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Abstract-This paper constructs a model for studying the performance of search keys of several 

types (such as, e.g., author/title keys of the form 414, 313, 3/1/1/l, and so on), end gives a criterion 
for deciding whether or not to use one (or several) more slashes (1) (i.e., more truncated title words) 
in a certain system (e.g., an automated library catalog). Some mathematical theorems on search 
keys are proved, given the probability distribution of letters (more general: symbols) in words. We 
then study the effect (on search key performance) of enlarging the “ alphabet,” i.e., when adding new 
symbols, that can be used in forming the search keys. Changing the alphabet might cause a change 
of optimal search keys. Criteria for this (not) to happen are given. The last part of the paper deals 
with the difference in average performance (averaged over ah possible systems) of search keys with 
less or more slashes (I). In general, we can prove that, on the average, introducing slashes does not 
improve the retrieval performance. 

1. INTRODUCTION 

Search keys are an important tool in the retrieval of documents. Say we have an automated 
library catalog. OPAC’s (i.e., Online Public Access Catalog’s-as the catalogs for use by the 
non-professionals, e.g., a library user) usually restrict the searching to author, title or subject, 
since these are the most user-friendly ways, but more experienced searchers, such as catalogers, 
can save much more time by using a so-called “truncated search key” input. Indeed, catalogers 
(per definition) are people that add the indexed version of library material (e.g., books, journals) 
to the library catalog, thus, presenting a much simplified version of the document in question to 
the catalog. As such, catalogers want to know whether or not a certain book (or other document) 
is already in the system: if so, they only have to put in the local aspects of the book in question 
(e.g., shelf-marks); all the other aspects (e.g., subject indexing, author, title, editor, etc.) can be 
taken from the already catalogued document. For this very frequent retrieval exercise, catalogers 
better use a quick and effective method to retrieve documents. Truncated search keys are the 
standard techniques in this matter. 

Let us give an example. Let us take the book by L. Egghe and R. Rousseau entitled “Intro- 
duction to Informetrics.” One can find this book very quickly in a library catalog (if it is there!) 
by using one of the several possible keys: 

- a 3/3-key requires the input EGGINT, i.e., the first 3 letters of the first author’s last 
name concatenated with the first 3 letters of the first (meaningful) word of the title (or 
author/title may be reversed into title/author); 
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- a 3/1/1/l-key requires the input of EGGITI, i.e., the first 3 letters of the first author’s 
last name concatenated with the first letter of the first meaningful word of the title, and 
the first letters of the next 2 words of the title. 

Other examples are: a 4/4key (e.g., EGGHINTR), an 8-key (title)(e.g., INTRODUC), 
a 3/3/l-key (e.g., EGGINTT), and so on. In all these cases, one must define the symbols 
(i.e., if one is using *, -, and so on to form the keys, or not), one must say what is meant by a 
“meaningful” word of the title, and one must define what to do in case the author’s name and/or 
the title is too short, and hence, does not have enough symbols to form the complete key. 

In the sequel we assume that these fuzzy aspects have been settled. Hence, we assume that in 
all cases we know exactly how to form a certain search key. 

It is clear that the overall ideal objective is to find zero documents in case the desired one is 
not in the database, and to find one document in case it is in the database. In practice, however, 
since by using keys one only uses a very simplified “image” of the document, it is very well 
possible that more documents satisfy the same key. This causes extra work for the cataloger to 
distinguish between these documents, and to choose the right one: this must be avoided as much 
as possible. 

Of course, the longer the search key, the more effective it is (at least when using comparable 
keys, such as 3/3 versus 4/4), but this requires more time for the cataloger to put in (and this, 
every time that one searches a document). 

Several articles deal with this problem, mainly written by staff members of OCLC (Online 
Computer Library Center), who introduced this technique and studied their practical concern 
for the OCLC database (see [l-11]). H owever, to the best of my knowledge, there do not exist 
models for search keys in which the performance can be deduced by mathematical methods. In 
this paper, we show that such a mathematical approach is very well possible, and that we can 
deduce practical conclusions from it. The paper is divided as follows. 

In Section 2, we fix the numbers (pij)ij=i,,,,,N (N = number of symbols to be used), where 
pij is the probability that symbol j succeeds symbol i as the first two letters of the first word of, 
e.g., the title. We also simplify the problem by studying the performance of the l/l-key versus 
2-key. We measure the performance by the average number of documents retrieved when using 
the l/l-key, respectively, the P-key. We show that the intuitive idea of “a l/l-key is better than a 
2-key” is not always true: it depends on the numbers pij. We also prove three theorems, dealing 
with three cases: the l/l-key better or worse than the P-key and the l/l-key performs equal 
when compared to the P-key. An exact and applicable algorithm is given for a library system, to 
decide which of the two keys is best in this particular system. 

The next section generalizes the above findings to more general search keys; the principles 
remain the same, however. 

Section 4 starts from a fixed alphabet, with fixed probabilities (pij)i,j=i,,,,,N, and studies the 
problem: what happens if we enlarge the alphabet (i.e., when we allow new symbols to be used in 
the formation of the search keys). In general, a change of alphabet may result in another optimal 
search key to be used. Criteria for this not to happen are given. 

A further generalization, in Section 5, deals with the following problem: study the overall 
average performance of l/l-keys versus 2-keys, when the (pij)i,j=i,...,N are variable (but N is 
fixed). This problem can be considered as the study of the “universal” performance of l/l-keys 
and 2-keys over all library systems. This problem is far from trivial, but has theoretical interest 
(using higher dimensional geometry and analysis). 

