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Abstract An important complexity in censored data is that only partial information on the vari-
ables of interest is observed. In recent years, a large family of asymmetric distributions and maxi-
mum likelihood estimation for the parameters in that family has been studied, in the complete data
case. In this paper, we exploit the appealing family of quantile-based asymmetric distributions to
obtain flexible distributions for modelling right censored survival data. The flexible distributions
can be generated using a variety of symmetric distributions and monotonic link functions. The
interesting feature of this family is that the location parameter coincides with an index-parameter
quantile of the distribution. This family is also suitable to characterize different shapes of the
hazard function (constant, increasing, decreasing, bathtub and upside-down bathtub or unimodal
shapes). Statistical inference is done for the whole family of distributions. The parameter estima-
tion is carried out by optimizing a non-differentiable likelihood function. The asymptotic properties
of the estimators are established. The finite-sample performance of the proposed method and the
impact of censorship are investigated via simulations. Finally, the methodology is illustrated on
two real data examples (times to weaning in breast-fed data and German Breast Cancer data).

Keywords censored data · complete data · flexible distributions · hazard function · maximum
likelihood · quantile

1 Introduction

In the analysis of lifetime or time to an event data, we are confronted with a strictly positive variable
of interest, which is often asymmetric in nature. An important complexity in censored lifetime
data is that only partial information on the variables of interest is observed. In particular, in a right
censored data context the survival time of interest is not observed, but only known to exceed the
observed time for some of the studied objects. Several classical parametric probability distributions
have been used to model both types of lifetime data, complete and incomplete data. They include
exponential, Weibull, log-normal, log-logistic, and gamma distributions. See for example, Nelson
(1982), Lawless (2003), and Meeker and Escobar (2014), among others.
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However, modelling lifetime data using the aforementioned standard distributions may not give
enough flexibility to describe complex data. Furthermore, they are incapable to describe all types of
nonmonotonic hazard shapes (Rubio and Hong, 2016; Vallejos and Steel, 2015). To remediate these
drawbacks, these distributions have been used as baseline to include a new additional parameter(s),
which leads to capture skewness and the tail behavior of the distribution. For example, a power of
an exponential distributed random variable gives a two-parameter Weibull distribution; whereas
the power of a Weibull distributed random variable leads to a new Weibull family (Marshall and
Olkin, 1997; Gupta and Kundu, 2001). A more flexible family, the exponentiated Weibull family
has been introduced by Mudholkar and Srivastava (1993). This family has as particular cases the
exponentiated exponential family and the Weibull family. The exponentiated Weibull family is able
to accommodate monotonic and nonmonotonic hazard rate functions, and can provide better model
fits than the classical two-parameter Weibull, gamma, and log-normal distributions (Mudholkar
and Srivastava, 1993; Mudholkar et al., 1995; Pal et al., 2006). The log-normal power distribution
studied by Reed (2011), also exhibits a variety of shapes for the hazard function, including a
bathtub shape. According to Reed (2011), this typical flexible distribution includes the log-normal
and the power distribution as special cases.

Recently, Khan and Khosa (2016) proposed a generalized log-logistic (GLL) distribution to
handle both monotone and nonmonotone hazard functions. The GLL distribution reduces to a two
parameters Weibull distribution in the limit. More recently, mixture Weibull distributions have been
proposed by Liao and Liu (2019), including the cure model as a special case. Despite these models
are flexible compared to the commonly used parametric models and useful to accommodate a cure
component, a drawback is the number of mixtures needs to be chosen.

Log-symmetric distributions such as log-normal, log-logistic, log-Laplace and likes are used
for describing distributions of a right-skewed positive random variable. They are basically gener-
ated from a distribution of a random variable whose logarithm has a symmetric distribution. On
one hand the newly transformed variable via a logarithmic or any other monotonic function, might
be right-skewed and left-skewed, meaning that the symmetric property may not be achieved after
transformation. On the other hand, as stated by Hougaard (1999), lifetime random variables may
also have a left-skewed distribution. In such cases, the log-symmetric family of distributions does
not always capture important characteristics of the data that we might want to investigate. For
instance, they are not flexible enough to capture complex survival curves such as bathtub hazard
shapes which can be observed in time to event data. The purpose of this study is thus to propose a
parametric family of distributions for lifetime data which may be used as alternative to the afore-
mentioned distributions in producing flexibility in terms of describing complex survival curves. In
fact, our proposed general family includes the existing log-symmetric family as a special case.

So far there are two common methods to construct more flexible probability distributions for
lifetime data. The first one is adding one or more shape parameters to an existing underlying dis-
tribution with positive support (0,+∞), and the second method is a transformation of a symmetric
distribution, see Marshall and Olkin (1997), Rubio and Hong (2016), and references therein.

Our focus in this paper is on the following family of two-piece asymmetric distributions, in
which a density takes the form

f̃α(z; µ,φ) =
2α(1−α)

φ

{
f0
(
(1−α)(µ−z

φ
)
)

if z < µ

f0
(
α( z−µ

φ
)
)

if z≥ µ ,
(1.1)



Flexible two-piece distributions for right censored survival data 3

where µ ∈R and φ ∈ (0,+∞) are, respectively, the location and scale parameters, and α ∈ (0,1) is
the index-parameter which controls the allocation of mass of the distribution to the left or right of
the mode µ . Herein f0(.) denotes a symmetric around zero unimodal density, which will be referred
to as the reference density. This family introduced by Nassiri and Loris (2013) and studied in detail
by Gijbels et al. (2019a) is referred to as the family of quantile-based asymmetric (QBA) densities,
since the location parameter µ coincides with the α-th quantile of the distribution. This is one of
the interesting features of this family, allowing for inference about quantiles of the distribution
rather than only the mean.

The approach in this paper has two ingredients: (i) a symmetric unimodal reference density
f0 that serves to model a two-piece asymmetric density; (ii) a link function g that provides the
transformation from the half real line (0,+∞) to R. Each pair ( f0,g) leads to a specific flexible
model. The built-in flexibility is obtained from the two ingredients, and it allows for various shapes
of the hazard function within one and the same parametric family. The assumptions imposed on
( f0,g) are very mild, and statistical inference is carried out in this unified framework, covering a
wide variety of flexible distributions. Our contribution to the existing literature is therefore three-
fold: (i) we allow for a large family of distributions (by allowing a general symmetric reference
density and allowing a general link function), (ii) the statistical inference results obtained hold for
all members of this large family, i.e. we prove the properties at once for all members (instead of
proving the results for each distribution separately), and (iii) if the index parameter α equals 0.5,
then the proposed general family with log-link function reduces to a log-symmetric family based
on the reference density f0; hence, the entire class of log-symmetric densities is a special case of
the considered general family.

The rest of the paper is structured in the following manner. The QBA family of distributions in
the context of lifetime data is discussed in Section 2. Section 3 focuses on the statistical inference,
which includes parameter estimation and asymptotic properties of the estimators. The performance
of the proposed methods in finite–samples is illustrated via simulations in Section 4. The fifth
section presents the application on two real data examples. Finally, we discuss the results and
conclude the findings in Section 6. In the Supplementary Material we provide details on some
examples of the GQBA family, proofs for some of the theoretical results, details for a data example,
and additional simulation results.

2 Generalized QBA family and lifetime data

Consider a random variable T , typically a lifetime, or time to an event. In right random censoring,
one observes the couple

(min{T,C}, I{T ≤C}) = (Y,∆),

where C is the censoring random variable, and ∆ = I{T ≤ C}), is the censoring indicator. Note
that ∆ is a Bernoulli distributed random variable with success probability P(∆ = 1).

We consider an increasing and differentiable function g : (0,+∞)→ R. Let Z be a random
variable on R with density given by (1.1) and let Z = g(T ). Applying the second approach (i.e.
transformation of a symmetric distribution ) mentioned in Section 1, the distribution of the lifetime
random variable T can be obtained from the distribution of Z. Denote µ = g(η). The probability
density function of T is then given by
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fα(t;η ,φ) =
2α(1−α)g′(t)

φ


f0
{
(1−α)

(g(η)−g(t)
φ

)}
if t < η

f0
{

α
(g(t)−g(η)

φ

)}
if t ≥ η ,

(2.1)

where η = g−1(µ) ∈ R+
0 = (0,+∞) is the location parameter for T , φ ∈ R+

0 , and α ∈ (0,1). If
α = 0.5, then (2.1) reduces to a class of location-scale families with the underlying symmetric
density f0. In addition, the density function defined in (1.1) is a special case of (2.1) taking the
identity link function g(t) = t. Hereafter, we refer to (2.1) as the family of generalized quantile-
based asymmetric (GQBA in short) distributions.

2.1 Basic properties

We begin by establishing some basic quantities for the GQBA family of survival distributions. Let
F0, S0, h0 and Λ0 denote, respectively, the cumulative distribution, survival, hazard, and cumulative
hazard functions for the reference symmetric density f0. The proofs of Theorems 2.1 and 2.2 are
deferred to Appendix A.

