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Abstract

A decade ago, a statistics-based method was introduced to count the number of atoms from annular dark-field scanning transmission elec-
tron microscopy (ADF STEM) images. In the past years, this method was successfully applied to nanocrystals of arbitrary shape, size, and
composition (and its high accuracy and precision has been demonstrated). However, the counting results obtained from this statistical
framework are so far presented without a visualization of the actual uncertainty about this estimate. In this paper, we present three
approaches that can be used to represent counting results together with their statistical error, and discuss which approach is most suited
for further use based on simulations and an experimental ADF STEM image.
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General Introduction

Nowadays, an increasing amount of interest is focused on the reli-
able quantification of electron microscopy images of nanomateri-
als. For this intended purpose, a statistical approach to the
quantitative analysis of atomic-resolution electron microscopy
images has been pioneered at the beginning of this century
(den Dekker et al., 2005; Van Aert et al., 2005, 2009). Using stat-
istical parameter estimation theory, we can currently locate the
atomic column positions with picometer precision (Van Aert
et al., 2012), determine the chemical composition of materials
(Martinez et al., 2014), and count the number of atoms in an
atomic column (Van Aert et al., 2011, 2013; De Backer et al.,
2013). Counting the number of atoms from an annular dark-field
scanning transmission electron microscopy (ADF STEM) image
has been shown to be a promising alternative to electron tomog-
raphy to get insight in the 3D atomic arrangement of the atoms
(De Backer et al., 2017, 2022). Indeed, by performing an energy
minimization of an initial 3D atomic model based on the count-
ing results, an estimated 3D atomic structure can be achieved
from a single ADF STEM projection.

Such a precise characterization is of crucial importance, since a
nanomaterial’s properties are heavily dependent on its shape and

size (Chithrani et al., 2006; Grassian, 2008; He et al., 2013; Hua
et al., 2015; Cui et al., 2018; Shafiqa et al., 2018; Yang et al.,
2019). Synthesis procedures can benefit from a reliable quantifica-
tion of this shape and size in an iterative process. Furthermore,
calculations based on the expected and actual atomic structure
can lead to the targeted development of a new nanomaterial
with desired properties. Many efforts have been made to enable
quantitative electron microscopy of the materials as synthesized,
imaged at lower incident electron doses where electron beam
damage can be avoided (Migunov et al., 2015; Mittelberger
et al., 2018; Egerton, 2019; Van Aert et al., 2019; Nicholls et al.,
2020). Furthermore, the field of electron microscopy for material
science is strongly evolving toward more in situ studies, where
environmental conditions greatly complicate image acquisition
(De Backer et al., 2017; Haimei & Yimei, 2017; Vanrompay
et al., 2018; Gavhane et al., 2021). Both these evolutions entail
more noisy electron microscopy images, leading to a larger
amount of uncertainty in the interpretation. So far, atom-
counting results are mainly represented without their statistical
uncertainty which will become more important for such challeng-
ing experiments. In this paper, we will discuss different
approaches for a statistical representation of the uncertainty on
the counting results.

When counting the number of atoms, the scattering cross-
section is quantified for each atomic column. This scattering
cross-section is a measure for the total intensity of electrons scat-
tered from an atomic column and has a monotonic dependence
on the number of atoms and atomic mass number in the atomic
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column (De Backer et al., 2013; E et al., 2013). For counting the
number of atoms, different methods exist, where the simulation-
based method is the most straightforward, since it directly com-
pares the experimental scattering cross-sections to detailed
image simulations (LeBeau et al., 2010; Jones, 2016).
Alternatively, a statistics-based method can be used (Van Aert
et al., 2011, 2013; De Backer et al., 2013), or a so-called hybrid
method for atom-counting, which cautiously includes some
prior knowledge from image simulations in the statistical frame-
work (De wael et al., 2017).

The latter two methods for atom-counting use statistical
parameter estimation theory to estimate the joint probability dis-
tribution of the scattering cross-sections. The motivation for this
approach is that the scattering cross-sections are inherently ran-
dom in nature as a consequence of various noise contributions
such as electron counting statistics, instabilities of the microscope,
different vertical onset of columns of the same number of atoms,
vacancies, relaxation at the boundaries, contamination, intensity
transfer between columns, and the influence of neighboring col-
umns of different number of atoms. Scattering cross-sections cor-
responding to various atomic columns with a given number of
atoms will therefore not be identical, but fluctuate around an aver-
age scattering cross-section. In the statistics-based method, these
average scattering cross-sections are estimated freely, while in
the hybrid method, they depend on the simulated scattering
cross-sections via a linear scaling relation. In the remainder of
this paper, we will focus on the statistics-based method for atom-
counting, although the results can also be applied to the hybrid
method.