Section 6 makes the link with concentration theory (cf. [12,13]) and Lorenz-curves; the last 
section generalises the results of Section 5 and Section 6 to more general search keys. Concentra- 
tion theory (originating from econometrics) has been a major tropic of research by R. Rousseau 
and also by the author (cf. [12,13]). Wh en applying (and further developing) the concentration 

theory (i.e., the theory of inequality) to informetrics, one has recognized that many informetric 
problems can be modelled via the so-called Lorenz order (cf. [12,13] again). Here we also found 
this relation. 
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2. PERFORMANCE OF THE l/l-KEY VERSUS THE S-KEY 
FOR A GIVEN LIBRARY RETRIEVAL SYSTEM 

Suppose we have a fixed library retrieval system. Hence, it is possible to determine the prob- 
ability pij, ;,j = 1,. . . , N, being the probability to have symbol j succeeding exactly symbol i, 
in a certain word. More specifically, we can take the first meaningful word from the title as this 
word, and to look for these two symbols in the beginning of this word, but this is not necessary. 
Let us define a l/l-key as a key formed by two symbols, the first symbol coming from another 
word than where the second symbol comes from. Then a 2-key is defined as a key formed by 
two consecutive symbols in the same word. Most frequently, a P-key is formed with the first two 
symbols of the first meaningful word of the title and a l/l-key by the first symbol in the first 
author’s last name, concatenated by the first symbol in the first meaningful word in the title (a 
so-called author/title search key). A l/l-key can also be formed by the first symbol in the first 
meaningful word in the title concatenated with the first symbol in the next word in the title. We 
do not specify this here since we do not need it. What we want to study is the average number 
of documents retrieved in the library system when using l/l-keys and 2-keys. The lower this 
average number is, the better, since these keys are used in retrieval by catalogers. This aspect 
could be called the “performance” of search keys, or also the “distinguishing power” of search 
keys. 

So, we have a fixed library system, represented by the numbers (pij)i,j=l,...,~. Note that all 

pij satisfy 0 < pij 5 1, and 
N 

c 
pij = 1. 

i,j=l 

Furthermore, 
N 

Pi = CPij 
j=l 

(2) 

represents the probability for the symbol i to appear as the first symbol of a word. We assume 
that this is also the probability for symbol i to appear as the first symbol in the second word 

that we use in the formation of our l/l-key. Note that also Cg, pi = 1. 
Now, the probability of having symbol i as the first symbol of the first word, and symbol j 

as the first symbol of the second word is p; pj (due to probability independence, a reasonable 
assumption in this stage--see also note 2 below). Let there be n documents in the library system. 
Then, the number of documents in the library system with the l/l-key “symbol i/symbol j,, is 

nPi Pj. (3) 

This case appears with a probability pipj, when a cataloger uses the l/l-key: indeed, the key 
“symbol i/symbol j” appears as the retrieval request of the cataloger also with a probability 
pi pi. (We assume here that the same probabilities apply; this is quite natural: we only suppose 
that the occurrence of symbols (in the respective words) is the same for the documents that are 
already in the database as for the documents that we are going to put into the database-see 
also Note 2 below.) 

So, the average number of documents found with the l/l-key in this library system is (npi pj 
documents with probability pi pj, and summing over all symbols) 

N N 

( > 
2 

311~ = n Cpfp+l cp; . 

i,j=l i=l 

Note that Equation (4) is also equal to (by (2)): 

(4 

(5) 

expressing %1/l in function of the pij’s. 
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Analogously, a 2-key can be described; now the probabilities p~, instead of pi pj, are used. 
We find that the average number of documents with the a-key in this library system is (npij 
documents with probability pij, and summing over all documents) 

N 

22 = n c Pi”j ’ (6) 

i,j=l 

There is no hope of proving f,/, < ~2, ~i/i > ~2 or ~i/i = ~2 in general, due to the following 
examples. 

EXAMPLES. Take N = 2 and pll = 0.1, prz = 0.2,pzl = 0.3 andpzz = 0.4. Then ~i/i = 0.3364n 
while Zz = 0.3n. Hence, here %i/i > z2 (i.e., the 2-key is better here). Take now pll = 0.1, 
pi2 = 0.3, pzl = 0.2 and ~22 = 0.4. Now, %,I, = 0.2704n and ?Zz = 0.3n. So, now Zi/i < Zz. 

Finally, take pii = 0.16, pi2 = pzi = 0.24 and pzz = 0.36. Now ~i/r = ~2 = 0.2704n. Note that 
the knowledge of n is not necessary for these comparisons. 

CONCLUSION. We have already an important conclusion: if we want to know what search key 
to use in our own library system, we must determine the numbers (pij)i,j=i,,,,,N: they determine 
which key is the best to use: if 21/i < ~2, use the l/l-key; if 51/I > ~2, use the 2-key; in the 
coincidental case, it is the same. In [14], an extensive experiment was performed in the network 
comprising my university library and three university libraries in Antwerp. For monographs, 
one found the following results: for n = 373,230 (the number of documents) and N = 27 
(the alphabet-size), one had 2r/i = 1026.01 << 52 = 4267.15. Right now, they use there an 
author/title key of size 4/4, and one wonders if allowing more words from the title would result 
in smaller numbers of retrieved documents. Based on the above result, we could advise that 
a further introduction of slashes (e.g., 4/2/2, . . . ) would indeed be beneficial. Note, also, that 

the calculation of 3414 versus, e.g., gc4i2i2 is very time-consuming. In the case of ~414, there 

are 2 (27)4 = 1,062,882 probabilities to be calculated (see Section 3, for an explanation of this 
number). 

NOTE 1. Remark 
since, obviously, 

that, of course, we always have that a 2-key is better than a l-key: Zz < fi 

-gP? > -g Pij, 
j=l i,j=l 

(if there is at least one i for which there are at least two pij # O-an evident requirement). 
Indeed, the above relation follows by (2). 

NOTE 2. In the building up of formulae (3) and (4) we assumed two things: 

(a) TO have symbol i as the first letter in the first word is independent from having symbol j 
as the first letter in the second word. 

(b) The probabilities of the symbols in the database are the same as the probabilities of the 
symbols of the books that we are going to add to the database. 

In practice, none of the above assumptions are perfectly correct. For the sake of simplicity, 

however, they are needed. Furthermore, we think we can assume the above statements. Indeed, 
with (a) we really mean that in l/l-keys there is “much more” independence between the symbols 
than in 2-keys, which is acceptable. More refined studies could be in order, however. Assumption 
(b) is-we think-even more evident: in short terms, the type of the documents that a library 
buys is the same as the ones that are already in the system. Of course, here also a more refined 
model might be considered. We think, however, that in this stage, the simpler model must be 
developed and studied before we go to more sophisticated theories. 

