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Abstract

The method of generalized pairwise comparisons (GPC) is an extension of the well-

known non-parametric Wilcoxon -Mann -Whitney test for comparing two groups of ob-

servations. Multiple generalizations of Wilcoxon-Mann-Whitney test and other GPC

methods have been proposed over the years to handle censored data. These methods

apply different approaches to handling loss of information due to censoring: ignoring

non-informative pairwise comparisons due to censoring (Gehan, Harrell and Buyse); im-

putation using estimates of the survival distribution (Efron, Péron and Latta); or inverse

probability of censoring weighting (IPCW, Datta and Dong). Based on the GPC statis-

tic, a measure of treatment effect, the “net benefit”, can be defined. It quantifies the

difference between the probabilities that a randomly selected individual from one group is

doing better than an individual from the other group. This paper aims at evaluating GPC

methods for censored data, both in the context of hypothesis testing and estimation, and

providing recommendations related to their choice in various situations. The methods

that ignore uninformative pairs have comparable power to more complex and computa-

tionally demanding methods in situations of low censoring, and are slightly superior for

high proportions (> 40%) of censoring. If one is interested in estimation of the net benefit,

Harrell’s c index is an unbiased estimator if the proportional hazards assumption holds.

Otherwise, the imputation (Efron or Peron) or IPCW (Datta, Dong) methods provide

unbiased estimators in case of proportions of drop-out censoring up to 60%.
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1 Introduction

Ever since Wilcoxon laid foundations to the non-parametric testing procedures (Wilcoxon, 1945),

later successfully extended by Mann and Whitney (Mann and Whitney, 1947), the idea of using pair-

wise comparisons has been gaining in popularity across various fields. Several statistics have

built on the Mann-Whitney approach, giving rise to an entire family of Generalized Pair-

wise Comparisons (GPC) methods. This term, formally introduced by Buyse (Buyse, 2010), en-

compasses any method or test based on comparing one observation from a treatment group

with an observation from the control group. Most of the GPC methods generalize the Mann-

Whitney test to include multiple outcomes of interest of any type (time-to-event, continu-

ous or categorical), possibly considered in turn based on some pre-defined order of priorities.

The methods built on the prioritized comparisons include the Finkelstein-Schoenfeld method

(Finkelstein and Schoenfeld, 1999), the net benefit (Buyse, 2010), the win ratio (Pocock et al., 2012), the win

odds (Dong et al., 2020a,Brunner et al., 2021), and the probabilistic index (Acion et al., 2006). The non-

prioritized methods include the O’Brien test (O’Brien, 1984). While the original Wilcoxon test

was not using the pairwise comparisons, it can be adapted to pairwise comparisons as well

(Ramchandani et al., 2016,Verbeeck et al., 2019).

Consider two groups of patients with Xi (i = 1, . . . , nE) denoting the outcome for the i-th

patient in the experimental group and Yj (j = 1, . . . , nC) denoting the same outcome for the

j-th patient in the control group. We start by assigning a score to each pairwise comparison

between the two groups, in a manner proposed by Gehan in his extension of the Mann-Whitney

approach to censored data (Gehan, 1965):

Uij =


1, if Xi > Yj

−1, if Yj > Xi

0, if Xi = Yj.

(1)

Based on these scores, we can construct a test statistic to test the null hypothesis of equality

of outcome distributions between the treatment and control groups:

∆̂ =
1

nEnC

nE∑
i=1

nC∑
j=1

Uij. (2)
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Buyse (Buyse, 2010) has proposed using permutations to obtain the empirical distribution of ∆̂,

with two-sided p-values calculated by taking the proportion of all permutation samples with

the absolute value of the test statistic greater than or equal to
∣∣∣∆̂∣∣∣. Depending on the number

of permutations, this method can become computationally demanding and time consuming.

The expected value of ∆̂ is equal to:

E(∆̂) = P (Xi > Yj)− P (Yj > Xi). (3)

Some authors (Buyse, 2010,Peron et al., 2016) view this quantity as a treatment effect measure called

the net benefit (3). It can be seen as a difference between the probabilities that a randomly

selected individual from one group is doing better than an individual from the other group.

In the remainder of the paper we will focus on the GPC test statistic defined in (2) and the

related treatment effect measure, the net benefit. However, the presented results may extend to

other measures (and corresponding statistics) related to the net benefit such as the probabilistic

index, the win ratio, and the win odds.

Ideally, the scoring mechanism in (1) should accommodate any type of outcome. The scoring

of continuous, categorical, binary, or time-to-event outcomes in the absence of censoring is

straightforward. Moreover, it has been shown that the probabilistic index and net benefit are

always unbiased and efficient in detecting a treatment effect in realistic clinical scenarios in a

univariate setting (Verbeeck et al., 2021). However, in many practical situations, observed values of

time-to-event variables are right-censored, most often due to the limited duration of follow-up.

In such scenarios there is no simple and unambiguous way of scoring pairs with one or both

observations in a pair being censored, and these pairs are often considered to be uninformative.

Several extensions of the Wilcoxon-Mann-Whitney test towards censored data have been pro-

posed. They differ in the way of handling loss of information due to the uninformative pairs. As

the GPC test statistic can be viewed as a linear transformation of the Wilcoxon-Mann-Whitney

test statistic, W , with

∆ = 1− 2
W

nEnC

,

the same extensions can be easily applied to the GPC test as well.

The extensions that deal with censored data can be divided into three main groups. The first

group uses a näıve approach where each uninformative pair receives a score of zero, as proposed

by Gehan (Gehan, 1965), or is ignored, as in Harrell’s c (Harrell et al., 1982) and by Buyse (Buyse, 2008).

The second group contains imputation-based methods, such as the ones proposed by Efron

(Efron, 1967), Péron (Peron et al., 2016), and Latta (Latta, 1977). These methods use the non-parametric
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Kaplan-Meier estimator of the survival function to obtain an appropriate estimate of the prob-

ability one element in a pair doing better than the other. Finally, the third group includes the

Inverse Probability of Censoring Weighting (IPCW) methods, such as those suggested by Datta

(Datta et al., 2010) and Dong (Dong et al., 2020b). These methods use the Kaplan-Meier estimates of

the censoring distribution to obtain the probability of censoring for each observation. The

inverse of this probability is used to re-weight the observed scores.

This paper aims at comparing, in a univariate setting, the extensions of the GPC test to

censored data discussed above, both in the context of hypothesis testing and estimation, and

at providing recommendations. We begin with a brief review of the available extensions in

Section 2, followed by a simulation study. The setting of the simulation study is described in

Section 3 and the results are summarized and presented in Section 4. We follow up with a

practical example of an analysis of real-life clinical trial data in Section 5. Section 6 completes

the paper with a discussion and conclusions.

