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PREFACE 

This master thesis represents the findings of the research investigation on risk event characterization in i-

DREAMS for trucks with a special focus on time, weather, and road type, completed by Walta Brhane 

Abay, Master's student of Transportation Sciences (Traffic Safety), under the supervision of Professor Tom 

Brijs and Mr. Wisal Khattak. The initial inspiration for this research study stemmed from a curiosity to 

comprehend the characteristics of risky events based on time of day, weather, and road type, as only a 

limited number of risky events in a limited number of studies were investigated in previous works. 

I want to express my sincerest gratitude to Professor Tom Brijs and Mr. Wisal Khattak for their insightful 

comments and assistance with my Master's thesis during the research and writing processes. Additionally, 

I want to thank the i-DREAMS project for providing me with all the necessary data to accomplish this 

master's thesis. The Flemish Inter-University Council (Vlaamse Interuniversitaire Raad/VLIR-UOS), which 

provided me with full financial support for my Master's degree at Hasselt University, is also deserving of 

appreciation. 
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SUMMARY 

Along with its many benefits, road transportation also faces serious safety concerns like crash-related 

fatalities and injuries. The human factor, vehicle, and environment are the dominant factors that affect 

road safety (Arumugam & Bhargavi, 2019; Komackova & Poliak, 2016), with the human factor majorly 

contributing to road safety's negative consequences (Arumugam & Bhargavi, 2019; Barnard et al., 2016). 

Human factor encompasses physiological errors brought on by driver fatigue and drowsiness, as well as 

behavioral errors such as speeding, drunk driving, aggressive driving, and distracted driving (Arumugam 

& Bhargavi, 2019). A thorough understanding of road user behavior (drivers) is required to identify the 

underlying causes of the adverse consequences and suggest possible prevention measures. Thus, with an 

emphasis on three factors: time of the day, weather, and road type, this study aimed to characterize risky 

driving events experienced by truck drivers in Belgium. 

The study's research questions focused on identifying risky driving events that reflect when and where 

truck drivers are most likely to show risky driving events and figuring out the relationship between the 

risky events. Eleven input variables related to risky driving events and three characterizing factors are 

used to address these research questions. To analyze these variables, characterizing elements (such as 

time of day and weather) were examined initially using the elbow method to ascertain the number of 

clusters before being further analyzed using k-means clustering to generate statistically significant distinct 

clusters. A road network shapefile was acquired from available sources to address the characterization of 

risky events involving road type. Multivariate analysis of variance was employed to determine the 

influence of time of day, weather, and road type on the prevalence of risky events (dependent variables). 

A correlation test was also conducted on the risky events to determine whether they occurred 

concurrently. Additionally, kernel density estimation is used to estimate the density of risky events based 

on the total number of risky events and three severity-based risky events (low, medium, and high), 

grouping based on time of day, weather, and type of road. 

Based on the number of clusters obtained from the elbow method (four clusters for the time of the day 

and three clusters for weather), significantly distinct groups were formed using k-means clustering, where 

the cluster center for the four clusters of time of the day were morning, midday, afternoon/evening, and 

night/early morning) and for weather adverse, average, and clear weather conditions. Further analysis of 

the clusters based on the eleven risky events showed that the time of day substantially impacted fatigue-

related risky events, especially those of medium severity. In addition, truck drivers were more likely to 

experience fatigue in the afternoon or evening than at midday. It was found that morning had the highest 

density of risky events, followed by midday and afternoon/evening (which are about the same), and 

overnight/early morning had the lowest density. Also, it was revealed that weather significantly affected 

total speeding, vulnerable road user collision avoidance, and low fatigue events. Further analysis indicated 

that more speeding events appeared in adverse than average weather conditions, whereas more fatigue 

events occurred in clearer than average weather conditions. Besides, density distribution based on 

weather clusters revealed that clear weather conditions had the highest density of events, followed by 

average and adverse weather conditions, respectively. 
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Moreover, road type significantly affected events involving speeding, acceleration, deceleration, steering, 

and tailgating. Compared to motorways, primary and secondary roads had higher speeding and 

deceleration events. Additionally, acceleration and steering events were higher on primary, secondary, 

and tertiary roads than on motorways, while tailgating events were the opposite. Also, it was shown that 

there were more speeding and steering events on primary roads than on trunk roads and more 

acceleration events on trunk roads than on motorways. Besides, tailgating events were more common on 

trunk roads than secondary and tertiary roads and primary than tertiary roads. Furthermore, tertiary 

roads and motorways had much higher densities of risky events.   

The risky event correlation test revealed a higher likelihood that steering events will occur concurrently 

with either acceleration, deceleration, or speeding events. Besides, a strong correlation between speeding 

and tailgating events was found. There was also a probability that drivers would exhibit steering events 

when tailgating events occur. Additionally, fatigue events were highly correlated with speeding and 

tailgating events. Moreover, lane discipline and deceleration events were strongly correlated.  

Generally, this study attempted to provide better insights into truck drivers' risky driving behaviors based 

on time, weather, and road type. This will serve as a foundation for further research on risky driving events 

by integrating additional characteristics left out of this study's scope and a more in-depth analysis of the 

factors included. The findings of this study may also serve as an inspiration for future investigations into 

safety precautions for risky driving events. 
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1 INTRODUCTION 

1.1 General 

The rapid progressions in transportation automation in the digital age have created new challenges, 

changing the structure of interaction between vehicle, driver, and driving context and necessitating a 

better understanding of the human factors influencing driver behavior. Among these three factors, several 

aspects of driver behavior have been repeatedly shown in the literature to be essential for the safe 

operation of transportation systems (T. Brijs et al., 2020).  

Arumugam and Bhargavi (2019) and Fitzharris et al. (2017) described that fatigue, drowsiness, and 

attention/distraction are significant road safety concerns. Paredes et al. (2018) stated that reducing stress 

and increasing psychological wellness transforms daily driving time into a conscious experience. Besides, 

Melinder (2007) studied that socio-cultural factors (e.g., religion, wealth) impact the values related to 

road safety. Generally, driving behavior, traffic, land use, and demographics affect road safety 

(Komackova & Poliak, 2016). The introduction and development of connected technology and the 

adoption of big data are transforming every industry (Arumugam & Bhargavi, 2019). Road traffic behavior 

and protection have significantly improved due to modern information technology. The development 

patterns of the internet, traffic, and knowledge have been unavoidable for future road traffic systems (Qu 

et al., 2019).  

The intelligent transport system enables automation of the processes of collecting context data on-road 

incidents and processing them in real-time with the goal of dynamic response to changes in the 

transportation situation (Malygin et al., 2018). The best possible use of these opportunities would enable 

the European Union (EU) and the rest of the world to promptly resolve emerging problems and navigate 

new technologies to meet its optimistic road safety targets (T. Brijs et al., 2020). The following section 

describes an overview of the i-DREAMS project (smart Driver and Road Environment Assessment and 

Monitoring System), which runs from 2019 to 2022 and is financed by the European Union’s Horizon 2020 

research and innovation program.  

1.2 Overview of the i-DREAMS project 

The i-DREAMS project is a European project in which multiple partners from universities, companies, 

industries, businesses, and so on across Europe collaborate to set up a framework for the definition, 

development, testing, and validation of a context-aware safety envelope for driving known as the ‘Safety 

Tolerance Zone (STZ).’ The conceptual framework in figure 1 incorporates aspects of monitoring, in-

vehicle interventions, and post-trip interventions to establish an STZ and provide guidance to the driver. 

The main concerns of the i-DREAMS modes are car, truck, bus, tram, and train (Kaiser et al., 2020). Truck 

will be the subject of this study. 
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FIGURE 1 Conceptual framework of the i-DREAMS platform with monitoring (pillar I-left) and 
interventions (pillar II-right) (Kaiser et al., 2020). 

The i-DREAMS platform, on the one hand, monitors information from the driving context, driver, and 

vehicle, to make an estimation of task complexity, and coping capacity. On the other hand, it analyzes and 

interprets that data in real-time and assists the driver during the trip by offering warnings or alerts about 

potentially dangerous events that might occur on the road, as well as coaching the driver after the trip 

using a smartphone app. This means an app is installed on the driver's smartphone and, in this study, the 

truck drivers. Each driver can access their driving behavior records, ratings, past trips, and other 

information and receive tips and feedback on improving their driving behavior (Katrakazas, Michelaraki, 

Yannis, Kaiser, Brijs, et al., 2020). 

In addition to the app, the i-DREAMS project also has a web-based platform, usually used by a coach in a 

transportation company where truck drivers are employees or members. The company coach (driver 

coach) follows up on the behavior of a group of drivers using the web-based platform (Katrakazas, 

Michelaraki, Yannis, Kaiser, Brijs, et al., 2020). 

1.2.1 Data collection tools  

The core point of the i-DREAMS project is to set up a framework for STZ. One of the basic aspects which 

play a great role in assuring the practical implementation of STZ is monitoring the three components, the 

driving context (environment), driver, and vehicle using in-vehicle technology. The following topic 

discusses the selected technologies for measurements in the i-DREAMS project and their description. 

1.2.1.1 Technologies for vehicle and driver state monitoring 

The equipment for the driver, vehicle, and environment monitoring is selected by considering different 

factors such as accuracy, validity, suitability for trucks, usability, and user acceptability (Katrakazas, 

Michelaraki, Yannis, Kaiser, Senitschnig, et al., 2020). The selected technology is mounted in the truck to 

gather data on the driver's state, such as fatigue and distraction (hand-held mobile phone use while 
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driving), and details about driving context like reading speed signs, weather conditions, and headway 

distance. It also collects information about the vehicle related to fuel consumption, when it started to 

operate, and its duration (Katrakazas, Michelaraki, Yannis, Kaiser, Senitschnig, et al., 2020). The following 

are the selected technologies used to measure vehicle and driver state (driver capacity) in the context of 

trucks. 

a. CardioWheel 

The technology in the truck contains a steering wheel cover mounted over the truck's existing steering 

wheel. This uses an electrocardiogram (ECG) to detect the driver's sleepiness or fatigue when both hands 

are in contact with the truck's steering wheel. It also enables to extract the driver’s ID and know if the 

driver is using both hands on the steering wheel (Katrakazas, Michelaraki, Yannis, Kaiser, Senitschnig, et 

al., 2020). 

b. Gateway  

The Gateway, a kind of device in the dashboard, is another hardware mounted in the vehicle. The Gateway 

has an accelerometer and gyroscope inside and also gathers data from other i-DREAMS devices (e.g., 

CardioWheel, Mobileye, and Dashcam). The Gateway uses the collected data to calculate vehicle 

trajectory and speed, namely Global Positioning System (GPS), trip start and duration, time of the day, 

brake usage, acceleration, and deceleration. It also monitors the status of the windscreen wiper (either 

on or off), the time when the vehicle's ignition is turned on or off, as well as the frequency and severity of 

overspeeding. The Gateway also has a central computer that measures the driver's position in the STZ, 

triggers relevant in-vehicle interventions in real-time, and uploads data for post-processing and post-trip 

interventions to the i-DREAMS cloud platform via Wi-Fi or 3G/4G (Katrakazas, Michelaraki, Yannis, Kaiser, 

Senitschnig, et al., 2020). 

1.2.1.2 Technologies for environment monitoring 

The technology monitoring the environment (driver context) focuses on task demand. Like the driver and 

vehicle state monitoring, the technologies used to monitor the driver context are selected based on 

accuracy, validity, suitability, usability, and acceptability (Katrakazas, Michelaraki, Yannis, Kaiser, 

Senitschnig, et al., 2020). 

a. Mobileye  

Two cameras are mounted on the vehicle. Mobileye is one of the cameras which looks outside or in front 

of the truck for speed limits, time headways and time-to-collision, pedestrians and bikes in front of the 

driver, lane departure, non-overtaking zones, rain conditions depending on windscreen wipers, and poor 

visibility. However, Mobileye does not store videos; it only detects and interprets information (Katrakazas, 

Michelaraki, Yannis, Kaiser, Senitschnig, et al., 2020). 

b. Dashcam 

The second camera installed in the truck's dashboard is called Dashcam. This camera only stores road 

scene videos when Mobileye warnings are produced or when severe incidents are observed (Katrakazas, 

Michelaraki, Yannis, Kaiser, Senitschnig, et al., 2020). 
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1.2.2 Technologies utilized for intervention 

This topic gives an overview of the i-DREAMS project technologies for real-time feedback and post-trip 

interventions. After comparing and contrasting the available instruments and assessing their adoption 

and effectiveness in the i-DREAMS mode truck, the following technologies are selected. 

1.2.2.1 Technologies utilized for real-time intervention 

The effectiveness of how in-vehicle alerts are configured and offered to vehicle drivers is critical to the 

successful performance of real-time interventions. Display, timing, and information are the three 

fundamental criteria (specific design features) that decide the usefulness of in-vehicle messaging. The 

display should draw the driver's attention, the timing should be correct, and the details given should be 

meaningful. After weighing the feasibility and acceptability of various available solutions, the nomadic 

device is chosen as the most convenient solution for real-time intervention. Both visual and auditory 

interventions are available for this unit, and these in-vehicle real-time alerts are presented on a separate 

display mounted on the vehicle's dashboard or windshield. The display shows the visual alerts while a 

speaker in the Gateway triggers the audio signals associated with alerts (K. Brijs et al., 2020). 

Based on the data collected using the technology installed in the truck, the algorithm's outcome may be 

that no danger is detected, in which case the system does not have a reason to alert the driver.  When 

danger is detected, the system should warn the driver before the threat becomes larger and larger, 

resulting in a crash. Depending on the severity of the risk, the type of alert can be either an early or late 

warning. For more intense or extreme risks, the driver is alerted visually and using an auditory signal with 

a warning sound that alerts the driver to take action, unless the driver can end up in a collision (K. Brijs et 

al., 2020). Figure 2 shows the recommended stage of the warning system for real-time intervention 

depending on the driver's situation.  

 

 

 

 

 

 

 

FIGURE 2 Illustration of the warning stages (Katrakazas, Michelaraki, Yannis, Kaiser, Brijs, et al., 2020). 

1.2.2.2 Technologies utilized for post-trip intervention 

The technologies, applications, and schemes used in the post-trip interventions of the i-DREAMS project 

are selected based on the capability of changing driver behavior and enhancing knowledge, attitudes, 

perception, and, eventually, safety performance. The intervention tools used for the post-trip 
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interventions are a smartphone app (for the driver) and a web-based platform (for the driver 

mentor/coach). The smartphone app provides information, guidance, and notifications to drivers, while 

the web-based platform offers information about the behavior of a group of drivers to the driver coach 

(company coach) (K. Brijs et al., 2020).   

Smartphone app and web-based platform 

These two instruments are used to show digital road map data. The truck drivers and coaching company 

get all the information at the end of the day, an overview of annotated trip data with geolocated risk-

related events, and recorded road video data on the i-DREAMS web platform and smartphone app. The 

smartphone app offers trip details such as trip duration and length, speeding, distraction, harsh brakes, 

accelerations, steering, and driving at dangerous hours for truck drivers. The truck drivers get feedback 

based on the collected data and their scores. On the other hand, the web-based website offers reports on 

the truck driver's driving actions for driver coaching (the transport company in which the truck drivers are 

employees) (Katrakazas, Michelaraki, Yannis, Kaiser, Brijs, et al., 2020). Figure 3 shows the two 

instruments of i-DREAMS technologies for post-trip intervention. 

   

   

 

 

 

 

                                     (a)                                                                                                   ( b) 

FIGURE 3 i-DREAMS technologies for post-trip intervention (a) smartphone app (b) web-based 
platform (i-DREAMS project, 2020). 

1.2.3 Targeted risky events for safety interventions 

The indicators or warnings of risky driving behaviors are aimed at multiple risk factors that could be 

effectively tracked while mitigating the chance of an accident or injury. However, there is a difference 

between targeted variables since the i-DREAMS project has both real-time and post-trip interventions. 

The real-time intervention focuses on variables that can be effectively tracked in real-time, and the 

feedback helps to reduce the likelihood of a crash occurring. In-vehicle interventions are usually targeted 

towards a mental state such as fatigue, drowsiness, attention or distraction, stress, emotions, or the 

driver's overall workload.  
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Also, physiological measurements such as heart rate variability, skin conductance, skin temperature, 

breathing rate, or electroencephalogram signals are used in in-vehicle interventions. This implies the 

driver's state (e.g., fatigue, distraction) is taken into account to determine the necessity of a warning and 

when this warning should be given. For example, when the driver is driving in bad weather, and he/she is 

sleepy or distracted, a tailgating warning will be triggered more rapidly than when the driver is not 

distracted, and the weather is good. In other words, the warnings for different risks are implemented such 

that they are adaptive and take into account all the available information about the driver, the vehicle, 

and the environment. Besides, immediate action is needed in events like lane discipline, the location of 

reckless incidents, and maintaining a reasonable distance from the vehicle ahead. 

On the other hand, the post-trip intervention helps enhance overall driving behavior. As a result, post-trip 

feedback is typically focused on the frequency of severe events (acceleration, braking, or cornering), 

distracted driving, or other reckless events during peak hours or dangerous night hours, while eco-driving 

techniques are also given special attention. The i-DREAMS targeted risky events for the transport mode 

truck are sleepiness, hand-held mobile phone use while driving, acceleration, deceleration, steering, 

tailgating, lane departure, overtaking, potential collision events, speeding, and checking the score after 

the trip using the smartphone app (Katrakazas, Michelaraki, Yannis, Kaiser, Brijs, et al., 2020). 

1.3 Problem statement 

Road transport is essential for exchanging goods and people from one place to another or between 

different countries. Regrettably, road transportation also has many significant adverse effects. Crash-

related fatalities and injuries are the particular consequences of road transport (Barnard et al., 2016). 

Also, traffic-related deaths reached 1.35 million in 2016 (World Health Organization [WHO], 2018). 

Besides, according to the European Commission (2018) findings, traffic accidents across the EU killed 

about 25.600 people and injured over 1.4 million people in 2016. 

Road traffic accidents are a serious threat to human life (Qu et al., 2019). The most critical determinants 

which affect road safety are the human factor, vehicle, and environment (Arumugam & Bhargavi, 2019; 

Komackova & Poliak, 2016). The human factor is responsible for most of the negative impact on road 

safety (Arumugam & Bhargavi, 2019; Barnard et al., 2016). The human factor can be physiological or 

behavioral. Physiological mistakes are happening due to driver fatigue and drowsiness. Behavioral errors 

include distracted driving, drunk driving, aggressive driving, road rage, hard acceleration, hard braking 

and cornering, and speeding (Arumugam & Bhargavi, 2019).  

As a result, a thorough understanding of road user behavior is needed to identify the root causes of the 

negative effects and recommend viable strategies for mitigating them. For instance, how do road users 

behave in various situations, how and where do usual traffic patterns or ordinary behavior turn into critical 

incidents or crashes, and what factors influence the driving style and related issues (Barnard et al., 2016). 

Anderson (2009) stated a more thorough understanding of indications of causal effects could be attained 

by identifying road accident hotspots and appending value-added data. This study also recommended that 

more research into road accident analysis in creating a relationship between driving risk and geospatial 

features is needed. Besides, Mohaymany et al. (2013) suggested that it is essential to integrate high-risk 

events and spatial properties to understand traffic collisions better and improve road safety. 
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Thus, this study developed a characterization of risky events based on time of day and weather conditions 

to identify dangerous driving scenes that describe when and where drivers are most likely to make 

mistakes and determine the correlation between the risky events. This study also integrated risky events 

with geospatial features, particularly road type. 

1.4 Research question 

Studies have been conducted to understand better the risk of driving from several perspectives, such as 

road layout, time of day, and weather conditions. Gitelman et al. (2018), Hassan et al. (2016), and Yuan 

et al. (2021) studied the occurrence of risky events on various road layouts. Besides, different studies 

looked at the impact of time of the day on risky events such as speeding (Tseng et al., 2016), fatigue 

(Anund et al., 2017), and drowsy driving (McCartt et al., 2000). Moreover, Chen and Zhang (2016) 

mentioned that weather conditions significantly affect the frequency of risk events. The following basic 

research questions were used to address the problem statement mentioned: 

a. What impact does the time of day have on risky events? 

e.g., Are the risky events more likely to happen at night or during the day? (e.g., speeding) 

b. What happens to the risky events when the road type changes? 

e.g., Are the risky events more likely to happen on motorways or primary roads? (e.g., acceleration) 

c. What is the impact of weather conditions on risky events? 

e.g., Are the risky events more likely to happen in adverse or clear weather conditions? (e.g., 

distraction) 

d. What is the correlation between the risky events? 

e.g., Is there a link between speeding and following close behavior (tailgating), or is there a link 

between headway alerts and forward collision alerts? 

1.5 Objectives of the study 

1.5.1 General Objective 

The study's general objective was to identify and characterize risky events in i-DREAMS for trucks. 

1.5.2 Specific objectives  

The study aimed to accomplish the following specific objectives: 

▪ To Identify and characterize risky events based on the time of day. 