So far, results of these methods were presented as if the esti-
mated results are known without any form of uncertainty.
However, the benefit of such a statistical approach—over a purely
simulation-based comparison—is that it can also quantify the
uncertainty on the estimated results. This benefit has not yet
been fully exploited in the field of quantitative ADF STEM.
Different sources of uncertainty actually exist. Atom-counting
results are assigned from an estimated distribution, from which
a most likely thickness is chosen. These results are based on
noisy data, resulting in parameter uncertainty. Moreover, the
atom-counting results are typically based on a single model, cho-
sen from a set of possible models. First, the statistics-based atom-
counting method is briefly reviewed. Then, we introduce three
approaches for the statistical representation of the atom-counting
errors for a simulated Au nanorod. Next, the methodology is
applied to an experimental example. Finally, the conclusions of
this work are summarized.

Introduction to Statistics-Based Atom-Counting

The procedure for atom-counting using a statistical framework is
illustrated in Figure 1 for a simulated ADF STEM image of a Au
nanorod. The simulation parameters are summarized in Table 1.
Atom positions for this Au nanorod correspond to a relaxed
crystal lattice, obtained from molecular dynamics simulations at
room temperature employing the gold embedded atom method
(EAM) potential (Grochola et al., 2005), performed using the
GPU Lammps package (Plimpton, 1995; Brown et al., 2011).
Figure 1a shows the simulated ADF STEM image with Poisson

Fig. 1. Schematic representation of the statistical atom-counting methodology, shown for a simulated ADF STEM image of a Au nanorod corresponding to a low
electron dose of 103 electrons/angstrom2 (a). A parametric imaging model (b) is fitted to the ADF STEM image, in order to obtain the scattering cross-sections for
each atomic column. Based on the total set of scattering cross-sections, a Gaussian mixture model is estimated (c), corresponding to the number of components
selected from the ICL order selection criterion (d). Then, the most likely number of atoms resulting from the Gaussian mixture model is assigned to each atomic
column (e). The black square in (e) indicates the region which is magnified and represented in Figures 2, 3, and 4.
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noise corresponding to an electron dose of 103 electrons/
angstrom2. In order to quantify the intensities in the ADF
STEM image, a parametric imaging model is fitted to the ADF
STEM image, shown in Figure 1b. This parametric imaging
model is described in more detail in Van Aert et al. (2009) and
De Backer et al. (2013, 2016, 2021) and can be fitted using the
open-source software package StatSTEM. In this manner, a reli-
able estimate is obtained for the scattering cross-section of each
atomic column in the image. The scattering cross-section quanti-
fies the total intensity of electrons scattered from the atomic col-
umn toward the detector, and depends on the thickness and
composition of the atomic column (De Backer et al., 2013; E
et al., 2013). For single element atomic columns, and at high
enough inner detector angles, the scattering cross-sections
increase monotonically with the number of atoms in the atomic
column. As a result, the scattering cross-sections can be used
for atom-counting in monatomic nanomaterials.

To this purpose, the distribution of the scattering cross-
sections corresponding to atomic columns with the same number
of atoms is modeled as a Gaussian distribution for each thickness
g present in the sample (Van Aert et al., 2011, 2013; De Backer
et al., 2013, 2021). Together, this results in a Gaussian mixture
model with G Gaussian components, where G is the number of
different thicknesses present in the sample. This is visualized in
Figure 1c. More details can be found in the Appendix.

Due to the noise, it is impossible to accurately determine the
correct number of components G based on a visual interpretation
of the set of scattering cross-sections displayed in the histogram.
Furthermore, this would be subjectively dependent on the chosen
number of bins to represent the scattering cross-sections in the
histogram. Therefore, an order selection criterion which balances
the model likelihood against the model complexity is introduced
to select the correct number of components G. Ideally, the true
model order corresponds to a local minimum in the order selec-
tion criterion evaluated as a function of the number of compo-
nents. The Integrated Classification Likelihood (ICL) criterion

has been shown to have the best performance for atom-counting
(De Backer et al., 2013) and is evaluated in Figure 1d. Multiple
local minima can occur in the ICL criterion. The relevant local
minimum can be selected by taking into account some prior
knowledge about the system’s geometry and/or sample thickness,
or by comparing to image simulations, provided that the experi-
mental images have been normalized with respect to the incident
electron beam (De Backer et al., 2013; Jones, 2016).