Theorem 2.1 Let T be a lifetime random variable with density fα(t;η ,φ), then the cumulative
distribution function of T is given by

Fα(t;η ,φ) =


2αF0

{
(1−α)

(g(t)−g(η)

φ

)}
if t < η

2α−1+2(1−α)F0
{

α
(g(t)−g(η)

φ

)}
if t ≥ η ,

(2.2)

and the τ-th quantile function of T for any τ ∈ (0,1) is given by

F−1
α (τ) =


g−1{g(η)+

φ

1−α
F−1

0
( τ

2α

)}
if τ< α

g−1{g(η)+
φ

α
F−1

0
(1+τ−2α

2(1−α)

)}
if τ≥ α .

(2.3)

In particular F−1
α (α) = η , which indicates that the α-th quantile of the distribution equals the

location parameter η . It is also seen from (2.2) that

P(T < η)

P(T ≥ η)
=

α

1−α
⇔ (1−α)P(T < η) = αP(T ≥ η),

which illustrates that the index-parameter α controls the allocation of mass to each side of the lo-
cation parameter η . α less (greater) than 0.5 reveals a right (left) skewed distribution, respectively.

Theorem 2.2 Let T be a lifetime random variable with density fα(t;η ,φ), then

i). the survival function of T is
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Sα(t;η ,φ) =


1−2αS0

{
(1−α)

(g(η)−g(t)
φ

)}
if t < η

2(1−α)S0
{

α
(g(t)−g(η)

φ

)}
if t ≥ η .

(2.4)

Note: if lim
t→+∞

g(t) = +∞ and lim
t→0

g(t) =−∞, then lim
t→+∞

Sα(t;η ,φ) = 0 and lim
t→0

Sα(t;η ,φ) = 1;

ii). the hazard function of T is

hα(t;η ,φ) =
αg′(t)

φ


2(1−α)h0

{
(1−α)

(g(η)−g(t)
φ

)}
S0
{
(1−α)

(g(η)−g(t)
φ

)}
1−2αS0

{
(1−α)

(g(η)−g(t)
φ

)} if t < η

h0
{

α
(g(t)−g(η)

φ

)}
if t ≥ η;

(2.5)

iii). the cumulative hazard function of T is

Λα(t;η ,φ) =


− ln

{
1−2αS0

[
(1−α)

(g(η)−g(t)
φ

)]}
if t < η

− ln{2(1−α)}+Λ0
{

α
(g(t)−g(η)

φ

)}
if t ≥ η .

(2.6)

The GQBA family is suitable to describe all common hazard shapes (constant, increasing,
decreasing, bathtub and inverted bathtub or unimodal shapes). This is illustrated in the next section.

2.2 Shape of the hazard function

The hazard function hα(·;η ,φ) is continuous but not differentiable at t = η . Therefore we inves-
tigate its shape to the left and right of η separately, for a concave (and increasing on R+

0 ) link
function g(·).

For t ≥ η : Let z = α
(g(t)−g(η)

φ

)
with t = g−1(g(η) + φ

α
z
)

and rewrite the log-hazard as a
function of z ∈ R+, denoted by h̃r(z)

h̃r(z) = ln(α)− ln(φ)+ ln
(

g′
{

g−1(g(η)+
φ

α
z
)})

+ ln{h0(z)}.

Then the derivative of this function is

h̃′r(z) =
φ

α

g′′
{

g−1(g(η)+ φ

α
z
)}

g′
{

g−1
(
g(η)+ φ

α
z
)} {g−1}′(g(η) +

φ

α
z
)
+ (lnh0)

′(z)

=
φ

α︸︷︷︸
>0

g′′
{

g−1(g(η)+
φ

α
z
)}

︸ ︷︷ ︸
≤0

({
g−1}′(g(η) +

φ

α
z
))2

︸ ︷︷ ︸
≥0

+ (lnh0)
′(z).

Therefore the shape of the (log-)hazard depends on the sign of (lnh0)
′(z).
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If f0 is log-convex (e.g. the Arc-sine distribution) on an interval (l,u), then h0(.) is monotone
decreasing on (l,u) (Bagnoli and Bergstrom, 2005) and therefore h̃r(z) is decreasing on (l,u).
Therefore the log-hazard is constant or decreasing (not increasing) on (l,u).

If f0(.) is log-concave (e.g. standard normal, Laplace or logistic distribution) on (l,u), then h0 is
increasing on (l,u)). If lnh0 is constant on (l,u), then hα(·;η ,φ) is decreasing on (l,u), depending
on the magnitude of (lnh0)

′(z), the link function, α and φ the log-hazard can be increasing or
decreasing on (l,u).

For t < η : Denote z = (1−α)
(g(η)−g(t)

φ

)
and rewrite the log-hazard as a function of z ∈ R+,

denoted by h̃l(z)

h̃l(z) = ln{2α(1−α)} − ln(φ) + ln
(

g′
{

g−1(g(η)− φ

1−α
z
)})

+ ln{h0(z)} + ln{S0(z)} − ln
(
1−2αS0(z)

)
,

where 2αS0(z) < 1 to obtain a valid hazard value. The first derivative of h̃l(z) with respect to z
becomes

h̃′l(z) =−
φ

1−α︸ ︷︷ ︸
>0

g′′
{

g−1(g(η)− φ

1−α
z
)}

︸ ︷︷ ︸
≤0

({
g−1}′(g(η)− φ

1−α
z
))2

︸ ︷︷ ︸
≥0

+ (lnh0)
′(z)−h0(z)

{ 1
1−2αS0(z)︸ ︷︷ ︸

>0

}
.

If lnh0 is constant/decreasing/increasing on (l,u), then the log-hazard can either be increasing
or decreasing on (l,u), depending on the magnitude of h0(z), S0(z), the link function, α and φ .
From this it is clear that the link function, the reference density, the scale and index-parameters are
characterizing the behavior of the hazard function for the GQBA distributions.

For example, for the GQBA logistic distribution with log-link: g(t) = ln(t), h0(z) = 1
1+e−z .

Therefore hα(.;η ,φ) is always decreasing in the right-tail for φ > α . On the other hand, for the
left-hand tail (t < η) of the distribution, when φ ≥ α/2 ( respectively φ < α/2) the hazard is
increasing ( respectively decreasing) as t→ η . See also Fig. 2.1.

2.3 Examples of distributions in the GQBA family

We give some illustrative examples of the GQBA family of survival distributions with their basic
characteristics. There are essentially two basic ingredients to formulate the GQBA distribution;
the reference symmetric density f0 and the link function g. In the examples, we consider normal
and logistic standard distributions. We, in particular, look at two appealing link functions, the clas-
sical logarithmic link g(t) = ln(t) and the link function g(t;λ ) = ln

(
eλ t − 1

)
. The second link

function is the logit of the cumulative distribution function of an exponential distribution. That
is, W ∼ Expo(λ ),λ > 0,W > 0, with cumulative distribution function Fλ (t) = 1− e−λ t , which
gives a monotonically increasing link function g(t;λ ) = logit

(
Fλ (t)

)
= ln(eλ t−1), and its deriva-
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tive g′(t;λ ) =
λeλ t

eλ t−1
. This example stands for an illustration for a whole class of link functions

obtained as the logit of the cumulative distribution function of any positive random variable W .
Throughout, we refer to this function in general as a logit-link function.

In Table S1 in the Supplementary Material we summarize some characteristics of the GQBA
family of asymmetric normalAN (·) and asymmetric logisticAL(·) distributions with g(t)= ln(t).
For the logit-link function, for example, the probability density function ofAL(η ,φ ,α,λ ) is given
by

fα(t;η ,φ ,λ ) =
2α(1−α)λeλ t

φ(eλ t−1)



(
eλ t−1
eλη−1

)( 1−α
φ

){
1+
(

eλ t−1
eλη−1

)( 1−α
φ

)

}2 if t < η

( eλ t−1
eλη−1

)−α

φ{
1+
( eλ t−1

eλη−1

)−α

φ

}2 if t ≥ η .

(2.7)

The exponential distribution Expo(λ ) arises as a special case of (2.7) when α = 0.5,φ = 0.5 and
η = 1

λ
ln(2). Furthermore, the distribution AL(η ,φ ,α,λ ) gives the Logistic–Exponential distri-

bution (Lan and Leemis, 2008) when taking α = 0.5,φ = 1
2κ

and λη = ln(2), where κ > 0 is the
shape parameter.

In addition to the logarithmic and logit-link functions, other useful link functions satisfying the
properties of g(.) can be proposed, and used to generate a variety of distributions within the GQBA
family. For instance, Slymen and Lachenbruch (1984) proposed modified Weibull and modified
log-logistic distributions using the following link functions

g1(t;λ ) =
tλ − t−λ

2λ
, λ > 0,

g2(t;λ ,β ) = ln
{

ln[1+(λ t)β ]
}
,λ > 0,β > 0.