▪ To Identify and characterize risky events based on road type. 

▪ To Identify and characterize risky events based on weather conditions. 

▪ Determining the correlation between the risky events. 
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2 LITERATURE REVIEW 

2.1 Review of Related Works 

Studies on truck-involved crashes have gotten much attention worldwide (Brodie et al., 2009; Gates et al., 

2013; Häkkänen & Summala, 2001; Lombardi et al., 2017). Many factors, including roadway geometric 

features, traffic circumstances, environmental conditions, driver traits, and vehicle characteristics, affect 

truck-involved crashes, particularly crash frequency and severity (Chang & Chien, 2013; Dong et al., 2015; 

Lemp et al., 2011; Yang et al., 2019; Zhu & Srinivasan, 2011). Risk factors, including driving behaviors, road 

locations, weather conditions, accident types, and the number of vehicles involved, were highly connected 

to crash severity (Khorashadi et al., 2005; Xie et al., 2012; Zhu & Srinivasan, 2011). 

In addition, other studies have attempted to quantify the risk of driving under various conditions based 

on various criteria, including road layout, time of day, environmental conditions, and traffic flow. In this 

regard, previous studies have revealed that crashes that happened at different time periods, region types, 

and route segments have varied characteristics regarding roadway and environmental-related risk 

variables. Khorashadi et al. (2005), for example, looked at the severity of truck driver injuries in urban and 

rural areas. Uddin and Huynh (2017) investigated the severity of crash injuries in rural and urban regions 

under various lighting conditions. The results demonstrated significant risk variables changes under varied 

lighting conditions and area types combinations. In different time conditions, Dong et al. (2014), Osman 

et al. (2016), (Pahukula et al., 2015), and Zou et al. (2017) studied the risk factors leading to crash 

frequency and severity at intersections and work zones. They discovered that intersection facilities, traffic 

flows at different times, and lighting conditions in work zones were all linked to the severity of crash 

injuries. 

2.1.1 Road layout effects 

Previous research has explored various safety issues related to trucks based on the impact of the road 

layout. For instance, Dong et al. (2014) analyzed the effect of lane number, lane width, and intersection 

on truck accidents. Chang and Chien (2013) studied the impact of the tunnel, horizontal curve, grade 

section, straight section, and others (e.g., interchange) on driver injury severity. Yuan et al. (2021) looked 

into the impact of road-related variables (roadway alignment, roadway grade, surface condition, surface 

type, and speed limit) and the number of lanes on different groups of truck drivers. Besides, Simon et al. 

(2009) found that intersections account for 21% of fatalities and 43% of injuries in accidents involving at 

least one passenger car in Europe. Despite being explicitly targeted, intersection accident mechanisms 

warrant further examination. 

Based on a study by Gitelman et al. (2018) on the relationship between crashes, infrastructure 

characteristics, and events, different event types have varied relationships with infrastructure 

characteristics and varying effects on crashes. At least for some event types, infrastructure characteristics 

such as indicators of junction proximity, length of road sections, change in road width, road type, right 

and left shoulder width, lane width, horizontal radius, and vertical grade were found to have a significant 

impact. According to the study's multivariable models, road type, junction proximity, section length, and 

road shoulder widths were the most influential road factors for the driving events studied. However, 

compared to speed events, a large portion of the infrastructure attributes had the opposite influence on 
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braking events. Junction proximity or geometry constraints typically increase braking events and decrease 

speed events. Contrarily, improved road conditions and driving on longer portions without at-grade 

junctions are linked to fewer braking events and more speed alert events. Due to these events' opposite 

nature, such impact disparities appear plausible. Figure 1 also depicts the relationships between event 

counts and relative changes in injury crashes for road types where the two variables were determined to 

have a significant link. Hence, increased braking occurrences are linked to a slight rise in crashes on dual-

carriageway roads and a significant increase on single-carriageway roads, as shown in figure 4 (a). On the 

other hand, an increase in speed events is linked to a slight reduction in freeway crashes and a greater 

drop on dual-carriageway roads, as shown in figure 4 (b). 

  

 

 

 

 

 

                                  

   (a)                                                                                                (b) 

FIGURE 4 Relative change in injury crashes associated with an increase in the event counts: (a) braking 

events, (b) speed alert events (Gitelman et al., 2018). 

In addition, numerous studies have looked at the effect of road layout on the occurrence of risky events. 

According to Abdel-Aty et al. (2011), head-on and rear-end crashes are more frequent on high-speed 

roads, roads with no sidewalks, undivided roads, and two-lane rural roads. Fatigue on expressways and 

long steep grade roads (Chen & Zhang, 2016), overtaking and speeding on two-lane motorway networks 

(Nagy & Sandor, 2012), and rear-end collisions on freeways  (Zhao & Lee, 2018) are also among the risky 

events studied. Moreover, table 1 summarizes research findings for road layout features linked to 

different risky events in various studies. 
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TABLE 1 Linkage of risky events and road layout 

References Road layout Risky events 

 

Dong et al. (2014) 

 

Increasing lane width both on major 

and minor roads 

Rear end or rear underride 

collision 

Decreasing lane width 

Improved lane keeping, more 

accurate steering behavior, and 

reduction in driving speed 

A higher number of a left turn lane 

at intersection 
Sideswipe collision 

Skewed-angle crossroads 
lower acceleration rate and 

higher lane departure 

Dong et al. (2015) Highway Higher speed 

 

Gitelman et al. (2018) 

 

Junction proximity or geometric 

constraints  

higher braking event and lower 

speed alert event 

Improved road condition and driving on 

longer sections without at-grade 

junctions 

Lower braking event and higher 

speed alert event 

Häkkänen and Summala 

(2001) 
Two-lane highway Head-on collision 

Harb et al. (2007) Unsignalized intersection Rear-end collision 

Jansen and Wesseling 

(2018) 
Urban areas Harsh braking event 

Ketabi et al. (2011) Two-way highway Overtaking  

Khorashadi et al. (2005) Urban settings Side-impact collision 

Mahmud et al. (2021) Two-lane two-way highway Overtaking 

Pahukula et al. (2015) 
Large median Speeding 

Wide shoulder width Lane discipline 

Pokorny et al. (2017) Urban areas, particularly intersections 
Truck bicycle accident 

(vulnerable user collision) 

Thiffault and Bergeron 

(2003) 

Monotonous and low demanding road 

environment (for a long time on the 

straight and smooth road) 

Fatigue, large lane deviation, 

and large steering 

Ting et al. (2008) Straight, uneventful, and long roads Fatigue 

Uddin and Huynh (2017) A higher number of lane Increase lane changing 

 Freeway Rear-end crash risk 

Xie et al. (2012) Interstate highways Higher average speed 

Yuan et al. (2021) Lane planning (lane width) 
Failure to drive in the proper 

lane 

Zellmer (2013) Interstate and highways Tailgating 
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2.1.2 Traffic condition Effect 

To date, several research studies have looked into several road safety issues related to the impact of traffic 

conditions/environment on the frequency and severity of truck-involved crashes (Dong et al., 2014; Dong 

et al., 2015; Khorashadi et al., 2005; Uddin & Huynh, 2017; Zou et al., 2017). Dong et al. (2014) looked into 

the impact of traffic conditions in terms of traffic volume, namely the number of vehicles involved in an 

accident. The findings from the study suggest that traffic volume has a favorable impact on the frequency 

of all types of crashes. According to this study, the frequency of truck-involved and car-truck-involved 

crashes rises as the truck percentage rises. Also, the study found that truck-car collisions involve more 

trucks than truck–truck and single-truck collisions. 

Similarly, Dong et al. (2015) also found traffic conditions contributed to the severity of truck-involved 

crashes. According to this study, truck-involved crashes on roads with smaller traffic volumes had a 

significantly higher fatality risk. This result was expected because a reduced traffic flow means a higher 

possibility of higher speeds, which contributes positively to the severity of the incident. Besides, the 

number of vehicles involved in a crash, vehicle occupancy, inside city limit, and traffic control was found 

to significantly affect injury severity in accidents involving large trucks (Khorashadi et al., 2005). Also, it 

was revealed that when a traffic sign/signal or stop sign is present at the crash location, the crash is more 

severe (more than 50 percent of the crashes occurred when the traffic signals were on). Aggressive driving 

at traffic signals (e.g., tendency to speed up when the traffic light turns red) and complexity of traffic 

signs/signals location (e.g., intersections) have been noted as contributing factors (Zou et al., 2017). 

According to Uddin and Huynh (2017), traffic volume was adversely associated with injury severity (major 

and possible/no injury) in rural and urban locations, with daylight and nighttime being significant for urban 

areas but just daylight conditions in rural ones. One probable explanation is that drivers become more 

cautious during periods of heavy traffic flow and at night. 

Generally, the previous studies have attempted to characterize traffic conditions in terms of traffic volume 

and speed limit (Chan, 2017; Chang & Chien, 2013; Dong et al., 2014; Dong et al., 2015; Golob et al., 2008; 

Guo et al., 2010; Khorashadi et al., 2005; Shi et al., 2016; Uddin & Huynh, 2017; Wang et al., 2013; Zheng, 

2012) and traffic controls (Dong et al., 2015; Khorashadi et al., 2005; Zou et al., 2017). Whether to 

investigate crash frequency or severity, most studies defined traffic conditions as nearly similar, with some 

variables in common and others distinct (see table 2).  
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TABLE 2 Parameters used to define traffic condition 

Reference Parameters 

Dong et al. (2014) AADT and speed limit 

Dong et al. (2015) AADT, speed limit, and traffic controls 

Golob et al. (2008) 
Volume level (speed and density), number of vehicles and other parties 

involved, and movement of vehicles before a collision 

Guo et al. (2010) ADT, signal coordination along a corridor, and speed limit 

Khorashadi et al. (2005) 
Number of vehicles involved in the crash, vehicle occupancy, inside city 

limit, and traffic controls 

Shi et al. (2016) Volume per lane, average speed, and average occupancy 

Uddin and Huynh (2017) AADT and speed limit 

Wang et al. (2013) Total delay, AADT, average vehicle speed, and speed limit 

Zou et al. (2017) 
Traffic volume (high occupancy vehicles) and traffic controls (traffic 

signal, yield sign, none, and other) 

Aside from the impact of traffic conditions on the frequency and severity of truck-involved crashes, 

research has been conducted to link traffic conditions to several risky events. Dong et al. (2014) found 

that the car crash rate reduces as the percentage of trucks increases. One possible explanation is that, as 

the number of trucks rises, the frequency of lane changes and car overtaking reduces for a given vehicle 

density. On the other hand, the frequency of truck-involved crashes and car–truck-involved crashes rises 

as the truck percentage rises. The reason could be that the likelihood of colliding with a truck increases 

when the fraction of trucks in a traffic stream of a given volume increases. Moreover, table 3 lists different 

risky events linked with different traffic condition characteristics. 
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TABLE 3 Linkage of risky events and traffic conditions 

References Traffic condition 

characteristics 

Risky events 

Ahmed and Ghasemzadeh 

(2018) 

Free-flow speed 

conditions 
Speeding and longer average headway time 

Dong et al. (2014) 
Percentage increase in 

trucks 

Reduces lane changing and overtaking by 

cars 

Dong et al. (2015) Lower traffic volume Higher speed 

Golob and Recker (2003) 

Heavily congested, stop-

and-go traffic 
Rear-end collision 

Stable traffic (low volume 

and high steady speeds) 
Weaving collision 

Osman et al. (2016) Lower traffic volume Higher speed 

Tarko et al. (2011) High traffic volume  
Increase lane changing and cutting in events 

Lowers speeding and tailgating events 

Thiffault and Bergeron 

(2003) 
Low-traffic loads Fatigue 

Wu and Thor (2015) Volatile traffic flow Sudden speed change 

Yang et al. (2018) High traffic density 

Increases lane change frequency, high 

instantaneous acceleration, high overtaking 

frequency, and lower overtaking headway 

Zhao and Lee (2018) 

Heavy vehicle following a 

car 

Lower average speed but higher risk of 

braking  

Abrupt speed change Higher rear-end collision 

Zou et al. (2017) Traffic light turning red speeding 

2.1.3 Weather effect 

Weather has been found to have a substantial impact on road safety. In most cases, adverse weather 

worsens dangerous driving conditions and considerably increases the number of collisions. The 

detrimental effect of adverse weather (fog, rain, snow, ground blizzards, slush, and strong wind) on driving 

behavior, visibility, pavement conditions, and driving performance has increased the collision rate (Ahmed 

& Ghasemzadeh, 2017; Peterson et al., 2008). For instance, Hermans et al. (2006) investigated the impact 

of 17 climatic factors on the hourly number of injuries. Out of the 17 climatic factors, the presence of 

precipitation has the highest effect. Besides, a study by Qiu and Nixon (2008) reviewed and analyzed 

research findings (34 papers and 78 recordings) to examine the interaction between weather and road 

safety. According to the results, crash rates often rise during precipitation, with snow having a higher 

impact on crash incidence than rain: snow can raise crash rates by 84% and injury rates by 75%. In addition, 

as indicated in table 4, several previous studies have found that crash rates increased significantly in 

various adverse weather conditions.  
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TABLE 4 Research findings of previous studies regarding the impact of adverse weather conditions on 

traffic safety 

Reference Research findings 

Ahmed et al. (2018) 

During inclement weather (severe wind or snow), truck-involved 

crashes occur 19% more frequently than when there are no truck-

involved crashes. 

Truck-involved crashes happened more frequently when the road 

conditions were not dry, such as when there was ice or frost. 

Andrey et al. (2003) 

Rainy or snowy weather raised crash frequency by 75%.  

Average injured persons involved in crashes increased by 45% when it 

rains or snows. 

Snowfall had a greater impact on the incidence of crashes than 

rainfall. 

Dong et al. (2015) 
Inclement weather, such as fog or windy weather, increases the risk of 

a severe injury. 

Hermans et al. (2006) 
Out of 17 climatic factors, precipitation had the highest effect on the 

number of injuries 

Keay and Simmonds (2005) 

The probability of a crash was 0.7 times higher in rainy weather than 

in dry weather.  

Under wet conditions, the duration since the last rainfall increased the 

crash risk. 

Khattak and Knapp (2001) 

Injury and non-injury crash rates increased by 11 and 21 times during 

snow events, respectively. 

Snow weather conditions decreased the risk of injury crash compared 

to non-injury crash conditional on crash occurrence. 

Offei and Young (2014) 

Snowy and icy road conditions caused 32.4% and 28.6% of the crashes, 

respectively. Dry roads caused about 30.3% of the accidents. 

Clear weather caused 50% of the accidents. Snowy weather conditions 

contributed to around 20% of the crashes, while strong winds, fog, 

rain, dust, and hail contributed the remaining percentage. 

Qiu and Nixon (2008) 
Rainy weather increases crash rates by 71% and injury crashes by 49%. 

Snowy weather raises crash rates by 84% and injury crashes by 75%. 

Concerning truck-involved risky events, Chen and Zhang (2016) investigated that weather conditions play 
a significant role in the frequency of risky events, particularly fatigue-related crashes. This study 
categorized weather conditions based on visibility (good and bad) and adversity (fine and adverse). The 
result suggests that adverse weather and poor visibility are highly associated with fatigue-induced crashes 
involving trucks, mainly because trucks must brake over longer distances on slippery roads. Likewise, 
Chipman and Jin (2009) found that poor driving circumstances, such as hot, rainy, or foggy weather, as 
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well as noise, can all influence a driver's focus, making fatigue more likely. Table 5 shows an overview of 
reviewed linkages between different adverse weather conditions and risky events. 

TABLE 5 Linkage of risky events and weather 

Reference Weather condition Risky event 

Abdel-Aty et al. (2011) 
Visibility obstruction due to fog and 

smoke 

Head-on and rear-end 

collision 

Ahmed and Ghasemzadeh 

(2018) 
Rainy weather condition 

Longer average headway 

time and reduced speed 

Chen and Chen (2011) Snow or slush road surface Difficulty in vehicle control 

Chen and Zhang (2016) 
Adverse weather conditions such as 

wet pavement and decreased visibility  
Fatigue 

Das et al. (2019) Foggy weather condition Lower lane-keeping ability 

Golob and Recker (2003) 
Wet roads Lane-change maneuvers  

Dry roads  Rear-end collision 

Kilpeläinen and Summala 

(2007) 
Snow Decreases traffic flow speed 

Pahukula et al. (2015) Clear weather condition Higher speeding 

Peng et al. (2017) Reduced visibility due to fog 
Reduced headway and 

higher speeding 

Tarko et al. (2011) 
Adverse weather conditions (rain and 

snow) 

Decreases speeding and 

tailgating 

Zheng et al. (2018) 
Fog and severe crosswinds Trucks hard to control 

Icy road surface Lower speed 

2.1.4 Time of day effect 

Several studies looked at the impact of the time of day on crash severity and frequency. For instance, 

Pahukula et al. (2015) researched that clear weather nights and nights with no illumination result in no 

injury or crash with severe consequences. Also, Zheng et al. (2018) found that the time of day is one of 

the contributing factors impacting the severity of truck crashes. According to this study, the most 

dangerous time is early morning (3 a.m. - 6 a.m.), when single and multiple fatality crashes are more likely 

to occur. Also, fatal crashes are more likely on weekends, but non-fatal crashes are more likely on Fridays. 

In contrast, according to Wang and Prato (2019), model findings on time of day perspective revealed that 

only the night time, namely between midnight and 6 a.m., was related to moderate increases in injury 

(1.5%) and fatality (3.3%) probabilities. There was no discernible change in injury or fatality probability 

between weekdays, weekends, or holidays. Table 6 also summarized related research findings concerning 

the effect of time of day on the occurrence of truck accidents. 
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TABLE 6 Research findings on the effect of time of the day on truck crash occurrence 

Reference Time of the day 

Brodie et al. (2009) 

Crushes were common on weekdays, particularly Friday, Monday, 

and Wednesday.  

Crashes occurred most frequently between 10:00 a.m. and 12 noon 

and midnight and 2:00 a.m., respectively. 

Islam and Hernandez (2013) 
Approximately 76.2% of crashes were in the dark (poor street 

lighting). 

 

Khorashadi et al. (2005) 

Morning (5:31–8:00 a.m.) accidents in urban areas are 37.1% less 

likely to result in a severe/fatal injury (relative to other periods), 

compared to a mere 4.3% reduced risk of a severe/fatal injury in 

rural areas during the same period. 

 

 

Lombardi et al. (2017) 

Peak crush hours for older drivers were 12:00 - 04:00 p.m., with 

79.8% of crashes happening during daylight hours, and peak crash 

days were generally consistent from Tuesday to Friday. 

Peak crash hours for younger drivers were 03:00 - 07:00 p.m., with 

58.4 percent happening during daylight hours, while peak crash days 

were Friday and Saturday. 

 
Offei and Young (2014) 

The majority of the accidents (64%) occurred during daylight hours. 
Around 18% of accidents occurred at dawn or dusk, with darkness 
and unlighted conditions accounting for 15% of all accidents. 

 
Osman et al. (2016) 

Daytime crashes (6:00 a.m. - 6:00 p.m.) are associated with higher 
severe results in the event of a crash. 
Compared to no injury, traveling during peak hours was found to be 
related to a lower likelihood of injury. 

Pokorny et al. (2017) 

In urban regions, 35%, 28 %, 35%, and 2% of truck bicycle accidents 
occurred, but in rural areas, 0%, 14%, 66%, and 10% occurred. 
Morning (6 a.m. - 10 a.m.), midday (10 a.m. - 3 p.m.), late afternoon 
(3 p.m. - 9 p.m.), and night (9 p.m. - 12 a.m.) are the time of day used 
to describe the percentage distribution of truck bicycle accidents for 
both urban and rural areas, consequently. 

 
Wang and Prato (2019) 

Midnight and 6 a.m. were related to moderate increases in injury 
(1.5%) and fatality (3.3%) probabilities.  
No visible change in injury or fatality probability between weekdays 
and weekends or holidays was found. 

 
Zheng et al. (2018) 

The most dangerous time was early morning (3 a.m. - 6 a.m.), when 
single and multiple fatality crashes were more likely to occur.  
Fatal crashes were more likely on weekends, but non-fatal crashes 
were more likely on Fridays 

 
Zhu and Srinivasan (2011) 

Crashes occurred under dark but lighted conditions (7:30 p.m. to 
5:30 a.m.) relative to day-light and dark periods. Weekday crashes 
are likely to be less severe than weekend crashes. 
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Most studies looked at the impact of time of day on the frequency of crashes or the severity of crash 

injuries. Only a few researchers have attempted to determine the effect of the time of day on the 

occurrence of risky events. Pahukula et al. (2015) found that between 10:00 a.m. and 3:00 p.m., free-

flowing characteristics like speeding and changing lanes contributed to large truck-involved crashes. Also, 

according to Chen and Zhang (2016), fatigue-related crashes are more likely to happen overnight and early 

in the morning (12 a.m. to 6 a.m.), possibly due to the heightened sleepiness and fatigue associated with 

the human circadian cycle during these times. Table 7 lists different periods associated with different risky 

events in various studies. 