2 Extensions of GPC and the net benefit to censored

data

2.1 Notation

Let Xi (i = 1, . . . , nE) and Yj (j = 1, . . . , nC) be the event-times from treatment and control

group, respectively. We assume that the times are iid within each group. We assume that

observations of some of these times might be right-censored such that we observe only the

time of censoring, Xc
i or Y c

j . Therefore, for each of the observations, we observe only X ′i =

min(Xi, X
c
i ) or Y ′j = min(Yj, Y

c
j ) and the corresponding censoring indicators δi = 1(Xi < Xc

i )

and εj = 1(Yj < Y c
j ), where 1(A) is the indicator of event A.

Furthermore, let F (t) = P (Xi > t), G(t) = P (Yj > t), H(t) = P (Xc
i > t), and I(t) = P (Y c

j >

t) denote survival functions of Xi, Yj, X
c
i , and Y c

j , respectively.

Similar notation will be assumed for the joint sample of size nE + nC = N , i.e., denote the

event-times in the joint sample by Zk (k = 1, . . . , N), with the observed time Z ′k = min(Zk, Z
c
k),

where Zc
k is the time of censoring. The corresponding censoring indicator is denoted by θk =

1(Zk < Zc
k). We use J(t) = P (Zk > t) to refer to the survival function of Zk.
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2.2 Näıve approaches

The first attempt at extending the scoring in formula (1) to include censored outcomes was

made by Gehan (Gehan, 1965) as follows:

UG
ij =


1, if X ′i > Y ′j , and εj = 1

−1, if Y ′j > X ′i, and δi = 1

0, if X ′i = Y ′j , and εj = δi = 1

0, otherwise. The pair is uninformative.

(4)

In other words, Gehan suggested assigning a score of zero to every comparison that did not

lead to a clear cut decision on which of the two observations had a better outcome. The test

statistic is then obtained by plugging the score (4) into formula (2):

∆̂G =
1

nEnC

nE∑
i=1

nC∑
j=1

UG
ij . (5)

A fast, exact, and closed-form expression of the permutation variance of the GPC statistic under

the null hypothesis F (t) = G(t) is available (Mantel, 1967,Finkelstein and Schoenfeld, 1999,Verbeeck et al., 2020).

It can be used for inference based on the Gehan statistic. The formula requires scoring all possi-

ble pairs of observations, both between and within the two groups of observations. In particular,

consider a joint sample, Z = Z1, . . . , ZN . Following (4), we define the score

V G
kl =


1, if Z ′k > Z ′l , and θl = 1

−1, if Z ′l > Z ′k, and θk = 1

0, if Z ′k = Z ′l , and θk = θl = 1

0, otherwise

(6)

for k, l = 1, . . . , N .

The exact permutation variance of ∆̂G is given by

Var(∆̂G) =
1

nEnCN(N − 1)

N∑
k=1

(
N∑
l=1

V G
kl

)2

. (7)

Since ∆̂G belongs to a broader class of generalized U-statistics (Lee, 1990), the null hypothesis,

H0 : F (t) = G(t)
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can be tested by using the asymptotic normality of ∆̂G that follows from the theory of U-

statistics. Consequently, the p-value of a two-sided test can be obtained as follows:

p = 2 · Φ

 − | ∆̂G |√
Var(∆̂G)

 , (8)

where Φ() is the standard-normal cdf and Var(∆̂) is defined in (7).

It is straightforward to show that the expectation of the generalized Gehan statistic is equal to

E(∆̂G) = P (Y c
j > X ′i > Yj)− P (Xc

i > Y ′j > Xi). (9)

Under the null hypothesis of equality of distributions, H0 : F (t) = G(t), we get E(∆̂G) = 0

(Gehan, 1965). However, if F (t) 6= G(t), the expected value of E(∆̂G) depends on the distributions

of censoring times in the treatment groups. Thus, under the alternative hypothesis and in the

presence of right-censoring, the Gehan statistic is a biased estimate of the net benefit ∆, given

in (3). Note that the dependence of the expected value of the GPC statistic on the censoring

distribution under Gehan scoring is well-known and it has been studied for the test based on

the win-ratio statistic as well (Rauch et al., 2014,Oakes, 2016,Dong et al., 2020c).

The Harrell’s c-index approach (Harrell et al., 1982,Koziol, 2009) adopts the same scoring as defined in

(4). However, the uninformative pairs are omitted when calculating the test statistic (2), i.e.,

∆̂H =
1

n′En
′
C

nE∑
i=1

nC∑
j=1

UG
ij , (10)

where n′C and n′E denote the number of uncensored observations in the control and experimental

group, respectively. Buyse (Buyse, 2008) proposed the same approach when considering estimation

of the net benefit, and showed its relationship with the hazard ratio under proportional hazards

(PH).

The expression for the exact permutation variance, given in (7), can be adapted to the case of

Harrell’s c index as follows:

Var(∆̂H) =
nEnC

N(N − 1)
∑N

k=1

∑N
l=1 1(V G

kl is informative)

N∑
k=1

(
N∑
l=1

V G
kl

)2

. (11)

Construction of the formal test of the null hypothesis relies on the asymptotic normality of the

U-statistic ∆̂H , as in the case of ∆̂G (8).
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The expectation of the Harrell’s c index is proportional to E(∆̂G), with the proportionality

factor equal to the inverse of a probability of a pair being informative (Koziol, 2009):

E(∆̂H) =
1

P{1(Uij is informative)}
× E(∆̂G) =

P (X ′i, Y
c
j > Yj)− P (Y ′j , X

c
i > Xi)

P (X ′i, Y
c
j > Yj) + P (Y ′j , X

c
i > Xi)

. (12)

The dependence of the expectation of the Harrell’s c index on the censoring distribution of the

outcomes implies that, in general, E(∆̂H) 6= ∆. However, Harrell has developed the index as

a measure of separation of two survival curves under the PH assumption. Indeed, it can be

shown that, under this assumption, E(∆̂H) = ∆. Appendix 6 presents a proof of this equality

in case of two exponentially distributed outcomes.