Next, counting results—shown in Figure 1e—are obtained by
assigning the scattering cross-section of each atomic column to
the component of the estimated probability distribution with
the largest probability for this scattering cross-section. The preci-
sion of the counting results is, therefore, limited by the overlap
between the Gaussian components. In this and all following visu-
alizations of the counting results, a perpetually uniform, linear
colormap from ColorCET was used (Kovesi, 2015).

Approach 1: Showing the Inherent Uncertainty in the
Gaussian Mixture Model

In fact, the counting result that is estimated using the statistics-
based atom-counting is only the most likely counting result. By
displaying this as the “true” estimate can be misleading in the
sense that the feeling for the precision of the counting results is
lost. This precision is, however, captured within the Gaussian
mixture model, and is determined by the estimated width of the
Gaussian components. Therefore, the first approach to present
the counting results in a more representative manner, exploits
all the information captured within the estimated Gaussian mix-
ture model.

This can be done using a probability matrix, as shown in
Figure 2a. The probability matrix summarizes the probability
for each atomic column’s scattering cross-section to correspond
to the different thicknesses (De Backer et al., 2022). This is further
explained in the Appendix. In Figure 2, darker colors correspond
to higher probabilities. In this representation, it becomes clear that
some atomic columns are assigned a counting result with high
probability. However, in many cases, the probabilities for assigning
an atomic column to g or g + 1 atoms are similar, as visualized
in the inset in Figure 2a. Especially, in these cases, it is useful
to represent the counting results in a more statistical manner.

The representation chosen for this purpose is a scatter pie plot,
where for each atomic column, the different possible thicknesses
are visualized with their corresponding probability using a pie
chart. The result is shown in Figure 2b for the atomic columns
of the simulated Au rod indicated by the black box in
Figure 1e. To allow a straightforward visual comparison, the
counts are represented on the same color scale as the results
shown for the next two approaches for this simulated Au nano-
rod. Note that both representations—probability matrix and scat-
ter pie plot—in fact, contain the same information, but with the
spatial context represented differently: via an arbitrary atomic col-
umn index or via the estimated atomic column positions, respec-
tively. Visualizing the probabilities linked to the atomic column
positions makes this approach especially useful in order to gain
more insight in the counting uncertainty.

Approach 2: Sampling the Actual Distribution of the Atom
Counts

The approach described in the previous section shows the uncer-
tainty quantified by the width of the Gaussian components of the

Table 1. Parameters Used for the Multislice Simulations of the Au Nanoparticle
from Figure 1.

Parameter Value

Acceleration voltage 200 kV

Spherical aberration Cs 0.001 mm

Defocus C1 15.836 Å

Simulation box size (x × y) 145× 145 Å2

Probe convergence angle a 24mrad

Annular detector inner angle 60mrad

Annular detector outer angle 165 mrad

Number of phonon configurations 15

Spatial incoherence of source FWHM 1 Å

Pixel size of simulated image 0.125 Å

Pixel size to sample atomic potential 0.0472 Å

Pixel size to sample reciprocal space 0.0069 Å−1

Maximum reciprocal lattice vector 10.6 Å−1

Slice thickness 2.039 Å

Zone axis [100]
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estimated Gaussian mixture model. Importantly, there is also
uncertainty on the estimated parameters of the Gaussian mixture
model. Therefore, we propose an approach based on sampling the
actual distribution of the atom counts via noise realizations.