TABLE 7 Linkage of risky events and time of the day 

References Time of the day Risky events 

Abdel-Aty et al. (2011) Night without street lighting  Head-on and rear-end crashes 

Chen and Zhang (2016) 
Overnight and early morning 

hours  (12 midnight to 6 a.m.) 
Fatigue 

Chipman and Jin (2009) Night Speeding 

Dingus et al. (2006) Afternoon and evening  Fatigue   

Golob and Recker (2003) Daylight  Rear-end collision  

Nagy and Sandor (2012) Rush hour Overtaking and speeding  

Osman et al. (2016) Evening time (6 p.m. – 12 a.m.) Higher speed 

Pahukula et al. (2015) 
Between 10:00 a.m. and 3:00 

p.m. 
Speeding and lane changing 

Wu et al. (2016) Night 
Speeding, cutting in, 

acceleration and deceleration  

2.1.5 The combined effect of road layout, time of the day, weather, and traffic characteristics 

The contribution of road layout, time of the day, weather, and traffic characteristics to risky road events 

have been studied based on the different combinations. Golob and Recker (2003) evaluated the 

correlations between traffic accidents on urban freeways and the traffic flow layout, considering weather 

and lighting circumstances. According to this study, multiple vehicle crashes caused by weaving 

maneuvers are more likely to occur on wet roads during daylight than on dry or wet roads during darkness. 

On the other hand, rear-end crashes are more likely to occur during daylight hours on dry roads. Also, 

(Osman et al., 2016) mentioned the combined effect of traffic volume and time of the day, which found 

that evening crashes are likely linked with decreased visibility and higher speeds due to lower traffic 

volume. Table 8 summarizes research findings on any combination of the four parameters (road layout, 

time of day, weather, and traffic characteristics) associated with different risky events. 
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TABLE 8 Research findings on the characterization of risky events based on different factors 

References Road layout 
Traffic 

characteristics 
Weather 

Time of the 

day 
Risky events 

Abdel-Aty et al. 

(2011) 

High-speed roads, undivided 

roads, roads with no sidewalks, 

and two-lane rural roads 

 

- 

 

- 

Night without 

street lighting 
Head-on and rear-end crashes 

Ahmed and 

Ghasemzadeh 

(2018) 

Highway 
Free-flow speed 

conditions 

Clear weather 

condition 

 

 

- 

Speeding and lower headway 

time 

Higher average acceleration 

and deceleration 

Chen and Chen 

(2011) 
Rural highway 

 

- 

Snow or slush 

road surface 

 

- 
Difficulty in vehicle control 

Chen and Zhang 

(2016) 

Expressway and long steep 

grade 

 

- 

Adverse weather 

condition 

12 a.m. - 6 

a.m. 
Fatigue 

Dong et al. 

(2014) 
Urban signalized intersection 

Percentage 

increase in trucks 
- - 

Reduced lane changing and 

overtaking by cars 

Golob and 

Recker (2003) 

 

Urban freeways 

 

 

- 

Wet roads Daylight Weaving maneuvers 

Dry roads Daylight Rear-end collisions 

Kilpeläinen and 

Summala (2007) 

Two-lane main 

highways outside urban areas 
- Snow - Decreases traffic flow speed 

Nagy and 

Sandor (2012) 
Two-lane motorway network - - Rush hour Overtaking and speeding 

Osman et al. 

(2016) 
- 

Lower traffic 

volume 
 Evening Higher speed 

 

Pahukula et al. 

(2015) 

 

 

Urban areas 

Lower traffic 

volume 
 

10 a.m. – 3 

p.m. (Mid-

day) 

Speeding and lane changing 
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- 

Clear weather 

conditions 
- Speeding 

 

 

Tarko et al. 

(2011) 

 

 

Urban freeways 

 

High traffic 

volume 

 

- 

 

- 

Increase lane changing and 

cutting in events 

Lowers speeding and tailgating 

events 

- Rain and snow - 
Decreases speeding and 

tailgating 

Thiffault and 

Bergeron (2003) 

Monotonous and low 

demanding road environment 
Low-traffic loads - - Fatigue 

Wu and Thor 

(2015) 
Freeway 

Volatile traffic 

flow 
- - Distraction 

 

Yang et al. 

(2018) 

 

Freeway 

 

Higher traffic 

density 

 

- 

 

- 

Increases lane changing, 

acceleration, overtaking, and 

decreases over taking headway 

 

Zhao and Lee 

(2018) 

 

Freeway 

Heavy vehicle 

following car 
- - 

Lower average speed, but 

higher risk of braking 

Abrupt speed 

change 
- - Rear-end collision risk 

Zou et al. (2017) Urban areas 
Traffic light 

turning red 
- - Speeding 
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2.1.6 Relationship between the risky events 

Researchers have linked many factors such as road layout, weather, time of day, and traffic characteristics 

to risky events, but few have looked at the links between the risky events. According to Chen and Zhang 

(2016), compared to non-speeding, truck drivers who exhibited speeding behaviors were responsible for 

71.07 and 79.98% of all fatigue-related truck crashes in Jiangxi and Shaanxi, respectively. This study also 

found that, in contrast to safe headway, driving at unsafe headway was responsible for 31.50, and 36.52% 

of all fatigue-related truck crashes in Jiangxi and Shaanxi, respectively. Wu and Thor (2015) identified an 

approach for establishing associations between factors contributing to crashes when evaluating crash 

sequences for rear-end collisions and found that distraction is associated with deceleration in the 

sequence.  

Also, Harb et al. (2007) conducted a correlation test between deceleration rates, response reaction time, 

speed, gap distance, and gap time while studying the contribution of light-truck vehicles in rear-end 

crashes. Reaction response time was shown to be negatively correlated with speed (Pearson correlation 

= -.498, P = .001) and positively correlated with gap distance (Pearson correlation = .497, P < .001) and 

time headway (Pearson correlation = .583, P= .001). The deceleration rate is positively correlated with 

speed (Pearson correlation = .366, P= .02) but negatively with gap distance (Pearson correlation = -.604, 

P < .001) and time headway (Pearson correlation = -.602, P < .001). According to the study, the 

relationships between reaction response time and deceleration rates with speed, time headway, and gap 

distance are inherent. Besides, table 9 lists research findings on the correlation between risky events. 

TABLE 9 Research findings on the correlation between risky events 

References Correlated risky events Effect  

Chen and Zhang (2016) Over-speeding and risky following with fatigue Positive 

 

Golob and Recker (2003)  

Rear-end collision with high variations in relatively 

low speeds 
positive 

Weaving collisions with high steady speeds Positive 

 

Harb et al. (2007)  

Reaction response time with speed  Negative 

Reaction response time with gap distance and time 

headway 
Positive  

Deceleration rate with speed  Positive  

Deceleration rate with gap distance and time 

headway 
Negative 

Thiffault and Bergeron (2003) Lane deviation and steering with fatigue Positive  

Ting et al. (2008) 

Average headway, extreme steering, edge-line 

crossing, standard deviation of lateral position with 

reaction time 

Positive  

Wu and Thor (2015) Distraction with deceleration Positive 

 

Zhou and Zhang (2019) 

Over-speeding with fatigue Positive  

Stable control acceleration and braking with speeding  Positive  
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2.2 Review of research methods 

From a methodological standpoint, Chiou et al. (2017) proposed and compared two methods, namely the 

clustering approach (that is, k-means) and the multivariate approach, to identify essential attributes 

affecting crash frequencies at different times of the day so as to offer effective time-specific 

countermeasures. According to the study, the former uses a crash count model to estimate the total 

number of crashes and a clustering model to separate segments into clusters based on their crash 

frequency distribution patterns by time of day. The latter considers crash frequencies at various times of 

the day as target variables, with the potential correlation between them. The clustering approach 

performs well in terms of Adjusted Mean Absolute Percentage Error (Adj-MAPE) and Root Mean Square 

Error (RMSE), where both values are used to evaluate the goodness of fit. The study's clustering approach 

is divided into two sections. The first stage involves applying widely used Poisson and Negative binomial 

(NB) models to estimate total crashes on each segment. The second stage involves grouping freeway 

segments into defined clusters based on their crash frequency distribution patterns throughout the day. 

Each cluster's average time-of-day crash frequency distribution is then employed to describe the 

segments that make up that cluster. 

To determine the key factors contributing to a traffic accident, a study by Kumar and Toshniwal (2015) 

proposed a framework based on k-modes clustering and an association rule mining algorithm. The study's 

explanatory variables, such as accident type, road type, lightning on the road, and road feature, are 

clustered using the k-modes method. This study used association rule mining to produce rules for each 

cluster as well as the complete data set, taking strong rules with high lift values for the analysis. In a study 

conducted by Wu et al. (2016), to make the most of GPS data collected by transportation businesses and 

explore the potential rules of commercial vehicle driver behavioral characteristics, events related to 

driving behavioral traits are extracted according to GPS data attributes based on factor analysis, and eight 

parameters of driving behavioral traits are transformed into a few aggregated variables containing clear 

information about driving behavior. Using these variables as indicators, hierarchical clustering is used to 

conduct a cluster analysis of commercial vehicle driver behavioral characteristics in the selected case. 

Zhou and Zhang (2019) presented an intriguing technique for analyzing potentially dangerous driving 

behaviors of commercial truck drivers. The study applied a density based spatial clustering of applications 

with noise (DBSCAN) to different types of truck drivers who are first identified using principal component 

analysis (PCA). The DBSCAN approach counts the number of points in a fixed-radius neighborhood to 

estimate density. If two points are in the same neighborhood, they are linked. To find a cluster, DBSCAN 

starts with an arbitrary point p and finds all points in the dataset that are density-reachable from p. If p is 

a core point, a cluster is formed. If p is a cluster boundary point indicating no points density-reachable 

from p, then DBSCAN uses the same procedure for the next unclassified point. When all points in the 

dataset have been allocated to a cluster or recognized as noise, the DBSCAN algorithm completes (Kazemi-

Beydokhti et al., 2017). 

Li et al. (2019) introduced an innovative approach for investigating spatiotemporal distributions of 

individualized driving accidents and identifying dangerous driving scenes where drivers are more likely to 

make mistakes using Geographic Information System (GIS) and mobile sensing techniques. The study first 

detected driving errors using smartphone sensors. Then, geostatistical detected errors with road 

networks and driving trajectories were analyzed to identify driving error hotspots. Next, a “scenic tuple” 

was formed to represent operating errors, then individualized dangerous driving scenes were extracted. 
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The significant similarities among an individual's driving errors are investigated using two clustering 

methods, namely k-modes clustering and Hierarchical clustering on principal components (HCPC). 

Another study, Harirforoush and Bellalite (2019), suggested a two-step integrated approach for finding 

traffic accident hotspots on a road network. A spatial analysis method named network kernel density 

estimation (KDE) is used in the first step. The critical crash rate is then used in a network screening process 

as the second step. The Prediction Accuracy Index (PAI) is applied to test the crash trends of the collected 

data in the first step. Since crash clustering does not imply that a site is a hotspot, the critical crash rate is 

then used to establish an accurate comparison.  

Similarly, Anderson (2009) applied KDE and k-means clustering to profile road accident hotspots. This 

study presents a methodology for studying the spatial patterns of injury-related road accidents using GIS 

and Kernel Density Estimation and a clustering methodology for creating a classification of road accident 

hotspots using environmental data and results from the first section. Table 10 also highlights the research 

methodologies employed in previous studies to analyze spatial-temporal data and the clustering 

approach. 

TABLE 10  Review of research methods 

Reference 
Year of data 

collected 

Methodology for 

spatial pattern 
Method of clustering 

Li et al. (2019) One month GIS and KDE k-modes clustering and HCPC 

Harirforoush and 

Bellalite (2019) 
Three years GIS and KDE 

KDE-method, PAI, and critical crash 

rate 

Anderson (2009) Five years GIS and KDE k-means clustering 

Mohaymany et al. 

(2013) 
Three years 

GIS and Network 

KDE (NKDE) 
NKDE 

Pljakić et al. (2019) Three years GIS and NKDE NKDE 
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3 METHODOLOGY 

3.1 General 

Literature related to the study's objective is assessed and carefully condensed as part of the methodology 

to bring the notion into the study's purpose. The literature review was conducted with the study's 

research questions in mind, emphasizing the findings of the studies reviewed and the methods used to 

analyze related research issues. Following the literature review, a detailed description of the data types 

used and how they are structured to address the research questions is carried out. Finally, a thorough 

explanation and description of the data analysis process, including the steps used to organize, categorize 

and analyze the data acquired, and a brief description of the statistical test utilized, is also part of chapter 

3. Besides, an overview of the study's methodology is shown in figure 5 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5 Overview of the study’s methodology 
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3.2 Thesis Data  

3.2.1 Participants and data collection procedure 

The current thesis used the data collected through a naturalistic driving study of the i-DREAMS project 

conducted by a consortium of a research team led by Hasselt University Transportation Research Institute 

(IMOB). The i-DREAMS project developed a new in-vehicle monitoring system to collect continuous 

naturalistic data (about driver, vehicle, and environment). It also provides real-time intervention to held 

drivers within the safety tolerance zone (the detail for how the data is collected and what technologies 

are utilized is discussed in chapter 1).  

The field experiment of the i-DREAMS project was set to take place in five European nations (Belgium, 

Germany, Greece, Portugal, and the United Kingdom), with an experimental protocol developed to collect 

data at each stage. The field experiment consisted of four stages and was scheduled to last a total of 12 

months for all participants in all participating countries. Stage 1 was simulation (total duration: two 

months), stage 2 was pilot testing (total duration: one month), stage 3 was baseline measurement (total 

duration: two months), and stage 4 was intervention testing (total duration: seven months). Stages 2, 3, 

and 4 take place on the road, while the first stage was planned to be conducted in a driving simulator. 

Drivers who participate in the pilot study (stage 2) are not retained for stage 3 and stage 4 in order to 

avoid influencing the results of the real experiment (stages 3 and 4). They have already used the i-DREAMS 

technology platform in the pilot testing and thus were not eligible to participate in the main study. 

All the drivers who participated in the study's intervention period (stage 4) also participated in the 

baseline measurement phase (stage 3).  Stage 3 (baseline measurement) had only one phase, and stage 4 

(in-vehicle and post-trip interventions) had three phases. In total, data in stage 3 and stage 4 were 

collected in four phases;  

• Phase 1: Baseline measurement (no interventions), in which driving performance is recorded, but 

no i-DREAMS intervention technology is in use, i.e., their performance is monitored, but no alerts 

are received.  

• Phase 2: Real-time intervention via an in-vehicle warning system. 

• Phase 3: Real-time intervention via an in-vehicle warning system and post-trip feedback via a 

smartphone app. 

• Phase 4: Real-time intervention via an in-vehicle warning system and post-trip feedback via a 

smartphone app combined with a gamified web platform.  

Besides, table 11 lists the timing (the length of time each phase took) applied for each phase to carry out 

the field experiment of the i-DREAMS project in Belgium. 
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TABLE 11 Description of phases and duration overview 

Phase Description Duration per participant 

1 Baseline measurement (no interventions) Four weeks 

2 
Real-time intervention via an in-vehicle 

 warning system. 
Four weeks 

3 

Real-time intervention via an in-vehicle  

warning system and post-trip feedback via  

a smartphone app 

Four weeks 

4 

Real-time intervention via an in-vehicle warning system 

and post-trip feedback via a smartphone app combined 

with a gamified web-platform 

Six weeks 

3.2.2 Data employed 

The primary subjects of the study were the i-dreams project truck drivers who took part in the on-road 

field experiment in Belgium. There were 75 truck drivers scheduled to participate in the on-road field 

experiment. They were split into two groups, with 38 drivers in the first group (G1) and 37 in the second 

group (G2). The need to divide the drivers was due to logistical reasons, requiring less equipment to be 

acquired than if everyone was tested simultaneously. Even though more than 20 truck drivers took part 

in the on-road field study, only 16 truck drivers' data were included in this study because that was the 

available data at the time for analysis. The first group was named European Transport Company 

(EUTRACO), while the second was called Group Op De Beeck (GODB). Each participant (truck driver) was 

given a unique code for communication and planning purposes, and information such as vehicle code, 

driver name, and address was logged. Table 12 shows the two groups of truck drivers (EUTRACO as G1, 

GODB as G2), as well as the week numbers (W1, W2, etc.) during which each group participated in the i-

DREAMS project.  

The first group (G1) of eight drivers began baseline measurements in week 1 (W1) for four weeks (from 

W1 to W4), after which they completed all intervention programs phase 2 (P2), phase 3 (P3), and phase 4 

(P4) from W5 to W18. The same equipment was installed in G2 during the field experiment for 18 weeks 

(W1-W18). For the 18 weeks of field experiment W1 to W18, G2 followed the same procedure as G1 (P1, 

P2, P3, P4).  



28 
 

In general, the naturalistic data collected by the i-DREAMS project from the truck drivers who took part in the baseline measurement (phase 1) in 

Belgium are part of this thesis. 

TABLE 12 Timetable of field experiment for both groups 

Phase Group Week and date 

1 

 W1 W2 W3 W4   

G1 9/20 - 9/26/2021 9/27 - 10/3/2021 10/4 - 10/10/2021 10/11 - 10/17/2021  

G2 11/29 – 12/5/2021 12/6 – 12/12/2021 12/13 – 12/19/2021 12/20 – 12/26/2021  

2 

 W5 W6 W7 W8   

G1 10/18 - 10/24/2021 10/25 - 10/31/2021 11/1 - 11/7/2021 11/8 - 11/14/2021  

G2 12/27 – 1/2/2022 1/3 – 1/9/2022 1/10 – 1/16/2022 1/17 – 1/23/2022  

3 

 W9 W10 W11 W12   

G1 12/20 - 12/26/2021 12/27 - 1/2/2022 1/3 - 1/9/2022 1/10 - 1/16/2022  

G2 1/24 – 1/30/2022 1/31 – 2/6/2022 2/7 – 2/13/2022 2/14 – 2/20/2022  

4 

 W13 W14 W15 W16 W17 W18 

G1 1/17 - 1/23/2022 1/24 - 1/30/2022 1/31 - 2/6/2022 2/7 - 2/13/2022 2/14 - 2/20/2022 2/21 - 2/27/2022 

G2 2/21 – 2/27/2022 2/28 – 3/6/2022 3/7 – 3/13/2022 3/14 – 3/20/2022 3/21 – 3/27/2022 3/28 – 4/3/2022 
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3.2.3 Overview of the risky driving events employed 

The i-DREAMS intervention, as mentioned in Chapter 1, aimed to effectively increase driver safety by 

assisting the driver in his/her driving task. As discussed in K. Brijs et al. (2020), four levels of driver safety 

were targeted to improve driver safety. Safety outcomes (SO) are at the highest level targeted by the i-

DREAMS interventions (e.g., the likelihood of crash occurrences such as frontal crashes, side crashes, or 

rear crashes). Safety promoting goals (SPG) is at the second-highest level. These are the behaviors that 

should change to achieve the desired safety outcomes. The performance objectives (PO) are at the 

second-lowest level. These are the more specific behaviors or behavioral parameters that should be 

changed to achieve the safety-promoting objectives. The change objectives (CO) are at the bottom of the 

hierarchy. These are the underlying behavioral factors that should change for the performance goals to 

be met. 

Of the four levels of driver safety, behaviors that describe safety-promoting goals and performance 

objectives were covered in this study. Vehicle control, sharing the road with others, speed management, 

driving fitness, and the use of safety devices are all behaviors frequently monitored in the context of 

safety-promoting interventions. The i-DREAMS platform set out to achieve five safety-promoting goals, 

four of which are included in this research. The following is a list of the four safety-promoting goals (K. 

Brijs et al., 2020): 

• SPG1: Vehicle control performance (expressed as a numerical score) for trucks equipped with and 

subjected to the i-DREAMS interventions. 

• SPG2: Performance in terms of sharing the road with others (expressed as a numerical score)  for 

trucks equipped with and exposed to the i-DREAMS interventions. 

• SPG3: Speed management performance (expressed as a numerical score) for trucks equipped with 

and exposed to the i-DREAMS interventions. 

• SPG4: Performance in terms of driving under conditions where one is fit enough (expressed as a 

numerical score) for trucks equipped with and exposed to the i-DREAMS interventions. 

Performance objectives are the more specific activities or behavioral parameters that must change to 

achieve the safety-promoting aims. More specific and relevant (surrogate) measurements will need to be 

proposed for properly operationalizing objectives specified at this highest degree of impact (K. Brijs et al., 

2020). This research has four safety-promoting goals and eleven performance targets, as shown in figure 

6, where several performance objectives are linked to one safety-promoting goal. Vehicle control consists 

of three performance objectives: acceleration, deceleration, and steering. Tailgating, overtaking, lane 

discipline, forward collision avoidance (FCA), and vulnerable road user collision avoidance (VRUCA) are 

the five performance objectives of road sharing. Besides, fatigue and distraction are incorporated as 

performance objectives of driver fitness, also known as health. Finally, speeding is the only performance 

objective that falls within the category of speed management. 
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FIGURE 6 Safety promoting goals and performance objectives of the i-DREAMS project (K. Brijs et al., 
2020). 

