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Abstract

A decade ago, a statistics-based method was introduced to count the number of atoms from annular dark-field scanning transmission electron
microscopy (ADF STEM) images. In the past years, this method was successfully applied to nanocrystals of arbitrary shape, size, and
composition (and its high accuracy and precision has been demonstrated). However, the counting results obtained from this statistical
framework are so far presented without a visualization of the actual uncertainty about this estimate. In this paper, we present three
approaches that can be used to represent counting results together with their statistical error, and discuss which approach is most suited for

further use based on simulations and an experimental ADF STEM image.
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General Introduction

Nowadays, an increasing amount of interest is focused on the
reliable quantification of electron microscopy images of nano-
materials. For this intended purpose, a statistical approach to
the quantitative analysis of atomic-resolution electron micros-
copy images has been pioneered at the beginning of this cen-
tury (den Dekker et al., 2005; Van Aert et al., 2005, 2009).
Using statistical parameter estimation theory, we can current-
ly locate the atomic column positions with picometer precision
(Van Aertetal., 2012), determine the chemical composition of
materials (Martinez et al., 2014), and count the number of

atoms in an atomic column (Van Aert et al., 2011, 2013; De
Backer et al., 2013). Counting the number of atoms from an
annular dark-field scanning transmission electron microscopy
(ADF STEM) image has been shown to be a promising alterna-
tive to electron tomography to get insight in the 3D atomic ar-
rangement of the atoms (De Backer etal.,2017,2022). Indeed,
by performing an energy minimization of an initial 3D atomic
model based on the counting results, an estimated 3D atomic
structure can be achieved from a single ADF STEM projection.

Such a precise characterization is of crucial importance,
since a nanomaterial’s properties are heavily dependent on
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its shape and size (Chithrani et al., 2006; Grassian, 2008; He
et al., 2013; Hua et al., 2015; Cui et al., 2018; Shafiqa et al.,
2018; Yang et al., 2019). Synthesis procedures can benefit
from a reliable quantification of this shape and size in an itera-
tive process. Furthermore, calculations based on the expected
and actual atomic structure can lead to the targeted develop-
ment of a new nanomaterial with desired properties. Many ef-
forts have been made to enable quantitative electron
microscopy of the materials as synthesized, imaged at lower
incident electron doses where electron beam damage can be
avoided (Migunov et al., 2015; Mittelberger et al., 2018;
Egerton, 2019; Van Aert et al., 2019; Nicholls et al., 2020).
Furthermore, the field of electron microscopy for material sci-
ence is strongly evolving toward more in situ studies, where
environmental conditions greatly complicate image acquisi-
tion (De Backer et al.,, 2017; Haimei & Yimei, 2017;
Vanrompay et al., 2018; Gavhane et al., 2021). Both these
evolutions entail more noisy electron microscopy images,
leading to a larger amount of uncertainty in the interpretation.
So far, atom-counting results are mainly represented without
their statistical uncertainty which will become more important
for such challenging experiments. In this paper, we will discuss
different approaches for a statistical representation of the un-
certainty on the counting results.

When counting the number of atoms, the scattering cross-
section is quantified for each atomic column. This scattering
cross-section is a measure for the total intensity of electrons
scattered from an atomic column and has a monotonic de-
pendence on the number of atoms and atomic mass number
in the atomic column (De Backer et al., 2013; E et al.,
2013). For counting the number of atoms, different methods
exist, where the simulation-based method is the most straight-
forward, since it directly compares the experimental scattering
cross-sections to detailed image simulations (LeBeau et al.,
2010; Jones, 2016). Alternatively, a statistics-based method
can be used (Van Aert et al., 2011, 2013; De Backer et al.,
2013), or a so-called hybrid method for atom-counting, which
cautiously includes some prior knowledge from image simula-
tions in the statistical framework (De wael et al., 2017).

The latter two methods for atom-counting use statistical
parameter estimation theory to estimate the joint probability
distribution of the scattering cross-sections. The motivation
for this approach is that the scattering cross-sections are inher-
ently random in nature as a consequence of various noise con-
tributions such as electron counting statistics, instabilities of
the microscope, different vertical onset of columns of the
same number of atoms, vacancies, relaxation at the boundar-
ies, contamination, intensity transfer between columns, and
the influence of neighboring columns of different number of
atoms. Scattering cross-sections corresponding to various
atomic columns with a given number of atoms will therefore
not be identical, but fluctuate around an average scattering
cross-section. In the statistics-based method, these average
scattering cross-sections are estimated freely, while in the hy-
brid method, they depend on the simulated scattering cross-
sections via a linear scaling relation. In the remainder of this
paper, we will focus on the statistics-based method for atom-
counting, although the results can also be applied to the hybrid
method.