IMPORTANT REMARK. The main objects, as defined in this section, are Pi/i and Z2, and they 
both involve squares of probabilities (pi pj or pij). The reason for this is that these averages are 
the average number of documents that a cataloger encounters when using one of these search keys. 
This is the real important problem. In such kind of studies, search keys have a certain “fatalistic” 
effect: what we want is, of course, to keep the Z’S as low as possible, but one always has that the 
search key (be it l/l-, or 2-, or whatever) with probability p in the database (hence, for which 
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there are np documents in the database), will be used by the cataloger with a probability p. 
Otherwise stated, the search keys corresponding to a lot of documents in the database are the 
most frequently encountered by catalogers-a negative finding, indeed! (See also the remark after 
Lemma 1.) Still, this type of study is the most important one. Studying only the average number 
of documents in the database, for a certain search key does not reflect the real performance of 
this key, as explained above. This is, however, what is done so far in articles on search keys. 
We agree, of course, that the larger key one wants to study (e.g., 4/4-key as above), the more 
difficult it gets to investigate the Z’S (e.g., %4/d versus other key-averages). We claim, however, 
that a knowledge of zlil versus 22 explains a lot concerning the addition (or deletion) of a slash 
(/), also in more general search-keys. 

We leave as an open problem to study possible relationships (for a given search key) between 
the average number of documents in a database (easy to calculate in practice, but less important 
in itself) and the average number of documents found by a cataloger’s retrieval (as explained: 
difficult to calculate in practice, but really important). 

We now proceed with three theorems, each representing on of the three cases discussed above. 

THEOREM 1. IfforaJJi,j=l,..., N, 

Pij =PiPj, (7) 

then 5111 = ~2. The converse is not true: i.e., there exists a system of symbol probabilities (pii) 
such that $1/l = 22, but for which there exists at least one couple (i, j) for which pij # pi pi. 

PROOF. If pij = pipj for every i, j = 1,. . . ,N, then ~$1~ = 52, obviously by (4) and (6). 
The converse is not true: take pij satisfying (7) and interchange (e.g., in N = 2) pll and ~12, 

and also ~21 and ~22. Denote the new system by (pij)i,j=1,2. Then, since (pij)i,j=l,z satisfies 

Pl = Pll + P12, P2 = P21 + P22> Pl + P2 = l, Ct,j=l Pf Pjz = Cf,,,, pfj ; the same is true for 
(p~j)i,j=1,2, but p~j # pipi = pipj, for every i, j = 1,2. A concrete example is offered by: 

P:I = 3/16, P:, = 1/W P;I = 9/16, pi2 = 3/16. Then (pi = l/4, pi = 3/4), 

2 2 

C P’~P’j2 = C P’i23 = 0.390625, 
i,j=l i,j=l 

P:+p;=l,P:=P:,+P:,,P’,=P’,,+P$, but P:I #PI:, pi2 # P:P;, ~121 # P;P:~ ~122 #P’:. I 
The result of Theorem 1 says that, if the occurrence of symbols as the second in a word is 

independent of what the first symbol is, then the two keys perform alike. We will, further on, 
consider more general cases. 

LEMMA 1. 

(a) For variable (xi)&, such that 0 5 zi 5 
that CE, a$ is minimal for all xi = &. 

(b) Let (xij)c=l be such that 
M /M 

1, for all i = 1 , . . . , M, and Cz, xi = 1, we have 

is fixed. Then CE=, xt is minimal, if x;j = & Cy=, xijl, for all i, j = 1,. . . , M. 

Furthermore, the indicated values for which these minima are attained, are unique. 

PROOF. Both proofs are an application of the method of the multiplicators of Lagrange (con- 
straint extrema) (cf., e.g., [15]). 

(a) Let 

&cl,... ,x~,X)=~r;+h gri-l . 
( 1 

(9) 
i=l i=l 
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Then, the sufficient condition for an extremum is 

39 - = 2Xi, + X = 0, 
830 

and implies 

A 
Xi0 = --, 

2 
for all is = 1, . . . , M. 

Hence, all xi must be equal. Since CE, xc = 1, we then have that xi = &, for all 

i=l 

(b) Let 
, . . . , M. In this case, the minimal value is CE, xi” = &. 

h(xij (i,j = 1, . . . ,M),n) = 2 Xt+q(g(gXQ)2-k)* P-9 
i,j=l i=l j=l 

For every io, j, = 1,. . . , M, we now have 

dh 

axiOjO 
= 2 Xiojo + 29 = 0, 

if 

Gojo = -I)gXioj* (11) 
j=l 

Now (11) implies that all xiOj (j = 1, . . . , M) are equal; hence, for all i, j = 1, . . . , M, 

1 M 
"ij = - 

M c Xijl . 
j'zl 

(12) 

The indicated minima are unique since, in (a), the values xi = &, i = 1,. . . , M, correspond to 

the tangent point of the ball C,?“=, xi’ = r (minimal radius) and the hyperplane Cz, ti = 1; in 

(b), the values (12) correspond to the tangent point of the ball Cz=, xi2j = T (minimal radius) 

and the “hyperquadric” (8) (d’ff 1 erent form this ball). Hence, these minimal are unique. I 

REMARK. From this lemma, it follows that &/r 2 +, as well as f2 2 $$ (and, of course, 
51/r, F2 < n). Note the value $& is the average number of documents in the database per l/l-key 
as well as per a-key, while ;~i/i, resp. ~2, are the average numbers of documents as retrieved by 

the catalographer per l/l-key, resp. per 2-key, (cf. also the important remark above). 
This lemma has the following two theorems as consequences. 

THEOREM 2. If the pi, i = 1,. . . , N, are all equal (hence, equal to $), and if there is i, j = 

1 >“‘, N, such that pij # pi pi, then 
F,f, < z2. 

PROOF. The (pi)i=i,,,,,N represent the minimal situation discused in Lemma l(a) while, since 
J&j #pipjforacertaini,j= l,... , N, the (pij)i,j=i,,,.,N does not represent the minimal situation, 

we have that 
/N l2 N 

L ) CP" < C Pfj* 
i=l i,j=l 

(13) 

Indeed the minimal value of (Cc1 pi) 2 q e ua s 1 & and so does the minimal value of Ci,j pfj. 

Hence, Equation (13) is true. I 
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THEOREM 3. Let (pi)i=~,...,~ be fixed and not all equal, and suppose also that there is a 
i,j= l,... , N such that pij # pi pj. Let 

Pi 
Pij = -9 

N 

foreveryi,j=l,..., N. Then 

PROOF. We are given a situation of variable (pij)i,j=r,.,,,N, such that pi = Cy=, pij are fixed for 
every i= l,... , N. Hence, Lemma l(b) can be applied, since the fact that all pi are fixed implies 
that 

N /N 12 N 

C (CPij) = CPf 
i=l j=l i=l 

is fixed. Equation (14) and Lemma 2(b) now imply that 

N N 

CPfj< CPi”Pj> 
i,j=l i,j=l 

(since (Pij )i,j=l,..., N # (Pi Pj)i,j=l,..., N)- Hence 

In fact, (although it is interesting in itself) we do not need Lemma l(b) here; we can also apply 
Lemma l(a): for pij as in (14), we have: 

by Lemma l(a), using that (~1,. . . ,pN) # (k,. . . , k). 