More specifically, the function g1(t;λ ) has the important property that lim
λ→0

(tλ − t−λ

2λ

)
= ln(t),

which thus generalizes the logarithmic link function by introducing an additional parameter λ .
An important remark to be made is that if a link function depends on an unknown parameter

we will estimate this parameter via maximum likelihood estimation (MLE). See Sections 4 and 5.
Such a situation occurs with the logit-link function g(t;λ ), as well as with g1(t;λ ) and g2(t;λ ,β ).
This is also the reason why we denote the asymmetric logistic density with link g(t) = ln(t) by
AL(η ,φ ,α) whereas the asymmetric logistic density with link function g(t;λ ) = ln(eλ t − 1) is
denoted by AL(η ,φ ,α,λ ).

In order to illustrate the flexibility of the GQBA family, in particular in terms of the hazard
shapes as well as the shapes of survival function, we present in Fig. 2.1 the case of the asym-
metric logistic distribution for some parameter values and link function g(t) = ln(t) for (a) and
g(t;λ ) = ln(eλ t − 1) for (b) and (c). As we can see from the plots, different hazard shapes (con-
stant, decreasing, increasing, bathtub, inverted bathtub) are obtained for one particular member of
the GQBA family of distributions.
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Fig. 2.1 Survival function (first row) and hazard function (second row) for one member of the
GQBA family of distributions: (a) AL(η = 5,φ ,α = 0.25), (b) AL(η = 2,φ = 0.5,α,λ = 1.5),
and (c) AL(η ,φ = 0.5,α = 0.5,λ ).

3 Statistical inference

3.1 MLE of the parameters

Let (y1,δ1), . . . ,(yn,δn) be an i.i.d. sample from (Y,∆). Let `(yi,δi;θθθ) = ln fY,∆ (yi,δi;θθθ) denote
the log of the joint density function evaluated in the i-th observation. Therefore, the total log-
likelihood function of θθθ for the n i.i.d. sampled observations is then the sum of `(yi,δi;θθθ). Under
the assumption of independent and non-informative censoring, the log-likelihood function with
respect to θθθ is given by

Ln(θθθ ;yyy,δδδ ) =
n

∑
i=1

[
δi ln{ fα(yi)}+(1−δi) ln{Sα(yi)}

]
. (3.1)

It is observed from (3.1), that the log-likelihood is proportional to the log of the probability density
function for an uncensored case and the log of the survival function for a censored case. Conse-
quently, for the inference on the survival time with probability density function as in (2.1), the
log-likelihood function of θθθ given (yyy,,,δδδ ) is written as
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Ln(θθθ ;yyy,δδδ ) =
n

∑
i=1

δi
{

ln(2α(1−α))− ln(φ)+ ln{g′(yi)}
}

+
n

∑
i=1

δiI(yi < η) ln
{

f0
(
(1−α)

[g(η)−g(yi)

φ

])}
+

n

∑
i=1

δiI(yi ≥ η) ln
{

f0
(
α
[g(yi)−g(η)

φ

])}
+

n

∑
i=1

(1−δi)I(yi < η) ln
{

1−2αS0
(
(1−α)

[g(η)−g(yi)

φ

])}
+

n

∑
i=1

(1−δi)I(yi ≥ η) ln
{

2(1−α)S0
(
α
[g(yi)−g(η)

φ

])}
.

(3.2)

The MLE estimator of θθθ = (η ,φ ,α)T is obtained by maximizing the log-likelihood function given
in (3.2) with respect to θθθ . That is,

θ̂θθ n = arg max
θθθ∈ΘΘΘ

Ln(θθθ ;yyy,δδδ ),

where θ̂θθ n = (η̂ , φ̂ , α̂)T is the MLE estimator of θθθ and ΘΘΘ = R+
0 ×R+

0 × (0,1) is the parameter
space of θθθ . However, the log-likelihood function is not differentiable with respect to η at η = yi,
for i = 1,2, ...,n. The log-likelihood function is differentiable with respect to φ and α , although
the MLE does not have a closed form. For such type of optimization, the estimation is usually
done by using direct search or derivative free algorithms. These derivative free algorithms only
need the objective functions to be evaluated; meaning that differentiability is not needed during
optimization. For example, Bottai (2010) and Su (2016) used the Nelder-Mead simplex algorithm
in censored data analysis. In this study we also apply the Nelder-Mead simplex algorithm using
the nloptr optimization package in the statistical software R.

3.2 Asymptotic properties of MLE estimators

The following notations turn out to be useful in the sequel.

z1 = (1−α)
(g(η)−g(y)

φ

)
⇒ y≡ g1θθθ (z1) = g−1{g(η)− φ

1−α
z1
}
, (3.3)

and

z2 = α
(g(y)−g(η)

φ

)
⇒ y≡ g2θθθ (z2) = g−1{g(η)+

φ

α
z2
}
. (3.4)

The following major assumptions are considered in establishing consistency and asymptotic nor-
mality properties of the MLE. Let θθθ 0 = (η0,φ0,α0)

T be the true value of the parameter θθθ .

Assumptions

(B1) Let ΘΘΘ R = [ηl,ηu]× [φl,φu]× [αl,αu], with 0 < ηl ≤ η ≤ ηu < ∞, 0 < φl ≤ φ ≤ φu < ∞ and
0 < αl ≤ α ≤ αu < 1, be a compact subset of ΘΘΘ , and assume that θθθ 0 ∈ Θ̊ΘΘ R with Θ̊ΘΘ R the interior
of ΘΘΘ R.
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(B2) g(.) : R+
0 → R is monotone increasing and differentiable function, such that

lim
t→0

g(t) =−∞ and lim
t→+∞

g(t) = +∞.

(B3) The symmetric around zero reference density f0 is bounded, differentiable and satisfies∫
∞

0
z f ′0(z)dz =−1

2
or lim

z→∞
z f0(z) = 0.

(B4) lim
z→+∞

zr−1 f0(z)G[glθθθ (z)] = 0 for l,r = 1,2.

(B5) ξl,r(θθθ) =
∫

∞

0
zr−1 f0(z)dG[glθθθ (z)]< ∞ for l,r = 1,2.

(B6) γr =
∫

∞

0
zr−1{ f ′0(z)}2

f0(z)
dz < ∞ for r = 1,2,3.

(B7) γl,r(θθθ) =
∫

∞

0
zr−1

{
f ′0(z)

}2

f0(z)
G[glθθθ (z)]dz < ∞ for l = 1,2, and r = 1,2,3.

(B8) κ1,r(θθθ) =
∫

∞

0
zr−1

{
f0(z)

}2

1−2αS0(z)
dG[g1θθθ (z)]< ∞ for r = 1,2,3.

(B9) κ2,r(θθθ) =
∫

∞

0
zr−1

{
f0(z)

}2

S0(z)
dG[g2θθθ (z)]< ∞ for r = 1,2,3.

(B10) ϕ1,r(θθθ) =
∫

∞

0
zr−1 f0(z)S0(z)

1−2αS0(z)
dG[g1θθθ (z)]< ∞ for r = 1,2,

(B11) ϕ2(θθθ) =
∫

∞

0

{
S0(z)

}2

1−2αS0(z)
dG[g1θθθ (z)]< ∞.

The first Assumption (B1) is postulated to ensure that any continuous function of θθθ in a
bounded parameter space ΘΘΘ R is also bounded; which is required in both consistency and asymp-
totic normality. Assumptions (B2)-(B5) are essentially assumed to ensure that the expected value
of the score function has a unique zero at the true value of the parameter θθθ 0 ∈ Θ̊ΘΘ R. The other
Assumptions (B6)-(B11) are also vital for the existence of the Fisher-information matrix.

All these assumptions are rather mild conditions. We check the conditions for the GQBA logis-
tic family of survival distribution and an exponential censoring distribution. See Example 3.1 and
Section S3, in the Supplementary Material.

Proposition 3.1 Let Assumptions (B2) to (B6) hold for θθθ 0. Then the expectation of the score func-
tion at the true parameter value θθθ 0 is zero. That is,

EY,∆

[
∂

∂θθθ
`(θθθ ;Y,∆)

]∣∣∣∣
θθθ=θθθ 0

= 000

The proofs of Theorems 3.1 and 3.2 are provided in Appendix B, whereas the proofs of Proposi-
tions 3.1 and 3.2 are given in Section S2 in the Supplementary Material of the paper.
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Theorem 3.1 Let θ̂θθ n = (η̂n, φ̂n, α̂n)
T denote any sequence of estimators for θθθ that maximizes the

log-likelihood function (3.2). If Assumptions (B1)-(B5) hold for θθθ 0, then θ̂θθ n is strongly consistent
for θθθ 0. That is, θ̂θθ n

a.s−→ θθθ 0, as n→ ∞.