3.2.4 Overview of the data obtained from the i-DREAMS project 

The factors considered to characterize risky driving events were weather, road type, and time of day, as 

stated in the study's objective section. Except for weather data and road type shapefile, the data used in 

this study was obtained from the i-DREAMS project. 

Safety promoting goals Performance objectives 
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(Road sharing) 
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Overtaking 
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Forward collision 
avoidance 

Speed management Speeding (speed limit 

exceedance) 

Vehicle control 

Acceleration 

Deceleration 

Steering 
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 Figure 7 depicts the types of risky events considered to be characterized and the elements used during 

data processing. A data file was also provided containing the date ranges for each phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7 Risky events and variables obtained from the i-DREAM project. 

3.2.5 Data obtained from open sources 

3.2.5.1 Weather data  

In addition to the data obtained from the i-DREAMS project, weather parameters were obtained through 

an open-source called National Aeronautics and Space Administration (NASA) Prediction of Worldwide 

Energy Resource (POWERS) data access viewer. Six parameters were collected from the open-source: 

• The temperature at 2 meters 

• Dew/frost point at 2 meters 

• Relative humidity at 2 meters 

• Precipitation corrected 

• Surface pressure 

• Wind speed at 10 meters 
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The six weather parameters were derived hourly, using Brussels's latitude and longitude as a location 

reference. Table 13 also includes a definition for each of the six meteorological parameters based on the 

NASA POWER data access viewer (2022):  

TABLE 13 Weather parameters and definition 

Parameter Definition Unit 

Temperature at 2 

meters  

The average air (dry bulb) temperature at 2 meters above the 

surface of the earth. 

Degree Celsius 

(C) 

Dew/frost point 

at 2 meters 

The dew/frost point temperature at 2 meters above the 

surface of the earth. 

Degree Celsius 

(C) 

Relative humidity 

at 2 meters 

The ratio of actual partial pressure of water vapor to the 

partial pressure at saturation, expressed in percent. 
Percent (%) 

Precipitation 

corrected 

The bias corrected average of total precipitation at the surface 

of the earth in water mass (includes water content in snow). 

Millimeters per 

hour (mm/hour) 

Surface pressure The average of surface pressure at the surface of the earth. Kilopascal (kPa) 

Wind speed at 10 

meters 

The average of wind speed at 10 meters above the surface of 

the earth. 

Meter per 

second (m/s) 

3.2.5.2 Road type data 

In addition to weather data, a shapefile of Belgium's road network that included a description of the road 

type was obtained from an open-source named DIVA-GIS (DIVA-GIS, 2022). Although the file downloaded 

contained a fair bit of unclear information that was not required for this thesis, it had been cleaned up 

and processed to the point where it could be used as an input for this study. The road types that were 

used in this study to characterize the occurrence of risky events are as follows: 

• Motorway 

• Primary roads 

• Secondary roads 

• Tertiary roads 

• Trunk roads 

3.3 Data processing 

3.3.1 Organizing and processing risky events by time of the day  

The i-DREAMS project provided a two-part data file packaged in excel as a Comma Separated Values (CSV) 

file for each group. The first data file contained trip events, which primarily described the frequency of 

occurrence of each risky event per trip, as well as communication and planning data, which included the 

dates when each phase began and ended. Also, user ID, trip ID, trip start date and time, duration, and 

distance were all included in the first data file. The second data file included location coordinates (latitude 

and longitude) where each risky event occurred. Besides, trip ID, event type, and timestamp were part of 
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the second data file. The risky events were classified into three levels in both data files (low, medium, and 

high). 

Following the acquisition of the data file, it was necessary to commence data processing through filtering, 

where the four phases could be separated. However, because each trip's date and time were presented 

as a single integrated row of data in a single column, it was necessary to separate them before starting 

the filtering process. As a result, the trip start date and start time were separated and assigned to distinct 

columns. Then, using the date ranges listed in table 12 for both groups, the filtering process was employed 

to extract data for each phase from the big data file, resulting in four separate sheets, one for each phase.  

3.3.2 Organizing and processing risky events by weather  

The data organization process was continued after obtaining all six weather data sets on an hourly basis 

via the open-source NASA POWER data access viewer. The data was extracted using the period between 

the start of phase one of group one (September 20, 2021) and the end of phase one of group two (April 

3, 2022). The extracted data includes dates when a field experiment was conducted and dates when one 

was not since the data was not explicitly retrieved for the days when only a field experiment was 

conducted. As a result, as shown in figure 8, a matching process was carried out based on the date and 

timestamp where each risky event occurred. This helped return the weather data to each trip ID by making 

an exact match of the date and an approximate match of the timestamp. 

 

 

 

 

 

 

 

FIGURE 8 Data matching flow chart. 

3.3.3 Organizing and processing risky events by location 

A data file of risky events based on location was provided, containing each risky event's coordinates 

(latitude and longitude). This was a more detailed version of the data for the number of risky events per 

trip. For example, if a trip has an "N" number of risky events, the trip was divided into "N" rows, each row 

having the coordinates (latitude and longitude) for the corresponding risky event. The intent of having the 

spot where the risky events happened was to characterize these events based on road type. However, the 

data only had coordinates, with no information about the road layout (road type) where the coordinates 

were located. It was difficult to characterize the risky events without a road-type description. Hence, a 

Belgium road network shapefile with road type description was downloaded from an open source called 

DIVA-GIS (DIVA-GIS, 2022). 
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3.3.3.1 Buffering 

The risky event data of phase one and the Belgium road network shapefile were first imported into 

Quantum Geographic Information System (QGIS) 3.22 to assign the road type to each coordinate. 

However, in addition to Belgium, the phase’s layer included coordinates of risky events in the Netherlands, 

Germany, Luxembourg, and France, necessitating a buffering process. Buffering allows drawing circular 

boundaries around points or rectangular boundaries on either side of lines or around the outside of 

polygons. Hence, a buffer was created around the perimeter of the polygon generated from a shapefile 

representing Belgium's administrative boundary. The newly-created Belgium map layer with buffering 

was used as a reference feature. Then all of the risky events inside the Belgium map layer were selected 

and exported as a new shapefile. Figure 9 (a) shows the distribution of risky events before buffering, 

whereas figure 9 (b) shows the area in which the risky events included for this study, exclusively risky 

events that occurred in Belgium, which are acquired after the buffering process. 

 

 

 FIGURE 9 Buffering (a) risky events before buffering (b) risky events after buffering. 

(a) 

(b) 
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3.3.3.2 Join attributes by nearest  

After all phase one risky event occurrences were delimited to the Belgium map, the road type attribution 

was done to define the location of the risky events. Before doing so, the geometric validity of the Belgium 

road network derived from the open-source had to be validated. As a result, a validity check on the 

geometries of a vector layer (Belgium road network) was performed using an algorithm (from QGIS version 

3.22). The algorithm divides geometries into three groups (valid, invalid, and error), then generates a 

vector layer with the features from each category. The valid output layer only contains valid features (no 

topological errors), the invalid output layer contains all of the algorithm's invalid features, and the error 

output layer is a point layer that points to where the invalid features were found. 

During the geometric validity check of the road network, six error outputs were discovered and 

automatically fixed using the built-in technique for fixing geometry errors. This technique tries to make a 

valid representation of an invalid geometry without losing any input vertices. After the geometry errors 

have been fixed, attributes are allocated to the closest position using the technique called join attributes 

by nearest. The nearest attribute assignment algorithm takes an input vector layer and creates a new 

vector layer that is an extended version of the original one, with more attributes in its attributable table. 

The additional attributes and values emanated from a second vector layer, where features are linked by 

locating the closest features in each layer. 

The selected attributes from the nearest feature are included in the output features, as well as new 

attributes for the distance to the nearest feature, the feature's index, and the coordinates of the closest 

point on the input feature (feature X, feature Y) to the matched nearest feature, as well as the coordinates 

of the closet point on the matched feature (nearest X, nearest Y). Only the features indicating the road 

type were taken from the newly generated attributes, and the rest were cleaned. As a result, the final 

attribute table for analysis included the trip ID, risky event type, timestamp, the six weather parameters, 

road type, severity, and coordinates (latitude and longitude). 

3.4 Method of data analysis 

The data obtained from the i-DREAMS project was analyzed using the statistical methods listed below, 

which were chosen following literature reviews related to the current study, the type of data obtained 

from the i-DREAMS project, and the corresponding objectives formulated. 

3.4.1 K-means Clustering 

K-means clustering is one of the most straightforward unsupervised learning techniques to handle the 

well-known clustering problem. It divides things into clusters based on their similarities and differences 

from objects in other groups (Nirmal, 2019). According to James et al. (2013), the required number of 

clusters K must first be specified to perform K-means clustering. The K-means algorithm will then place 

each observation in precisely one of the K clusters. The K-means clustering method results from an easy-

to-understand mathematical problem. Firstly, some notation is defined. Assume that sets C1,...,Ck 

represents sets of indices for the observations in each cluster. These sets satisfy two requirements: 

a) 𝐶1 ∪  𝐶2 ∪ … ∪ 𝐶𝑘 = {1, … , 𝑛}. So each observation is a part of at least one of the K clusters. 
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b) 𝐶𝑘 ∩ 𝐶𝑘′ = ∅  for all k ≠ k’. In other words, no observation belongs to more than one cluster, 

indicating that the clusters are non-overlapping. 

If the ith observation is found in the kth cluster, then i ∈ Ck. According to the K-means clustering theory, a 

good clustering is one for which the within-cluster variation is as minimal as possible. The within-cluster 

variance for cluster Ck is a measure W(Ck) of the extent by which observations within a cluster vary from 

one another. Though minimizing within-cluster variance is a logical idea, we must first define it to make 

it actionable. The most common method, the squared Euclidean distance, is used in the current study, 

where it is mathematically defined as follows: 

 
𝑊(𝐶𝑘) =

1

|𝐶𝑘|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

2

𝑝

𝑗=1𝑖,𝑖′∈𝐶𝑘

 

 

(1) 

Where |Ck| represents the number of observations in the kth cluster. This means that the within-cluster 

variance for the kth cluster is equal to the sum of all the pairwise squared Euclidean distances between 

the observations in the kth cluster divided by the total number of observations in the kth cluster. 

Combining the idea of minimizing the variation within cluster and equation (1) gives the optimization 

problem that defines K-means clustering,  

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
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∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

2

𝑝

𝑗=1𝑖,𝑖′∈𝐶𝑘

𝑘

𝑘=1

} (2) 

Besides, the following approach addresses the K-means optimization problem mentioned in equation (2), 

which involves lowering the value of the objective in equation (2): 

a) Give each observation a random number between 1 and K. These serve as the initial cluster 

assignments for the observations. 

b) Continue iterating until the cluster assignments stop changing: 

• Calculate the cluster centroid for each of the K clusters. The vector of the p feature 

means for the observations in the kth cluster is the centroid of the kth cluster. 

• Assign each observation to the cluster with the closest centroid (where closest is 

defined using Euclidean distance). 

3.4.2 Elbow method 

The elbow method focuses on how much (percentage) variance can be explained as a function of the 

number of clusters. This approach is based on the premise that one should select the number of clusters 

to ensure that adding another cluster doesn't significantly improve the modeling of the data. The elbow 

method yields a graph of the percentage of variance explained by the clusters against the number of 

clusters. The first clusters will provide a lot of information, but eventually, the marginal gain will decline 

sharply, giving the graph a tilt. At this point, the appropriate ‘K,’ or the number of clusters, is selected, 

leading to the term "elbow criterion" (Bholowalia & Kumar, 2014). In this study, the number of K clusters 
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to use for K-Means algorithm data grouping was chosen using the elbow criterion approach, where the 

elbow method is expressed using the Sum of Squared Error as follows (Irwanto et al., 2012): 

 𝑆𝑆𝐸 =  ∑ ∑ ‖𝑥𝑖 − 𝐶𝐾‖2
2

𝑥𝑖∈𝑆𝐾

𝐾

𝐾=1

 (3) 

Where K is the number of clusters formed, xi is the data present in each cluster, CK is the cluster centroid, 

and SSE is the sum of the average  Euclidean  Distance of each point against the centroid. The idea is to 

start with K=2 and raise it by 1 in each step as you calculate your clusters and the training cost. At some 

value of K, the cost starts to decline sharply, and as you increase K more, the cost plateaus, indicating that 

this is the ideal K value. After doing this, there will be more clusters, but some old clusters will be quite 

close to the new ones. 

3.4.3 Multivariate analysis of variance (MANOVA)  

MANOVA is a general linear model (GLM) technique mainly designed to assess multi-variable statistical 

models. With MANOVA, it is possible to discriminate between two or more different groups using a 

combination of quantitative variables. When there are several dependent variables, i.e., when Analysis of 

Variance (ANOVA) is insufficient to identify group differences, MANOVA can be used as a replacement 

(Andy, 2009). The objective of this study is to ascertain the influence of time of day, weather, and road 

type on the prevalence of risky events (dependent variables), with the time of day having four clusters 

(groups), the weather having three clusters, and road type having five groups. To take advantage of 

MANOVA in assessing group differences using multiple variables,  the study used clusters (groups) as 

predictors or fixed factors, risky events categorized into low, medium, and high severity, as well as 

additional total risky events as dependent variables.  

This study included eleven risky events (dependent variables), as was previously described (see section 

3.2.2). All 11 dependent variables were considered for computing the group (cluster) difference based on 

the total risky events, but only seven of the risky events were considered based on the low, medium, and 

high severity. This is because risky events, including distraction, forward collision avoidance, vulnerable 

road user collision avoidance, and lane discipline, were only recorded as total risky events. In light of this, 

the MANOVA design was an 11 X 11 matrix for comparison based on total risky events, whereas it was 7 

X 7 based on low, medium, and high risky events. 

The test statistic (F-ratio) for MANOVA is obtained by comparing the ratio of systematic to unsystematic 

variance for various dependent variables. The hypothesis sum of squares and cross products matrix (or 

hypothesis SSCP) is the matrix that depicts the systematic variance (or the model sum of squares for all 

variables). The error sum of squares and cross-products matrix (or error SSCP) is the matrix that represents 

the unsystematic variation (or residual sums of squares for all variables). This F-ratio represents the 

model's performance in terms of how good compared to how bad it is (how much error there is). In 

addition to the F-ratio, the measure of association strength, which defines the proportion of the 

overlapping variance between the independent variable and the first combination of dependent variables, 

was reported using Wilks's lambda (Λ) and the Pillai-Bartlett trace (V) (Andy, 2009). Wilks's lambda (Λ) is 
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applied when the homogeneity of variance assumption is upheld, and Pillai's trace (V) is used when the 

assumption is violated. 

Wilks's lambda is calculated using the product of the unexplained variance on each of the variates (see 

equation (4), where the symbol ∏ is identical to the summation symbol (Σ) except that it signifies multiply 

rather than add up). Therefore, Wilks's lambda measures the proportion of error variance to total variance 

for each variate (Andy, 2009): 

 𝛬 = ∏
1

1 + 𝜆𝑖

𝑠

𝑖=1

 (4) 

 

The Pillai's trace V value is calculated using equation (5), where s is the number of variates and λ is the 

eigenvalue for each discriminant variate (Andy, 2009). 

 𝑉 = ∑
𝜆𝑖

1 + 𝜆𝑖

𝑠

𝑖=1

 

 

(5) 

3.4.3.1 Follow-up analysis 

The F-ratio primarily reveals whether the data-fitted model explains more variation than unrelated 

variables, but it does not tell which of the dependent variables accounts for the difference between the 

group. This prompted the adoption of a follow-up analysis (further analysis to identify which dependent 

variable(s) resulted in a significant difference), where the significance value of the initial test of the null 

hypothesis was used to determine whether or not follow-up analysis was necessary to be conducted. 

Hence, a follow-up analysis was not performed when a non-significant MANOVA (i.e., true null hypothesis) 

was achieved. On the other hand, a separate ANOVA was used for the follow-up analysis if the MANOVA 

output revealed statistically significant differences between the groups, where a p-value of less than 0.05 

was regarded as a significant value. 

Additionally, the results of independent ANOVA (between-subject effects) only reveal which dependent 

variables differ significantly between the groups, not where the differences between the groups reside or 

which group differs significantly from the others. Therefore, it was necessary to conduct further analysis 

to determine which groups differed after conducting separate ANOVA. This required comparing each 

group (as if running multiple t-tests), but using post hoc, a feature of MANOVA, made this task easier. In 

addition to pairwise comparison (comparing all possible pairings of the groups), the post hoc test 

determines if there is a positive or negative difference between the groups, i.e., whether the value of the 

variable under consideration is higher or lower than in one group than in another. There are two ways to 

do a post hoc test in a MANOVA: assuming equal or unequal variance. Based on Andy (2009), this study 

used Tukey's procedure for equal sample size and similar group variance and the Games-Howell procedure 

for any lingering doubts about the equality of group variance to conduct the post hoc test. 
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3.4.4 Correlation test 

The risky events were subjected to a correlation test using a bivariate test to determine their simultaneous 

occurrence. Based on severity levels, a correlation test was conducted between the dependent variables 

(risky events), in which Spearman correlation analysis was utilized to calculate the correlation coefficient. 

This correlation coefficient measures how closely two variables are related linearly. The correlation 

coefficient value spans from absolute value +1 to -1, in which the ranges are interpreted as follows 

(Ratner, 2009):  

• 0 implies the absence of a linear relationship. 

• +1 denotes a perfect positive linear relationship, meaning that as one variable's values increase, 

the other variable also does so according to an exact linear rule. 

• -1 denotes a perfect negative linear relationship, in which when one variable's values rise, the 

other variable's values fall according to an exact linear rule. 

• Values between 0 and 0.3 (0 and -0.3) imply a weak positive (negative) linear relationship 

through a fragile linear rule. 

• Values between 0.3 and 0.7 (-0.3 and -0.7) denote a moderately positive (negative) linear 

relationship through a fuzzy-firm linear rule. 

• Values between 0.7 and 1.0 (-0.7 and -1.0) denote strong positive (negative) linear relationship 

through a firm linear rule. 

Generally, when the correlation coefficient is closer to the absolute value of one, then the variables are 

highly correlated; when the value is closer to zero, the variables are less correlated. In the current study, 

a strong correlation was considered as one with a correlation coefficient above 0.5. 

3.4.5 Kernel density estimation (KDE) 

Kernel density estimation is one of the effective methods for calculating the spread of risk of an accident 

(Anderson, 2009). KDE entails covering each point with a symmetrical surface, calculating the distance 

between the point and a reference location using a mathematical function, and then adding the values 

for all the surfaces for that reference location. For successive points, the same process is repeated. This 

enables applying a kernel to each observation, and adding the individual kernels provides the density 

estimate (smoothly continuous intensity surface) for the distribution of accident spots. The intensity is 

maximum at the point event center and gradually drops until it reaches zero at the radius of the research 

circle (Fotheringham et al., 2000). The density at a definite location is calculated by equation (6): 

 
𝑓(𝑥, 𝑦) =

1

𝑛ℎ2
∑ 𝐾 (

𝑑𝑖

ℎ
)

𝑛

𝑖=1

 

 

(6) 

where f(x, y) represents the estimated density at the given location (x, y), n stands for the number of 

observations, h is the bandwidth or kernel size, K is the kernel function, and di is the distance between the 

location (x, y) and the location of the ith observation. The KDE method yields a raster result that is 

displayed as a grid of cells. The key variables that affect the KDE technique are cell size and bandwidth. 

The selection of bandwidth is highly subjective (Anderson, 2009). 
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3.4.5.1 Categorization of hotspots 

The KDE is applied to estimate the density of risky events based on the total and the three severity-based 

risky events. Hence, the dataset of risky events was first split into four separated data files based on total, 

low, medium, and high risky events. The KDE is then applied to each data file in which each risky event 

was grouped according to the time of the day, weather, and road type. It makes sense that an area with 

many trips would encounter higher risky events. For example, if the number of trips on motorways was 

higher than on primary roads, there would also be a higher number of risky incidents on motorways. 

Therefore, it will be difficult to conclude that the frequency of risky events is higher on motorways, as this 

could be due to a higher number of trips on motorways. In this study, the risky events in the high-density 

areas were extracted and standardized by dividing the distance traveled in that particular high-density 

area to derive a valid conclusion. 

Besides, in the analysis using KDE, because there is no index associated with statistical significance, 

hotspots were categorized using equal intervals. As a result, the risky event density was divided into five 

categories: very low, low, medium, high, and very high. The risky events that fell within the high and very 

high-density range were then employed for this study. 
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4 DATA ANALYSIS AND RESULTS 

The study's findings are divided into two sections. The first section presents the findings of the descriptive 

analysis carried out on the 11 risky events (variables) based on the severity level. This section also briefly 

explains k-means clustering results, including the number of clusters obtained using the elbow method 

on weather and time of day, and their cluster centers. Besides, a description of the type of road considered 

to characterize the risky events based on road layout is covered in this section. The findings from the 

multivariate analysis of variance, correlation test on the dependent variables, and kernel density 

estimation are presented in the second part. This section is further divided into three parts depending on 

the three factors.  