The starting point of this approach are the most likely counts,
together with the average scattering cross-sections and the width
of the Gaussian components of the estimated Gaussian mixture
model. A noise realization is then generated by performing a ran-
dom draw, for each atomic column, from the Gaussian distribu-
tion corresponding to the estimated most likely number of
atoms. It was previously shown that the width of the Gaussian
mixture model can be underestimated in some cases (De Backer
et al., 2013). Therefore, in order to avoid inaccuracies in the set
of noise realizations due to underestimation of the width of the
Gaussian components in the initial analysis, the maximum of
the estimated width s and the dose-dependent width
sD = mg/D was used, with mg the estimated average scattering
cross-section corresponding to the gth component and D the elec-
tron dose (Van Aert et al., 2019). From a specific noise realization,
we obtain a new set of scattering cross-sections, corresponding to
the estimated model. This set of scattering cross-sections is then
analyzed using the statistical framework as previously described
in the introduction to statistics-based atom-counting. Note that
this implies that also for each noise realization the ICL criterion
is evaluated to select the relevant number of components G.
The set of most likely counting results for many of these noise
realizations then constitute the sample distribution of the atom

counts. This is a bootstrap procedure to quantify the uncertainty
in the estimation process.

Based on this bootstrap sample distribution, a 95% prediction
interval can be constructed for each atomic column, without any
assumption on the type of distribution underlying the sample
counting results (Geisser, 1993). The prediction interval for a
given atomic column is obtained by ranking the estimated counts
from the M different noise realizations for that atomic column in
ascending order. The 95% prediction interval is chosen such that
it is centered around the median of the estimated counts from the
noise realizations. The lower bound and upper bound of the inter-
val are then given by the estimated counts for the noise realiza-
tions that are the first and last, respectively, of m realizations
that fall within the range of the prediction interval. This range
is chosen such that (m− 1)/(M + 1) = 95%. In this manner,
the next counting result has a probability of 95% to fall within
this prediction interval.

The interval is visualized in Figure 3a for the atomic columns
of the simulated Au rod indicated by the black box in Figure 1e
and provides a range within which the true number of atoms is
expected to fall. This prediction interval was obtained based on
50 noise realizations. In this manner, it provides a clear and quan-
titative visualization of the uncertainty on the counting results. Note
that the range of this prediction interval is rather large in this case,
due to the low electron dose and high confidence level of 95%.

However, the different thicknesses enclosed by the prediction
interval are not equally likely to correspond to the true thickness.

Fig. 2. Approach 1. A probability matrix (a) summarizes the probability for each atomic column’s scattering cross-section to correspond to the different thicknesses.
It is a different manner to display the estimated Gaussian mixture model, and can be used to represent the counting results using a scatter pie plot (b), rather than
only showing the most likely counting result. (c) Magnified view of the pie charts used to statistically represent the counting results for each atomic column.

Fig. 3. Approach 2. (a) 95% prediction interval on the number of atoms for each atomic column of the simulated Au nanorod from Figure 1. (b) Sample distribution
from which the 95% prediction interval was estimated. (c) Magnified view of the pie charts used to statistically represent the counting results for each atomic
column.
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Therefore, as an alternative representation, the whole sample dis-
tribution can be visualized for each atomic column using a pie
chart, similar in interpretation to the results shown in the previ-
ous section for the first approach. This is shown in Figure 3b.
Note that the information on the absolute range of possible
counting results is the same in both representations for each
atomic column. However, the scatter pie plot shows more nuance
in the probability distribution over the different options to be
considered, as compared with the wide prediction interval repre-
sentation of Figure 3a.

In order to validate this second approach for representing the
uncertainty on the atom-counting results, nested noise realiza-
tions were performed. The starting point was a ground truth
number of atoms known from the structure of the simulated
Au nanorod of Figure 1. The first set of 30 noise realizations
serves to mimic the range that can be present in any experiment
in case the ground truth is unknown. Based on each noise reali-
zation, a new set of 50 noise realizations was created based on
the parameter estimates and counts. Each noise realization of
this second set is then analyzed to obtain counting results that
form a sample distribution for the counting results corresponding
to the initial noise realization. The final goal of this analysis is to
confirm whether the initial ground truth number of atoms is
included in the final sample distribution, starting from an esti-
mated Gaussian mixture model. We conclude that this second
approach is indeed a reliable manner to achieve a statistical rep-
resentation of the counting results, since the average percentage
of atomic columns for which the true number of atoms falls
within the 95% prediction interval—obtained based on 50 noise
realizations—is expected to fluctuate around 95%, and was esti-
mated equal to 99% for this set of only 30 noise realizations cor-
responding to an incident electron dose of 103 e−/A2.