2.3 Imputation-based approaches

Efron (Efron, 1967) has criticized the dependence of the expected value of the Gehan statistic on

the censoring distributions and developed an alternative and mathematically elegant method

of approaching the two sample problem with right-censored data. In particular, he proposed

to redefine UG
ij as follows:

UE
ij = P (Xi > Yj | X ′i, Y ′j , δi, εj)− P (Yj > Xi | X ′i, Y ′j , δi, εj) (13)

If X ′i > Y ′j and εj = 1, or if Y ′j > X ′i and δi = 1, then UE
ij takes a value of 1, or -1, as UG

ij defined

in (4). However, a score of 0 is no longer assigned to UE
ij in case a clear comparison is impossible

due to censoring. In fact, UE
ij involves conditional probabilities P (Xi > Yj | X ′i, Y ′j , δi, εj) and

P (Yj > Xi | X ′i, Y ′j , δi, εj), which can be estimated by using the Kaplan-Meier estimates of F̂ (t)

and Ĝ(t). The scores of UE
ij are summarized in Table 1.

Table 1: Values of UE
ij for the Efron approach to the right-censored data problem.

(δi, εj) Xi > Yj Xi = Yj Xi < Yj
(1,1) 1 0 -1

(0,1) 1 1 2
F̂ (Yj)

F̂ (Xi)
− 1

(1,0) 1− 2 Ĝ(Xi)

Ĝ(Yj)
-1 -1

(0,0) 1− Ĝ(Xi)

Ĝ(Yj)
0

F̂ (Yj)

F̂ (Xi)
− 1

The Efron-test statistic ∆̂E is then obtained by plugging the score (13) into (2).

The exact permutation variance (Verbeeck et al., 2020) estimation requires that the score between

any two observations remains constant across all permutation samples. This condition does not
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hold for the Efron scoring. Thus, the inference based on ∆̂E relies on a re-sampling permutation

distribution.

Efron (Efron, 1967) shows that ∆̂E =
∫∞
−∞ Ĝ(t)dF̂ (t)−

∫∞
−∞ F̂ (t)dĜ(t) is the maximum likelihood

estimate of ∆ provided that the largest observation in each group is treated as uncensored.

Péron et al. (Peron et al., 2016) have suggested an adaptation of Efron’s scoring, differing only

in that it allows the largest observation in each group to be right-censored. For details of

this scoring approach we refer to Péron et al. (Peron et al., 2016). Similarly to ∆̂E, the test using

the statistic resulting from Péron’s adaptation of Efron’s scoring is based on a re-sampling

permutation distribution.

The scoring systems of Efron and Péron et al. use separate Kaplan-Meier estimates of the

survival function for the two groups of observations. Latta (Latta, 1977) suggested using the

Kaplan-Meier estimate of the joint survival function based on the joint sample Zk, because

under the null hypothesis of no treatment effect observations are assumed to come from the

same distribution.

Following Latta, the scores in Table 1 are adjusted by substituting each F̂ (Xi) and Ĝ(Yj) by

J̃(Xi) or J̃(Yj), with J̃(t) defined as:

J̃(Zk) =

{
1
2
{Ĵ(Zk−) + Ĵ(Zk+)} if θk = 1

Ĵ(Zk+) if θk = 0,
(14)

where Ĵ(t−) and Ĵ(t+) correspond to the left and right limit, respectively, of the estimated

survival function at time t. If the null hypothesis F (t) = G(t) is true, then Ĵ(t) is a more

efficient estimator of the (common) survival function than either F̂ (Xi) or Ĝ(Yj).

The Latta-test statistic ∆̂L is then obtained by plugging the Efron score modified by (14) into

(2). As the Latta scoring uses a single survival function for both groups, the score for each pair

remains stable across all permutation samples. As a result, we can use the exact permutation

variance (7) to estimate Var(∆̂L). Construction of the formal test of the null hypothesis then

relies on the asymptotic normality of the U-statistic ∆̂L, as in the case of ∆̂G (8).

It is worth noting that the Latta-test statistic is related to the Peto-Peto-Prentice modification

of the log-rank test (Latta, 1977). Let us consider an alternative formulation of the test statistic

(Mantel, 1967), based on the Latta scores UL
kl obtained through comparisons in a joint sample Zk.

Define:

UL
k =

N∑
l=1

UL
kl.
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Then, the Latta-test statistic can be obtained as:

∆̂L =
1

nEnC

N∑
k=1

UL
k 1(k is in treatment group).

Peto and Peto, 1972 noted the linear relationship between the ranks of observations and J̃(Zk) and

proposed to use statistic

WP =
N∑
k=1

wk1(k is in treatment group),

where

wk =

{
1− 2J̃(Zk) if θk = 1

1− J̃(Zk) if θk = 0.
(15)

Based on Theorem 1 in,Latta, 1977 we can show that ∆̂L = N
nEnC

WP .

2.4 Methods based on Inverse Probability of Censoring Weighting

Datta (Datta et al., 2010) proposed weighting informative pairs in (4) by using weights derived from

the Kaplan-Meier estimates of the survival functions H(t) and I(t) of censored observations X ′i

and Y ′j , respectively. As a result, the following statistic is obtained:

∆̂IPCW1 =
1

nEnC

nE∑
i=1

nC∑
j=1

UG
ij δiεj

Ĥ(Xi)Î(Yj)
. (16)

Datta further proves that, under independent censoring, E(∆̂IPCW1) = ∆. Moreover, Stute

and Wang (Stute and Wang, 1994) have shown that the Efron statistic is equal to ∆̂IPCW1. Note

that, similarly to Efron’s approach, the Datta statistic requires that the largest observation in

each group is treated as uncensored.

It can be noted that the approach proposed by Datta discards much information, because only

the pairs with both δi = 1 and εj = 1 are taken into consideration in ∆̂IPCW1. This could

potentially result in a loss of efficiency if there are many censored observations in the data.

Dong (Dong et al., 2020b) proposed an IPCW method, which defines two scores, Kij and Lij, instead

of a single UG
ij :

Kij =

{
1, if X ′i > Y ′j , and εj = 1

0, otherwise,
(17)
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and

Lij =

{
1, if Y ′j > X ′i, and δi = 1

0, otherwise.
(18)

The test statistic is then obtained by weighting each individual score by the inverse of the

censoring probability estimated by using the Kaplan-Meier estimator of the survival functions

H(t) and I(t):

∆̂IPCW2 =
1

nEnC

nE∑
i=1

nC∑
j=1

(
Kij

Ĥ(Y ′j )Î(Y ′j )
− Lij

Ĥ(X ′i)Î(X ′i)

)
. (19)

Construction of the formal tests of the null hypothesis based on ∆̂IPCW1 and ∆̂IPCW2 cannot

rely on the use of the exact permutation variance and is based on the re-sampling permutation

distribution instead.