4.1 Descriptive statistics  

4.1.1 Risky events description 

In general, this study utilized the data from 16 truck drivers of the i-DREAMS project, taking 799 trips and 

recording a total of 68,775 risky events that occurred during those trips. Table 14 gives descriptive 

statistics of the frequency distribution of the 11 risky events (performance objectives) in terms of overall 

risky events and the three severity levels (low, medium, and high). Out of the total risky events recorded, 

steering and tailgating had the highest frequency of occurrence, with 23,071 (33.6%) and 20,993 (30.5%), 

respectively. Variables like vulnerable road user collision avoidance, overtaking, and forward collisions 

have the lowest rates of occurrence, with frequencies of 1 (0.0%), 12 (0.0%), and 90 (0.1%), respectively. 

Also, throughout these 68,776 risky events, there were no low-risk events related to speeding, tailgating, 

or overtaking (see table 14). 

TABLE 14 Descriptive statistics of risky events (performance objectives) 

Risky events Low Medium High Total 

Speeding 0 (0.0) 530 (30.5) 1208 (69.5) 1738 (2.5) 

Acceleration 6590 (63.0) 3364 (32.2) 498 (4.8) 10452 (15.2) 

Deceleration 8017 (93.3) 534 (6.2) 44 (0.5) 8595 (12.5) 

Steering 15333 (66.5) 7446 (32.3) 292 (1.3) 23071 (33.6) 

Tailgating 0 (0.0) 17057 (81.3) 3936 (18.8) 20993 (30.5) 

Overtaking 0 (0.0) 4 (33.3) 8 (66.7) 12 (0.0) 

Fatigue 149 (48.2) 105 (34.0) 55 (17.8) 309 (0.4) 

Lane discipline 
   3283 (4.8) 

FCA 
   90 (0.1) 

VRUCA  
   1 (0.0) 

Distraction 
   231 (0.3) 

Similarly, descriptive statistics were conducted on the frequency distribution of the risky events 

depending on the four safety-promoting goals. As depicted in figure 10, of all risky events detected, 

vehicle control accounted for the substantial portion, 42118 (61.2%); the lowest percentages were for 
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health (driver fitness) and speed management, at 540 (0.8%) and 1738 (2.5%), respectively. Also, neither 

speed management nor health contributed to the occurrences of low risky events. Generally, speed 

management and road sharing contributed the most for high and medium risky events, respectively, 

contributing 69.5% and 70.0% each. While vehicle control made the most considerable contributions to 

the occurrence of both low and total risky events, contributing 71.1% and 61.2% each. Health was the 

least in all the severity levels. The lack of the three severity levels for one of its performance objectives, 

distraction, may account for the health's little impact. 

 

FIGURE 10 Frequency of risky events based on safety-promoting goals. 

4.1.2 Cluster description 

4.1.2.1 Number of clusters 

The number of clusters based on time of the day and weather was calculated by analyzing the timestamps 

of the risky events and the six meteorological parameters, respectively. Figures 11 (a) and (b) show the 

elbow graph for the time of day and weather parameters, respectively. Four clusters were selected based 

on the time of day, and three were selected based on weather factors. 
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(a)                                                                                         (b)  

FIGURE 11 Elbow graph (a) Time of the day and (b) Weather. 

4.1.2.2 Cluster center 

K-means clustering was employed to determine cluster centers for the time of day using the timestamp 

at which the risky events were recorded and four elbow-derived numbers of clusters. Table 15 shows the 

cluster center computed using k-means clustering for each cluster, with the time range description based 

on a study by Pokorny et al. (2017).  

TABLE 15 Clustering based on time of the day 

Cluster Cluster center Time range Time of the day 

1 4:34:38 00:00 - 7:00 Night/Early morning 

2 12:24:48 11:00 - 15:00 Midday 

3 16:18:45 15:00 - 00:00 Afternoon/evening 

4 8:37:06 7:00 - 11:00 Morning 

Similarly, the weather's cluster center was determined using k-means clustering, and variables including 

temperature, dew point, humidity, pressure, precipitation, and wind were used. Also, to compute the 

cluster center, three numbers of clusters yielded by the elbow technique were used. The cluster centers 

for each cluster are shown in Table 16, and the cluster center for each cluster is defined as follows: 

• Cluster 1 (adverse weather condition): Low temperature, dew point, pressure, wind, moderate 

precipitation, and high humidity. 

• Cluster 2 (average weather condition): High precipitation, moderate temperature, dew point, 

humidity, pressure, and wind. 

• Cluster 3 (clear weather condition): High temperature, dew point, pressure, and wind, along with 

little precipitation and humidity. 
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TABLE 16 Clustering based on weather 

Cluster Temperature Dew point Humidity Precipitation Pressure Wind 

1 5.31 4.63 95.22 0.1 101.2 4.61 

2 10.03 7.04 81.67 0.11 101.44 5.2 

3 16.22 9.25 63.57 0.04 101.69 5.51 

Additionally, each case (risky events) was grouped into a cluster based on how differently the observations 

(timestamps for cases involving time of day and the six metrological elements for cases involving weather) 

varied within each cluster (see section 3.4.1). Figure 12 (a) and (b) show the percentage of risky events 

grouped according to the time of day and weather, respectively. In the case of time of the day, nearly all 

of the clusters have the same number of risky events, with cluster 4 (morning) having the most 19477 

(27.8%) and cluster 3 (afternoon/evening) having the least 21.7% risky events (see figure 12 (a)). The 

clusters were designed to maximize the differences between the cases (timestamp) in various clusters, 

F(3, 68771) = 277805, p < .01. While in the case of weather-based clustering, the proportion of risky events 

categorized in each cluster differed widely. Figure 12 (b) demonstrates cluster 1 has the highest 

percentage of risky events, 44586 (64.8%), followed by cluster two, 14666 (21.3%), and cluster three, 9532 

(13.8%). Like time-based clustering, weather-based clustering was formed to maximize the differences 

between the cases in various clusters, F(2, 68772) = 846.88, p < .01. 

 

  

 

 

 

                             (a)                                                                                                     (b) 

FIGURE 12 Percentage of clustered risky events based on (a) Time of the day and (b) Weather. 

4.1.3 Road type description 

Five categories of roads are used to analyze risky events based on road layout: motorways, primary roads, 

secondary roads, tertiary roads, and trunk roads. Figure 13 exhibits the distribution of the five types of 

roads throughout the Belgium road network. After the risky events were loaded into QGIS and 

superimposed on the road network, the algorithm called join attributes by nearest  (see section 3.3.3.2) 

was used to join them with the closest road type. 
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FIGURE 13 Belgium road network. 

The algorithm (join attributes by nearest) results in a joined layer containing risky event occurrence per 

road type, where the description of the percentage distribution of the risky event on the five road types 

is shown in figure 14. Most risky events were reported to have taken place on motorways (46.4%), while 

the fewest risky events were found on tertiary and trunk roads (8.6% and 10.3%, respectively). This 

proportion of risky events may have occurred since truck drivers were the study's focus. Given the size of 

the vehicle, it is clear that truck drivers favor driving on motorways. Additionally, due to traffic congestion 

and their size, heavy trucks are prohibited from traveling on some minor roads, which may also account 

for the lower frequency of risky events on tertiary roads. 

 

 

 

 

 

 

  

FIGURE 14 Percentage of risky events based on road type. 
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4.2 Characterization of risky events 

The classification of risky events based on the time of day, the weather, and the type of road are explained 

in the following sections. The frequency of risky events per trip was standardized to 100 kilometers for 

each of the three aforementioned factors. For instance, using the four clusters that were created based 

on the time of day, the risky events that occurred on each cluster were divided by the distance traveled 

on each cluster, and then the result was standardized to 100 kilometers. A similar strategy was used for 

both the type of road and the weather. As a result, MANOVA, correlation test, and KDE results, which are 

covered in more detail in the following sections, were applied after standardizing the number of risky 

events by the distance traveled. 

4.2.1 Multivariate analysis of risky events  

The results of the multivariate analysis of risky events based on the time of day, weather, and type of 

road are presented in the following sections. Each of the previously listed factors is followed by a 

detailed presentation of the results from the multivariate test, between-subject effects (univariate 

ANOVA), and multiple comparisons (post hoc test). 

4.2.1.1 Analysis of risky events based on time of the day  

Analyzing the risky events based on time of the day revealed that the time of day had no statistically 

significant effect on the likelihood of total risky events, V = .576, F(30, 150) = 1.189, p > .05, low risky 

events, V = .202, F(12, 168) = 1.011, p > .05, and high risky events, V = .307, F(21, 159) = .864, p > .05. 

However, the variation in time of day resulted in a significant difference on the occurrence of the medium 

risky events with V = .558, F(21, 159) = 1.73, p = .031. Besides, table 17 shows further analysis of the 

dependent variables for the medium severity.  

TABLE 17 Between-subject effects: impact of time of the day on medium severity dependent variables 

Dependent Variable 
Type III Sum of 

Squares df Mean Square F Sig. 

Speeding 1.068 3 .356 2.107 .109 

Acceleration 28.649 3 9.55 .27 .847 

Deceleration 1.188 3 .396 .774 .513 

Steering 91.852 3 30.617 .198 .897 

Tailgating 2060.451 3 686.817 2.498 .069 

Overtaking .001 3 0 1.761 .165 

Fatigue .167 3 .056 5.75 .002 

As shown in Table 17 above, time of the day had a statistically significant effect on medium severity fatigue 

events, F (3, 57) = 5.75; p < .01. Moreover, a follow-up analysis was carried out on fatigue with Games-

Howell post hoc test, as shown in Table 18 below in the multiple comparisons table.   
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TABLE 18 Multiple comparisons: differences in medium fatigue events based on time of the day 

(I)  (J)  
Mean 

Difference 
 (I-J) 

Std. 
Error 

Sig. 
95% Confidence Interval 

Lower  
Bound 

Upper 
 Bound 

Morning       

Midday .036 .028 .581 -.040 .113 

Afternoon/evening -.107 .046 .128 -.237 .023 

Night/early morning .014 .030 .964 -.067 .096 
Midday       

Afternoon/evening -.143 .044 .024 -.270 -.016 

Night/early morning -.022 .028 .861 -.097 .054 
Afternoon/ 

evening Night/early morning .121 .046 .070 -.008 .250 
Based on observed means. 

The error term is Mean Square(Error) = .010. 
* The mean difference is significant at the .05 level. 

The table above exemplifies that, on average, medium fatigue event occurrences were significantly less 

frequent during midday than in the afternoon or evening (p = .024), but it did not differ significantly 

between morning and midday (p =.581), morning and afternoon/evening (p =.128), and morning and 

night/early morning (p =.964). Also, the difference in medium fatigue events between midday and 

night/early morning (p =.861) and between afternoon/evening and night/early morning (p =.07) was not 

statistically significant. 

4.2.1.2 Analysis of risky events based on weather conditions 

The risky events were put through a MANOVA to determine whether there was a relationship between 

weather clusters and the frequency of risky events. Weather was seen to have a statistically significant 

effect on the frequency of total risky events, Λ = .359, F(20, 54) = 1.805, p = .044, low risky events, Λ = 

.576, F(8, 66) = 2.619, p = .015, and medium risky events, Λ = .463, F(12, 62) = 2.426, p = .012. However, 

there was no statistically significant impact of weather on the frequency of high severity risky events, V = 

.519, F(14, 62) = 1.55, p > .05. In addition, a follow-up analysis was carried out on total risky events, low 

and, medium severity risky events. As shown in Table 19 below, it was appeared that weather had a 

statistically significant effect on total speeding events, F (2, 36) = 3.542; p = .039, and vulnerable road user 

collision avoidance events, F (2, 36) = 3.443; p = .043. 
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TABLE 19 Between-subject effects: impact of weather on the dependent variables based on total 
events 

 Dependent 
Variable 

Type III Sum of 
Squares df Mean Square F Sig. 

Speeding 7.922 2 3.961 3.542 .039 

Acceleration 1623.171 2 811.586 2.533 .093 

Deceleration 140.841 2 70.421 1.825 .176 

Steering 3161.359 2 1580.679 1.718 .194 

Tailgating 750.713 2 375.357 .833 .443 

Overtaking .001 2 .001 .142 .868 

VRUCA .359 2 .18 3.443 .043 

FCA .49 2 .245 .629 .539 

Fatigue .019 2 .009 .606 .551 

Distraction 6.457 2 3.229 .067 .935 

Again, a further analysis was conducted on total speeding and vulnerable road user collision avoidance 

with the Tukey HSD post hoc test, as shown in Table 20 below. On average, there were substantially more 

speeding incidents in cluster 1 than in cluster 2 (p = .032), but there was no statistically significant 

difference between cluster 1 and cluster 3 (p = .377) or between cluster 2 and cluster 3 (p = .761). Despite 

the between-subject effect showing that weather had a statistically significant impact on vulnerable road 

user collision avoidance, multiple comparisons revealed that there was no statistically significant 

difference in the frequency of VRUCA between clusters 1 and 2 (p = .065), clusters 1 and 3 (p = .976), and 

clusters 2 and 3 (p = .121) 

TABLE 20 Multiple comparisons: differences in total risky events based on weather clusters 

Dependent 
Variable 

(I) (J) 
Mean 

Difference 
(I-J) 

Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Speeding 
       

Cluster 1 
Cluster 2 .986* .374 .032 .073 1.9 
Cluster 3 .648 .479 .377 -.524 1.819 

Cluster 2 Cluster 3 -.339 .479 .761 -1.51 .833 
VRUCA 

       

Cluster 1 
Cluster 2 .188 .081 .065 -.009 .385 

Cluster 3 -.022 .104 .976 -.275 .232 

Cluster 2 Cluster 3 -.21 .104 .121 -.463 .044 
Based on observed means. 

The error term is Mean Square(Error) = 48.210. 

* The mean difference is significant at the .05 level. 

Similarly, a follow-up test on low severity risky events has been conducted, as shown in Table 21 below. 

It appeared that weather had a statistically significant effect on low fatigue events, F (2, 36) = 3.303; p = 

.048. 
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TABLE 21 Between-subject effect: impact of weather on low severity dependent variables 

Dependent 
Variable 

Type III Sum 
of Squares df Mean Square F Sig. 

Acceleration 497.193 2 248.596 1.901 .164 

Deceleration 132.831 2 66.415 1.894 .165 

Steering 1184.25 2 592.125 2.277 .117 

Fatigue .133 2 .066 3.303 .048 

Additional analysis on low fatigue events was conducted using the Tukey HSD post hoc test, as shown in 

Table 22 below. A statistically significant difference existed between clusters 2 and 3 (p = .045), and the 

mean difference revealed that cluster 2 had a reduced likelihood of low fatigue events than cluster 3. 

However, no statistically significant difference was found between clusters 1 and 3 (p = .414), nor between 

clusters 1 and 2 (p = .280). 

TABLE 22 Multiple comparisons:  differences in low fatigue events based on weather clusters 

(I)  (J)  
Mean 

Difference 
(I-J) 

Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

Cluster 1 
Cluster 2 .078 .050 .280 -.045 .200 

Cluster 3 -.082 .064 .414 -.239 .075 

Cluster 2 Cluster 3 -.160* .064 .045 -.317 -.003 
Based on observed means. 
 The error term is Mean Square(Error) = .020. 
* The mean difference is significant at the .05 level. 

Moreover, the medium severity dependent variables have been subjected to a follow-up test. The result 

suggested that weather significantly impacted medium fatigue events, F (2, 36) = 5.158; p = .011. 

Additional analysis of medium fatigue events using the Tukey HSD post hoc test revealed a statistically 

significant difference between clusters 1 and 2 (p = .017), with the mean difference indicating that 

medium fatigue events were more common in cluster 1 than in cluster 2. As opposed to this, there was 

no statistically significant difference between clusters 1 and 3 (p = .991) or clusters 2 and 3 (p = .056). 

4.2.1.3 Analysis of risky events based on road type  

Analyzing the risky events based on road type revealed that road type had a statically significant impact 

on the total risky events, V = .982, F(40, 276) = 2.245, p < .001, low risky events, V = .478, F(16, 300) = 

2.543, p < .001, medium risky events, V = .827, F(24, 292) = 3.172, p < .001, and high risky events, V = .619, 

F(28, 288) = 1.884, p = .006. A follow-up study was also conducted on the three severity-based risky events 

as well as the total number of risky events. Table 23 shows between-subject effects based on total risky 

events, where type of road had a substantial impact on the dependent variables, including speeding, F (4, 

75) = 3.851; p = .007, acceleration, F (4, 75) = 5.689; p < .001, deceleration, F (4, 75) = 3.571; p < .001, 

steering, F (4, 75) = 6.857; p < .001, and tailgating, F (4, 75) = 10.708; p < .001. 
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The statistically significant effect discovered on speeding, acceleration, deceleration, steering, and 

tailgating was further examined using multiple comparisons of the Games-Howell post hoc test to see 

where that significant impact was experienced based on the types of roads. Unlike primary and secondary 

roads, motorways had considerably fewer total speeding events (p = .013 and .043, respectively). 

Additionally, there were substantially fewer total acceleration events on motorways than on primary, 

secondary, and trunk roads (p  < .001, .003, and .043, respectively). In comparison to primary and 

secondary roads, motorways had significantly fewer total deceleration events (p = .007 and .009, 

respectively). Furthermore, there were considerably fewer total steering events on motorways compared 

to primary roads (p = .003), secondary roads (p = .015), and tertiary roads (p = .003). It was observed that 

total steering events on primary roads were significantly higher than on trunk roads (p = .043). Compared 

to secondary and tertiary roads, motorways had significantly more incidents of total tailgating events (p 

< .001). Moreover, the total number of tailgating events was substantially greater on trunk roads than on 

secondary and tertiary roads (p = .022 and .005, respectively), and on primary roads than on tertiary roads 

(p = .015). 

TABLE 23 Between-subject effects: impact of road type on the dependent variables based on total 
events 

Dependent Variable 
Type III Sum 
of Squares df Mean Square F Sig. 

Speeding 843.697 4 210.924 3.851 .007 

Acceleration 46260.04 4 11565.01 5.689 <.001 

Deceleration 40575.81 4 10143.95 3.571 .01 

Steering 267240.2 4 66810.06 6.857 <.001 

Tailgating 28425.16 4 7106.29 10.708 <.001 

Overtaking .203 4 .051 .678 .609 

Fatigue 1.554 4 .389 .766 .551 

Distraction 9.669 4 2.417 .824 .514 

FCA 3.706 4 .927 1.927 .115 

Lane discipline 980.096 4 245.024 1.347 .261 

Table 24 displays the between-subject effects observed after a follow-up analysis was conducted for the 

significant impact of road type revealed on low risky events. The road type had a substantial impact on 

the dependent variables, including acceleration, F (4, 75) = 7.219; p < .001, deceleration, F (4, 75) = 3.864; 

p = .007, and steering, F (4, 75) = 6.808; p < .001. Additionally, further analysis revealed that motorways 

had considerably fewer low acceleration events than primary, secondary, tertiary, and trunk roads (p < 

.001, .002, .012, and .032, respectively). Low steering events were also significantly lower on motorways 

than on primary, secondary, and tertiary roads (p < .001, .01, and .003, respectively). There were 

significantly fewer low deceleration events on motorways compared to primary (p =.004) and secondary 

(p =.006) roads. 
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TABLE 24 Between-subject effects: impact of road type on low severity dependent variables 

Dependent 
Variable 

Type III Sum 
of Squares df Mean Square F Sig. 

Acceleration 19888.83 4 4972.208 7.219 <.001 

Deceleration 33653.99 4 8413.497 3.864 .007 

Steering 102803.4 4 25700.85 6.808 <.001 

Fatigue .319 4 .08 .459 .766 

A follow-up analysis was done to see whether the type of road significantly affected medium risky events, 

as shown in Table 25. According to the observed between-subject effects, the road type significantly 

influenced the dependent variables, including speeding, F (4, 75) = 4.366; p = .003, acceleration, F (4, 75) 

= 3.685; p = .009, steering, F (4, 75) = 5.226; p < .001, and tailgating, F (4, 75) = 11.088; p < .001.  Further 

analysis revealed that primary roads had significantly more instances of medium speeding than 

motorways (p = .012) and trunk roads (p = .038). Additionally, it was found that both primary and 

secondary roads had considerably higher occurrences of medium acceleration events than motorways (p 

= .004 and .01, respectively). Unlike the primary, secondary, and tertiary roads, motorways had 

considerably fewer medium steering events (p = .045, .035, and .009, respectively). On the other hand, it 

was observed that there were significantly more medium tailgating events on motorways than on 

secondary (p < .001) and tertiary roads (p < .001). Medium tailgating was also shown to be substantially 

less on secondary roads than on trunk roads (p = .015) and tertiary roads than on primary and trunk roads 

(p = .012 and .003, respectively). 

