian Information Criterion 

(BIC) 

351.694 
  

Consistent AIC (CAIC) 365.694   

Dependent Variable: Average injury and fatality crashes 

Model: (Intercept), AADT on the major approach , Average lane width on the 

major approach , Average lane width on the minor  approach, Left turn lane on 

the major approach , Right turn lane on the minor approach, Presence of 

crosswalks on the major approach , Presence of crosswalks on the minor 

approach, Number of legs/approaches , Intersection skewnessa 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 
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Parameter Estimates 

Parameter B Std. Error 

Hypothesis Test 

Wald Chi-Square df Sig. 

(Intercept) .509 3.2660 .024 1 .876 

AADT on the major approach 8.612E-6 2.7618E-5 .097 1 .755 

Average lane width on the major 

approach 

.374 .9267 .163 1 .686 

Average lane width on the minor  

approach 

-.425 .6841 .385 1 .535 

[Left turn lane on the major 

approach =2] 

.241 .3942 .372 1 .542 

[Left turn lane on the major 

approach =1] 

.544 .5118 1.128 1 .288 

[Left turn lane on the major 

approach =0] 

0a . . . . 

[Right turn lane on the minor 

approach=2] 

.008 .4467 .000 1 .986 

[Right turn lane on the minor 

approach=1] 

.131 .4313 .093 1 .761 

[Right turn lane on the minor 

approach=0] 

0a . . . . 

[Presence of crosswalks on the 

major approach =2] 

-.321 .5311 .365 1 .546 

[Presence of crosswalks on the 

major approach =1] 

.108 .5270 .042 1 .837 

[Presence of crosswalks on the 

major approach =0] 

0a . . . . 

[Presence of crosswalks on the 

minor approach=2] 

.198 .4451 .198 1 .656 

 

Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 

5.611 13 .959 
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[Presence of crosswalks on the 

minor approach=1] 

-.967 .9954 .943 1 .331 

[Presence of crosswalks on the 

minor approach=0] 

0a . . . . 

[Number of legs/approaches =1] .300 .4298 .487 1 .485 

[Number of legs/approaches =0] 0a . . . . 

[Intersection skewness=1] -.066 .3331 .039 1 .843 

[Intersection skewness=0] 0a . . . . 

(Scale) 1b     

(Negative binomial) 1b     

 

Dependent Variable: Average injury and fatality crashes 

Model: (Intercept), AADT on the major approach , Average lane width on the major approach , 

Average lane width on the minor  approach, Left turn lane on the major approach , Right turn 

lane on the minor approach, Presence of crosswalks on the major approach , Presence of 

crosswalks on the minor approach, Number of legs/approaches , Intersection skewness 

a. Set to zero because this parameter is redundant. 

b. Fixed at the displayed value. 
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Appendix D: SPSS Model  Output result For Total Crash (FF-4) 

 

Model Information 

Dependent Variable Average total crash 

Probability Distribution Negative binomial (MLE) 

Link Function Log 

 

Case Processing Summary 

 N Percent 

Included 61 100.0% 

Excluded 0 0.0% 

Total 61 100.0% 

 

Categorical Variable Information 

 N Percent 

Factor Left turn lane on the major 

approach 

On each side 30 49.2% 

On one side 11 18.0% 

No dedicated lane 20         32.8% 

Total 61 100.0% 

Presence of crosswalks on 

the minor approach 

On each side 47 77.0% 

On one side 3 4.9% 

No crosswalk 11 18.0% 

Total 61 100.0% 

Number of legs/approaches Four legs 33 54.1% 

Three legs 28 45.9% 

Total 61 100.0% 

 

DATASET ACTIVATE DataSet1. 

* Generalized Linear Models. 

GENLIN Total_crash BY LTL_Maj CW_Min Legs (ORDER=DESCENDING) WITH 

Ln_Q_sum Ln_Q_proportion 

  /MODEL Ln_Q_sum Ln_Q_proportion LTL_Maj CW_Min Legs INTERCEPT=YES 

 DISTRIBUTION=NEGBIN(MLE) LINK=LOG 

  /CRITERIA METHOD=FISHER(1) SCALE=1 COVB=MODEL MAXITERATIONS=100 

MAXSTEPHALVING=5  

    PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYSISTYPE=3(WALD) 

CILEVEL=95 CITYPE=WALD  

    LIKELIHOOD=FULL 

  /MISSING CLASSMISSING=EXCLUDE 

  /PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION. 
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Continuous Variable Information 

 N Minimum Maximum Mean Std. Deviation 

Dependent Variable Average total crash 61 0 15 4.92 3.470 

Covariate Ln_Q_sum 61 8.77 10.96 9.9505 .47979 

Ln_Q_proportion 61 -8.08 .67 -.8154 1.13843 

 

 