3 Simulation study setting

We consider a setting with a single right-censored outcome observed in two groups of patients,

experimental and control. We assume a sample size of nE = nC = 100.

We investigate two possible scenarios: one corresponding to situations when the PH assumption

holds, and one when the assumption does not hold. The first case is simulated by using

exponential distributions, while a log-normal distribution is assumed for the second case. The

parameters of the simulation models are summarized in Table 2.

Table 2: Summary of scenarios and their corresponding parameters used in simulations.

Scenario Outcome Control group Experimental group
distribution parameters parameters
H0 : F (t) = G(t), ∆ = 0

Proportional hazards Exp(λ) λC = 0.00315 λE = 0.00315
Non-proportional hazards Log-N(µ, σ2) σC = 1, µC = 4.60 σE = 1, µC = 4.60

HA : F (t) 6= G(t), ∆ = 0.2
Proportional hazards Exp(λ) λC = 0.00315 λE = 0.00210
Non-proportional hazards Log-N(µ, σ2) σC = 1, µC = 4.60 σE = 1, µC = 4.96

We assume two mechanisms of censoring, because it is known (Dong et al., 2020c) that the GPC

statistics behave differently for them: a “drop-out” censoring that results from a uniform

distribution on the interval (0, cE) for the experimental group and (0, cC) for the control, and

an “administrative” censoring at time Tc due to the end of the follow-up.

10



Following De Backer et al. (De Backer et al., 2020), we can express the proportion of drop-out

censored observations, given that the censoring is uniform, as follows:

pDO,G =

∫ Tc

0
F (t)dt

cG
, (20)

with G = E or C denoting the treatment group assignment.The corresponding proportion of

administrative censoring is given by

padm,G =
(cG − Tc)

cG
F (Tc). (21)

Note that the overall proportion of drop-out censored data in the sample is equal to pDO =

(pDO,E + pDO,C)/2. Similarly, the overall proportion of administrative censoring is padm =

(padm,E + padm,C)/2.

The values of cE, cC , and the Tc are obtained through a numerical search, such that, when

F (t) = G(t), across both groups we obtain the following three scenarios:

1. a target proportion of the overall drop-out censoring alone, that is, pDO ∈ {0%, 10%, 30%, 50%, 70%,

90%}, padm = 0%, and cE = cC ;

2. a target proportion of the overall drop-out censoring alone pDO ∈ {0%, 10%, 30%, 50%, 70%, 90%},
padm = 0% and cE 6= cC . We have set cE and cC such that pDO,E ∈ {0%, 5%, 25%, 45%, 65%, 85%}
and pDO,C ∈ {0%, 15%, 35%, 55%, 75%, 95%};

3. a constant drop out pDO = 10% (cE = cC), with additional administrative censoring

padm ∈ {10%, 30%, 50%, 70%, 90%}.

Note that (a) and (c) imply that H(t) = I(t).

For each scenario, and each combination of pDO and padm, we simulate 5,000 datasets of right-

censored time-to-event data in two treatment groups. Then, each of these datasets is analyzed

by using all the approaches discussed in Sections 2.2–2.4. In parallel, we use the classical

log-rank test for comparison of power.
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4 Results

4.1 Hypothesis testing

Figure 1 presents rejection proportions computed for 5,000 simulated datasets, i.e., empirical

estimates of the type-I error probability. None of the scenarios corresponding to the null hy-

pothesis H0 : F (t) = G(t), and in the presence of equal censoring distributions H(t) = I(t)

(Figure 1, panels (a), (b), (e) and (f)), indicate a significant deviation of the type-I error proba-

bility from 5%. Nevertheless, in case of a combination of drop-out and administrative censoring,

a slightly conservative type-I error probability control can be observed if administrative cen-

soring proportion is high.

In case of unequal censoring distributions between the treatment groups, H(t) 6= I(t) (Figure 1,

panels (c) and (d)), the type-I error probability estimates differ significantly from the nominal

level of 5%, especially for proportion of censoring larger than 30%. However, it is worth

noting that the use of permutations consisting of re-shuffling treatment assignments across the

entire data set requires the assumption that the entire vector of observations belonging to a

particular patient, (X ′i, δi) or (Y ′j , εj), is equally likely to be observed both for the experimental

treatment and for the control. That is, the test based on such permutations amounts to testing

a hypothesis of equality of survival AND censoring distributions simultaneously. In cases with

differential censoring distributions, we no longer operate under the null hypothesis, which is

reflected in failure to control the type-I error probability at the nominal level.

Figure 2 presents rejection proportions computed for 5,000 simulated datasets for the scenarios

with Ha : F (t) 6= G(t), i.e., empirical estimates of power. If the censoring distributions are

equal, H(t) = I(t) (Figure 2, panels (a), (b), (e) and (f)), the power varies slightly among all of

the methods, with the Latta approach leading to the highest power for the non-PH case and the

PH case with large censoring. Among the other approaches, the näıve approaches (Gehan’s and

Harrel’s) are comparable in power to the more computationally demanding ones for combined

drop-out/administrative censoring, and are slightly more powerful for large proportions of drop-

out censoring (> 50%).

In the presence of unequal censoring distributions, H(t) 6= I(t) (Figure 2, panels (b) and

(d)), there is a clear difference in power of the Efron and Datta statistics as compared to the

remaining tests. Note that the two statistics require that the largest observation in each group

is treated as uncensored. Such artificial introduction of an additional event to the dataset,

especially in the presence of high censoring, might introduce bias (see Section 4.2), which,

possibly coupled with the fact that the permutation test assumes equal censoring distributions,

leads to unpredictable changes in power.
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Figure 1: Empirical rejection rate over 5,000 simulated datasets. Scenarios under the null
hypothesis, H0 : F (t) = G(t): for proportional hazards (panels (a), (c), and (e)) and non-
proportional hazards (panels (b), (d), and (f)) scenarios.

It is of interest to compare the power of all the GPC test-statistics (with the exception of the

Efron and Datta statistics in unequal censoring distributions scenarios) with the classical log-

rank test. As expected, the log-rank test is more powerful in PH scenarios with low censoring,

but the difference decreases for higher censoring. In non-PH scenarios, there is a clear power

advantage of the GPC statistics such as, e.g., the one proposed by Latta, especially for higher
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Figure 2: Empirical rejection rate over 5,000 simulated datasets. Scenarios under the alternative
hypothesis, Ha : F (t) 6= G(t), with true ∆ = 0.2: proportional hazards (panels (a), (c), and
(e)) and non-proportional hazards (panels (b), (d), and (f)) scenarios.

percentages of censoring.
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Figure 3: Estimated net benefit, mean over 5,000 simulated datasets. Scenarios under the
alternative hypothesis, Ha : F (t) 6= G(t), with true ∆ = 0.2: proportional hazards (panels (a),
(c), and (e)) and non-proportional hazards (panels (b), (d), and (f)) scenarios.