In short, we proved so far: 

CONCLUSION. 

I 

(i) pij = pjpj, for all i, j * Fi/r = 52, 

(ii) pij f pi pj, for an i, j and pi = h for all i =+- ?I/1 < 32, and 

(iii) pij # pipj, for an i, j, pi # & for an i, and pij = p for all i, j j ~111 > ~2. 

We now will extend these results to more general search keys. 

3. AVERAGE NUMBER OF DOCUMENTS RETRIEVED 
IN THE LIBRARY SYSTEM WITH MORE GENERAL SEARCH KEYS 

Keys of the same “size” (i.e., using the same number of symbols) can now be studied, analo- 
gously with Section 2. Let we give the example of a 3-key versus a l/l/l-key. In this case, we 
need the probabilities: 

(Pijk)i,j,k=l,..., NI 

where pijk denotes the probability that a word (e.g., the first meaningful word of the title) starts 
with symbol i, immediately followed by symbol j and then immediately followed by symbol B. 
We now have the relations: 

N 

Pi = c Pijk, 
j,k=l 

(15) 

for every i = 1,. . . , N, and, of course, 

pijk = 1. (16) 
i,j,k=l 
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On the average, in this system, we find 

N N 

( ) 
3 

&/l/l = n C pTp!pi = n Cp? 
i,j,b=l i=l 

(17) 

documents with an l/l/l-key and 
N 

23 = n c 
2 

Pijk w 

i,j,k=l 

documents with a J-key. so, as in Section 2, we must determine the probabilities (pijk)j,j,k=l,,..,N 
and compare (17) with (18), using (15), to know whether we better use an l/l/l-key than a 
3-key, or vice-versa. Of course, the larger the length of the keys is, the more intricate the test, 
since the probabilities (pij,,,e) number a total of Nd, where d is the length of the key under study. 
As a general rule, we can say that the knowledge of ;Cl/l versus 22 gives sufficient information of 
how a library system behaves when more slashes (/) are added. By no means, in an automated 

system, it is difficult to obtain the matrix (pij)i,j=1,,,,,N, since N is (usually) between 26 and 
30, or 35. We close this part by checking the analogues of Theorems 1, 2 and 3 of the previous 
section. 

THEOREM 1’. Ifforalli,j,k= l,..., N, 

pijk =PiPjPk, (19) 

then 2~;1/1/1 = 53. The converse is not true. 

PROOF. 21/1/l = Zs by (17)-(19). The converse is not true: take pijk # pijpk,where pij form 
the counterexample in Theorem 1. I 

THEOREM 2’. If the pi are all equal, and if there is i, j, k = 1,. . . , N, such that pijk # pi pj pk, 

then 

6/1/l < 23. 

PROOF. The proof is again based on Lemma l(a). I 

THEOREM 3’. Let (pi)i=l,...,~ be fixed and not all equal and suppose also that there is a 
i,j,k= l,... , N, such that pijk # pi pj pk. Let 

pijk = pi 

N2 ’ (20) 

foreveryi,j,k=l,..., N. Then 

&/l/l > F3. 

PROOF. Again this can be proved using Lemma l(b) or l(a). I 
In the same way other keys (of equal length) can be compared. Note also the following trivial 

relations between keys of unequal length: 

and also relations such as: 

and so on. 

q1/1/1 < C/l/l < Qlr (21) 

54 < 33 < 5’2, (22) 

%3/l/l/l < z3/1/1, 

2414 < 2313 < 23, 

We continue our study on search key performance of a fixed library system, but now we 

investigate the effect of a change of the alphabet. 
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4. EFFECTS IN SEARCH KEY PERFORMANCE 
OFACHANGEOFTHEALPHABET 

77 

After a certain time that a library system has been used, one might feel the need of enlarging 
the possibilities of forming search keys, i.e., of allowing more symbols for the formation of the 
search keys. This need is realistic in many senses and occurs often in practice. Indeed, consider 
a small (young) library in which one wants to use search keys as retrieval tool for catalogers. It 
seems logical to use-beyond the 26 letters of the alphabet- only a few other symbols. After 
several years, any search key, based on the same set of symbols, deteriorates in performance, 
since the size of the library increases. Sooner or later one must increase the size of the search 
key or (keeping the same search key) the size of the alphabet. Typical in this connection is 
the use of the symbols “e, e, &, e, . . . .” For a small library, one might agree on only using the 
symbol “e.” When the library grows, there might be a need to use all symbols “e, k, C, B, . . . ” 
in the search keys. This is especially the case for a library that had almost no books written in 
French in the beginning but, when time passes, buys more and more of these books. A concrete 
example is offered by a library of a school or university, where one has added courses in French 
at a certain time. Another example is offered by the library system to which my library belongs 
(cf. Supra). At regular time intervals, the board or directors of the system re-evaluates the list 
of used symbols, based on occurrence tables of these symbols. If a certain symbol has been used 
increasingly during the past time one might consider splitting it up in a logical way, or if there 
is a request from a staff member of one of the participating universities to an all-new symbol 
(e.g., ii, A, 1, . . .), one might add it to the list of usable symbols in the formation of the search 
key. This is in particular important when new languages are taught in the university (e.g., ii in 
Spanish, 1 in Polish, o in Danish, and so on). It is, of course, clear that in this case, the average 
number of documents retrieved (with a certain key) will be lower, and hence, that we have a 
better performance (see also further on). 

One can wonder, however, if a certain key that was optimal for the original alphabet, will 
still be optimal for the new alphabet. We will show that this is not always true: changing the 
alphabet might cause a change of the search key and hence of the cataloger’s habits (in order 
to continue the optimal retrieval). We furthermore give criteria for which such a change is not 
necessary. We finally give some hints on which kind of alphabet-enlargements might give the best 
improvement of search key performance. 