Goodness of Fita 

 Value df Value/df 

Deviance 67.458 52 1.297 

Scaled Deviance 67.458 52  

Pearson Chi-Square 54.013 52 1.039 

Scaled Pearson Chi-Square 54.013 52  

Log Likelihoodb -128.935   

Akaike's Information Criterion 

(AIC) 

275.869 
  

Finite Sample Corrected AIC 

(AICC) 

279.399 
  

Bayesian Information 

Criterion (BIC) 

294.867 
  

Consistent AIC (CAIC) 303.867   

Dependent Variable: Average total crash 

Model: (Intercept), Ln_Q_sum, Ln_Q_proportion, Left turn lane on the 

major approach , Presence of crosswalks on the minor approach, 

Number of legs/approaches 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 
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Omnibus Testa 

Likelihood Ratio 

Chi-Square df Sig. 

51.114 7 <.001 

Dependent Variable: Average total crash 

Model: (Intercept), Ln_Q_sum, 

Ln_Q_proportion, Left turn lane on the major 

approach , Presence of crosswalks on the 

minor approach, Number of legs/approaches 

a. Compares the fitted model against the 

intercept-only model. 

 

 

Tests of Model Effects 

Source 

Type III 

Wald Chi-Square df Sig. 

(Intercept) 5.551 1 .018 

Ln_Q_sum 11.126 1 <.001 

Ln_Q_proportion 5.204 1 .023 

Left turn lane on the major 

approach 

10.847 2 .004 

Presence of crosswalks on 

the minor approach 

5.608 2 .061 

Number of legs/approaches 11.235 1 <.001 

Dependent Variable: Average total crash 

Model: (Intercept), Ln_Q_sum, Ln_Q_proportion, Left turn lane on the major 

approach , Presence of crosswalks on the minor approach, Number of 

legs/approaches 
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Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence 

Interval Hypothesis Test 

Lower Upper 

Wald Chi-

Square df Sig. 

(Intercept) -3.712 1.4530 -6.560 -.864 6.526 1 .011 

Ln_Q_sum .451 .1352 .186 .716 11.126 1 <.001 

Ln_Q_proportion -.150 .0656 -.278 -.021 5.204 1 .023 

[Left turn lane on the 

major approach =2] 

-.578 .2107 -.991 -.165 7.531 1 .006 

[Left turn lane on the 

major approach =1] 

.068 .1968 -.318 .454 .120 1 .730 

[Left turn lane on the 

major approach =0] 

0a . . . . . . 

[Presence of crosswalks 

on the minor 

approach=2] 

.466 .1967 .080 .851 5.604 1 .018 

[Presence of crosswalks 

on the minor 

approach=1] 

.446 .3602 -.260 1.152 1.531 1 .216 

[Presence of crosswalks 

on the minor 

approach=0] 

0a . . . . . . 

[Number of 

legs/approaches =1] 

.625 .1864 .259 .990 11.235 1 <.001 

[Number of 

legs/approaches =0] 

0a . . . . . . 

(Scale) 1b       

(Negative binomial) 3.613E-8c . . .    

Dependent Variable: Average total crash 

Model: (Intercept), Ln_Q_sum, Ln_Q_proportion, Left turn lane on the major approach , Presence of crosswalks on 

the minor approach, Number of legs/approaches 

a. Set to zero because this parameter is redundant. 

b. Fixed at the displayed value. 

c. Hessian matrix singularity is caused by the scale or negative binomial parameter. 
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Appendix E:  Simulation for the effect of the proportion of traffic volume on minor 

approach 

The simulation was done for a random signalized intersection from the sample size. A total volume of 

30,000 vehicles (AADT) was selected for simulation. Thus, by keeping other variables constant, only the 

percent of the proportion of the traffic volume on the minor road to the total traffic volume was changed to 

see the effect on the expected crash. 

Model 4 (FF-4) 

𝐥𝐧 𝝁 = (−𝟑. 𝟕𝟏𝟐) + 𝟎. 𝟒𝟓𝟏 𝐥𝐧(𝑸𝑴𝑨 + 𝑸𝑴𝑰 ) − 𝟎. 𝟏𝟓 𝐥𝐧(
𝑸𝑴𝑰

𝑸𝑴𝑨
) – 0.578(LTLmaj)+0.466(CWmin)+0.625(No Approaches) 

Total volume (Qmaj+Qmin)=30,000 

 % (Qmin/Qtot) Qmaj Qmin Ln(Qmaj+Qmin) Ln(Qmin/Qmaj) Predicted crash 

17% 25000 5000 10.30895266 -1.609437912 4.849 

33% 20000 10000 10.30895266 -0.693147181 4.228 

40% 18000 12000 10.30895266 -0.405465108 4.049 

42% 16000 14000 10.30895266 -0.133531393 3.888 

50% 15000 15000 10.30895266 0 3.81 
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