Approach 3: Tackling Uncertainty in the Selection Criterion
Based on the Concept of Model Averaging

The two approaches presented so far in fact assume that the
selected local minimum from the order selection criterion corre-
sponds to the correct model. In some situations, however, this
assumption becomes difficult to justify objectively. The ICL crite-
rion can present itself with a very shallow local minimum, where
the values for G or G+ 1 components are barely significantly

different, making it impossible to reliably distinguish between
those models. In this situation, the concept of model averaging
can be a solution (Burnham & Anderson, 2002).

Instead of selecting a single best model, it is argued that there
is also an uncertainty in the model selection process. Therefore,
results from multiple models are combined. In order to combine
the different models, first a range of possible component numbers
is selected, as indicated by the highlighted region in Figure 4a.
The ICL values for these component numbers determine the
weights with which the different models are combined, as follows:

wG = exp [− (1/c)(ICL(G)−minF=Gi ,...,Gf (ICL(F)))]∑Gf

H=Gi
exp [− (1/c)(ICL(H)−minF=Gi ,...,Gf (ICL(F)))]

,

(1)

with wG the weight for the model corresponding to G components,
while considering the models from Gi until Gf components. This
equation was based on the expression given for an Akaike
Information Criterion (AIC) from (Claeskens, 2016). The factor 2
has been changed to a scaling parameter c, chosen equal to the min-
imum difference between subsequent ICL values in the considered
range. The value of the ICL criterion at G components, ICL(G),
is calculated according to equation (A.6) of the Appendix.

The weights for the selected region are shown in the inset of
Figure 4a. The most likely counting results following from the dif-
ferent models are then joined for each atomic column, according
to the weights from equation (1). The (weighted) proportions for
the different possible thicknesses obtained in this manner, then pro-
vides us with a statistical representation for the atom-counts. This is
shown using a scatter pie plot in Figure 4b for the atomic columns
of the simulated Au rod indicated by the black box in Figure 1e.

Discussion Using an Experimental Example

In order to compare and discuss the three proposed approaches in
more detail, they are applied to the quantification of an experi-
mental ADF STEM image of an Au nanorod, shown in
Figure 5a. The image was taken at an aberration-corrected
ThermoFisher Scientific Titan operated at 300 kV, using a probe
convergence angle of 20 mrad and detector collection angles
115–157 mrad. The incident electron dose used to acquire the

Fig. 4. Approach 3. (a) ICL criterion with the region of interest for combining different models highlighted. The inset shows the weights used to average the different
models. (b) Scatter pie plot showing the possible counting results by combining the different models for the example from Figure 1. (c) Magnified view of the pie
charts used to statistically represent the counting results for each atomic column.
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image was 5.5× 104 e−/A2. The results obtained via the conven-
tional procedure for atom-counting are shown in Figures 5b, 5c,
while the results of the three approaches presented in this paper
are shown for comparison in Figures 5d–5f.

It is clear that the three approaches yield different statistical rep-
resentations of the uncertainty on the estimated counting results.
This is to be expected and can be explained since the three
approaches account for statistical uncertainty at a different level.
In the first approach, only the uncertainty on the assignment of
the counting result to one of the estimated Gaussian components
is evaluated. In the second approach, the fluctuation of the estimated
model at a given number of components itself is simulated. Finally,
in the third approach, several models are combined, to account for
uncertainty within the ICL order selection criterion.

The first approach is the most straightforward and least com-
putationally expensive. However, the uncertainty presented in this

manner is usually limited to +1, as can be seen from the rather
small color variation in Figure 5d. The second approach covers a
larger variation in the final atom-counts, but is also more compu-
tationally expensive, since it requires repeated creation and anal-
ysis of noise realizations based on the estimated model. This
approach is especially useful when the number of atomic columns
per thickness is small, since in this case it is more challenging to
reliably estimate the model parameters correctly (De Backer et al.,
2013).