TABLE 25 Between-subject effects: impact of road type on medium severity dependent variables 

Dependent Variable 
Type III Sum 
of Squares df Mean Square F Sig. 

Speeding 138.343 4 34.586 4.366 .003 

Acceleration 4599.784 4 1149.946 3.685 .009 

Deceleration 336.491 4 84.123 1.673 .165 

Steering 34054.99 4 8513.747 5.226 <.001 

Tailgating 18825.66 4 4706.414 11.088 <.001 

Fatigue 1.305 4 .326 2.36 .061 

The follow-up analysis of high-risk events showed that the road type had a substantial impact on the 

dependent variables, including speeding, F (4, 75) = 2.544; p = .046, and tailgating, F (4, 75) = 7.577; p < 

.001 (see table 26). Despite the road type significantly affecting high speeding incidents, the post hoc test 

revealed that there were only marginally more significant speeding events on primary and secondary 

roads than on a motorway. However, a post hoc analysis of high tailgating events revealed that motorways 

experienced more incidents than primary, secondary, and tertiary roads (p = .048, .013, and .006, 

respectively). 
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TABLE 26 Between-subject effects: impact of road type on high severity dependent variables 

Dependent Variable 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Speeding 321.428 4 80.357 2.544 .046 

Acceleration 117.98 4 29.495 .783 .54 

Deceleration 1.281 4 .32 .737 .57 

Steering 231.462 4 57.866 1.877 .123 

Tailgating 1066.199 4 266.55 7.577 <.001 

Overtaking .241 4 .06 .835 .507 

Fatigue .47 4 .117 1.239 .302 
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4.2.2 Correlation test  

The bivariate correlations of the target variables were examined. The target variables' Pearson correlation coefficient and descriptive statistics 

(mean and standard deviation) are demonstrated below based on the severity level. 

4.2.2.1 Correlation test based on total risky events 

Based on the total risky events, the Pearson correlation coefficient revealed a strong positive linear relation between fatigue and tailgating, r(16) 

= .994, p < .001, steering and acceleration, r(16) = .901, p < .001, speeding and tailgating, r(16) = .881, p < .001, fatigue and speeding, r(16) = .865, 

p < .001, steering and deceleration, r(16) = .848, p < .001, lane discipline and deceleration, r(16) = .758, p < .001, and steering with speeding, r(16) 

= .723, p = .002. Besides,  fatigue with FCA, r(16) = .693, p = .003, deceleration with speeding, r(16) = .680, p = .004, FCA with tailgating, r(16) = 

.634, p = .008, and deceleration with acceleration, r(16) = .593, p = .015 were strongly correlated (see table 27). 

TABLE 27 Correlation test on total risky events based on time of the day 

Risky events M SD 1 2 3 4 5 6 7 8 9 10 11 

1. Speeding 13.393 19.564 --           

2. Acceleration 224.518 390.456 .447 --          

3. Deceleration 145.273 284.257 .680** .593* --         

4. Steering 328.097 478.467 .723** .901** .848** --        

5. Tailgating 301.036 927.258 .881** .204 .307 .441 --       

6. Overtaking .035 .075 -.111 -.223 -.177 -.230 -.112 --      

7. VRUCA .002 .007 -.164 -.121 -.121 -.158 -.075 -.123 --     

8. FCA .506 .930 .460 .069 .247 .306 .634** -.095 -.129 --    

9. Lane discipline 14.300 26.096 .292 .381 .758** .533* -.144 .248 -.146 -.156 --   

10. Fatigue 4.971 14.487 .865** .181 .314 .433 .994** -.121 -.083 .693** -.165 --  

11. Distraction .563 1.588 -.113 -.185 -.121 -.207 -.120 -.010 .014 -.204 -.150 -.096 -- 

** P < .01. 
* P < .05. 
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4.2.2.2 Correlation test based on low risky events 

Similarly, a Pearson correlation coefficient based on the low risky events was derived. The four variables 

(VRUCA, FCA, distraction, and lane discipline) were collected depending on the total events, so only seven 

of the total dependent variables were considered this time. Additionally, the correlation test did not 

include dependent variables with zero frequency. Table 28 shows the Pearson correlation coefficients 

between the dependent variables for low severity. Steering had a strong positive correlation with 

acceleration, r(16) =.934, p < .001 and deceleration, r(16) =.754, p < .001. 

TABLE 28 Correlation test on low severity dependent variables based on time of the day 

Risky events M SD 1 2 3 4 

1. Acceleration 141.445 239.506 --       

2. Deceleration 139.199 282.006 .496 --   

3. Steering 185.843 244.823 .934** .754** --  

4. Fatigue 2.223 7.249 .339 .290 .466 -- 
** p < .01. 

4.2.2.3 Correlation test based on medium risky events 

A strong positive linear relation between steering and speeding, r(16) =.880, p < .001 and steering with 

acceleration, r(16) =.825, p < .001, as shown in Table 29 below.  Additionally, fatigue with deceleration, 

r(16) = .694, p = .003, tailgating with deceleration, r(16) = .652, p = .006, tailgating with speeding, r(16) = 

.585, p = .017, and acceleration with speeding, r(16) =.520, p = .039 were strongly correlated. 

TABLE 29 Correlation test on medium severity dependent variables based on time of the day 

Risky events M SD 1 2 3 4 5 6 7 

1. Speeding 6.375 11.897 --       
2. Acceleration 75.104 151.410 .520* --      
3. Deceleration 5.766 9.737 .272 -.132 --     
4. Steering 139.902 239.242 .880** .825** .254 --    
5. Tailgating 240.348 724.921 .585* -.020 .652** .397 --   
6. Overtaking .015 .038 -.093 -.152 -.101 -.177 -.084 --  
7. Fatigue .572 1.201 -.155 -.130 .694** .008 -.029 .154 -- 

** p < .01. 
*p < .05. 

4.2.2.4 Correlation test based on high risky events 

Table 30 presents the results of a Pearson correlation test based on high-severity events. A strongly 

positive association has been found between fatigue and tailgating, r(16) = .996, p < .001, tailgating and 

speeding, r(16) = .980, p < .001, fatigue and speeding, r(16) = .977, p < .001 and steering with deceleration, 

r(16) = .964, p < .001.  
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TABLE 30 Correlation test on high severity dependent variables based on time of the day 

Risky events  M SD 1 2 3 4 5 6 7 

1. Speeding 7.017 10.514 --        

2. Acceleration 7.969 19.873 -0.163 --      

3. Deceleration 0.308 0.795 -0.115 -0.154 --     

4. Steering 2.352 5.229 -0.113 -0.126 .964** --    

5. Tailgating 60.688 202.63 .980** -0.117 -0.09 -0.089 --   

6. Overtaking 0.019 0.069 -0.022 -0.085 0.021 -0.049 -0.066 --  

7. Fatigue 2.176 7.231 .977** -0.126 -0.031 -0.042 .996** -0.079 -- 
**p < .01. 
*p < .05. 

4.2.3 Density estimation of risky events 

The outputs of kernel density estimation of the risky events based on total, low, medium, and high risky 

events are presented in the following sections. In addition, the distribution of risky events is explored in 

relation to the time of the day, weather, and road type. 

4.2.3.1 Severity-based distribution of risky events  

This section clarifies how risky events are distributed depending on their total, low, medium, and high 

severity. Thus, KDE was used to analyze all 68775 risky events (the total number of risky events), and the 

resulting heatmap of the risky events' distribution is presented in figure 15. The heatmap shows that there 

was a very high density of risky events in Belgium's east (labeled as ‘A’) and high density in its north regions 

(labeled as ‘B’). The remaining areas (C, D, E, and others) had low densities of risky events. Risky events 

ranging from 7082 to 9513 were found in the very high-density area, roughly colored red on the heatmap. 

In contrast, the high-density area included risky events ranging from 4721 to 7081, and the remaining 

hotspots contained zero to 4720 risky events (low to medium density). Besides, based on the hotspots 

marked in figure 15, the density distribution of total risky events, from low to high, ranked as E-D-C-B-A. 

 

FIGURE 15 Density distribution of total risky events. 
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Figure 16 displays a heatmap of risky events with low severity, which made up 30089 (44%) of all risky 

events. Similar to the total risky events, very high densities of risky events were discovered in Belgium's 

east (designated as ‘A’) and north (designated as ‘B’) regions. Hotspots with very high density covered a 

range of risky events from 3650 to 4868. Also, locations with high density had risky events ranging from 

2433 to 3649, while very low to medium density hotspots had risky events ranging from zero to 2432. In 

addition, the ranking for low to high density is E-C-D-B-A based on the hotspots shown in figure 16. 

 

FIGURE 16 Density distribution of low risky events. 

Furthermore, the kernel density estimation for events of medium severity includes 30089 (44%) risky 

events, which resulted in the heatmap depicted in Figure 17. Compared to the results of total and low 

risky events, the heatmap of medium severity risky events showed one extra hotspot. Similar to high-

density hotspots of total risky events, a very high density of risky events was found in the east part of 

Belgium (location ‘A’), and a high density was found in the north part of Belgium (location ‘B’). Based on 

the identified hotspots, the density distribution of risky events of medium severity ranges from E-D-F-C-

B-A (low to high). Furthermore, hotspots with very high density included risky events between 2837 and 

3784, while high density included between 1891 and 2836, and the remaining hotspots with low to 

medium density included between zero and 1890 risky events. 
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FIGURE 17 Density distribution of medium risky events. 

Compared to the density distribution of the risky events covered in the preceding discussion, the kernel 

density estimation of high risky events exhibited a distinct heatmap. Figure 18 below depicts the hotspot 

for extremely high density of risky events in Belgium's north (location 'B') and the hotspot for high density 

of risky events in Belgium's east (location 'A'). In addition, hotspots 'C' and 'F' had medium to high densities 

of risky events, while the remaining locations had very low to low densities. The range of risky events was 

0 to 345 for areas with very low to medium densities, 520 to 693 for very high densities, and 346 to 519 

for high densities. Besides, the density hotspots were arranged in hierarchical order from low to high as 

E-D-F-C-A-B.  

 

FIGURE 18 Density distribution of high risky events. 
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4.2.3.2 Distribution of risky events based on severity and characterizing factors 

The severity-based risky events kernel density estimation was extracted and further analyzed based on 

the characterizing factors such as the time of day, the weather, and the type of road. The average density 

distribution of risky events per kilometer and time of the day is shown in figure 19. The density of risky 

events in the morning was greater than the remaining clusters of time of the day for the low, medium, 

and total risky events, except for the high severity. In contrast, the density of risky events for low, medium, 

and total risky events was nearly the same during the midday and afternoon/evening. The lowest density 

of risky events was seen in those that occurred at night or early morning across all severity categories. 

Besides, it was observed that midday has the highest density of risky events with high severity, followed 

by afternoon/evening. In general, Based on the total risky events, morning (7.68) had the highest average 

density of risky events per kilometer, followed by afternoon/evening (6.86), midday (6.73), and 

night/early morning (7.68). 

 

FIGURE 19 Density of risky events based on severity and time of the day. 

Figure 20 illustrates the average density of risky events per kilometer based on severity level and weather 

cluster. Except for high severity, cluster three had the highest average density of risky events per 

kilometer, followed by clusters two and one, respectively. Cluster two encountered the highest density of 

risky events in cases of high severity, whereas cluster one experienced the least density of risky events 

across all categories. Besides, based on the total number of risky events, cluster three (9.73) had the 

highest average density per kilometer, followed by cluster two (7.46) and cluster one (5.67). 
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FIGURE 20 Density of risky events based on severity and weather clusters. 

Likewise, the density of risky events was characterized according to the type of road, with figure 21 

showing the average density of risky events per kilometer for each road type. It was shown that the 

average density of risky events in tertiary roads was significantly higher than in the other four road types 

for low, medium, and total risky events. However, it was only barely higher in the case of high severity 

events. Conversely, in all severity categories, trunk roads had the lowest average density of risky events. 

Compared to primary, secondary, and trunk roads, the average density of risky events on motorways was 

significantly greater for low, medium, and total risky events. Besides, a roughly similar average density of 

risky events occurred across all severity categories on primary and secondary roads. In terms of the total 

number of risky events, tertiary roads had an average density of 26 events per kilometer, compared to 

11.22 on motorways, 5.21 on secondary roads, 5.1 on primary roads, and 3.54 on trunk roads. 

 

FIGURE 21 Density of risky events based on severity and road type. 
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5 DISCUSSION 

This section presents a brief discussion of the relation between the study's objectives and findings. The 

discussion emphasized the importance of characteristics including time of day, weather, and type of road 

for the incidence of risky events and how it accords with previous findings. It also highlighted the 

interdependence between the risky events.  

Previous studies had attempted to characterize risky events based on various variables, including road 

layout, time of the day, weather, and traffic flow. The severity level, however, was not considered, and 

the characterization was limited to a small number of risky events. As a result, the main goal of this study 

was to characterize risky events according to time of day, weather, and type of road. It also contained 

three risky event severity levels, eleven dependent factors (risky events), and three independent variables 

(time of the day, weather, and road type). To do this, three stages were taken: firstly, a cluster was formed 

within each independent variable, and a multivariate analysis of variance was employed to examine group 

differences; secondly, a bivariate correlation was used to determine the interdependence of the variables; 

and lastly, a kernel density estimation was done to look at the distribution of the risky events. 

In general, the findings of this study indicated that the type of road had a significant influence on several 

risky events, followed by the weather and the time of day. In the case of total risky events and a medium 

severity-based correlation test, multiple dependent variables were also more correlated, suggesting a 

significant likelihood that several risky events may occur simultaneously. The correlated dependent 

variables were too few for risky events of low severity, possibly because only four dependent variables 

were recorded for this severity level. Furthermore, in terms of density distribution, cluster three from 

weather conditions, tertiary roads from the type of road, and morning from time of day had the highest 

densities of risky events. 

5.1 Time-based characterization 

The multivariate analysis of risky events yields that the time of day substantially impacted fatigue-related 

risky events, especially those of medium severity. Truck drivers are also more prone to afternoon or 

evening fatigue than midday. This result is in line with that of Dingus et al. (2006), which found contrary 

to what would be anticipated due to circadian rhythm effects, fatigue difficulties are more acute in the 

afternoon and evening hours. A promising study by Hartley (2000) revealed that fatigue accounts for 36% 

of crashes before dawn, declining to 4% in the morning, and rising again in the afternoon and evening. In 

a slightly contradictory finding, Chen and Zhang (2016) found that fatigue events are most common 

overnight and early morning. 

In terms of the distribution of risky events, this study found that morning had the highest density, followed 

by midday and afternoon/evening, roughly the same, and the overnight/early morning had the lowest 

density. Although crashes are not the same as risky events, it is apparent that risky situations lead to a 

crash (existence of a causal relationship between crashes and risky events). Brodie et al. (2009) found that 

crashes happened most frequently between 10:00 a.m. and 12 noon and between midnight and 2:00 a.m., 

respectively. The former is consistent with the results of the current study, but the latter does not. 
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Additionally, this study is congruent with the findings of Offei and Young (2014), which found that most 

accidents (64%) happened during the daytime. 

5.2 Weather-based characterization 

Although the multivariate test indicated that weather significantly impacted speeding, fatigue, and 

vulnerable road user collision avoidance, the between-subject effect (further analysis) on VRUCA didn't 

reveal any statistically significant differences between the three weather clusters. This study found a 

statistically significant difference in the total number of speeding incidents between adverse (cluster one) 

and average (cluster two) weather conditions, with the mean difference indicating that adverse weather 

conditions had more speeding incidents than average weather conditions. Despite the unfavorable 

weather conditions in cluster one, this study's findings revealed that drivers frequently exhibited speeding 

incidents. This may be because drivers tend to drive faster in severe weather. After all, they want to avoid 

traveling in inclement weather for an extended period. This result is in line with research by Peng et al. 

(2017), who found a significant speed rate under low visibility conditions. Contrarily, Pahukula et al. (2015) 

found higher speeding events under clear weather conditions, Zheng et al. (2018) lower speed under icy 

road surfaces, and Tarko et al. (2011) lower speed under bad weather conditions. 

The number of fatigue events was also substantially different between clusters two and three, with the 

mean difference indicating that cluster three has more fatigue events than cluster two. Cluster three had 

clear weather compared to the other weather clusters. As a result, long-distance driving in favorable 

conditions (clear weather) increases the likelihood that drivers may grow weary and lose concentration, 

necessitating intervention strategies that prevent drivers from becoming fatigued and ensure safe driving. 

In contrast to the current study's findings, Chen and Zhang (2016) research showed that inclement 

weather, such as wet pavement and reduced visibility, raises the probability of fatigue incidents. 

Besides, density distribution based on weather cluster showed that cluster three (clear weather 

condition), cluster two (average weather condition), and cluster one (adverse weather condition) had high 

to low density, respectively. The increased traffic flow during clear weather conditions (Cools et al., 2010) 

may be related to cluster three's high density of risky events. Both contradictory and congruent results 

have been found concerning this. According to Offei and Young (2014), clear weather conditions were to 

blame for 50% of accidents, snowy weather conditions for 20% of collisions, and the remaining 30% were 

caused by strong winds, fog, rain, dust, and hail. On the other hand, Keay and Simmonds (2005) found 

that the likelihood of a crash was 0.7 times higher in rainy conditions compared to dry weather. 

5.3  Road type based characterization 

Speeding, acceleration, deceleration, steering, and tailgating were generally the risky events (dependent 

variables) that were most significantly influenced by road type. Speeding events were higher on primary 

and secondary roads than on motorways. Additionally, primary roads experienced more speeding events 

than trunk roads. This might be due to the speed limit getting higher as you move from local roads to 

arterials, causing drivers on the latter to go beyond the posted limit. According to Ryan et al. (2019), 

speeding events on primary roads were considerably more than on motorways. Conversely, it was found 

that interstate highways had higher speeds (Dong et al., 2015; Xie et al., 2012). 
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Unlike the primary, secondary, tertiary, and trunk roads, motorways' acceleration events were less 

frequent. Deceleration events were higher on primary and secondary roads than on motorways. 

Additionally, it was demonstrated that there were fewer steering events on motorways than on primary, 

secondary, and tertiary roads and less on trunk roads than on primary roads. Motorways have more 

restricted access and higher mobility than other types of roads, leading to a lesser likelihood of changing 

speed and a lower possibility of experiencing acceleration, deceleration, and steering events. Drivers are 

less likely to change speed in motorways than on other types of roads because motorways have restricted 

accessibility and higher mobility, enabling drivers to drive at uniform speed for longer distances. This 

raises the possibility of experiencing fewer reduced acceleration, deceleration, and steering events. In 

contrast, increased accessibility features like junction proximity or geometry restraints on the other road 

types will have dizzying effects such as frequent steering effects and speed changes, causing acceleration 

and deceleration events. According to Gitelman et al. (2018), driving on longer portions without at-grade 

junctions and improved road conditions reduces braking events, whereas junction proximity or geometric 

limits raise braking alerts. 

Motorways had a higher incidence of tailgating events than primary, secondary, and tertiary roads. The 

current study also discovered that tailgating events were substantially more common on the trunk than 

on secondary and tertiary roads. Similar findings were made by Zellmer (2013), showing interstates and 

highways had a more significant number of tailgating events. Furthermore, tertiary roads and motorways 

had much higher densities of risky events. Although it may seem clear that risky event occurrence is less 

likely to occur frequently on tertiary roads due to evidence of reduced traffic flow, the density of risky 

events per unit of distance traveled was considerably higher. 

5.4 Co-occurrence of risky events 

The risky event correlation test revealed a higher likelihood that steering events will occur concurrently 

with either acceleration, deceleration, or speeding events. Depending on a situation, there is a chance 

that acceleration, deceleration, or speeding events could happen when maneuvering and navigating are 

necessary. However, using the steering wheel is also necessary to maneuver or navigate the different 

sections of a road. Due to these events' interdependence, steering may occur in conjunction with 

acceleration, deceleration, or speeding. 

Besides, a strong correlation between speeding and tailgating events was found. When there is a speeding 

event, which is associated with aggressive driving, there is a chance that drivers will engage in risky 

behaviors, especially tailgating, because speeding drivers are more likely to lose control of their vehicles. 

There is also a chance that drivers will show steering events because they will try to avoid the reduced 

headway with the car in front of them. Additionally, fatigue events were highly correlated with speeding 

and tailgating events. This result was in line with the findings of Chen and Zhang (2016), indicating that 

fatigue-related truck crashes were associated with over-speeding (71.07 and 79.98%) and risky following 

(31.50 and 36.52%). Similarly, Zhou and Zhang (2019) found a positive correlation between overspeeding 

and fatigue events. Moreover, the current study found that lane discipline and deceleration events were 

strongly correlated. 
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5.5 Limitations  

The following limitations have affected the process and quality of the current study: 

Firstly, although a sample size of approximately 75 truck drivers was intended for this study, only 16 

drivers were used, which is too little compared to the expectations. Hence, the sample size does not 

accurately reflect the population of truck drivers in Belgium, but it can be used as a baseline to determine 

what kind of patterns emerged using that sample size. 