4.2 Estimation of net benefit

Figure 3 presents the mean of the estimates of the net benefit computed for 5,000 datasets

simulated under the alternative hypothesis, Ha : F (t) 6= G(t) with ∆ = 0.2. The plots indicate

clear differences among the different approaches.
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The estimates obtained by using the two näıve approaches, i.e., Gehan’s and Harrell’s c index,

differ considerably in terms of bias of estimation of ∆. The Gehan statistic ∆̂G yields biased

estimates in the presence of any mechanism and any proportion of censoring. In comparison,

Harrell’s c index, ∆̂H , is unbiased in PH scenarios (Figure 3 (a), (c) and (e)), even with a high

proportion of administrative censoring. The only situation where Harrell’s c shows any bias in

PH scenarios is the presence of 90% censoring whenever H(t) 6= I(t). It is no longer unbiased

if the PH assumption does not hold (Figure 3 (b), (d) and (f)).

Whenever H(t) = I(t) (Figure 3 (a), (b), (e) and (f)), the estimates obtained by using the

imputation and IPCW based statistics show very similar profiles, with a notable exception of

the Latta approach that yields biased estimates in all scenarios. This is not surprising, because

this statistic is constructed by assuming a common survival function for both treatment groups,

which does not hold under the alternative hypothesis Ha : F (t) 6= G(t). The other statistics

(proposed by Efron, Péron, Datta, and Dong) yield unbiased estimates for up to 50-70% drop-

out censoring and start exhibiting downward bias as the censoring proportion increases further,

though the Efron and Datta statistics are slightly less biased than the Péron and Dong ones in

the presence of high proportions of censoring.

In scenarios where H(t) 6= I(t) (Figure 3 (c) and (d)), the bias of the Péron, Latta and Dong

test statistics follow similar trajectories as in scenarios with H(t) = I(t). As for Efron and

Datta approaches, they show a considerable bias for overall censoring of over 30%, in line with

discussion in Section 4.1.

In the presence of administrative censoring, all the imputation and IPCW based statistics

show strong negative bias. This observation can be justified theoretically. In particular, it can

be shown that, if one observes the survival function only until some fixed time Tc, then the

expected value of the statistic, irrespective of the approach, can be expressed as follows:

E(∆̂∗) = P (Xi > Yj)− P (Yj > Xi)− P (Tc ≤ Xi < Yj) + P (Tc ≤ Xi < Yj)

+ P (Tc ≤ Xi, Tc ≤ Yj, Xi < Yj)− P (Tc ≤ Yj, Tc ≤ Xi, Yj > Xi) =

= E(∆̂)− P (Tc ≤ Xi < Yj) + P (Tc ≤ Xi < Yj)

+ P (Tc ≤ Xi, Tc ≤ Yj, Xi < Yj)− P (Tc ≤ Yj, Tc ≤ Xi, Yj > Xi). (22)

5 Example

We apply all the GPC approaches discussed in Sections 2.2–2.4, to right-censored data from

a randomized phase III trial in advanced colorectal cancer. The trial compared two sequences

of combination regimens: first-line treatment with FOLFIRI (folinic acid, fluorouracil, and
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Table 3: The estimated net benefit and p-values of the test of equality of survival distributions
in arms A and B, H0 : F (t) = G(t), for of the data from the phase III clinical trial in advanced
colorectal cancer using different GPC statistics for censored data.

Endpoint Näıve methods Imputation-based methods IPCW methods Log-rank
Gehan Harrell Efron Péron Latta Datta Dong

1st-line ∆̂ -0.049 -0.054 -0.059 -0.059 -0.053 0.059 0.059
PFS p-val 0.508 0.508 0.455 0.439 0.488 0.455 0.460 0.083

2nd-line ∆̂ 0.303 0.334 0.316 0.316 0.309 0.316 0.316
PFS p-val 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.066

PFS2 ∆̂ 0.093 0.153 0.137 0.133 0.114 0.137 0.133
p-val 0.111 0.111 0.125 0.137 0.106 0.124 0.134 0.413

PFS: progression-free survival; PFS2: second progression-free survival.

irinotecan) followed by FOLFOX6 (folinic acid, fluorouracil, and oxaliplatin) as the second-line

therapy in arm A, and the reverse sequence (FOLFOX6 in first line followed by FOLFIRI in

second line) in arm B. The trial enrolled 226 patients who were randomly assigned to the two

treatment arms. Six of those patients were deemed ineligible. Thus, the final analysis included

the remaining 220 eligible patients, 109 in arm A and 111 in arm B.

The original analysis (Tournigand et al., 2004) used the log-rank test for the comparison of the

progression-free survival (PFS) of the first and the second-line treatments separately, as well

as for the second progression-free survival (PFS2, defined as time from randomization to the

disease progression after the second-line treatment), considered the primary endpoint in this

study. The results included both an external review, and the investigator’s assessment of tumor

progression.

We re-analyse the investigators’ data using the seven approaches discussed in Sections 2.2–2.4

considering the three outcomes of interest of the study. A summary of the results of these

analyses is presented in Table 3, along with the results of the log-rank test.

None of the tests of the null hypothesis for the first-line PFS and PFS2 is statistically significant

at the 5% significance level. On the other hand, all the GPC tests for the second-line PFS show

a statistically significant result in favor of arm A, while the result of the log-rank test is not

significant. This loss of power of the log-rank test may be expected, because there are signs

that the PH assumption may not hold, as seen from the estimates of the survival functions in

Figure 4.

Regarding the estimation of the net benefit, the estimates provided in Table 3 range between

-0.059 and -0.049 for the first-line PFS; between 0.302 and 0.334 for the second-line PFS; and

between 0.093 and 0.153 for PFS2. As the proportion of censoring was small (10% for the

first-line PFS, and 7% for the second-line PFS), there is little difference between the estimates
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obtained for the different statistics. It is of interest to note that the estimates yielded by the

Efron, Péron, Datta, and Dong statistics are identical or very close in value.