So far, results of these methods were presented as if the es-
timated results are known without any form of uncertainty.
However, the benefit of such a statistical approach—over a
purely simulation-based comparison—is that it can also
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quantify the uncertainty on the estimated results. This benefit
has not yet been fully exploited in the field of quantitative
ADF STEM. Different sources of uncertainty actually exist.
Atom-counting results are assigned from an estimated distri-
bution, from which a most likely thickness is chosen. These
results are based on noisy data, resulting in parameter uncer-
tainty. Moreover, the atom-counting results are typically
based on a single model, chosen from a set of possible mod-
els. First, the statistics-based atom-counting method is briefly
reviewed. Then, we introduce three approaches for the stat-
istical representation of the atom-counting errors for a simu-
lated Au nanorod. Next, the methodology is applied to an
experimental example. Finally, the conclusions of this work
are summarized.

Introduction to Statistics-Based
Atom-Counting

The procedure for atom-counting using a statistical frame-
work is illustrated in Figure 1 for a simulated ADF STEM
image of a Au nanorod. The simulation parameters are sum-
marized in Table 1. Atom positions for this Au nanorod cor-
respond to a relaxed crystal lattice, obtained from molecular
dynamics simulations at room temperature employing the
gold embedded atom method (EAM) potential (Grochola
et al., 2005), performed using the GPU Lammps package
(Plimpton, 1995; Brown et al., 2011). Figure 1a shows the si-
mulated ADF STEM image with Poisson noise corresponding
to an electron dose of 103 electrons/angstrom?. In order to
quantify the intensities in the ADF STEM image, a parametric
imaging model is fitted to the ADF STEM image, shown in
Figure 1b. This parametric imaging model is described in
more detail in Van Aert et al. (2009) and De Backer et al.
(2013, 2016, 2021) and can be fitted using the open-source
software package StatSTEM. In this manner, a reliable esti-
mate is obtained for the scattering cross-section of each atomic
column in the image. The scattering cross-section quantifies
the total intensity of electrons scattered from the atomic col-
umn toward the detector, and depends on the thickness and
composition of the atomic column (De Backer et al., 2013; E
et al., 2013). For single element atomic columns, and at high
enough inner detector angles, the scattering cross-sections in-
crease monotonically with the number of atoms in the atomic
column. As a result, the scattering cross-sections can be used
for atom-counting in monatomic nanomaterials.

To this purpose, the distribution of the scattering cross-
sections corresponding to atomic columns with the same num-
ber of atoms is modeled as a Gaussian distribution for each
thickness g present in the sample (Van Aert et al., 2011,
2013; De Backer et al., 2013, 2021). Together, this results in
a Gaussian mixture model with G Gaussian components,
where G is the number of different thicknesses present in the
sample. This is visualized in Figure 1c. More details can be
found in the Appendix.

Due to the noise, it is impossible to accurately determine the
correct number of components G based on a visual interpret-
ation of the set of scattering cross-sections displayed in the
histogram. Furthermore, this would be subjectively dependent
on the chosen number of bins to represent the scattering cross-
sections in the histogram. Therefore, an order selection criter-
ion which balances the model likelihood against the model
complexity is introduced to select the correct number of
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Fig. 1. Schematic representation of the statistical atom-counting methodology, shown for a simulated ADF STEM image of a Au nanorod corresponding
to a low electron dose of 10° electrons/angstrom? (a). A parametric imaging model (b) is fitted to the ADF STEM image, in order to obtain the scattering
cross-sections for each atomic column. Based on the total set of scattering cross-sections, a Gaussian mixture model is estimated (c), corresponding to
the number of components selected from the ICL order selection criterion (d). Then, the most likely number of atoms resulting from the Gaussian mixture
model is assigned to each atomic column (e). The black square in (e) indicates the region which is magnified and represented in Figures 2, 3, and 4.

Table 1. Parameters Used for the Multislice Simulations of the Au
Nanoparticle from Figure 1.

Parameter Value
Acceleration voltage 200 kV
Spherical aberration C 0.001 mm
Defocus C; 15.836 A
Simulation box size (x X y) 145 x 145 A?
Probe convergence angle o 24 mrad
Annular detector inner angle 60 mrad
Annular detector outer angle 165 mrad
Number of phonon configurations 15

Spatial incoherence of source FWHM 1A

Pixel size of simulated image 0.125 A
Pixel size to sample atomic potential 0.0472 A
Pixel size to sample reciprocal space 0.0069 A~
Maximum reciprocal lattice vector 10.6 A™?
Slice thickness 2.039 A
Zone axis [100]

components G. Ideally, the true model order corresponds to a
local minimum in the order selection criterion evaluated as a
function of the number of components. The Integrated
Classification Likelihood (ICL) criterion has been shown to
have the best performance for atom-counting (De Backer
etal.,2013) and is evaluated in Figure 1d. Multiple local min-
ima can occur in the ICL criterion. The relevant local min-
imum can be selected by taking into account some prior
knowledge about the system’s geometry and/or sample thick-
ness, or by comparing to image simulations, provided that the

experimental images have been normalized with respect to the
incident electron beam (De Backer et al., 2013; Jones, 2016).