Secondly, baseline data collection (phase one) was conducted between September 2021 and December 

2021 (summer to fall). As this period does not include the conditions typified by winter (January to March) 

and spring (April to June), it may lead to a biased conclusion regarding the pattern of behavior of truck 

drivers. Similarly, driving behavior may also alter depending on the time of day during various seasons. It 

is therefore essential to note that the result regarding characterizing risky events based on weather and 

time of day was confined to summer and fall, which are not all-encompassing seasons. 

Thirdly, the data on road type gleaned from available sources lacked sufficient detail and was obscure. 

Although the data underwent extensive cleaning and processing to the point where it could be used for 

this study, there were some ambiguous details. In addition, data on weather conditions were retrieved 

from open sources using Brussels as a national representative. Thus, the lack of information about the 

weather at the exact location where the risky events occurred could induce a deviation from reality. 

The number of risky events has to be standardized depending on trip exposure (trip distance) before 

characterizing the risky events. While the trip distance for each participant was provided, it was 

challenging to determine the distance traveled on each cluster. For instance, it was vital to know how far 

a trip had been on each type of road when it involved multiple roads. An approximate distance was 

calculated by connecting the timestamps of each risky event because the distance traveled on each type 

of road was unavailable. This case was also similarly applied for the time of day and weather cases by 

determining the distance traveled per time of day and weather cluster, respectively. Moreover, it was 

intended for the current study to incorporate variables for traffic conditions to characterize risky events, 

but this was not possible owing to a lack of data. Thus a literature review was conducted instead. 

5.6 Future research 

Future studies can take advantage of the opportunity presented by the findings and limitations of the 

current study to investigate further how risky events can be characterized. This will deliver detailed 

information regarding driving behavior patterns under various weather and time of day conditions. The 

current study evaluated the impact of several road types, including motorways, primary, secondary, 

tertiary, and trunk roads. However, road layout is a wide notion that can be described in various ways. 

Therefore, future research can be expanded to encompass aspects of road geometry, including junction 

proximity or geometry constraints and settlement (urban and rural). 

Also, future studies should examine the characteristics of traffic conditions, such as free-flowing and 

congested traffic, as well as the impact of speed limits on driving behavior. It is also crucial to take the 

sample size into account. This is because taking sample size into account allows researchers to manage 

the possibility of reporting a false-negative finding (Type II error) or to predict the precision of the results 

their experiment will produce (Biau et al., 2008). Therefore, future studies need to include a sufficient 

number of drivers because a high number of participants lowers the likelihood of a biased result. In 
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addition, the current study used supplementary data from open sources, mainly information about road 

types and weather conditions. However, to reduce the risk of drawing conclusions that are deviated from 

reality, future research should use data explicitly collected during the occurrence of risky events instead 

of acquiring from open sources. 

5.7 Implications 

The results of this study could be very significant since they could be used to improve the i-DREAMS 

framework, which is defining, building, testing, and validating a context-aware safety envelope for driving 

known as the "Safety Tolerance Zone" (STZ). Understanding the time of day when a risky event occurs, 

the weather when a risky event occurs, and the type of road where a risky event occurs plays a crucial 

part in defining the environment and driving behavior. The observed characteristics of the risky events 

will subsequently be used as the foundation for modifying and developing the intervention strategies used 

in the i-DREAMS project. 

This study found several risky events connected to characteristics of the time of day, weather, and types 

of roads. It also identified the most correlated risky events that could occur concurrently. This will drive 

future studies to look further into the risky events to reveal other characteristics. Additionally, based on 

the results of the current study, Belgium's transportation and traffic department may allow universities, 

research centers, nongovernmental organizations, or private companies to provide creative solutions to 

lessen the effects of these characteristics found in the study. As was already noted, the i-DREAMS project 

will use this to modify the intervention technologies and strategies used to bring the drivers into the safety 

tolerance zone. 
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6 CONCLUSION 

This study aimed to characterize risky events based on three variables: time of day, weather, and road 

type, with the hope of contributing crucial information to the i-DREAMS project and future research. Prior 

studies have attempted to assess the risk of driving in different situations based on variables, such as road 

type, time of day, and environmental conditions, but they only considered a small number of risky events. 

In addition, previous research did not consider characterizing risky events according to varying degrees of 

severity. Thus, this paper presented a more comprehensive characterization of risky events by considering 

three different levels of severity as well as the aggregate of them. 

In this study, four clusters of time of the day (morning, midday, afternoon/evening, and night/early 

morning), three clusters of weather (clear, average, and adverse weather conditions), and five road types 

(motorway, primary, secondary, tertiary, and trunk roads) were employed. While the five road types were 

obtained from open sources, the elbow method and K-means clustering were used to determine the 

number of clusters and cluster centers for the time of day and weather.  

The findings showed that the time of day significantly affected fatigue-related risky events, particularly 

those of medium severity. Also, fatigue events were more frequent in the afternoon or evening than in 

midday. Besides, the heatmap of risky events demonstrated that morning hours were found to have the 

highest density of risky events, followed by midday and afternoon/evening, which were found to have 

approximately the same density, while overnight/early morning had the lowest density. 

Weather-based characterization showed that weather significantly impacted the frequency of total risky 

events and risky events of medium and low severity, particularly on speeding and fatigue events. It was 

found that there were more speeding events in adverse weather conditions (cluster one) than in average 

weather conditions (cluster two) and high fatigue events in cluster three (clear weather) than in cluster 

two. Additionally, the heatmap of the risky events based on weather showed that cluster three (clear 

weather condition) had the highest density of events, followed by cluster two (average weather condition) 

and cluster one (adverse weather condition). 

Road type-based characterization showed that road type significantly affected total risky events and risky 

events of a low, medium, and high severity, particularly those involving speeding, acceleration, 

deceleration, steering, and tailgating events. Speeding events were more frequent on primary than trunk 

roads and higher on primary and secondary roads than on motorways. Also, primary and secondary roads 

had more deceleration events than motorways. Besides, motorways had fewer acceleration events than 

primary, secondary, tertiary, and trunk roads. Steering events were higher on primary, secondary, and 

tertiary roads than on motorways. Similarly, primary roads had more steering events than trunk roads. 

There were more tailgating events on primary, trunk, and motorways than tertiary roads. Likewise, 

tailgating events on motorways and trunk roads were higher than on secondary roads. Furthermore, the 

heatmap of risky events based on road type revealed that tertiary roads and motorways had a 

substantially greater density of risky events. 
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The risky event correlation test showed that steering events were more likely to happen simultaneously 

with acceleration, deceleration, or speeding events. Also, a strong correlation between speeding and 

incidents of tailgating was observed. Additionally, there was a possibility that drivers may exhibit steering 

events while tailgating. Fatigue events were strongly correlated with speeding and tailgating events. The 

current study also found a strong association between lane discipline and deceleration events. 
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APPENDICES 

Appendix-I 

K-means clustering: Time of the day 

a. Initial cluster centers 

 1 2 3 4 

Timestamp 0:06:50 15:27:39 23:08:07 7:47:14 

b. Final cluster centers 

 1 2 3 4 

Timestamp 4:34:38 12:24:48 16:18:45 8:37:06 

c. Number of cases in each cluster 

Cluster 

1 17028 

2 17710 

3 14890 

4 19147 

Valid 68775 

Missing 0 

d. ANOVA 

 

Cluster Error 

F Sig. Mean Square df Mean Square df 

Timestamp 5.310E+12 3 19113456.564 68771 277805.551 .000 

 
K-means clustering: Weather 

a. Initial cluster centers 

 Temperature Dew point Humidity Precipitation Pressure Wind 

1 -3.77 -3.78 100 0 102.06 2.52 
2 18.72 14.73 77.5 .54 100.76 8.93 
3 18.6 7.14 47.12 0 102.5 1.91 
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b. Final cluster centers 

 Temperature Dew point Humidity Precipitation Pressure Wind 

1 5.31 4.63 95.22 .1 101.2 4.61 

2 10.03 7.04 81.67 .11 101.44 5.2 

3 16.22 9.25 63.57 .04 101.69 5.51 

c. Number of cases in each Cluster 

Cluster 

1 44586 

2 14666 

3 9523 

Valid 68775 

Missing 0 

d. ANOVA 

 

 

Cluster Error 

F Sig. Mean Square df Mean Square df 

Temperature 512549.858 2 13.802 68772 37134.609 .000 

Dew point 98158.388 2 13.742 68772 7143.047 .000 

Humidity 4296642.408 2 17.172 68772 250217.023 .000 

Precipitation 12.999 2 .039 68772 332.568 <.001 

Pressure 1049.804 2 1.454 68772 722.199 .000 

Wind 4213.955 2 4.976 68772 846.883 .000 

 

Appendix - II 

MANOVA: Time of the day 

a. Total risky events  

Box's Test of Equality of 
Covariance Matrices 

Box's M 269.049 

F 1.566 

df1 110 

df2 4399.822 

Sig. <.001 
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Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Time of 

the day 

Pillai's Trace .576 1.189 30 150 .247 

Wilks' Lambda .514 1.199 30 141.6 .238 

Hotelling's Trace .775 1.206 30 140 .233 

Roy's Largest Root .460 2.301c 10 50 .026 

 

b. Low risky events  

Box's Test of Equality of 
Covariance Matrices 

Box's M 57.827 

F 1.676 

df1 30 

df2 8324.745 

Sig. .012 

 

Multivariate Tests  

Effect Value F Hypothesis df Error df Sig. 

Time of 

the day 

Pillai's Trace .202 1.011 12 168 .441 

Wilks' Lambda .805 1.017 12 143.2 .436 

Hotelling's Trace .232 1.020 12 158 .433 

Roy's Largest Root .182 2.552c 4 56 .049 

 

c. Medium risky events 

Box's Test of Equality of 
Covariance Matrices 

Box's M 76.113 

F 1.93 

df1 28 

df2 2301.198 

Sig. .002 

 

Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Time of 

the day 

Pillai's Trace .558 1.730 21 159 .031 

Wilks' Lambda .517 1.809 21 147 .022 

Hotelling's Trace .795 1.881 21 149 .016 
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Roy's Largest Root .573 4.340c 7 53 <.001 

Tests of Between-Subjects Effects 

Source 

Dependent 

Variable 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Time of the day 

(Medium risky 

events) 

Speeding 1.068 3 .356 2.107 .109 

Acceleration 28.649 3 9.550 .270 .847 

Deceleration 1.188 3 .396 .774 .513 

Steering 91.852 3 30.617 .198 .897 

Tailgating 2060.451 3 686.817 2.498 .069 

Overtaking .001 3 .000 1.761 .165 

Fatigue .167 3 .056 5.750 .002 

Multiple comparisons 

Dependent 
Variable 

(I) (J)  
Mean 
Difference 
(I-J) 

Std. 
Error 

Sig. 

95% Confidence 
Interval 
Lower 
Bound 

Upper 
Bound 

Fatigue 

Morning 

Night/early morning .014 .030 .964 -.067 .096 

Midday .036 .028 .581 -.040 .113 

Afternoon/evening -.107 .046 .128 -.237 .023 

Midday 

Night/early morning -.022 .028 .861 -.097 .054 

Afternoon/evening -.143 .044 .024 -.270 -.016 

Morning -.036 .028 .581 -.113 .040 

Afternoon/ 
evening 

Night/early morning .121 .046 .070 -.008 .250 

Midday .143 .044 .024 .016 .270 

Morning .107 .046 .128 -.023 .237 

Night/early 
morning 

Midday .022 .028 .861 -.054 .097 

Afternoon/evening -.121 .046 .070 -.250 .008 

Morning -.014 .030 .964 -.096 .067 

d. High risky events 
 

Box's Test of Equality of 
Covariance Matrices 

Box's M 101.765 

F 2.581 

df1 28 

df2 2301.198 

Sig. <.001 
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Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Time of the 
day 

Pillai's Trace .307 .864 21 159 .637 

Wilks' Lambda .713 .876 21 146.995 .622 

Hotelling's Trace .375 .887 21 149 .608 

Roy's Largest Root .280 2.122c 7 53 .057 

MANOVA: Weather 

a. Total risky events 

Box's Test of Equality of 
Covariance Matrices 

Box's M 75.076 

F .866 

df1 55 

df2 2906.379 

Sig. .749 

 

Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Weather  

Pillai's Trace .781 1.793 20 56 .045 

Wilks' Lambda .359 1.805 20 54 .044 

Hotelling's Trace 1.394 1.813 20 52 .044 

Roy's Largest Root 1.008 2.822 10 28 .015 

Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum 
of Squares df Mean Square F Sig. 

Weather  

Speeding 7.922 2 3.961 3.542 .039 
Acceleration 1623.171 2 811.586 2.533 .093 
Deceleration 140.841 2 70.421 1.825 .176 
Steering 3161.359 2 1580.679 1.718 .194 
Tailgating 750.713 2 375.357 .833 .443 
Overtaking .001 2 .001 .142 .868 
VRUCA .359 2 .180 3.443 .043 
FCA .490 2 .245 .629 .539 
Fatigue .019 2 .009 .606 .551 
Distraction 6.457 2 3.229 .067 .935 

Multiple Comparisons 

Dependent  
Variable 

(I)  (J)  
Mean  
Difference  
(I-J) 

Std. Error Sig. 
95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Speeding Cluster 1 Cluster 2 .987 .374 .032 .073 1.900 
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Cluster 3 .648 .479 .377 -.524 1.819 

Cluster 2 
Cluster 1 -.987 .374 .032 -1.900 -.073 
Cluster 3 -.339 .479 .761 -1.510 .833 

Cluster 3 
Cluster 1 -.648 .479 .377 -1.819 .524 
Cluster 2 .339 .479 .761 -.833 1.510 

VRUCA 

Cluster 1 
Cluster 2 .188 .081 .065 -.009 .385 
Cluster 3 -.022 .104 .976 -.275 .232 

Cluster 2 
Cluster 1 -.188 .081 .065 -.385 .009 
Cluster 3 -.210 .104 .121 -.463 .044 

Cluster 3 
Cluster 1 .022 .104 .976 -.232 .275 
Cluster 2 .210 .104 .121 -.044 .463 

b. Low risky events 

Box's Test of Equality of 
Covariance Matrices 

Box's M 36.258 

F 1.433 

df1 20 

df2 1394.04 

Sig. 0.097 

 

Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Weather 

Pillai's Trace .432 2.343 8 68 .027 
Wilks' Lambda .576 2.619 8 66 .015 
Hotelling's Trace .721 2.885 8 64 .008 
Roy's Largest Root .701 5.955 4 34 <.001 

Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Weather 

Acceleration 497.193 2 248.596 1.901 0.164 
Deceleration 132.831 2 66.415 1.894 0.165 
Steering 1184.25 2 592.125 2.277 0.117 
Fatigue 0.133 2 0.066 3.303 0.048 

Multiple comparisons 

Dependent 
Variable (I)  (J)  

Mean 
Difference  
(I-J) Std. Error Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Fatigue 

Cluster 1 
Cluster 2 .078 .050 .280 -.045 .200 
Cluster 3 -.082 .064 .414 -.239 .075 

Cluster 2 
Cluster 1 -.078 .050 .280 -.200 .045 
Cluster 3 -.160 .064 .045 -.317 -.003 

Cluster 3 
Cluster 1 .082 .064 .414 -.075 .239 
Cluster 2 .160 .064 .045 .003 .317 
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c. Medium risky events 

Box's Test of Equality of 
Covariance Matrices 

Box's M 60.542 
F .976 
df1 42 
df2 1206.779 
Sig. .517 

 

Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Weather 

Pillai's Trace .595 2.257 12 64 .019 
Wilks' Lambda .463 2.426 12 62 .012 
Hotelling's Trace 1.035 2.586 12 60 .008 
Roy's Largest Root .895 4.774 6 32 .001 

Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum of 
Squares 

df Mean Square F Sig. 

Weather 

Speeding .745 2 .373 2.776 .076 
Acceleration 224.996 2 112.498 2.889 .069 
Deceleration .141 2 .071 .120 .888 
Steering 489.132 2 244.566 1.165 .323 
Tailgating 742.453 2 371.227 1.389 .262 
Fatigue .082 2 .041 5.158 .011 

Multiple Comparisons 

Dependent 
Variable 

(I)  (J)  
Mean 
Difference 
(I-J) 

Std. Error Sig. 

95% Confidence 
Interval 
Lower 
Bound 

Upper 
Bound 

Fatigue 

Cluster 1 
Cluster 2 .092 .032 .017 .015 .169 
Cluster 3 -.005 .040 .991 -.104 .094 

Cluster 2 
Cluster 1 -.092 .032 .017 -.169 -.015 
Cluster 3 -.097 .040 .056 -.196 .002 

Cluster 3 
Cluster 1 .005 .040 .991 -.094 .104 
Cluster 2 .097 .040 .056 -.002 .196 

d. High risky events 

Box's Test of Equality of 
Covariance Matrices 

Box's M 57.15 
F 1.521 
df1 28 
df2 3136.116 
Sig. .039 
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Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Weather 

Pillai's Trace .519 1.55 14 62 .120 
Wilks' Lambda .545 1.522 14 60 .131 
Hotelling's Trace .720 1.492 14 58 .143 
Roy's Largest Root .478 2.116 7 31 .071 

 

MANOVA: Road type 

a. Total risky events 

Box's Test of Equality of 
Covariance Matrices 

Box's M 665.265 

F 2.781 

df1 165 

df2 7804.744 

Sig. <.001 

 

Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Road type 

Pillai's Trace 0.982 2.245 40 276 <.001 
Wilks' Lambda 0.28 2.516 40 252.12 <.001 
Hotelling's Trace 1.748 2.819 40 258 <.001 
Roy's Largest 
Root 

1.229 8.481 10 69 <.001 

Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum 
of Squares 

df Mean Square F Sig. 

Road type 

Speeding 843.697 4 210.924 3.851 .007 
Acceleration 46260.04 4 11565.01 5.689 <.001 
Deceleration 40575.81 4 10143.95 3.571 .010 
Steering 267240.2 4 66810.06 6.857 <.001 
Tailgating 28425.16 4 7106.29 10.708 <.001 
Overtaking .203 4 .051 0.678 .609 
Fatigue 1.554 4 .389 0.766 .551 
Distraction 9.669 4 2.417 0.824 .514 
FCA 3.706 4 .927 1.927 .115 
Lane discipline 980.096 4 245.024 1.347 .261 

Multiple Comparisons 

Dependent 
Variable 

(I)  (J)  
Mean 
Difference 
(I-J) 

Std. 
Error 

Sig. 