In this second approach, we implicitly assume that the one
model selected from the ICL order selection criterion to base
these noise realizations on, can correspond to a correct model.
For the experimental example discussed in this section, however,
the ICL criterion exhibits a very shallow valley-like local mini-
mum, as shown in Figure 6a. The local minimum occurs at
G = 47 components, but the ICL value for 44 components until

Fig. 5. (a) Experimental ADF STEM image of an Au nanorod. (b) Most likely counting results obtained using the conventional statistics-based atom-counting
approach. (c) Enlarged view of the most likely counting results. (d–f) Scatter pie plots corresponding to the same enlarged area, obtained using the three
approaches for statistically representing the counting results. Additionally, further magnified views of the pie charts used to statistically represent the counting
results for each atomic column are shown. All counting results are presented using the same color scale, indicated in (b).
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49 components are similar. A good match with simulations—
within a range of 5%, which is a reasonable deviation for a
small amount of sample tilt or a slightly mismeasured inner
detector angle (De wael et al., 2017)—could be found for 44 com-
ponents until 48 components, as shown in Figure 6b. Therefore,
this is the range considered for combining the different models,
as indicated by the highlighted region in Figure 6a. The inset of
Figure 6a shows the corresponding weights, determined using
equation (1), used to obtain the result visualized in Figure 5f.
Note that the agreement between the estimated locations—i.e.,
the average scattering cross-sections—for the different models
and the library of simulated scattering cross-sections is achieved
by including an offset. This means that the first component esti-
mated by the Gaussian mixture model does not correspond to a
set of atomic columns with 1 atom thickness, but with a higher
number of atoms.

Conclusion

The conventional representation of the atom-counts obtained
from the statistics-based atom-counting procedure, shows the
most likely estimated counts. However, this representation
neglects unavoidable uncertainties in the atom-counting results.
In reality, there is variability on the estimated counting results.
This variability can have different origins: uncertainty within

the estimated Gaussian mixture model, uncertainty on the esti-
mated model parameters, or even uncertainty on the order of
the Gaussian mixture model itself. This paper introduces three
approaches that each deal with a different source of variability,
and statistically represent the counting results.

The most obvious uncertainty is inherent to the Gaussian mix-
ture model, since the Gaussian components have a finite width
and overlap each other. This uncertainty on the assigned number
of atoms can be represented using the first approach described in
this paper. In this manner, the advantage of the statistical frame-
work for atom-counting—a quantification of the counting preci-
sion—is explicitly shown. Of the three approaches presented in
this paper, this first approach is the least computationally expen-
sive. It does not provide a full view of the uncertainty present in
the estimated model, but already significantly improves upon
reporting the counting results as a point estimate.

The second approach presented here, improves upon this first
approach, by simulating the uncertainty on the estimated model
parameters using noise realizations, which is the goal of the sec-
ond approach discussed in this paper. By generating a new set
of scattering cross-sections based on the estimated parameters,
and consecutively analyzing that set of scattering cross-sections
again using the statistics-based method for atom-counting,
including model order selection, we achieve a sample distribution
representative of the actual number of atoms in each atomic

Fig. 6. (a) ICL criterion for the experimental ADF STEM image from Figure 5a. The highlighted region indicates the models considered for weighting the different
models, according to the weights shown in the inset. (b) Scattering cross-sections as a function of thickness for the different models which are combined. The
considered models have an agreement between the estimated and simulated scattering cross-sections within 5%.
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column. From this sample distribution, an interval can be esti-
mated, rather than a point estimate.

Another situation that can occur is that the order selection cri-
terion is especially unclear. Different options for the number of
components can yield similar values in the criterion. In this
case, an important source of variability on the counting results
is the model order. The concept of model averaging is an ideal
technique for dealing with this type of uncertainty. In this case,
the weighted average of the counting results of models with differ-
ent orders that can not be significantly distinguished is used to
represent the uncertainty on the atom-counting results. In princi-
ple, approaches 2 and 3 could also be combined to account for the
various types of uncertainty on the estimated results at the same
time. This could be especially relevant in case the lowest or high-
est model order considered when combining the different models
corresponds to the actual underlying model. Note that the third
approach is not especially relevant in case of an order selection
criterion that has a very pronounced local minimum. In those
cases, the selection of the number of components is not the largest
source of uncertainty, and approaches 1 or 2 are more appropriate.