Let us fix the old symbol-probabilities as above, by (pi)i,...,~. Denote by (qif)i,=r,...,~, the new 
symbol-probabilities, where M > N. To express, that the new symbols are a refinement of the 
old ones, we say, that there exists a partition P of (1,. . . , M} such that, for every i E (1,. . . , N), 
there exists exactly one set Ci E P such that 

(23) 

(i.e., the symbol with number i has been refined into the symbols with numbers i’ E Ci). This 
clearly models the practical habit of adding symbols. 

EXAMPLES. 

(1) In the old system, all symbols, 8, d, C, e, are read (and used) as e; in the new system we 

allow for all of them. 
(2) In the old system, several symbols that do not occur very frequently (e.g., N, *, ’ , and 

so on) are ‘attached’ to one symbol (a so-called “wild card”), say *. In the new system, 
they all can be used. 

(3) Symbols that are not refined are still included in the above formalism. In this case, the 
set Ci is a singleton! 

Let us study the performance of l/l-keys and 2-keys in both systems. In the new system, let us 
denote by %;,i, resp. Zz, the average number of documents retrieved with a l/l-key, respectively 

a 2-key. We clearly have (when at least one Ci is not a singleton) the following theorem. 
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PROOF. This is evident since (4) and (6) also imply 

M 

( ) 
2 

f$, = n 
c 9: , 

i’zl 

and 
M 

;C* = n 2 C q~j,. 
i',j'=l 

(244 
(24b) 

(25) 

(26) 

Hence, 

by Equation (23). An analogous argument applies for the proof of 5; < 52, now also using the 
next lemma. I 

LEMMA 2. For all i,j = 1,. . . , N, 

Pij = c qilj'. (27) 
(i’,j’)ECiXCj 

PROOF. Since the event “occurrence of the symbols with numbers ;,j” in the old system is the 
disjoint union of the events “occurrence of the symbols with numbers i’, j” in the new system, 
the result follows immediately. I 

There is no hope of proving that ii/r < z2 implies ~;,i < z:, or analogous things. 

EXAMPLES. 

(1) We will construct an example for which ii/i < f2 (for the old alphabet) and such that 
Z;,i > 3;. In this, we will use Theorems 2 and 3 of Section 2. 

Let N = 2 and (pij)i,j=i,2 satisfy the conditions of Theorem 2, e.g., pi = pa = l/2, 

Pll = l/8, P12 = 318, pal = l/6 and ~22 = l/3. Hence, Zcl/i = 0.25n < 0.295n = 32. 
Now the numbers (qit)ij=1,2,3,4, defined as qlt = pll, q21 = p12, q3/ = pal and q41 = ~22 are 
not all equal. Furthermore, if we define 

Qi’ 

qi’j’ = 4’ 
for all i’, j’ = 1,2,3,4, we are perfectly within the conditions of Theorem 3, with M = 4 
and (qi’jl)i’,j’=1,2,3,4. Hence, we are assured of the fact that 

z;,i > z;. 

(In fact, Z$i % 0.08703 n > 0.07378 n E i$. ) 
(2) We now construct an example for which %i/i > ~2, but z;,, < ~5. We let ourselves guide 

again by Theorems 2 and 3. 
Let N = 2, pl = l/3, pa = 213, pll = ~12 = l/6 and ~21 = ~22 = l/3. Hence, Zr/i > 52 

(according to Theorem 3). Indeed: fi/r % 0.30864 n > 0.27778 n R 52. Now (Qi’)j’=l,...$ 
with all qit = Q is clearly a refinement of (pi)i,i,2 (symbols l’, 2’ refine symbol 1 and 
symbols 3’, 4’, 5’, 6’ refine symbol 2). According to Theorem 2, if we make at least one 
qigj# # qil qjj then g;,, must be smaller than 5:. Take, e.g., qltlt = l/72, qlt2’ = 3/72, and 

all other qiljl = l/36 (i.e., 34 times). We then have Z;,, = 0.027778n < 0.02816n~ 5;. 
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The above examples are a negative property of search keys: changing the symbols used in 
catalography (and this is always necessary, how and then) might change the search key that one 
can use in an optimal way. Besides the fact that one has to look for the best one each time, one 
has also the uncomfortable fact, that cataloger’s habits change, which is not so advisable. 

Starting with a system for which ~111 < 32 must give a certain advantage for f;,, < ZCq to 

happen (and the same for both >). In fact, the next two theorems show that, usualIy, the orders 
are not reversed (we will comment on these results after the proofs). 

THEOREM 5. Let the system (pij)i,j=l,...,~ be such that 51/l < ~2. Let (~i~jl)i~,j’=l,,.,,M be a 
refinement of the (&j), such that for all i, j = 1,. . . , N, there exists one (?(i),j’(j)) f Ci X Cj 
for which 

Pij = Qi’(i),j’(j) + Eij 3 (28) 

such that 

Gj 5 & (z2 - zl/l)r (29) 

for all i, j. Then %i,l < z;. 

PROOF. By Theorem 4 and the fact that z,/, < 52, we have: 

(30) 

Now, by Lemma 2, 

5 pfj = 2 
i,j=l 

i,j=l ( (i,,j,Eix, ..i.) 2 = i,$l q;jl + JEl C’ Qi’jf Wj” p t31) 

where c* is over all (i’, j’),(i”, j”) E Ci x Cj such that (i’, j’) # (P, j”). The last term is 
calculated as follows: 

O, = 2 C* qitj, qi,tj,, = 2 2 C**(pij - Eij)qi,tj,, + 5 C*** qi,j, qi,,j,, , (32) 
i,j=l i,j=l i,j=l 

where c** is over all (i”, j”) E Ci x Cj for which (i”, j”) # (i’(i), j’(j)), and C*** is over all 
(i’,j’), (i”,j”) E Ci X Cj for which (i’, j’) # (i”, j”), and none of the (i’, j’) or (i”, j”) are equal 
to (i’(i), j’(j)). But 

** IEC ( Pij - &ij) Qil/jf/ = 2 (pjj - Eij) C** qi"jlt . 

i,j=l i,j=l 

By Lemma 2, this is equal to: 
N 

C( Pij - Eij) Eij e 

ii =l 

Also, 

i,j=l 
Qitjl Qilljll 5 5 (,.. qi’j,) (,,, qi,,j,,) = 5 &fj . 

i,j=l i,j=l 

Hence, Equation (32) becomes 

N N N N N 

CYY < 2Cpij&ij-2 C 
if i,j=l 

$j+ C&ili=2CPif&ii-C&~<2ij~~~NEjj. 
i,j=l ij=l i,j=l 8 , 

MCM 16:4-F 
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If we apply (29), we then have that 

N N 

( ) 
2 

Ck < C Pij - c Pi2 ) 
i,j=l i=l 

(33) 

and so, by (30), (31) and (33), 

M 2 

( ) 

2 M M 2 

c 
2 qiljl - 

c 
qf, = C q;jl f ff - C 4: 

j’,j’=l i’ i’,j’=l ( ) 
- a! 

i’SI 

N N 

( ) 
2 

> CP~j- OPT -(y’o’ 

i,j=l 

Consequently, 

%;,I < 2;. 4 

NOTE. It follows from the above proof that, instead of (29), it suffices to suppose the weaker 
condition 

(34) 

Analogous as Theorem 5, we have the following theorem. 