95% Confidence 
Interval 
Lower 
Bound 

Upper 
Bound 
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Speeding 

Motorway 

Primary -8.360 2.232 .013 -15.191 -1.528 

Secondary -8.016 2.553 .043 -15.843 -.189 

Tertiary -2.728 1.592 .452 -7.561 2.105 

Trunk -3.050 1.908 .518 -8.869 2.770 

Primary 

Motorway 8.360 2.232 .013 1.528 15.191 

Secondary .344 3.336 1.000 -9.344 10.031 

Tertiary 5.632 2.673 .247 -2.179 13.443 

Trunk 5.310 2.873 .366 -3.036 13.656 

Secondary 

Motorway 8.016 2.553 .043 .189 15.843 

Primary -.344 3.336 1.000 -10.031 9.344 

Tertiary 5.288 2.946 .399 -3.369 13.946 

Trunk 4.967 3.128 .517 -4.155 14.088 

Tertiary 

Motorway 2.728 1.592 .452 -2.105 7.561 

Primary -5.632 2.673 .247 -13.443 2.179 

Secondary -5.288 2.946 .399 -13.946 3.369 

Trunk -.322 2.409 1.000 -7.325 6.681 

Trunk 

Motorway 3.050 1.908 .518 -2.770 8.869 

Primary -5.310 2.873 .366 -13.656 3.036 

Secondary -4.967 3.128 .517 -14.088 4.155 

Tertiary .322 2.409 1.000 -6.681 7.325 

Acceleration 

Motorway 

Primary -72.120 14.058 <.001 -115.269 -28.971 

Secondary -53.258 11.721 .003 -89.140 -17.376 

Tertiary -43.514 14.607 .059 -88.366 1.338 

Trunk -31.546 10.077 .043 -62.307 -.785 

Primary 

Motorway 72.120 14.058 <.001 28.971 115.269 

Secondary 18.862 18.036 .832 -33.563 71.288 

Tertiary 28.606 20.032 .615 -29.504 86.716 

Trunk 40.574 17.013 .150 -9.114 90.262 

Secondary 

Motorway 53.258 11.721 .003 17.376 89.140 

Primary -18.862 18.036 .832 -71.288 33.563 

Tertiary 9.744 18.466 .984 -43.985 63.473 

Trunk 21.712 15.139 .611 -22.267 65.691 

Tertiary 

Motorway 43.514 14.607 .059 -1.338 88.366 

Primary -28.606 20.032 .615 -86.716 29.504 

Secondary -9.744 18.466 .984 -63.473 43.985 

Trunk 11.968 17.469 .958 -39.128 63.064 

Trunk 

Motorway 31.546 10.077 .043 .785 62.307 

Primary -40.574 17.013 .150 -90.262 9.114 

Secondary -21.712 15.139 .611 -65.691 22.267 

Tertiary -11.968 17.469 .958 -63.064 39.128 

Deceleration Motorway 

Primary -70.355 16.977 .007 -122.734 -17.975 

Secondary -42.930 10.771 .009 -76.121 -9.738 

Tertiary -32.476 11.149 .068 -66.837 1.886 

Trunk -36.770 19.028 .343 -95.488 21.947 
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Primary 

Motorway 70.355 16.977 .007 17.975 122.734 

Secondary 27.425 20.058 .653 -31.421 86.271 

Tertiary 37.879 20.263 .358 -21.482 97.239 

Trunk 33.584 25.463 .682 -40.333 107.502 

Secondary 

Motorway 42.930 10.771 .009 9.738 76.121 

Primary -27.425 20.058 .653 -86.271 31.421 

Tertiary 10.454 15.440 .960 -34.336 55.244 

Trunk 6.159 21.821 .999 -58.194 70.513 

Tertiary 

Motorway 32.476 11.149 .068 -1.886 66.837 

Primary -37.879 20.263 .358 -97.239 21.482 

Secondary -10.454 15.440 .960 -55.244 34.336 

Trunk -4.295 22.010 1.000 -69.100 60.511 

Trunk 

Motorway 36.770 19.028 .343 -21.947 95.488 

Primary -33.584 25.463 .682 -107.502 40.333 

Secondary -6.159 21.821 .999 -70.513 58.194 

Tertiary 4.295 22.010 1.000 -60.511 69.100 

Steering 

Motorway 

Primary -146.908 32.281 .003 -246.361 -47.456 

Secondary -144.435 39.063 .015 -264.867 -24.002 

Tertiary -75.946 16.724 .003 -127.158 -24.734 

Trunk -39.185 15.030 .115 -85.122 6.753 

Primary 

Motorway 146.908 32.281 .003 47.456 246.361 

Secondary 2.474 50.485 1.000 -144.292 149.239 

Tertiary 70.962 36.091 .314 -35.978 177.903 

Trunk 107.724 35.338 .043 2.460 212.988 

Secondary 

Motorway 144.435 39.063 .015 24.002 264.867 

Primary -2.474 50.485 1.000 -149.239 144.292 

Tertiary 68.489 42.266 .502 -57.880 194.858 

Trunk 105.250 41.624 .125 -19.798 230.298 

Tertiary 

Motorway 75.946 16.724 .003 24.734 127.158 

Primary -70.962 36.091 .314 -177.903 35.978 

Secondary -68.489 42.266 .502 -194.858 57.880 

Trunk 36.762 22.054 .469 -27.257 100.780 

Trunk 

Motorway 39.185 15.030 .115 -6.753 85.122 

Primary -107.724 35.338 .043 -212.988 -2.460 

Secondary -105.250 41.624 .125 -230.298 19.798 

Tertiary -36.762 22.054 .469 -100.780 27.257 

Tailgating 

Motorway 

Primary 26.086 10.946 .150 -5.837 58.008 

Secondary 43.839 9.303 .001 15.775 71.903 

Tertiary 50.212 8.835 <.001 22.971 77.453 

Trunk 11.964 12.479 .871 -24.232 48.160 

Primary 

Motorway -26.086 10.946 .150 -58.008 5.837 

Secondary 17.753 7.155 .133 -3.553 39.060 

Tertiary 24.127 6.534 .015 4.004 44.249 

Trunk -14.121 10.971 .701 -46.120 17.877 

Secondary Motorway -43.839 9.303 .001 -71.903 -15.775 
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Primary -17.753 7.155 .133 -39.060 3.553 

Tertiary 6.373 3.071 .276 -2.997 15.743 

Trunk -31.875 9.332 .022 -60.030 -3.719 

Tertiary 

Motorway -50.212 8.835 <.001 -77.453 -22.971 

Primary -24.127 6.534 .015 -44.249 -4.004 

Secondary -6.373 3.071 .276 -15.743 2.997 

Trunk -38.248 8.866 .005 -65.583 -10.913 

Trunk 

Motorway -11.964 12.479 .871 -48.160 24.232 

Primary 14.121 10.971 .701 -17.877 46.120 

Secondary 31.875 9.332 .022 3.719 60.030 

Tertiary 38.248 8.866 .005 10.913 65.583 

 

b. Low risky events 

 

Box's Test of Equality of 
Covariance Matrices 

Box's M 240.232 

F 5.298 

df1 40 

df2 12408.09 

Sig. <.001 

 

Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Road type 

Pillai's Trace .478 2.543 16 300 .001 
Wilks' Lambda .576 2.73 16 220.601 <.001 
Hotelling's Trace .645 2.841 16 282 <.001 
Roy's Largest Root .454 8.504 4 75 <.001 

Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum 
of Squares 

df Mean Square F Sig. 

Road type 

Acceleration 19888.83 4 4972.208 7.219 <.001 
Deceleration 33653.99 4 8413.497 3.864 .007 
Steering 102803.4 4 25700.85 6.808 <.001 
Fatigue .319 4 .080 .459 .766 

Multiple Comparisons 

Dependent 
Variable 

(I)  (J)  
Mean 
Difference 
(I-J) 

Std. 
Error 

Sig. 

95% Confidence 
Interval 
Lower 
Bound 

Upper 
Bound 

Acceleration Motorway 

Primary -47.682 9.182 <.001 -75.919 -19.445 

Secondary -34.231 7.311 .002 -56.663 -11.800 

Tertiary -24.631 6.523 .012 -44.613 -4.650 

Trunk -20.624 6.255 .032 -39.771 -1.476 



86 
 

Primary 

Motorway 47.682 9.182 <.001 19.445 75.919 

Secondary 13.451 11.618 .775 -20.357 47.259 

Tertiary 23.051 11.139 .262 -9.486 55.587 

Trunk 27.058 10.984 .130 -5.080 59.197 

Secondary 

Motorway 34.231 7.311 .002 11.800 56.663 

Primary -13.451 11.618 .775 -47.259 20.357 

Tertiary 9.600 9.654 .856 -18.427 37.627 

Trunk 13.608 9.475 .610 -13.920 41.135 

Tertiary 

Motorway 24.631 6.523 .012 4.650 44.613 

Primary -23.051 11.139 .262 -55.587 9.486 

Secondary -9.600 9.654 .856 -37.627 18.427 

Trunk 4.008 8.881 .991 -21.757 29.772 

Trunk 

Motorway 20.624 6.255 .032 1.476 39.771 

Primary -27.058 10.984 .130 -59.197 5.080 

Secondary -13.608 9.475 .610 -41.135 13.920 

Tertiary -4.008 8.881 .991 -29.772 21.757 

Deceleration 

Motorway 

Primary -63.654 14.363 .004 -107.964 -19.344 

Secondary -40.584 9.769 .006 -70.686 -10.483 

Tertiary -28.830 9.425 .052 -57.870 .210 

Trunk -33.556 17.095 .329 -86.309 19.197 

Primary 

Motorway 63.654 14.363 .004 19.344 107.964 

Secondary 23.070 17.325 .675 -27.610 73.749 

Tertiary 34.824 17.134 .279 -15.370 85.018 

Trunk 30.098 22.293 .663 -34.685 94.881 

Secondary 

Motorway 40.584 9.769 .006 10.483 70.686 

Primary -23.070 17.325 .675 -73.749 27.610 

Tertiary 11.754 13.516 .906 -27.453 50.961 

Trunk 7.028 19.649 .996 -50.894 64.951 

Tertiary 

Motorway 28.830 9.425 .052 -.210 57.870 

Primary -34.824 17.134 .279 -85.018 15.370 

Secondary -11.754 13.516 .906 -50.961 27.453 

Trunk -4.726 19.481 .999 -62.250 52.798 

Trunk 

Motorway 33.556 17.095 .329 -19.197 86.309 

Primary -30.098 22.293 .663 -94.881 34.685 

Secondary -7.028 19.649 .996 -64.951 50.894 

Tertiary 4.726 19.481 .999 -52.798 62.250 

Steering 

Motorway 

Primary -94.091 16.816 <.001 -145.912 -42.270 

Secondary -91.933 23.507 .010 -164.444 -19.422 

Tertiary -51.500 11.439 .003 -86.669 -16.331 

Trunk -32.628 14.845 .232 -78.349 13.093 

Primary 

Motorway 94.091 16.816 <.001 42.270 145.912 

Secondary 2.158 28.822 1.000 -81.993 86.309 

Tertiary 42.591 20.224 .247 -16.575 101.757 

Trunk 61.463 22.328 .070 -3.364 126.290 
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Secondary 

Motorway 91.933 23.507 .010 19.422 164.444 

Primary -2.158 28.822 1.000 -86.309 81.993 

Tertiary 40.433 26.054 .542 -36.976 117.841 

Trunk 59.305 27.718 .235 -22.035 140.645 

Tertiary 

Motorway 51.500 11.439 .003 16.331 86.669 

Primary -42.591 20.224 .247 -101.757 16.575 

Secondary -40.433 26.054 .542 -117.841 36.976 

Trunk 18.872 18.617 .847 -35.353 73.097 

Trunk 

Motorway 32.628 14.845 .232 -13.093 78.349 

Primary -61.463 22.328 .070 -126.290 3.364 

Secondary -59.305 27.718 .235 -140.645 22.035 

Tertiary -18.872 18.617 .847 -73.097 35.353 

 

c. Medium risky events  

Box's Test of Equality of 
Covariance Matrices 

Box's M 474.834 

F 4.65 

df1 84 

df2 10746.75 

Sig. <.001 

 

Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Road type 

Pillai's Trace .827 3.172 24 292 <.001 
Wilks' Lambda .337 3.747 24 245.411 <.001 
Hotelling's Trace 1.518 4.332 24 274 <.001 
Roy's Largest Root 1.186 14.433 6 73 <.001 

Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum 
of Squares 

df Mean Square F Sig. 

Road type 

Speeding 138.343 4 34.586 4.366 .003 
Acceleration 4599.784 4 1149.946 3.685 .009 
Deceleration 336.491 4 84.123 1.673 .165 
Steering 34054.99 4 8513.747 5.226 <.001 
Tailgating 18825.66 4 4706.414 11.088 <.001 
Fatigue 1.305 4 .326 2.36 .061 

Multiple Comparisons 

Dependent 
Variable 

(I)  (J)  
Mean 
Difference 
(I-J) 

Std. Error Sig. 
95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

Speeding Motorway 
Primary -3.363 .890 .012 -6.092 -.634 

Secondary -2.887 1.043 .088 -6.091 .318 
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Tertiary -1.322 .773 .455 -3.687 1.043 

Trunk -.484 .257 .349 -1.233 .265 

Primary 

Motorway 3.363 .890 .012 .634 6.092 

Secondary .476 1.354 .997 -3.459 4.412 

Tertiary 2.041 1.159 .415 -1.326 5.408 

Trunk 2.879 .901 .038 .131 5.627 

Secondary 

Motorway 2.887 1.043 .088 -.318 6.091 

Primary -.476 1.354 .997 -4.412 3.459 

Tertiary 1.565 1.281 .739 -2.171 5.300 

Trunk 2.403 1.053 .200 -.818 5.623 

Tertiary 

Motorway 1.322 .773 .455 -1.043 3.687 

Primary -2.041 1.159 .415 -5.408 1.326 

Secondary -1.565 1.281 .739 -5.300 2.171 

Trunk .838 .786 .821 -1.549 3.226 

Trunk 

Motorway .484 .257 .349 -.265 1.233 

Primary -2.879 .901 .038 -5.627 -.131 

Secondary -2.403 1.053 .200 -5.623 .818 

Tertiary -.838 .786 .821 -3.226 1.549 

Acceleration 

Motorway 

Primary -22.336 5.086 .004 -37.912 -6.759 

Secondary -17.240 4.475 .010 -30.913 -3.566 

Tertiary -15.340 6.100 .137 -34.066 3.386 

Trunk -10.192 4.128 .146 -22.783 2.400 

Primary 

Motorway 22.336 5.086 .004 6.759 37.912 

Secondary 5.096 6.644 .938 -14.197 24.389 

Tertiary 6.996 7.831 .897 -15.766 29.758 

Trunk 12.144 6.416 .344 -6.518 30.806 

Secondary 

Motorway 17.240 4.475 .010 3.566 30.913 

Primary -5.096 6.644 .938 -24.389 14.197 

Tertiary 1.900 7.449 .999 -19.834 23.634 

Trunk 7.048 5.943 .759 -10.197 24.293 

Tertiary 

Motorway 15.340 6.100 .137 -3.386 34.066 

Primary -6.996 7.831 .897 -29.758 15.766 

Secondary -1.900 7.449 .999 -23.634 19.834 

Trunk 5.148 7.245 .952 -16.061 26.357 

Trunk 

Motorway 10.192 4.128 .146 -2.400 22.783 

Primary -12.144 6.416 .344 -30.806 6.518 

Secondary -7.048 5.943 .759 -24.293 10.197 

Tertiary -5.148 7.245 .952 -26.357 16.061 

Steering 

Motorway 

Primary -48.557 15.485 .045 -96.217 -.897 

Secondary -49.402 15.144 .035 -96.004 -2.800 

Tertiary -23.878 6.202 .009 -42.668 -5.089 

Trunk -6.195 3.324 .361 -15.946 3.555 

Primary 
Motorway 48.557 15.485 .045 .897 96.217 

Secondary -.845 21.512 1.000 -63.246 61.557 
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Tertiary 24.679 16.490 .577 -24.814 74.172 

Trunk 42.362 15.636 .097 -5.544 90.268 

Secondary 

Motorway 49.402 15.144 .035 2.800 96.004 

Primary .845 21.512 1.000 -61.557 63.246 

Tertiary 25.524 16.170 .527 -22.962 74.009 

Trunk 43.207 15.298 .078 -3.648 90.061 

Tertiary 

Motorway 23.878 6.202 .009 5.089 42.668 

Primary -24.679 16.490 .577 -74.172 24.814 

Secondary -25.524 16.170 .527 -74.009 22.962 

Trunk 17.683 6.570 .089 -1.860 37.225 

Trunk 

Motorway 6.195 3.324 .361 -3.555 15.946 

Primary -42.362 15.636 .097 -90.268 5.544 

Secondary -43.207 15.298 .078 -90.061 3.648 

Tertiary -17.683 6.570 .089 -37.225 1.860 

Tailgating 

Motorway 

Primary 18.661 8.885 .247 -7.163 44.486 

Secondary 35.115 7.253 <.001 13.280 56.950 

Tertiary 40.609 6.853 <.001 19.486 61.733 

Trunk 8.877 9.694 .889 -19.243 36.997 

Primary 

Motorway -18.661 8.885 .247 -44.486 7.163 

Secondary 16.454 6.189 .096 -2.036 34.943 

Tertiary 21.948 5.716 .012 4.345 39.551 

Trunk -9.785 8.927 .807 -35.735 16.166 

Secondary 

Motorway -35.115 7.253 <.001 -56.950 -13.280 

Primary -16.454 6.189 .096 -34.943 2.036 

Tertiary 5.494 2.517 .233 -2.177 13.165 

Trunk -26.238 7.304 .015 -48.234 -4.242 

Tertiary 

Motorway -40.609 6.853 <.001 -61.733 -19.486 

Primary -21.948 5.716 .012 -39.551 -4.345 

Secondary -5.494 2.517 .233 -13.165 2.177 

Trunk -31.733 6.907 .003 -53.023 -10.442 

Trunk 

Motorway -8.877 9.694 .889 -36.997 19.243 

Primary 9.785 8.927 .807 -16.166 35.735 

Secondary 26.238 7.304 .015 4.242 48.234 

Tertiary 31.733 6.907 .003 10.442 53.023 

 

d. High risky events  

Box's Test of Equality of 
Covariance Matrices 

Box's M 433.439 

F 5.974 

df1 56 

df2 5784.131 

Sig. <.001 
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Multivariate Tests 

Effect Value F Hypothesis df Error df Sig. 

Road type 

Pillai's Trace 0.619 1.884 28 288 .006 
Wilks' Lambda 0.485 1.986 28 250.205 .003 
Hotelling's Trace 0.861 2.076 28 270 .002 
Roy's Largest Root 0.575 5.918 7 72 <.001 

Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum 
of Squares 

df Mean Square F Sig. 

Road type 

Speeding 321.428 4 80.357 2.544 .046 
Acceleration 117.98 4 29.495 .783 .540 
Deceleration 1.281 4 .320 .737 .570 
Steering 231.462 4 57.866 1.877 .123 
Tailgating 1066.199 4 266.55 7.577 <.001 
Overtaking 0.241 4 .060 .835 .507 
Fatigue 0.47 4 .117 1.239 .302 

Multiple Comparisons 

Dependent 
Variable 

(I)  (J)  
Mean 
Difference 
(I-J) 

Std. Error Sig. 
95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Speeding 

Motorway 

Primary -4.997 1.673 .058 -10.124 .131 

Secondary -5.130 1.682 .051 -10.285 .026 

Tertiary -1.406 .905 .543 -4.133 1.322 

Trunk -2.566 1.920 .674 -8.460 3.329 

Primary 

Motorway 4.997 1.673 .058 -.131 10.124 

Secondary -.133 2.336 1.000 -6.908 6.641 

Tertiary 3.591 1.856 .329 -1.904 9.085 

Trunk 2.431 2.512 .867 -4.865 9.727 

Secondary 

Motorway 5.130 1.682 .051 -.026 10.285 

Primary .133 2.336 1.000 -6.641 6.908 

Tertiary 3.724 1.864 .299 -1.796 9.244 

Trunk 2.564 2.518 .845 -4.749 9.877 

Tertiary 

Motorway 1.406 .905 .543 -1.322 4.133 

Primary -3.591 1.856 .329 -9.085 1.904 

Secondary -3.724 1.864 .299 -9.244 1.796 

Trunk -1.160 2.081 .980 -7.363 5.043 

Trunk 

Motorway 2.566 1.920 .674 -3.329 8.460 

Primary -2.431 2.512 .867 -9.727 4.865 

Secondary -2.564 2.518 .845 -9.877 4.749 

Tertiary 1.160 2.081 .980 -5.043 7.363 

Tailgating Motorway 
Primary 7.424 2.467 .048 .044 14.804 

Secondary 8.724 2.370 .013 1.535 15.913 

Tertiary 9.603 2.285 .006 2.560 16.645 
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Trunk 3.088 3.102 .855 -5.913 12.089 

Primary 

Motorway -7.424 2.467 .048 -14.804 -.044 

Secondary 1.300 1.156 .792 -2.079 4.678 

Tertiary 2.179 .968 .211 -.783 5.140 

Trunk -4.337 2.311 .360 -11.225 2.552 

Secondary 

Motorway -8.724 2.370 .013 -15.913 -1.535 

Primary -1.300 1.156 .792 -4.678 2.079 

Tertiary .879 .685 .704 -1.199 2.957 

Trunk -5.636 2.207 .123 -12.314 1.042 

Tertiary 

Motorway -9.603 2.285 .006 -16.645 -2.560 

Primary -2.179 .968 .211 -5.140 .783 

Secondary -.879 .685 .704 -2.957 1.199 

Trunk -6.515 2.115 .050 -13.033 .003 

Trunk 

Motorway -3.088 3.102 .855 -12.089 5.913 

Primary 4.337 2.311 .360 -2.552 11.225 

Secondary 5.636 2.207 .123 -1.042 12.314 

Tertiary 6.515 2.115 .050 -.003 13.033 

 

Appendix – III 

QGIS outputs 

Risky events: All phases after buffering 
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Phase one: Timestamp path of risky events 

 

Density estimation of risky events 

a. Severity and time of the day 

Average density of risky events per road type per km 

  
Night/early 
morning 

Midday 
Afternoon/
evening 

Morning 

Low 2.931 4.501 3.977 5.184 

Medium 1.781 2.759 2.854 3.259 

High .555 1.443 .937 .679 

Total 4.746 6.729 6.862 7.685 

b. Severity and weather 

Average density of risky events per weather cluster per km 

  Cluster 1 Cluster 2 Cluster 3 

Low 3.430 4.108 4.528 

Medium 2.423 3.256 3.803 

High .613 1.330 .854 

Total 5.670 7.465 9.728 
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c. Severity and road type 

Average density of risky events per road type per km 

  Motorway Primary Secondary Tertiary Trunk 

Low 5.466 3.283 3.931 16.717 2.248 

Medium 7.674 2.301 2.404 13.567 2.048 

High .779 1.066 1.618 2.474 .743 

Total 11.219 5.106 5.214 26.002 3.539 

 