With these three approaches, this paper aims to be a first step
toward an even more statistical representation of the atom-
counting results from ADF STEM images.
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Appendix

Gaussian Mixture Model

The distribution of the scattering cross-sections corresponding to atomic col-
umns with the same number of atoms can be modeled as a Gaussian distribu-
tion for each thickness g present in the sample (Van Aert et al., 2011, 2013; De
Backer et al., 2013, 2021). Together, this results in a Gaussian mixture model
with G Gaussian components, where G is the number of different thicknesses
present in the sample. The Gaussian mixture model is given by:

fmix Vn |CG( ) =
∑G
g=1

pgN Vn |mg , s
( )

, (A.1)

with

N Vn |mg , s
( )

= 1����
2p

√
s
exp − (Vn − mg )

2

2s2

( )
, (A.2)

the Gaussian components, visualized in Figure 1c.
In these expressions, mg represents the location, i.e., the average scattering

cross-section value, of the gth component in the mixture model and s repre-
sents the width of the components, while Vn represents the stochastic variable
related to the nth scattering cross-section. The stochastic variables for all scat-
tering cross-sections are summarized in the vector V. The mixing proportion
pg of the gth component indicates which fraction of the columns in the image
have a specific number of atoms corresponding to the gth component, i.e., the
weight of the gth component in the Gaussian mixture model. The vectorCG is
the parameter vector containing all unknown parameters to be estimated in a
Gaussian mixture model with G components:

CG = (p1, . . . , pG−1, m1, . . . , mG, s)
T . (A.3)

The joint probability density function of all scattering cross-sections is
obtained starting from the Gaussian mixture model of equation (A.1) by tak-
ing the product over all atomic columns n, since the scattering cross-sections
are independent from each other:

p(V |CG) =
∏N
n=1

∑G
g=1

pgN Vn |mg , s
( )

. (A.4)

The parameters CG of the probability distribution of the scattering cross-
sections are estimated, by maximizing the likelihood function. The expression
for the likelihood function has the same functional form as the joint probability
density function, but is evaluated as a function of the parameters rather than as a
function of the stochastic variables related to the observed data. Specifically for
this expression, the observed scattering cross-sections V̂ are inserted:

L(Cstat
G ) = p(V̂ |Cstat

G ) =
∏N
n=1

fmix V̂n |Cstat
G

( )
. (A.5)

The parameter estimates are iteratively calculated using the expectation
maximization (EM) algorithm (Dempster et al., 1977).

ICL Criterion

So far, we have considered the estimation of the probability distribution of the
scattered intensities presuming a specific number of components G. However,
due to the noise, it is impossible to accurately determine the correct number of
components based on a visual interpretation of the set of scattering cross-
sections displayed in the histogram. Furthermore, this would be subjectively
dependent on the chosen number of bins to represent the scattering cross-
sections in the histogram. Therefore, an order selection criterion which bal-
ances the model likelihood against the model complexity is introduced to
select the correct number of components G. The model order corresponds
to a local minimum in the order selection criterion evaluated as a function
of the number of components. Many different information criteria exist
(McLachlan & Peel, 2000), but the Integrated Classification Likelihood (ICL)
criterion (Biernacki et al., 2000) has been shown to have the best performance
for atom-counting (De Backer et al., 2013). The ICL criterion is expressed as
follows:

ICL(G) = −2 log L(ĈG)+ 2EN(t̂)+ d logN , (A.6)

with −2 log L(ĈG) the likelihood term depending on the estimated parameters
ĈG and 2EN(t̂)+ d logN the penalty term depending on the sample size N ,
the number of parameters d = 2G and an entropy term:

EN(t̂) = −
∑G
g=1

∑N
n=1

tg V̂n | ĈG
( )

log tg V̂n | ĈG
( )

, (A.7)

with tg (V̂n | ĈG) the posterior probability that the estimated scattering cross-
section of the nth column V̂n belongs to the gth component. This entropy
term favors mixture models with well-separated components, in order to esti-
mate physically relevant Gaussian mixture models.

Probability Matrix

A different manner of representing the estimated Gaussian mixture model
from equation (A.1) is by using a probability matrix. This matrix summarizes
the posterior probability for each atomic column’s scattering cross-section to
correspond to the different thicknesses. This can be understood via the
Bayes’ theorem, as also discussed in De Backer et al. (2022):

p g | V̂n
( ) = p g

( )
p V̂n | g
( )

∑G
h=1 p h( )p V̂n | h

( ) , (A.8)

=
p̂gN V̂n | m̂g , ŝ

( )
∑G

h=1 p̂hN V̂n | m̂h, ŝ
( ) , (A.9)

= tg V̂n | ĈG
( )

. (A.10)

An example of such a probability matrix is shown in Figure 2a, where p(g | V̂n)
is evaluated for all possible thicknesses g and for all atomic columns n.
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