THEOREM 6. Let the system (pii)i,j=r,,,,,N be such that 5111 > 52. Let (qi'jJ)jJ,jt=1,...,M be a 
refinement of the (pii), such that, for all i = 1,. . . , N, there exists one i’(i) E Ci for which 

Pi = W(i) + Ej, 

such that 
1 

Ei I 2n @l/l - 221, (36) 

for all i. Then Z;,, > 5;. 

PROOF. The proof is completely analogous to the one above. 

NOTE. As in the above theorem, we can replace (36) by the weaker condition 

I 

5 Pi G I 
i=l 

& (%/l - 52). (37) 

INTERPRETATION. Both theorems above have practical value. Indeed, they both deal with the 
case that (old) symbols are refined into several others, for which all but one have small probability. 
Examples 1 and 3, in the beginning of this section, are indeed also examples for which these 
conditions can be true. If an old symbol is a “mixture” of new symbols, for which the new 
probabilities are of the same magnitude (as is probably the case in Example 2), the order of 
performance of l/l-keys versus 2-keys might be changed. This last case, however, is interesting 
in another way as explained now. 

Another problem that one can study in relation to the change of the alphabet is the following: 
given a system (pij)i,i=r ,,,,, N, M > N, a natural number, and a partition P = {Ci 11 i,= 1,. . . , N} 
of (1,. . . ) kf}, what is the best way to refine (pii) into (qi'j,)il,j'=1,.,.,M, i.e., to minimise Z;,r or 

2*,? The answer to this problem still brings us back to Example 2, as explained above. First, we 
need a lemma which is only a slight generalization of Lemma l(b). 
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LEMMA 3. Let M > N be a fixed natural number and P = {Ci 11 i = 1,. . . , N} a fixed partition 
of{l,...,M}. 

(a) Let (qi,j,)i,,j,=1,...,M be such that 

is fixed. Then, ~~j,=l Qf,j, is minimal for 

1 

qi’j’ = #(Ci x Cj) (i,, j,,)ECixCj %“j” = #(CZ Cj) ’ c 

. . 

for every (i’, j’) E Ci x Cj and every i, j = 1, . . . , N. 
Here # denotes “the cardinality of the set” (i.e., the number of elements in the set). 

(b) Let (qp)p=1,...,M be such that 

is fixed. Then CF=, qz, is minimal for 

qi’ = #Li i,,Ec, W’ = #f& , -c - 
for every i’ E Ci and every i = 1,. . . , N. 

PROOF. The proof goes along the lines of the one of Lemma l(b). I 

COROLLARY 1. Let the system (pij)i,j=~,...,~ be fixed, as well as M and P, as in Lemma 3. 

(a) Then, the refinement of this alphabet that minimises 5; must have probabilities equal to 

Qi’j’ = #($; cj) 7 

for every (i’, j’) E Ci x Cj and every i,j = 1,. . . , N. 
(b) The refinement of this alphabet that minimises Z;,l must have probabiJities equal to 

42 = j&Y 

(38) 

(39) 

for every i’ E ci and every i = 1,. . . , N. 

PROOF. This follows immediately from formulae (23), (25)-(27). I 

INTERPRETATION. The above result says that a refinement of an alphabet is the most effective 
if the new probabilities are a more or less equal division of the corresponding old probabilities 
(cf. Example 2, in the beginning of this section). But in this case one might have to change the 
search key that one uses (cf. this section). 

This concludes the study of the average number of documents found (using a certain search 
key), when the system of symbol-probabilities are given (i.e., when the library system is fixed). 
We will now try to prove further results about the average (of the above mentioned average 
number of documents) over all systems (i.e., with varying probabilities of symbol-occurrence). 
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5. PERFORMANCE OF THE l/l-KEY VERSUS THE P-KEY 
AVERAGED OVER ALL SYSTEMS 

5.1. Definition of the Problem 

Given a fixed system of probabilities (pij)i~=i,...,~ as in Section 2, we were able to calculate 
the average numbers of documents retrieved by using a l/l-key. 

N 

( ) 
2 

51/l = vl 
c 

2 
Pi 7 

i=l 
(40) 

and by using a a-key 

We showed several results but, dependent on the vector (pij)i,j=i,...,N we had the different 
relations: fi/i = i2, Zr/i < f2 or ii/i > 52. We now wonder what more we can prove, when 
averaging these f-values over all &)‘s that are possible. 

Besides the theoretical interest in such a result, we obtain in this way “universal” knowledge 
about l/l-keys versus 2-keys. This knowledge can always be used, when there is no knowledge 
available about the (pij)-values, or for general purposes. 

We will fix the notation and start with some lemmas that are needed in the sequel. 

z:, = n (41) 
i,j=l 

5.2. Notation and Preliminary Facts 

Based on the formulae (40) and (41), we note that fill depends on the vector (pi,. . . ,p~) 
while Zs depends on the vector (pij)i,j=l,.,.,N. We therefore define the following objects for the 
l/l-key, respectively, the Zkey. 

For the l/l-key 

Let 

521 = (zi)i=l,...,N E [O, 1lN 11 ggi = 1 (42) 
i=l 

and Xi/i be the distribution function of the ~~11 (divided by n): 

%,k I Xl/l 5 4 = p ({ (di=l,...,N ,, (@:)’ E k. f) 1 Ql) 2 (43) 

the conditional probability w.r.t. ni. Here P denotes the usual Lebesgue measure in RN. Let fill 
be the corresponding density function. Hence, the average that we want to study (the average of 
fi/i over all probabilities (~1,. . . ,p~) in fir): ~111 is (cf. (4)): 

The integration interval comes from the fact that, for all (pi,. . . ,pN) E & 

N 

( ) 
2 

&< CP” 51, 
id 

(45) 

and these extrema are attained (& for all pi equal to A, and 1 if of all pi are zero except one 
pi = 1). 