Clearly, a small proportion of administrative censoring observed in the example data does not

permit to fully appreciate the extent to which this type of censoring influences the conclusions

of the GPC analysis under each of the approaches. Artificially inducing various proportions of

censoring in the real-life data might be an interesting problem, beyond the focus of the present

paper, that could be addressed in detail in a separate paper as a part of future research.

6 Discussion and conclusions

We performed a simulation study to evaluate the performance of several extensions of the

univariate GPC test to right-censored data. The considered methods included the näıve scoring

proposed by Gehan (Gehan, 1965) and Harrell (Harrell et al., 1982), the imputation-based statistics of

Efron (Efron, 1967), Péron et al. (Peron et al., 2016), and Latta (Latta, 1977), and the IPCW statistics

of Datta (Datta et al., 2010) and Dong (Dong et al., 2020b).

Before discussing general results and comparisons between the tests, it is important to single

out the two tests, proposed by Efron and Datta, that are sensitive to the presence of differential

censoring distributions between the treatment groups. Considering the fact that these are the

two methods that require that the last observation in each group is treated as an event, it is

likely that such an approach introduces information that, especially in the presence of a small

number of truly observed events, distorts the estimated survival curves, and instills differences

that are reflected in bias, failure to control the type-I error probability, and unpredictable
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Figure 4: Kaplan-Meyer curves of progression-free survival in the first line (a) and second-line
(b) therapy, and the second progression-free survival (c).
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trends in power. Thus, in the discussion that follows, the references to Efron and Datta tests

will exclude situations with different censoring distributions per group. In such situations, the

two tests should not be used at all.

Under the null hypothesis, the nominal level of the type-I error probability was maintained

provided the censoring distributions were equal between the two groups. This is reassuring,

since adequate type-I error protection is essential for any statistical test. In the presence of

differential censoring distributions, the type-I error probability control was not maintained,

especially if censoring was larger than 30%, likely due to violation of the assumptions required

for the permutation test (i.e., joint equality of survival and censoring distributions). This

problem needs to be addressed separately in future research.

Under the alternative hypothesis and the PH assumption, the tests based on the GPC methods

led to a marginally lower power than the log-rank test. The only exception was the presence

of large proportions of administrative censoring, in which case the Latta test was the most

powerful. In case of non-PH, the näıve GPC methods and the Latta test were more powerful

than the log-rank test. The other tests, obtained by the methods proposed by Efron, Péron

et al., Datta and Dong, remained less powerful than the log-rank test in the presence of large

proportions of drop-out censoring.

The estimators of the net benefit obtained by using the imputation within groups (Efron, Péron

et al.) or IPCW (Datta, Dong) were unbiased up to 50-70% of drop-out censoring. Any bias

appearing in higher proportions of censoring was most probably due to imprecise estimation of

the survival functions for event-times and/or censoring caused by smaller amounts of available

information. Harrell’s c index remained completely unbiased in the presence of any censoring,

provided that the PH assumption was fulfilled.

In the presence of administrative censoring, however, the estimators of the net benefit obtained

by using the imputation within groups (Efron, Péron et al.) or IPCW (Datta, Dong) were

negatively biased. This is due to the fact that, when the full support of the outcome distribution

cannot be observed, the expected value of the estimators depends on the censoring distribution.

Given that right-censoring due to insufficient follow-up is common in practice (e.g., in clinical

trials), this limits the use of GPC methods for estimation purposes.

A way to circumvent the bias issue is to consider an alternative treatment-effect measure, the

restricted net benefit. It is defined as the difference between the probabilities that, over the

period spanning from 0 to a specific time point, a random individual from one group is doing

better than an individual from the other group. This is a topic for further research.

Overall, no single method considered in this paper is unanimously superior both for hypothesis

testing and estimation of the net benefit in the presence of right-censored data. If the interest
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lies in estimation, then the Harrell’s c index is uniformly best if the PH assumption holds. In

most real-life situations, the drop-out censoring rarely exceeds 50%, thus the estimates of ∆

obtained by using the Péron or Dong statistic should be equally reliable, provided there is no

administrative censoring. However, in the presence of administrative censoring, all statistics

will underestimate the net benefit. This caveat is important to bear in mind in the analysis of

(randomized) clinical trials, in which follow-up is usually limited.

If one is interested in testing the null hypothesis of no treatment effect, i.e., H0 : F (t) = G(t),

the näıve approaches proposed by Gehan and Harrell have power comparable to that of other

approaches when censoring is low, and are among the most powerful when the proportion

of censoring increases. Therefore, the need to use of the more complex and computationally

demanding methods in the testing framework may be questioned.

This paper has evaluated the operational characteristics and point estimates of the GPC based

statistics that used various extensions to account for the presence of right-censored data. We

have focused on independent and non-informative censoring, frequently assumed when dealing

with censored data. The comparison of various methods could be further extended to informa-

tive/dependent censoring. However, in such a case, fully non-parametric estimation of survival

curves based on only observed survival information is no longer possible. Thus, one might have

to resort to parametric or semi-parametric methods (Dong et al., 2021) in order to correctly im-

plement the imputation-based or IPCW approaches, sacrificing a fully non-parametric nature

of the GPC procedure. The implications related to such parametric corrections of dependent

censoring is a possible topic for future research.
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Appendix

A.1. Unbiasedeness of Harrell’s c index for exponential outcomes

Let Xi ∼ exp(λX), iid, i = 1, . . . , nE and Yj ∼ exp(λY ), iid, j = 1, . . . , nC be observations from

treatment and control group respectively. Besides, we allow for some of these observations to

be censored such that we observe only the time of censoring, Xc
i or Y c

j . It is assumed that

Xc
i ∼ exp(λXc), and Y c

j ∼ exp(λY c). Therefore, for each of the observations we observe only

an outcome X ′i = min(Xi, X
c
i ) or Y ′j = min(Yj, Y

c
j ).

The net benefit for two exponential outcomes is equal to:

∆ = P (X > Y )− P (Y > X) =
λY − λX
λY + λX

In the presence of censoring, and under the Gehan’s approach, the expected net benefit value

can be expressed as:

E(∆̂G) = P (XXcY c > Y )− P (Y Y cXc > X) =
λY − λX

λX + λY + λXc + λY c

As shown in (12), the expectation of the Harrell’s c index, E(∆̂c), is equivalent to E(∆̂G),

weighted by the inverse of a probability of a pair being informative.