Proposition 3.2 Suppose Assumptions (B2)-(B11) hold for θθθ , then the Fisher information matrix

I(θθθ) =
[

EY,∆

(
∂

∂θi
`(θθθ ;Y,∆) · ∂

∂θ j
`(θθθ ;Y,∆)

)]
i, j=1,2,3

is finite and given by

I(θθθ) =


2α(1−α)

(g′(η)
φ

)2
γ1 +R11(θθθ) 0+R12(θθθ)

−2g′(η)
φ

γ2 +R13(θθθ)

0+R12(θθθ)
1

φ 2

(
2γ3−1

)
+R22(θθθ) − (1−2α)(2γ3−1)

φα(1−α) +R23(θθθ)

−2g′(η)
φ

γ2 +R13(θθθ) − (1−2α)(2γ3−1)
φα(1−α) +R23(θθθ)

2γ3

[
α3+(1−α)3

]
−(1−2α)2

α2(1−α)2 +R33(θθθ)

 ,
(3.5)

where

R11(θθθ) =−2α(1−α)

(
g′(η)

φ

)2{
(1−α)

[
γ1,1(θθθ)+2ακ1,1(θθθ)

]
+α

[
γ2,1(θθθ)−κ2,1(θθθ)

]}
,

R12(θθθ) =
2α(1−α)g′(η)

φ 2

{
γ1,2(θθθ)− γ2,2(θθθ)−ξ1,1(θθθ)+ξ2,1(θθθ)+2ακ1,2(θθθ)+κ2,2(θθθ)

}
,

R13(θθθ) =
2g′(η)

φ

{
αγ1,2(θθθ)+(1−α)γ2,2(θθθ)+(1−2α)ξ1,1(θθθ)− (1−α)ξ2,1(θθθ)

+2α
2
κ1,2(θθθ)− (1−α)κ2,2(θθθ)+2α(1−α)ϕ1,1(θθθ)

}
,

R22(θθθ) =−
2

φ 2

{
α
[
γ1,3(θθθ)−2ξ1,2(θθθ)+2ακ1,3(θθθ)

]
+(1−α)

[
γ2,3(θθθ)−2ξ2,2(θθθ)−κ2,3(θθθ)

]}
−α

∫
∞

0
f0(z)G[g1θθθ (z)]dz− (1−α)

∫
∞

0
f0(z)G[g2θθθ (z)]dz,

R23(θθθ) =−
2

α(1−α)φ

{
α

2
γ1,3(θθθ)− (1−α)2

γ2,3(θθθ)+α(1−3α)ξ1,2(θθθ)

+2(1−α)2
ξ2,2(θθθ)+2α

3
κ1,3(θθθ)+(1−α)2

κ2,3(θθθ)+2α
2(1−α)ϕ1,2(θθθ)

−α
2
∫

∞

0
f0(z)G[g1θθθ (z)]dz+(1−α)2

∫
∞

0
f0(z)G[g2θθθ (z)]dz

}
,

R33(θθθ) =−
2

α2(1−α)2

{
α

2(1−α)G(η)+α
3
γ1,3(θθθ)+(1−α)3

γ2,3(θθθ)

+2α
2(1−2α)ξ1,2(θθθ)−2(1−α)3

ξ2,2(θθθ)+2α
4
κ1,3(θθθ)

− (1−α)3
κ2,3(θθθ)+4α

3(1−α)ϕ1,2(θθθ)+2α
2(1−α)2

ϕ
∗
2 (θθθ)

+α(1−2α)
∫

∞

0
f0(z)G[g1θθθ (z)]dz− (1−α)3

∫
∞

0
f0(z)G[g2θθθ (z)]dz

}
.

Note that I(θθθ) is continuous in θθθ = (η ,φ ,α)T . It is clearly seen that the Fisher information
matrix depends on the distribution of the censoring time G, the reference symmetric probability
density f0, and the link function g.
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Remark 3.1 When the censoring distribution has a point mass at +∞ (i.e., there is no censoring),
then allRi j(θθθ) in Proposition 3.2 are equal zero, and the Fisher information matrix reduces to

INC(θθθ) =


2α(1−α)

(g′(η)
φ

)2
γ1 0 −2g′(η)

φ
γ2

0 1
φ 2

(
2γ3−1

)
− (1−2α)(2γ3−1)

φα(1−α)

−2g′(η)
φ

γ2 − (1−2α)(2γ3−1)
φα(1−α)

2γ3

[
α3+(1−α)3

]
−(1−2α)2

α2(1−α)2

 , (3.6)

where the index ”NC” refers to non censoring. This is the Fisher information matrix in the com-
plete data case that can be found in Gijbels et al. (2019b). In this special case, we can see that
the asymptotic variance of η̂ is proportional to

(
φ

g′(η)

)2, of φ̂ proportional to φ 2, and that the
asymptotic variance of α̂ depends only on α .

Example 3.1: Consider the GQBA logistic survival distribution with g(t) = ln(t), and an exponen-
tial censoring distribution. See Table S1. In Section S3 in the Supplementary Material we check
the validity of the assumptions for this example. We have that g′(η) = 1

η
, γ1 =

1
6 , γ2 =

1
6 +

ln(2)
3 ,

and γ3 = 2
3 +

π2

18 . The Fisher information matrix for these survival and censoring distributions is
then given by

I(θθθ) =


1
3α(1−α)

( 1
φη

)2
+R11(θθθ) R12(θθθ) − (1+2ln(2))

3φη
+R13(θθθ)

R12(θθθ)
3+π2

9φ 2 +R22(θθθ) − (1−2α)(3+π2)
9φα(1−α) +R23(θθθ)

− (1+2ln(2))
3φη

+R13(θθθ) − (1−2α)(3+π2)
9φα(1−α) +R23(θθθ)

(12+π2)
[

α3+(1−α)3
]
−9(1−2α)2

9α2(1−α)2 +R33(θθθ)

 .

We include this example in the simulation study in Section 4. We also evaluate the Fisher infor-
mation matrix numerically, with true values of the parameters and different censoring proportions
used in the simulation (see Section S3). Note that allRi j(θθθ), i, j = 1,2,3, are easily computable.

Theorem 3.2 Under Assumptions (B1)-(B11) for θθθ 0, the MLE θ̂θθ n is asymptotically normally dis-
tributed with mean zero vector 000 and variance-covariance matrix

[
I(θθθ 0)

]−1, that is,

√
n
(
θ̂θθ n−θθθ 0

) D−→ N3
(
000,
[
I(θθθ 0)

]−1)
, as n→ ∞,

where
[
I(θθθ 0)

]−1 is the inverse of the Fisher information matrix given in (3.5).

The inverse of the Fisher information matrix is

[I(θθθ)]−1 =
1

det
{
I(θθθ)

}
I−1

11 (θθθ) I−1
12 (θθθ) I−1

13 (θθθ)

I−1
12 (θθθ) I−1

22 (θθθ) I−1
23 (θθθ)

I−1
13 (θθθ) I−1

23 (θθθ) I−1
33 (θθθ)

 , (3.7)

where each component of [I(θθθ)]−1 is given as follows:
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I−1
11 (θθθ) = I22(θθθ)I33(θθθ)−I2

23(θθθ), I−1
12 (θθθ) =−

{
I12(θθθ)I33(θθθ)−I13(θθθ)I23(θθθ)

}
I−1

13 (θθθ) = I12(θθθ)I23(θθθ)−I13(θθθ)I22(θθθ), I−1
22 (θθθ) = I11(θθθ)I33(θθθ)−I2

13(θθθ)

I−1
23 (θθθ) =−

{
I11(θθθ)I23(θθθ)−I13(θθθ)I12(θθθ)

}
, I−1

33 (θθθ) = I11(θθθ)I22(θθθ)−I2
12(θθθ),

(3.8)

with Ii j(θθθ), i, j = 1,2,3 as in (3.5), and the determinant of the information matrix equals

det
{
I(θθθ)

}
= I11(θθθ)I22(θθθ)I33(θθθ) − I11(θθθ)I2

23(θθθ) − I22(θθθ)I2
13(θθθ)

− I33(θθθ)I2
12(θθθ) + 2I12(θθθ)I13(θθθ)I23(θθθ).

(3.9)

See Aitken (2017) for details on computation of the inverse of symmetric matrices. The asymptotic
variance-covariance matrix can be estimated by

[
I(θ̂θθ n)

]−1. Given the continuity of the Fisher
information matrix under the stated assumptions

[
I(θ̂θθ n)

]−1 is a consistent estimator of
[
I(θθθ 0)

]−1.

4 Simulation study

We study the finite–sample performance of the MLE, including the impact of the censoring rate.
We consider one scenario with a specific survival and censoring distribution and link function.
Three other scenarios are studied in Section S4 of the Supplementary Material.

The finite–sample performance of the MLE is measured via Monte Carlo approximations of
bias and mean squared error (MSE). More precisely, let θ̂

( j)
k be the MLE of the k-th parameter

in the j-th simulated sample, k = 1,2,3; j = 1,2, ...,N, where N is the number of Monte Carlo
simulated samples. The criteria used to measure the finite–sample performance are

Bias: ABias(θ̂k) =
¯̂
θk−θ0,k,

Mean squared error: AMSE(θ̂k) =
1
N

N

∑
j=1

(
θ̂
( j)
k −θ0,k

)2
,

(4.1)

where ¯̂
θk =

1
N ∑

N
j=1 θ̂

( j)
k , is the average of θ̂

( j)
k across the simulated samples and θ0,k is the k-th

element of the vector θθθ 0.