Of course, the big problem is the determination of fill. This turns out to be non-trivial and 
will be solved in the sequel. In the same way, we define the same quantities for the Zkey. 
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For the &key 

83 

Let 

f-is = (Qj)i,j=l,...,N E [O, l]Na 11 5 Xij 7 (46) 
i,j=l 

and Xs be the distribution function of the Z:, (divided by n): 

P&(X 5 x2 5 x’) = P ({ (Pij)i,j=l,...,N II pj E 1x9 x1) lQ2) 3 (47) 

the conditional probability w.r.t. as. Here P denotes the usual Lebesgue measure in RNa (there 
cannot be any confusion between this P, and P above). Let f2 be the corresponding density 
function. Hence, the average of Zs over ah probabilities (pij)i,j=l,,,,,N in fls is (cf. (41)): 

p2 = n 
I 

1 
Xfi(Z)dZ. (48) 

Ts, 

Note that we have here the same integration interval since 

1 N 
3 I C Pfj 5 l 

i,j=l 
(4% 

and these extrema are attained as in. the previous case. Again, we must be able to find f2 and 
compare it with fill. This will be done now. 

5.3. Calculation of fill and f2 

We can now prove the following result: 

THEOREM 7. Let s11 be as in (42). Let f be the density function of the distribution function 2, 
defined as: 

P&<Z<d)=P 
(1 

(%)i=l,...,N 11 &; E b'] (50) 
i=l 

Then f is defined on the interval [k, l] and 

f(x) = 
N-l 

2 cl _ +) W-W , (51) 

for all 2 E [k, 11. 

PROOF. That f is defined on the interval [F, l l] follows directly from the arguments about for- 
mula (45). Now the set 

I 
(%)i,=l,...,N 11 $x; E b, x/j} n % > 

is the sector between the balls in Rr (a N - 1 dimensional space), being the intersection of the 
sector between the balls in RN: 

and RI. The volume of the former sector must be calculated in RI, hence in N - 1 dimensions, 
since we work conditionally w.r.t. fir. r 
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in 
By definition off, it hence suffices to calculate the derivative (w.r.t. z) of the volume of a ball 
RN-l, being the intersection with RI of the ball in RN with radius x and center 0. 
The center of this ball in RN-l is the point at shortest distance from 0 to the hyperplane &, 

hence the point (k, . . . , &) E RN. The radius of the intersected ball in Qr is equal to r, where 

r2 = II (-$. * * , s> - XII% , 

where X is any vector (zi)i=r,,,.,N of the intersected ball. Therefore, we have: 

e* 2 
x2 = x (53) 

i=l 

and 

(cf. Figure 1, for N = 3). Hence, 

N 

c 
xi - -1 (54) 

kl 

(55) 

by (53) and (54). 

Figure I. Illustration of the proof of Theorem 7, A = (k, . . . , h) E QI, X = 

(“i)i=l,..., N E sll, N = 3. 

Now the volume V(r) of a ball with radius r in RN-l is given by (cf. [15]): 

where I’ is the classical gamma function. Hence, by (55): 

‘(‘) = r (“,I ; 1> . 

Now 

c V(x) = /-= f(x’) de’, 
* 

(56) 

(57) 
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for C > 0, such that 

I 

1 

Y+ 
f(d) dz’ = 1. 

Hence, we have the requirement 

so 

l/2- 1 (N-l)/2 

( > -- cy(N_l+l) l N =11 

c = r (gy (1 _ L;(N-l),2. 
N 

85 

(58) 

Hence, 

c V(z) = 

The derivative (w.r.t. 2) is the function f: 

(59) 

f(x) = 
N-l 

2(1_ #N-1)/2 
I 

for all 2 E [+,I]. a 
COROLLARY 2. 

f2(2) = 
N2 - 1 

2 Q _ #“W/2 ’ 

for all 2 E [&, 11. 

PROOF. Interpreting Theorem 7 above for N2 instead of N, we hence have Sl2 in (46), instead 
of Ri. The definition of f2 then implies (60) (based on (51)). I 

For fill, we cannot immediately apply Theorem 7, due to the special form of (43). In exactly 
the same way as in Theorem 7, we can however prove the following theorem. 

THEOREM 8. Let R1 be as in (42). Let g be the density function of the distribution function U, 
defined as: 

P$&(xgJ~x')=P ({ (%)i=l,...,N ,, (&)2 E ~x>x’l) , Ql) * @l) 

Then, g is defined on the interval [$, 11, and 

d+) = 
N-l w-3112 1 

4 (I - -#N-1)/2 3’ (62) 

for all 2 E [&, 11. 

PROOF. The proof follows the lines of the proof of Theorem 4, now using that $ix? E [fi, A?], 
and taking appropriate derivations. I 

COROLLARY 3. 

fl/lb) = 
N-l 

4 cl _ g W-W (63) 

for all x E [&, 11. 

PROOF. This follows immediately from Theorem 5 and (43). I 
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5.4. Calculation of p1/1 and p2 

We are now in a position to calculate pii1 and ~2, using formulae (44) and (48). 

THEOREM 9. 

and 

/4/l 
l_4(N2+N+2)(N-1) 1 (N+1)(N+3)NZ ’ 

(64) 

P2 
I 
* (65) 

Furthermore: 

Pi/l < P2. (66) 

PROOF. It only requires to calculate 

and 

k/l = 

J 
1 N2- 1 

cl2 = 
_+ 2 cl_ #'W2 

x. dz. 

(67) 

(68) 

These integrals are evaluated via partial integration and yield, after simplification, the formu- 
lae (64) and (65). 