Given that the probability for a pair being informative for two exponential outcomes with

exponential censoring is:

Pinf = P (XXcY c > Y ) + P (Y Y cXc > X) =
λY + λX

λX + λY + λXc + λY c

,

E(∆̂c) is therefore equal to

E(∆̂c) =
1

Pinf

∗ E(∆̂G) =
λX + λY + λXc + λY c

λY + λX
∗ λY − λX
λX + λY + λXc + λY c

=
λY − λX
λY + λX

= ∆

A.2. Tables of simulation study results
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Table 4: Net treatment benefit estimates for the proportional hazards scenarios.

∆ pcens Gehan Harrell’s C Efron Peron Latta Datta Dong

∆̂G ∆̂H ∆̂E ∆̂P ∆̂L ∆̂IPCW1 ∆̂IPCW2

Only drop-out censoring, H(t) = I(t)

0 0 -0.001 -0.001 0.000 0.000 -0.001 0.000 0.000
10 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
30 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
50 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000
70 0.000 -0.001 0.001 0.001 0.000 0.000 0.002
90 0.000 -0.001 -0.002 -0.001 0.003 -0.006 0.000

0.2 0 0.197 0.199 0.199 0.199 0.198 0.199 0.199
10 0.181 0.199 0.199 0.199 0.190 0.199 0.199
30 0.148 0.199 0.200 0.198 0.168 0.200 0.198
50 0.113 0.199 0.202 0.190 0.140 0.202 0.190
70 0.072 0.198 0.184 0.156 0.097 0.185 0.156
90 0.026 0.199 0.091 0.066 0.039 0.089 0.068

Only drop-out censoring, H(t) 6= I(t)

0 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 -0.001 0.000
30 0.000 0.000 -0.008 0.000 0.000 -0.008 -0.001
50 0.000 0.001 -0.070 0.001 0.000 -0.072 0.000
70 0.000 0.002 -0.264 0.004 0.001 -0.307 0.000
90 0.001 0.028 -0.217 0.006 0.002 -0.827 -0.008

0.2 0 0.197 0.199 0.199 0.199 0.198 0.199 0.199
10 0.177 0.199 0.199 0.199 0.187 0.199 0.199
30 0.138 0.200 0.183 0.197 0.161 0.182 0.197
50 0.101 0.201 0.070 0.179 0.127 0.065 0.178
70 0.060 0.201 -0.187 0.127 0.081 -0.248 0.123
90 0.015 0.233 -0.187 0.034 0.019 -0.825 0.024

Drop-out and administrative censoring

0 20 -0.001 -0.001 -0.001 -0.001 0.001 -0.001 -0.001
40 -0.001 -0.001 -0.001 -0.001 0.003 -0.001 -0.001
60 -0.001 -0.001 -0.001 -0.001 0.005 -0.001 -0.001
80 -0.001 -0.002 -0.001 -0.001 0.007 -0.001 -0.001
90 0.000 -0.001 0.000 0.000 0.009 0.000 0.000

0.2 20 0.177 0.199 0.198 0.197 0.188 0.197 0.197
40 0.157 0.199 0.177 0.175 0.170 0.175 0.175
60 0.121 0.198 0.136 0.134 0.134 0.134 0.134
80 0.067 0.197 0.075 0.074 0.079 0.074 0.074
90 0.037 0.199 0.041 0.040 0.048 0.040 0.040

∆̂: the mean estimated value of ∆ over 5,000 simulated data sets
pcens = pDO + padm
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Table 5: Empirical rejection rates for the test H0 : F (t) = G(t) for the proportional hazards
scenarios.

∆ pcens Gehan Harrell’s C Efron Peron Latta Datta Dong Log-rank

p-val p-val p-val p-val p-val p-val p-val p-val

Only drop-out censoring, H(t) = I(t)

0 0 0.053 0.053 0.055 0.054 0.053 0.055 0.055 0.055
10 0.055 0.055 0.056 0.055 0.055 0.056 0.056 0.057
30 0.055 0.055 0.056 0.057 0.055 0.057 0.057 0.054
50 0.054 0.054 0.054 0.057 0.057 0.053 0.056 0.056
70 0.052 0.052 0.051 0.051 0.053 0.052 0.051 0.054
90 0.047 0.047 0.057 0.057 0.052 0.058 0.057 0.05

0.2 0 0.686 0.686 0.69 0.691 0.688 0.69 0.69 0.807
10 0.647 0.647 0.678 0.674 0.663 0.677 0.678 0.764
30 0.552 0.552 0.633 0.628 0.59 0.632 0.633 0.66
50 0.441 0.441 0.449 0.496 0.489 0.447 0.497 0.521
70 0.289 0.289 0.232 0.287 0.326 0.24 0.291 0.342
90 0.13 0.13 0.084 0.122 0.152 0.095 0.12 0.136

Only drop-out censoring, H(t) 6= I(t)

0 0 0.054 0.054 0.056 0.054 0.054 0.055 0.055 0.055
10 0.053 0.053 0.052 0.053 0.051 0.052 0.052 0.050
30 0.053 0.053 0.052 0.053 0.053 0.053 0.053 0.051
50 0.055 0.055 0.062 0.046 0.053 0.064 0.048 0.056
70 0.048 0.048 0.196 0.025 0.043 0.218 0.028 0.048
90 0.034 0.034 0.315 0.004 0.013 0.842 0.015 0.045

0.2 0 0.684 0.684 0.691 0.689 0.685 0.692 0.692 0.806
10 0.640 0.640 0.675 0.675 0.658 0.674 0.674 0.759
30 0.521 0.521 0.516 0.600 0.563 0.514 0.598 0.618
50 0.391 0.391 0.055 0.366 0.432 0.046 0.362 0.457
70 0.250 0.250 0.030 0.095 0.254 0.033 0.090 0.267
90 0.062 0.062 0.305 0.002 0.020 0.822 0.007 0.078

Drop-out and administrative censoring

0 20 0.055 0.055 0.057 0.058 0.055 0.057 0.057 0.053
40 0.055 0.055 0.056 0.057 0.054 0.056 0.056 0.053
60 0.056 0.056 0.058 0.057 0.056 0.057 0.057 0.058
80 0.046 0.046 0.05 0.048 0.046 0.05 0.05 0.048
90 0.042 0.042 0.044 0.045 0.045 0.045 0.045 0.043

0.2 20 0.634 0.634 0.665 0.662 0.658 0.665 0.665 0.723
40 0.553 0.553 0.578 0.575 0.585 0.576 0.576 0.601
60 0.408 0.408 0.422 0.419 0.451 0.419 0.419 0.43
80 0.234 0.234 0.234 0.235 0.278 0.233 0.233 0.236
90 0.141 0.141 0.145 0.141 0.189 0.144 0.144 0.142

p-val: the proportion of rejected H0 over 5,000 simulations
pcens = pDO + padm

23



Table 6: Net treatment benefit estimates for the non-proportional hazards scenarios.