4.1 Data generation

We first determine the censoring parameter θc for a predefined censoring proportion, say Pc. For a
given Pc we solve P(∆ = 0)−Pc = 0,

P(∆ = 0)−Pc =
∫

∞

0
{1−Fα(v)}dG(v)−Pc. (4.2)

There is no closed form expression for the solution. To compute the integrals, we apply a nu-
merical integration through the Brent-Dekker algorithm known as the uniroot() function in the
statistical software R. After having determined, for given censoring proportion Pc, the censoring
parameter θc, the following simulation designs are conducted to generate both the survival time
T ∼ AN (η ,φ ,α) and censoring time C ∼ Expo(θc), and finally we obtain the observed time as
Y = min(T,C).
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(i) Generate a random variable Ui ∼ Uniform(0,1), for i = 1,2, . . . ,n;

(ii) Generate the survival time using the inverse transform sampling algorithm and log-link function
(i.e. g(t) = ln(t)). That is using

Ti = F−1
α (Ui)≡

{
g−1[g(η)+ φ

1−α
F−1

0
( Ui

2α

)]
if Ui < α, i = 1, . . . ,n

g−1[g(η)+ φ

α
F−1

0
(1+Ui−2α

2(1−α)

)]
if Ui ≥ α;

(iii) Generate the censoring time Ci ∼ Expo(θc) considering each nominal censoring percentage
Pc = 25%,50%,75%;

(iv) The observed time is Yi = min(Ti,Ci) with censoring indicator ∆i = I(Ti ≤Ci);

(v) Repeat the steps (i) - (iv) for N = 1000 times for the sample sizes n = 100,300,500, censoring
percentages Pc = 25%,50%,75%, and the index-parameter values α = 0.25,0.5,0.75. The other
parameters are η = 1 and φ = 0.5. Hence, in total there are 3× 3× 3 = 27 data generating
mechanisms.

The survival and hazard functions for the true GQBA family of distribution used in this simulation
study is given in Fig. 4.1.

Fig. 4.1 Simulation study. Survival function (a) and hazard function (b) for the true distribution.

4.2 Simulation results

The MLE estimates are obtained using package nloptr (version 1.2.1) in R with bound constraint
Nelder-Mead simplex algorithm. To start the optimization process we use some steps. First, a set
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of ten equally spaced starting values for the parameters of the GQBA distributions is chosen (from
0.25 to 5 for η ; from 0.15 to 2.5 for φ ; and from 0.05 to 0.95 for α). The set of initial values that
yields the largest log-likelihood value is selected as final starting value. The approximated bias and
MSE of the MLE are computed based on the results from 1000 simulated samples.

The approximated bias and approximated MSE of the estimators are presented in Table S5(in
the Supplementary Material) and Table 4.1, respectively. Further, the boxplots of the MLE esti-
mates across the censoring proportions, α-value and sample sizes are presented in Fig. 4.2. From
these tables and figure it is clear that the bias and approximated MSE increase with censoring pro-
portions. A slight difference is only highlighted in a specific data generating mechanism, that is
when α = 0.75 and Pc = 50%. From Table 4.1 we can conclude that the MSE is getting smaller
as the sample size increases, for a given censoring percentage. Overall, accurate estimates can be
achieved for large sample sizes, irrespective of censoring proportion.

Table 4.1 Simulation study. The approximated MSE of the MLE.

α = 0.25 α = 0.50 α = 0.75

Pc n η̂ φ̂ α̂ η̂ φ̂ α̂ η̂ φ̂ α̂

25%
100 0.225 0.019 0.009 0.154 0.004 0.012 0.354 0.048 0.017
300 0.047 0.004 0.002 0.036 8.0e-4 0.003 0.087 0.012 0.005
500 0.024 0.002 0.001 0.020 4.0e-4 0.002 0.043 0.006 0.002

50%
100 0.362 0.024 0.012 0.401 0.019 0.030 0.577 0.112 0.045
300 0.056 0.005 0.003 0.073 0.003 0.007 0.282 0.063 0.021
500 0.031 0.002 0.002 0.034 0.001 0.004 0.177 0.038 0.012

100 1.033 0.040 0.032 0.648 0.059 0.078 1.073 0.169 0.117
300 0.141 0.007 0.007 0.235 0.019 0.030 0.530 0.156 0.06775%
500 0.056 0.003 0.003 0.140 0.011 0.017 0.409 0.140 0.051

It is also worth to mention here that the simulation shows better performance for α = 0.25
compared to α = 0.75. This is due to the fact that the survival distributions are mostly right skewed
and the index-parameter α controls the allocation of mass of the distributions as indicated in the
paragraph following Theorem 2.1.

In the real data applications (Section 5), we present bootstrap based standard errors (based on
500 bootstrap samples) for the parameter estimates. In order to investigate the validity of such
bootstrap based standard errors (based on 200 bootstrap samples), we compare them in Table 4.2
with the standard error within the Monte Carlo simulation study for the setting with 25% censoring.
Note that both standard errors are similar and their differences diminish as sample size increases.

In the above we used in the estimation procedure as GQBA distribution the AN (η ,φ ,α) dis-
tribution, and the log-link function, under which the data were simulated. In a real data setting one
might not know which GBQA model and link function is most appropriate. One then could use
different models and apply a model selection criterium to select a model. To investigate the qual-
ity of such model selection we fit various candidate models. To compare the quality of the fitted
models we use the AIC criterion (Akaike information criterion), to choose the most appropriate
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Fig. 4.2 Simulation study. Boxplots of the maximum likelihood estimates.
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Table 4.2 Simulation study. Comparison of bootstrap based (Boot) and Monte Carlo (MC) standard
errors (SE). Setting when Pc = 0.25.

η̂ φ̂ α̂

n MC SE Boot SE MC SE Boot SE MC SE Boot SE

α = 0.25

100 0.505 0.618 0.120 0.125 0.090 0.096

300 0.207 0.220 0.058 0.061 0.044 0.046

500 0.146 0.153 0.045 0.044 0.032 0.033

α = 0.50

100 0.380 0.466 0.055 0.082 0.107 0.121

300 0.190 0.200 0.025 0.030 0.055 0.057

500 0.143 0.143 0.021 0.021 0.043 0.043

α = 0.75

100 0.588 0.515 0.211 0.183 0.133 0.126

300 0.299 0.312 0.107 0.108 0.066 0.067

500 0.219 0.219 0.077 0.077 0.050 0.049

distribution(s) among the considered candidate set. More specifically, the AIC value is expressed
as

AIC =−2Ln(θ̂θθ nnn)+2p,

where θ̂θθ n is the vector of MLE estimates, Ln(θ̂θθ nnn) is the maximal log-likelihood value and p is the
number of estimated parameters for a given distribution. Alternatively one can use a BIC criterion
(Bayesian information criterion) which is defined as AIC but with the term 2p replaced by p ln(n).

Table 4.3 presents the percentage a specific GQBA distribution (AN (η ,φ ,α): normal with
g(t) = ln(t);AN (η ,φ ,α,λ ): normal with g(t;λ ) = ln(eλ t−1);AL(η ,φ ,α): logistic with g(t) =
ln(t);AL(η ,φ ,α,λ ): logistic with g(t;λ ) = ln(eλ t−1);ALa(η ,φ ,α): Laplace with g(t) = ln(t);
and ALa(η ,φ ,α,λ ): Laplace with g(t;λ ) = ln(eλ t − 1)) is selected as best based on the AIC
value over the 1000 simulated samples in the setting with Pc = 25%. Note that the correct model
AN (η ,φ ,α,λ ) is selected most of the times and that the percentage that the correct model is
selected as best increases with sample size.

In Fig. 4.3 we present the density of the standardized ML estimates (across simulations) along
with the theoretical asymptotic distribution of the estimators. This shows that the asymptotic nor-
mal density is achievable as the sample size increases.

5 Real data applications

We consider two examples for which we illustrate the use of the proposed GQBA family of dis-
tributions. The main intention here is to select a kind of best model distribution in fitting a set of
candidate distributions to the data. In addition to the GQBA family, four log-location-scale type
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Table 4.3 Simulation study. Percentage (over 1000 simulated samples) a specific distribution is
selected as best based on AIC. The correct model is AN (η = 1,φ = 0.5,α) and Pc = 25%.

n AN (η̂ , φ̂ , α̂) AL(η̂ , φ̂ , α̂) ALa(η̂ , φ̂ , α̂) AN (η̂ , φ̂ , α̂, λ̂ ) AL(η̂ , φ̂ , α̂, λ̂ ) ALa(η̂ , φ̂ , α̂, λ̂ )

α = 0.25

100 54.66 16.20 8.83 6.53 3.26 10.52

300 68.56 15.24 0.85 7.13 4.47 3.75

500 72.07 12.82 0.00 7.38 5.68 2.06

α = 0.50

100 57.44 17.90 5.20 5.68 4.59 9.19

300 70.86 12.09 0.00 6.53 4.96 5.56

500 75.57 8.10 0.00 6.77 7.62 1.93

α = 0.75

100 67.71 13.91 5.93 5.32 3.87 3.26

300 72.31 11.00 0.24 5.68 7.98 2.78

500 74.73 6.89 0.00 7.38 9.79 1.21

distributions (hereafter we call them classical) such as log-normal, log-logistic, log-Laplace and
Weibull distributions are included in the analysis. These distributions are included for illustrating
how the proposed GQBA family may give an improved fit compared to some well known exist-
ing distributions in time to event analysis. We use the notation log-N (η ,φ) for the log-normal
distribution, log-L(η ,φ) for log-logistic and log-La(η ,φ) for log-Laplace.