It is now easy to prove that, for all N 2 2, /~r/r < ~2. I 

IMPORTANT REMARK. The arguments given here are correct in the supposition that all vectors 

(Pij)i,j=l,..., N are equally possible (this was expressed by using the classical Lebesque measure 

of RN1 and of RN in the arguments-cf. Subsections 5.2 and 5.3). This is certainly not true in 
practice, but an acceptable supposition for a “first try” (certainly within these rather complex 
formulae). So, in our arguments, the density functions are increasing with 2, being the volumes 
of balls with radii as in formula (55). This also explains, that Aima ,u~/I = ,‘im, ~2 = n; within 

our supposition, this is true: for very high N, most of the density% concentra$d in the values of 
2: close to 1. So, in such a system, most of the books have the same keys (the ones for 2: < 1 are 
not occurring any more) and, hence, the averages are very high. This is clearly a mathematically 
correct result, but without any practical consequences. 

In practice, the density functions must increase from T = 0 up to the “average” values of 

Czl$ (resp., C&, P$), (th ese vectors have, in fact, the largest probability to occur in an 

automated library system!), and then, must decrease for the higher values of CE,p: (resp., 

cz=, pi”), up to 1. Indeed, these higher values correspond to the cases where only one or a few 

letters (symbols) are in use, which is never occurring. 
So, a refinement of the above argument can be given by changing the integration interval [&, l] 

into [&, (YN], where CYN < 1. This yields more realistic values of pljl and ~2, denoted as ,u$~ 

and &. We have the following (easily calculated) result. 

THEOREM 10. ,u;,~ and &, as described above, have the values: 

&/I = n 
(6 _ p-12 

cl _ I#“-W 

and 

[‘+$++-&$&%-;)2)]~ 
(6% 
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p; = ~ u+- a(N2-1)‘2 
(I_ l&u-!)/2 

*N2 -&+2-+z)]a 
Approximately, for high N (as in ordinary alphabets), this yields: 

(70) 

(71) 

(72) 

Furthermore, if (YN < 1 and ffyN is independent of N, ,u;,~ and & are decreasing with N and, 

for values of oN not too close to 1, one has: 

PZ < 4/l’ (73) 

We leave open the problem of finding an exact form of the distribution ;f the (&j)i,j=1,...,N 

and of the (pi)i=i,...,N (and, consequently, of the Crj=, pfj and (XEi P:) 1. 

6. RELATION WITH CONCENTRATION THEORY AND APPLICATIONS 

Let f be an increasing density function (as fill and f2 in the previous section), on the interval 
[e,b]. Then, we can consider the Lorenz-curve of this density: it is formed by the graph of the 
function (for y E [0, 11): 

qf)(Y) = (6 - a) lY f (Y’VJ - a) + a) dY'* (74) 

For functions f as described, L(f) looks like in Figure 2: an increasing curve below the first 

bissectrice, and for which l(f)(O) = 0, l(f)(l) = 1. W e refer to [12,13] for some basic notions 

on concentration theory. 

‘1 

1 

I 0 Y 

Figure 2. Graph of L(f). 

We can show the following relation between the mean p and curve C(f). 

LEMMA 4. Let f be an increasing density function on the interval [a, a]. Then, the mean p can 
be written as 
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/.I = b - (b - a)L, 

where L is the area under the Lorenz-curve L(f) off. 

PROOF. Partial integration yields 

where 

P = 

J 

b b 

zf(t) da: = 
J 

2 4cp(~)), 
a 43 

Hence 

(75) 

(76) 

but 

J 

b b o 

p(;c)dz = dx 
(I J J f (2’) dx’ 

= (I-o)jbdxly f(y'(b-a)+o)dy', 
cl 

where x’ = y’(b-a)+a and x=y(b-a)+a. Hence, 

J 
b 1 

(o(x) dx = (6 - u)” 
(I J J 0 

dy Oy f(y’(b - a)+ a) dy’ 

= (b - u) 1’ f(f)(y) dy = (b - u) L. 

so, 
/J = b - (b - u) L. 

COROLLARY 4. For N 2 4, ,v~/I and p2 can be expressed as: 

I 

p1/1 = 1 - 
( > 

1 - +2 b/l> 

and 

k-4 =l- 1-h La, 

( > 

(7% 

(79) 

where L1/1 and L2 represent the area under the Lorenz-curves C(fi,l), .C(f2) of fill and f2, 
respectively. 

PROOF. This follows readily from Lemma 4 and Corollaries 2 and 3 (see formulae (60) and (63)): 
fill and f2 are increasing in the interval [$, I]. I 

NOTE. The result of Theorem 9 can now be explained intuitively, using (78) and (79). Since 
f2 (formulae (60)) p re resents a much more concentrated situation than fql (formulae (63)), we 
have, that 

qfl/l) > C(f2h 

and, hence, 

By (76) and (79), we now see that 

the result of Theorem 9. It is not clear how to interpret the result of Theorem 10 in this 
framework. 
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7. EXTENSION TO LARGER SEARCH KEYS 

Let us consider, for example, a l/l/l-key versus a 3-key. An analogous argument as the one 
leading to Corollary 2 yields (based on the preliminary results in Section 2) 

n(x) = 
N3 - 1 

2(1_ 1#'=-1)/2 

for z E [&, 11. For fill/i, one finds, based on Section 2, Theorem 8 and Corollary 3, (analogous 
argument) : 

h/l/1(4 = y-;_l),2 (fi- ;)(N-3J'2 &. 

W-x) 

(81) 

The analogous results as in Theorem 9 and Theorem 10 can also be proved here: 

#%/l/l < P3> (82) 

and 

4 < &/l/l, (83) 

We also have, that (- is in the O-sense of Landau, cf. [IS]): 

fill(x) - x(~-~)/~, on 
[ 1 $1 > 

fljl,l(x) - x(~-~)/~, on j&,1 , [ 1 
fi(X) - 2 

(Na-3112 on l 

[ 1 $‘1 > 
13(x) - 2 

(N3-3112 on ’ 

[ 1 $‘I . 

(84a) 

(84b) 

(84~) 

(84d) 

So, by (75)) 

P3 - h/l/l =(I-$)ll (J%M)(Y) - We)) dy 

> (+)J(jl (‘%/i)(y) - L(fz)(y)) dy, 

by the above approximate formulae (84). We followed here the same intuitive argument as the 
one in the note following Corollary 3. Hence, using (75) again: 

P3 - Pi/l/l > P2 - b/l. (85) 

Note that this result is only intuitive and, furthermore, based on equal probability of the 

vectors (~ijk)i,j,k=l,..., N and (pi)i=l,.,., N. 

Obviously, we can note the following trivial relations: ,~s < ,u2 and plilil < plil. 

1. 

2. 
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