∆ pcens Gehan Harrell’s C Efron Peron Latta Datta Dong

∆̂G ∆̂H ∆̂E ∆̂P ∆̂L ∆̂IPCW1 ∆̂IPCW2

Only drop-out censoring, H(t) = I(t)

0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001
10 0.001 0.001 0.001 0.001 0.001 0.001 0.001
30 0.001 0.001 0.000 0.000 0.001 0.000 0.000
50 0.001 0.001 0.000 0.001 0.001 0.000 0.001
70 0.000 0.001 -0.002 -0.001 0.001 -0.002 -0.001
90 0.000 0.002 -0.001 -0.001 0.004 -0.003 -0.001

0.2 0 0.200 0.201 0.200 0.200 0.200 0.200 0.200
10 0.186 0.206 0.201 0.200 0.193 0.201 0.200
30 0.159 0.218 0.202 0.200 0.177 0.202 0.200
50 0.126 0.235 0.206 0.197 0.153 0.206 0.197
70 0.084 0.264 0.203 0.177 0.116 0.204 0.179
90 0.034 0.328 0.150 0.111 0.058 0.150 0.117

Only drop-out censoring, H(t) 6= I(t)

0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.001
10 0.000 0.000 0.001 0.000 0.000 0.001 0.001
30 0.000 0.000 0.009 0.000 0.000 0.010 0.001
50 0.000 0.001 0.061 0.000 0.000 0.065 0.002
70 0.000 0.000 0.200 -0.003 0.000 0.255 0.006
90 -0.001 -0.025 0.259 -0.009 -0.002 0.726 0.014

0.2 0 0.201 0.202 0.201 0.201 0.201 0.201 0.201
10 0.184 0.207 0.202 0.201 0.192 0.202 0.201
30 0.151 0.222 0.215 0.199 0.171 0.216 0.200
50 0.115 0.243 0.277 0.191 0.143 0.284 0.195
70 0.072 0.276 0.410 0.161 0.101 0.469 0.171
90 0.018 0.328 0.336 0.053 0.029 0.867 0.076

Drop-out and administrative censoring

0 20 0.000 0.001 0.000 0.000 0.002 0.000 0.000
40 0.001 0.001 0.001 0.001 0.004 0.001 0.001
60 0.001 0.001 0.001 0.001 0.006 0.001 0.001
80 0.001 0.002 0.001 0.001 0.009 0.001 0.001
90 0.000 0.000 0.000 0.000 0.009 0.000 0.000

0.2 20 0.183 0.208 0.200 0.199 0.192 0.199 0.199
40 0.170 0.218 0.189 0.187 0.183 0.188 0.188
60 0.144 0.240 0.162 0.160 0.158 0.160 0.160
80 0.095 0.282 0.108 0.106 0.109 0.107 0.107
90 0.059 0.324 0.067 0.065 0.072 0.066 0.066

∆̂: the mean estimated value of ∆ over 5,000 simulated data sets
pcens = pDO + padm
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Table 7: Empirical rejection rates for the test H0 : F (t) = G(t) for the non-proportional hazards
scenarios.

∆ pcens Gehan Harrell’s C Efron Peron Latta Datta Dong Log-rank

p-val p-val p-val p-val p-val p-val p-val p-val

Only drop-out censoring, H(t) = I(t)

0 0 0.048 0.048 0.051 0.049 0.048 0.051 0.051 0.053
10 0.049 0.049 0.053 0.051 0.050 0.053 0.053 0.050
30 0.050 0.050 0.049 0.048 0.048 0.048 0.049 0.051
50 0.050 0.050 0.048 0.048 0.048 0.049 0.047 0.046
70 0.053 0.053 0.052 0.053 0.051 0.053 0.052 0.050
90 0.053 0.053 0.052 0.052 0.049 0.050 0.051 0.049

0.2 0 0.694 0.694 0.695 0.697 0.695 0.695 0.695 0.627
10 0.678 0.678 0.683 0.679 0.677 0.683 0.682 0.613
30 0.631 0.631 0.630 0.626 0.635 0.630 0.631 0.579
50 0.569 0.569 0.470 0.522 0.566 0.472 0.522 0.531
70 0.462 0.462 0.264 0.339 0.467 0.272 0.333 0.437
90 0.275 0.275 0.108 0.196 0.297 0.122 0.191 0.271

Only drop-out censoring, H(t) 6= I(t)

0 0 0.049 0.049 0.050 0.049 0.048 0.051 0.051 0.054
10 0.049 0.049 0.050 0.048 0.048 0.050 0.050 0.049
30 0.046 0.046 0.047 0.049 0.047 0.048 0.050 0.046
50 0.050 0.050 0.054 0.043 0.051 0.057 0.044 0.048
70 0.050 0.050 0.131 0.036 0.045 0.159 0.040 0.050
90 0.044 0.044 0.280 0.012 0.024 0.606 0.028 0.054

0.2 0 0.701 0.701 0.704 0.704 0.701 0.703 0.703 0.632
10 0.678 0.678 0.687 0.682 0.680 0.688 0.686 0.607
30 0.631 0.631 0.673 0.616 0.633 0.676 0.621 0.573
50 0.551 0.551 0.657 0.446 0.545 0.683 0.458 0.525
70 0.429 0.429 0.551 0.216 0.411 0.653 0.236 0.417
90 0.160 0.160 0.332 0.035 0.091 0.790 0.067 0.191

Drop-out and administrative censoring

0 20 0.050 0.050 0.051 0.050 0.050 0.051 0.051 0.050
40 0.049 0.049 0.051 0.048 0.050 0.052 0.052 0.047
60 0.056 0.056 0.057 0.055 0.056 0.057 0.057 0.053
80 0.050 0.050 0.050 0.049 0.052 0.050 0.050 0.049
90 0.051 0.051 0.052 0.052 0.051 0.052 0.052 0.052

0.2 20 0.672 0.672 0.675 0.673 0.680 0.675 0.675 0.609
40 0.634 0.634 0.633 0.632 0.653 0.633 0.633 0.596
60 0.566 0.566 0.562 0.564 0.597 0.563 0.563 0.544
80 0.431 0.431 0.430 0.425 0.481 0.432 0.432 0.421
90 0.314 0.314 0.315 0.306 0.381 0.306 0.306 0.307

p-val: the proportion of rejected H0 over 5,000 simulations
pcens = pDO + padm
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