For the GQBA family of distributions, we consider four cases for f0: a Laplace, a normal, a
logistic and a Student’s-t density with ν degrees of freedom; and for g two link functions: g(t) =
ln(t) and g(t;λ ) = ln(eλ t − 1). This leads to eight candidate models from the GQBA family. We
denote the GQBA Laplace family by ALa(.) and AS-t(.,ν) for the GQBA family of Student’s-
t density with ν degrees of freedom. We further denote ALa(.,λ ) and AS-t(.,λ ,ν) in case the
link function g(t;λ ) = ln(eλ t−1) is used. We thus have a total of twelve candidate distributions to
describe the behaviour of the data. It may be useful to note that the location parameter µ for the log-
location-scale family that appears in most of the standard books is reparametrized by µ = ln(η).
With this parameterization η becomes the scale while φ is the shape parameter.

The parameters in all models are estimated by the MLE technique with a Nelder-Mead bound-
constrained simplex algorithm via nloptr package in R. We optimize as follows.

Step 1: The method of moment based estimates are used as starting values to fit the corresponding
classical densities (only with η and φ parameters). Denote these estimates by η̂c and φ̂c.

Step 2: Estimate the index-parameter α for the GQBA family with g(t) = ln(t) by fixing η = η̂c

and φ = φ̂c. We denote this estimate by α̂c.
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Fig. 4.3 Simulation study. Density plots for the standardized MLE
√

n(θ̂n− θ0) with α = 0.25,
across each censoring percentage (Pc) and sample size (n). The asymptotic normal density
N(0,I−1(θθθ 0,k)) is depicted by the solid line.

Step 3: Fit the GQBA distributions with link function g(t) = ln(t) taking η̂c, φ̂c and α̂c as starting
values in the algorithm. Denote the resulting estimates by η̂q, φ̂q, and α̂q. These are the final
MLE estimates for this family of distributions.

Step 4: Estimate λ for the GQBA family with link function g(t;λ ) = ln(eλ t−1), by fixing η = η̂q,
φ = φ̂q, and α = α̂q. Denote this estimate by λ̂q.
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Step 5: Fit the GQBA family with link g(t;λ ) = ln(eλ t − 1), using η̂q, φ̂q, α̂q, and λ̂q as starting
values. The resulting MLE estimates are the final MLE values for (η̂ f , φ̂ f , α̂ f , λ̂ f ) except for
AS-t(η ,φ ,α,λ ,ν) that will be obtained in Step 6.

Step 6: Estimate v inAS-t(η ,φ ,α,λ ,ν) by setting the remaining parameters with the MLE values
obtained in Step 5 from theAN (η ,φ ,α,λ ) distribution. Next, the initial values ofAS-t(η ,φ ,α,ν)
(Step 3 in our algorithm) are estimated from an AS-t model but with known degrees of free-
dom (ν). Denote the resulting ML estimate by ν̂q. Finally, AS-t(η ,φ ,α,λ ,ν) can be fitted
considering (η̂ f , φ̂ f , α̂ f , λ̂ f , ν̂q) as starting values.

5.1 Example 1: Times to weaning of breast-fed data

In the US National Longitudinal Survey of Youth (NLSY), females aged 14 to 21 in 1979 were
interviewed yearly until 1988. The data considered here consists of the information from 927 first-
born children to mothers who chose to breast feed their children. The response variable in the data
set was duration of breast feeding in weeks, followed by an indicator of whether the breast feeding
was completed (i.e., the infant is weaned). The censoring proportion in this dataset is small, only
3.8% of the sample cases are right censored, and the median survival time is 12 weeks. Details on
the data can be found in the book by Klein and Moeschberger (2006, Chapter 1), and the dataset is
also freely available in the R statistical software package KMsurv.

The results for all the twelve fitted models for the time to weaning of breast-fed data are sum-
marized in Table 5.1 and the estimated survival and hazard function based on the best model,
together with the Kaplan-Meier estimator of the survival function (and their bootstrap based point-
wise 95% confidence intervals) are given in Fig. 5.1 (where the estimation is done on a grid of 100
equally spaced time points within the range of uncensored observations). From Fig. 5.1 we can see
that the estimated survival function based on the selected (best) GQBA model is very close to the
non-parametric Kaplan-Meier estimate and that the confidence intervals of the best GQBA model
are narrower than these of the Kaplan-Meier estimate. The former comes of course with the advan-
tage of being a parametric model (with its ease of interpretations). Table 5.1 presents the number of
parameters (p) with MLE estimates, the negative of maximum log-likelihood (−Ln(θ̂θθ n)), AIC and
BIC values. For these data, the GQBA logistic distribution with logit-link function,AL(η ,φ ,α,λ )
has the lowest AIC and BIC value (e.g., AIC= 6657.20) compared to the other fitted models. In-
terestingly, the negative maximal log-likelihood and the MLE estimates are exactly the same in
the case of models AN (η ,φ ,α) and AS-t(η ,φ ,α,ν). This is not surprising since the estimate
ν̂ is very large in the latter model. This is also observed for the results of German Breast Cancer
data presented in Tables 5.2 and S11 (in the Supplementary Material). A non-parametric bootstrap
method (based on 500 bootstrap samples) is used to calculate standard errors. The bootstrap-based
standard errors are given in brackets in Table 5.1.

5.2 Example 2: German breast cancer data

The second real data set concerns a subset of the clinical trial data conducted by the German
Breast Cancer Study (GBCS) group. The data have been obtained from a 2× 2 randomized trial
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Table 5.1 Breast-fed data. MLE (bootstrap based standard errors), negative maximal log-
likelihood, AIC and BIC values for the fitted models.

Density p η̂ φ̂ α̂ λ̂ ν̂ −Ln(θ̂θθ n) AIC BIC

Classical densities
log-L(η ,φ) 2 9.81 0.70 − − − 3429.32 6862.63 6872.29

(0.40) (0.01)
log-N (η ,φ) 2 9.40 1.18 − − − 3402.77 6809.55 6819.21

(0.35) (0.02)
log-La(η ,φ) 2 12.00 0.98 − − − 3483.78 6971.55 6981.22

(1.05) (0.02)
Weibull(η ,φ) 2 16.59 0.97 − − − 3408.56 6821.13 6830.79

(0.60) (0.02)
GQBA with g(t) = ln(t)

AL(η ,φ ,α) 3 20.96 0.28 0.71 − − 3411.25 6828.50 6842.99
(3.35) (0.02) (0.04)

AN (η ,φ ,α) 3 19.87 0.49 0.70 − − 3386.12 6778.23 6785.89
(2.56) (0.05) (0.05)

ALa(η ,φ ,α) 3 16.00 0.44 0.64 − − 3463.92 6933.84 6948.34
(1.37) (0.02) (0.03)

AS-t(η ,φ ,α,ν) 4 19.87 0.49 0.70 − 3.4e+13 3386.12 6780.23 6799.56
(1.62) (0.02) (0.02) (4.7e+13)

GQBA with g(t;λ ) = ln(eλ t −1)
AL(η ,φ ,α,λ ) 4 2.00 0.34 0.13 0.16 − 3324.60 6657.20 6676.52

(0.43) (0.22) (0.05) (0.03)
AN (η ,φ ,α,λ ) 4 2.06 0.52 0.14 0.10 − 3373.67 6755.34 6774.66

(2.73) (0.26) (0.13) (0.04)
ALa(η ,φ ,α,λ ) 4 16.00 0.52 0.62 0.02 − 3457.53 6923.06 6942.39

(1.43) (0.05) (0.03) (0.01)
AS-t(η ,φ ,α,λ ,ν) 5 2.05 0.51 0.14 0.10 40.75 3370.85 6751.71 6775.86

(4.82) (0.09) (0.11) 0.02 (3.8e+16)

evaluating hormonal treatment and the duration of chemotherapy for node-positive breast cancer
patients. The trial was used to compare recurrence-free and overall survival between the different
treatment modalities (Schumacher et al., 1994). The event of interest considered in this paper is the
time to tumor recurrence (defined as the occurrence of either locoregional or distant recurrence,
contralateral tumor, and secondary tumor). There were 686 patients in the study, of whom 299 had
an event (tumor recurrence) at the end of the study, and right censoring occurred for the remaining
387 patients. The censoring proportion is 56.4%, of whom 22.1% belong to the hormone therapy
treatment group while 34.3% were in the untreated group. Further detailed description of the data
can be found in Schumacher et al. (1994) and Sauerbrei et al. (1999). The data are also available
in the survidm package of the statistical software R.

For this dataset, the twelve candidate models are fitted to all patients (without considering
treatment type) and also for each hormonal treatment (untreated and treated) groups separately.
The results are presented in Table 5.2 for all the twelve fitted models based on data for all patients.
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Fig. 5.1 Breast-fed data. Kaplan-Meier and estimated survival (left) and hazard (right) function
using the best model with point-wise 95% confidence intervals (yellow for Kaplan-Meier and grey
for the best model) .

Table S11 (in the Supplementary Material) presents the results for models fitted to each treatment
group separately. From Table 5.2, it is seen that the GQBA logistic and GQBA normal family
densities have almost comparable AIC values. However, the GQBA normal with logit-link function
g(t;λ ) = ln(eλ t − 1) gives a slightly smaller AIC value (AIC=1703.64). Based on BIC, the best
model is GQBA normal with log-link. Turning to the different treatment groups presented in Table
S11 (in the Supplementary Material), the smallest AIC and BIC value for the untreated group are
forAN (η ,φ ,α) with log-link. For the treated group, the smallest AIC value is also for the GQBA
normal with log-link, while the smallest BIC value is for the classical log-normal distribution.

Fig. 5.2 displays the Kaplan-Meier estimates of the survival function together with its estimated
counterpart corresponding to the best fitting model (based on AIC), for all patients. The estimated
hazard function is also provided for the best model according to AIC. From this figure, it is clearly
observed that the best selected parametric model produces similar and coinciding fitted survival
function compared to the Kaplan-Meier survival curve and that the confidence intervals of the best
GQBA model are narrower then these of the Kaplan-Meier estimate. The estimated survival and
hazard function for the treated and untreated group separately are given in Fig. S6 and S5 (in the
Supplementary Material).
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Fig. 5.2 GBC data (all patients). Kaplan-Meier and estimated survival (left) and hazard (right)
function using the best model with point-wise 95% confidence intervals (yellow for Kaplan-Meier
and grey for the best model) .
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Table 5.2 GBC data (all patients). MLE, negative maximal log-likelihood, AIC and BIC values for the fitted models and 95% bootstrap
confidence intervals of the estimates.

Density p η̂ φ̂ α̂ λ̂ ν̂ −Ln(θ̂θθ n) AIC BIC

Classical densities
log-L(η ,φ) 2 4.50 0.65 − − − 863.67 1731.35 1740.41

[4.094, 5.000] [0.604, 0.698] − − −
log-N (η ,φ) 2 4.58 1.11 − − − 854.61 1713.22 1722.28

[4.157, 5.116] [1.031, 1.195] − − −
log-La(η ,φ) 2 4.64 0.93 − − − 884.78 1773.56 1782.62

[4.084, 5.128] [0.862, 1.001] − − −
Weibull(η ,φ) 2 6.19 1.27 − − − 873.00 1750.01 1759.07

[5.643, 6.821] [1.189, 1.368] − − −
GQBA with g(t) = ln(t)

AL(η ,φ ,α) 3 1.69 0.29 0.21 − − 849.44 1704.88 1718.48
[1.384, 2.266] [0.245, 0.333] [0.169, 0.289] − −

AN (η ,φ ,α) 3 2.14 0.55 0.27 − − 849.09 1704.18 1717.78
[1.601, 3.283] [0.462, 0.611] [0.205, 0.391] − −

ALa(η ,φ ,α) 3 1.48 0.40 0.17 − − 852.92 1711.84 1725.44
[1.166, 5.525] [0.327, 0.492] [0.124, 0.554] − −

AS-t(η ,φ ,α,ν) 4 2.04 0.53 0.26 − 47.06 849.07 1706.13 1724.26
[1.526, 3.283] [0.395, 0.607] [0.184, 0.391] − [4.966, 1.6e+13]

GQBA with g(t;λ ) = ln(eλ t −1)
AL(η ,φ ,α,λ ) 4 1.49 0.32 0.17 0.22 − 848.03 1704.05 1722.18

[1.032, 1.740] [0.248, 0.390] [0.096, 0.218] [0.0001, 0.658] −
AN (η ,φ ,α,λ ) 4 1.65 0.60 0.20 0.23 − 847.82 1703.64 1721.76

[1.195, 2.144] [0.478, 0.720] [0.129, 0.278] [7.8e-9, 0.502] −
ALa(η ,φ ,α,λ ) 4 1.23 0.48 0.12 0.41 − 849.92 1707.84 1726.00

[0.925, 5.525] [0.363, 0.549] [0.067, 0.554] [1.0e-10, 0.981] −
AS-t(η ,φ ,α,ν ,λ ) 5 1.60 0.57 0.19 0.23 24.27 847.71 1705.43 1728.07

[1.087, 2.017] [0.400, 0.715] [0.109, 0.249] [0.0001, 0.518] [4.623, 2.92e+13]
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6 Discussion and conclusion

The aim of this paper is to study a family of generalized quantile-based asymmetric distributions
when the variable of interest is partially observed, due to right random censoring. We establish
the consistency and the asymptotic normality of the MLE in the nonstandard setting of the GQBA
family of distributions. The finite–sample performance of the MLE is investigated via a simulation
study. A good performance was obtained also under high censoring cases.

The study contributes to the area of lifetime data analysis in proposing flexible distributions
for censored data. The flexibility of the GQBA family can be summarized in three fold: first to
characterize different shapes of the hazard function; second it includes the commonly used log-
symmetric family of distributions as special cases; and third the statistical inference we show
is valid for any member of the broad family. The proposed probability distribution is not twice
differentiable at the location parameter η and hence some of the standard regularity conditions in
MLE based inference may not be applied. Nevertheless, we showed that the MLE of the parameters
have good asymptotic properties, and the objective function can be easily optimized with existing
derivative free algorithms.

As noted in Fernandez and Steel (1999) the use of MLE for the Student-t with unknown degrees
of freedom should be done carefully. We experienced that the estimate of the degrees of freedom
ν is sensitive to the starting value, in contrast to the other parameters.

A natural progression of this work, which is being currently investigated is to apply the GQBA
family in a flexible regression setting, by allowing the parameters (η , φ and α to be a function of
a covariate). This will allow us to assess the effect of covariates by varying the quantiles, meaning
that the effect of covariates on a specific percentile of the survival distribution will be investi-
gated. Another extension of this work is considering other types of censoring, like left or interval
censoring, by adapting the log-likelihood function (3.1) appropriately.
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Appendix A Proofs of Theorems 2.1 and 2.2 (basic properties)

A.1 Proof of Theorem 2.1

For t < η , we can write

Fα(t;η ,φ) =
∫ t

−∞

fα(s;η ,φ)ds =
2α(1−α)

φ

∫ t

0
g′(s) f0

{
(1−α)

(g(η)−g(s)
φ

)}
ds, since s > 0

= 2αF0
{
(1−α)

(g(t)−g(η)

φ

)}
,

where we used a change of variable z = (1−α)
(g(η)−g(s)

φ

)
. Similarly, for t ≥ η , we have

Fα(t;η ,φ) =
∫ t

−∞

fα(s;η ,φ)ds =
∫

η

0
fα(s;η ,φ)ds+

∫ t

η

fα(s;η ,φ)ds

=
2α(1−α)

φ

[∫
η

0
g′(s) f0

{
(1−α)

(g(η)−g(s)
φ

)}
ds+

∫ t

η

g′(s) f0
{

α
(g(s)−g(η)

φ

)}
ds
]

= 2α−1+2(1−α)F0
{

α
(g(t)−g(η)

φ

)}
, through a change of variable z = α

(g(s)−g(η)

φ

)
Finally, the quantile function of T for any quantile order τ∈ (0,1) given in (2.3) is the inverse of Fα(t;η ,φ).

ut
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A.2 Proof of Theorem 2.2

For the survival function given in Theorem 2.2 (i), we use that Sα(t) = P(T > t) = 1−Fα(T ≤ t). Consid-
ering this together with the property that S0(z)+S0(−z) = 1, we can write for t < η

Sα(t;η ,φ) = 1−2αS0
{
(1−α)

(g(η)−g(t)
φ

)}
,

and for t ≥ η , we have

Sα(t;η ,φ) = 2(1−α)S0
{

α
(g(t)−g(η)

φ

)}
.

Now, the hazard function for the random variable T is defined by the ratio of the probability density function
and the corresponding survival function. Thus,

hα(t;η ,φ) =
fα(t;η ,φ)

Sα(t;η ,φ)
=

αg′(t)
φ


2(1−α)h0

[
(1−α)

(g(η)−g(t)
φ

)]
S0
[
(1−α)

(g(η)−g(t)
φ

)]
1−2αS0

[
(1−α)

(g(η)−g(t)
φ

)] if t < η

h0
[
α
(g(t)−g(η)

φ

)]
if t ≥ η ,

where h0 is the hazard rate function for the underlying distribution with density f0. Finally, to prove Theorem
2.2 (iii) we start from the definition of the cumulative hazard function, and find

Λα(t;η ,φ) =
∫ t

0
hα(s)ds =− lnSα(t;η ,φ)

=


− ln

{
1−2αS0

[
(1−α)

(g(η)−g(t)
φ

)]}
if t < η

− ln[2(1−α)]+Λ0
[
α
(g(t)−g(η)

φ

)]
if t ≥ η ,

where Λ0(.) is the cumulative hazard function associated with the density f0. ut

Appendix B Proofs of Theorems 3.1 and 3.2

B.1 Proof of Theorem 3.1 (consistency)

Since the likelihood function is not differentiable with respect to η at η = yi for all i = 1, · · · ,n, the GQBA
family does not satisfy the usual regularity conditions to prove the asymptotic properties of MLEs. Hu-
ber (1967) established the consistency and asymptotic normality of any sequence of estimators under non-
standard conditions. We here follow Huber’s method in the right censored data case. Since we assumed
independent censoring with non-informative censoring mechanism, we do not have identifiability issues
between survival and censoring time distributions. Let (Ω ,F ,P) be a probability space of (Y,∆) with
Ω = R+

0 ×{0,1} and ΨΨΨ(θθθ ;Y,∆) be a vector of the score function on ΘΘΘ R×Ω given as

ΨΨΨ(θθθ ;Y,∆) =

ψ1(θθθ ;Y,∆)
ψ2(θθθ ;Y,∆)
ψ3(θθθ ;Y,∆)

=


1
2

(
∂

∂η−−− `(θθθ ;Y,∆)+ ∂

∂η+ `(θθθ ;Y,∆)

)
∂

∂φ
`(θθθ ;Y,∆)

∂

∂α
`(θθθ ;Y,∆)

 ,
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where ∂

∂η− `(θθθ ;Y,∆) and ∂

∂η+ `(θθθ ;Y,∆) denote the left-hand and right-hand derivative with respect to η ,

respectively. The aim is to prove the convergence of any sequence θ̂θθ n such that

1
n

n

∑
i=1

ΨΨΨ(θ̂θθ n;Yi,∆i)
a.s−→ 000,

converges almost surely to θθθ 0. We want to give sufficient conditions for the assumptions that have been
established in Theorem 2 of Huber (1967, pp.224-225). Sufficient conditions such that Huber’s assumptions
for the consistency of the estimator θ̂θθ n hold, are:

(H-1). For each fixed θθθ ∈ΘΘΘ R, ΨΨΨ(θθθ ;Y,∆) is Ω -measurable and separable.

(H-3). The expected value λ (θθθ) = EY,∆
[
ΨΨΨ(θθθ ;Y,∆)

]
exists for all θθθ ∈ΘΘΘ R, and has a unique zero at θθθ = θθθ 0.

(H-2′). As the neighbourhood Uθ of θθθ shrinks to {θθθ 0}

EY,∆
{

u(θθθ ;Y,∆)
}
→ 000,

where u(θθθ ;Y,∆) = sup
θθθ 0∈Uθ

‖ΨΨΨ(θθθ 0;Y,∆)−ΨΨΨ(θθθ ;Y,∆)‖, ‖ · ‖ denotes Euclidean norm.

We can prove (H-1) by imposing Assumption (B1), in that we have ΘΘΘ R as a compact subset of the
parameter space ΘΘΘ . It is also well known that a compact space is totally bounded and complete. We also
know that a compact space is separable (Van der Vaart, 2000). Furthermore, the score function ΨΨΨ(θθθ ;Y,∆)
is a function of θθθ in a compact space ΘΘΘ R, and it also depends on the random variables Y and ∆ ; hence
separability is achieved here. Note that, ΨΨΨ(θθθ ;Y,∆) is a measurable function of (Y,∆) for each θθθ since it is
established from a joint probability distribution defined on the measure space (Ω ,F ,P).

For the second assumption (H-3), we first need to check the identifiability of the parameters, i.e., for
θθθ 6= θθθ 0, we need to ensure that `(θθθ ;y,δ ) 6= `(θθθ 0;y,δ ). We have that exp

(
`(θθθ 0;y,δ = 1)

)
= fα0(y;θθθ 0)

and exp
(
`(θθθ 0;y,δ = 0)

)
= Sα0(y;θθθ 0)≡ 1−Fα0(y;θθθ 0). In the complete data analysis, Gijbels et al. (2019a)

proved the identifiability issue by comparing the mode value in fα(y;θθθ) and fα0(y;θθθ 0). Consider fα(y;θθθ) =
fα0(y;θθθ 0), which shows that both densities have the same mode η = η0, since each distribution of GQBA
family is unimodal at η . Moreover, fα(y;θθθ) = fα0(y;θθθ 0) implies Sα(y;θθθ) = Sα0(y;θθθ 0) and also α =
Fα(η) = Fα0(η0)) = α0, which indicates that α = α0. Therefore, fα(η ;θθθ) = fα0(η0;θθθ 0) with η = η0,
and φ = φ0. Hence, the identifiability of the parameters holds, i.e., θθθ = θθθ 0. In other words, θθθ 6= θθθ 0 ⇒
`(θθθ ;y,δ ) 6= `(θθθ 0;y,δ ).

The second condition (H-3) we first should check is the existence of the expected score function. Under
Assumptions (B2)-(B5) we have a finite expected value of the score function as stated in Proposition 3.1;
hence λ (θθθ) exists for all θθθ ∈ΘΘΘ R, and has a unique zero at θθθ = θθθ 0.

For the last assumption (H-2′) we know that u(θθθ ;Y,∆) is a continuous function in θθθ , and θθθ belongs
to a compact set ΘΘΘ R. Hence, u(θθθ ;Y,∆) is bounded on ΘΘΘ R. It is also immediate from (H-2′) that λ (θθθ) is
continuous. ut

B.2 Proof of Theorem 3.2 (asymptotic normality)

Similar to the consistency, we also established the asymptotic normality using the conditions of Theorem 3
in Huber (1967, pp.226-227). Huber provides sufficient conditions which assure that every sequence of θ̂θθ n

satisfying
1√
n

n

∑
i=1

ΨΨΨ(θ̂θθ n;Yi,∆i)
P−→ 000,

is asymptotically normal.
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(N-1). For each fixed θθθ ∈ΘΘΘ R, ΨΨΨ(θθθ ;Y,∆) is Ω -measurable and separable.

(N-2). There is a θθθ 0 ∈ Θ̊ΘΘ R such that λ (θθθ 0) = 000.

(N-3). There are strictly positive numbers a,b,c,d0 such that

(i) ‖λ (θθθ)‖ ≥ a‖θθθ −θθθ 0‖ for ‖θθθ −θθθ 0‖ ≤ d0,

(ii) EY,∆
[
u(Y,∆ ,θθθ ,d)

]
≤ bd for ‖θθθ −θθθ 0‖+d ≤ d0, d ≥ 0,

(iii) EY,∆
[
u(Y,∆ ,θθθ ,d)2

]
≤ cd for ‖θθθ −θθθ 0‖+d ≤ d0, d ≥ 0.

Where we define u(Y,∆ ,θθθ ,d) = sup
‖θθθ−θθθ 0‖≤d

‖ΨΨΨ(θθθ ;Y,∆)−ΨΨΨ(θθθ 0;Y,∆)‖ for θθθ 0 ∈ Θ̊ΘΘ R.

(N-4). The expectation EY,∆
[
||ΨΨΨ(θθθ 0;Y,∆)||2

]
is finite.

Note that the first assumption (N-1) is the same as (H-1) in the consistency part, and already proved
in Section B.1. Furthermore, for the second assumption (N-2), we already proved that λ (θθθ) exists for all
θθθ ∈ΘΘΘ R in Proposition 3.1, and has a unique zero at θθθ = θθθ 0 in (H-3) of Huber (1967). Since Θ̊ΘΘ R is an interior
of ΘΘΘ R and the expectations are always taken with respect to the true distributions Fα0(y;η0,φ0) and G(.), we
find that λ (θθθ 0) = 000.

The last two assumptions (N-3) and (N-4) involve the existence of the Fisher information matrix. Con-
dition (N-4) holds, i.e., EY,∆

[
||ΨΨΨ(θθθ 0;Y,∆)||2

]
< ∞, since

EY,∆
[
||ΨΨΨ(θθθ 0;Y,∆)||2

]
= EY,∆

{[
ΨΨΨ(θθθ 0;Y,∆)

][
ΨΨΨ(θθθ 0;Y,∆)

]T}
= Trace[I(θθθ 0)]< ∞.

To prove (N-3), a Taylor expansion for λ (θθθ) at the point θθθ 0 has been used in Gijbels et al. (2019a). The
interesting expression in this sense is that since λ (θθθ) is continuously differentiable in any neighbourhood
of θθθ 0, and hence

λ (θθθ) = λ (θθθ 0)−I(θθθ 0)(θθθ −θθθ 0)+o
(
‖θθθ −θθθ 0‖

)
.

For further details, see the reference above. ut