Next, counting results—shown in Figure le—are obtained
by assigning the scattering cross-section of each atomic col-
umn to the component of the estimated probability distribu-
tion with the largest probability for this scattering
cross-section. The precision of the counting results is, there-
fore, limited by the overlap between the Gaussian compo-
nents. In this and all following visualizations of the counting
results, a perpetually uniform, linear colormap from
ColorCET was used (Kovesi, 2015).

Approach 1: Showing the Inherent Uncertainty
in the Gaussian Mixture Model

In fact, the counting result that is estimated using the statistics-
based atom-counting is only the most likely counting result. By
displaying this as the “true” estimate can be misleading in the
sense that the feeling for the precision of the counting results is
lost. This precision is, however, captured within the Gaussian
mixture model, and is determined by the estimated width of
the Gaussian components. Therefore, the first approach to
present the counting results in a more representative manner,
exploits all the information captured within the estimated
Gaussian mixture model.

This can be done using a probability matrix, as shown in
Figure 2a. The probability matrix summarizes the probability
for each atomic column’s scattering cross-section to corres-
pond to the different thicknesses (De Backer et al., 2022).
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Fig. 2. Approach 1. A probability matrix (a) summarizes the probability for each atomic column’s scattering cross-section to correspond to the different
thicknesses. It is a different manner to display the estimated Gaussian mixture model, and can be used to represent the counting results using a scatter
pie plot (b), rather than only showing the most likely counting result. (¢) Magnified view of the pie charts used to statistically represent the counting results

for each atomic column.

This is further explained in the Appendix. In Figure 2, darker
colors correspond to higher probabilities. In this representa-
tion, it becomes clear that some atomic columns are assigned
a counting result with high probability. However, in many
cases, the probabilities for assigning an atomic column to g
or g+ 1 atoms are similar, as visualized in the inset in
Figure 2a. Especially, in these cases, it is useful to represent
the counting results in a more statistical manner.

The representation chosen for this purpose is a scatter pie
plot, where for each atomic column, the different possible thick-
nesses are visualized with their corresponding probability using
a pie chart. The result is shown in Figure 2b for the atomic col-
umns of the simulated Au rod indicated by the black box in
Figure le. To allow a straightforward visual comparison, the
counts are represented on the same color scale as the results
shown for the next two approaches for this simulated Au nano-
rod. Note that both representations—probability matrix and
scatter pie plot—in fact, contain the same information, but
with the spatial context represented differently: via an arbitrary
atomic column index or via the estimated atomic column posi-
tions, respectively. Visualizing the probabilities linked to the
atomic column positions makes this approach especially useful
in order to gain more insight in the counting uncertainty.

Approach 2: Sampling the Actual Distribution
of the Atom Counts

The approach described in the previous section shows the un-
certainty quantified by the width of the Gaussian components
of the estimated Gaussian mixture model. Importantly, there
is also uncertainty on the estimated parameters of the
Gaussian mixture model. Therefore, we propose an approach
based on sampling the actual distribution of the atom counts
via noise realizations.

The starting point of this approach are the most likely
counts, together with the average scattering cross-sections
and the width of the Gaussian components of the estimated
Gaussian mixture model. A noise realization is then generated
by performing a random draw, for each atomic column, from
the Gaussian distribution corresponding to the estimated most
likely number of atoms. It was previously shown that the
width of the Gaussian mixture model can be underestimated

in some cases (De Backer et al., 2013). Therefore, in order
to avoid inaccuracies in the set of noise realizations due to
underestimation of the width of the Gaussian components in
the initial analysis, the maximum of the estimated width o
and the dose-dependent width op = p,/D was used, with x,
the estimated average scattering cross-section corresponding
to the gth component and D the electron dose (Van Aert
et al., 2019). From a specific noise realization, we obtain a
new set of scattering cross-sections, corresponding to the esti-
mated model. This set of scattering cross-sections is then ana-
lyzed using the statistical framework as previously described
in the introduction to statistics-based atom-counting. Note
that this implies that also for each noise realization the ICL cri-
terion is evaluated to select the relevant number of compo-
nents G. The set of most likely counting results for many of
these noise realizations then constitute the sample distribution
of the atom counts. This is a bootstrap procedure to quantify
the uncertainty in the estimation process.

Based on this bootstrap sample distribution, a 95% predic-
tion interval can be constructed for each atomic column, with-
out any assumption on the type of distribution underlying the
sample counting results (Geisser, 1993). The prediction inter-
val for a given atomic column is obtained by ranking the esti-
mated counts from the M different noise realizations for that
atomic column in ascending order. The 95% prediction inter-
val is chosen such that it is centered around the median of the
estimated counts from the noise realizations. The lower bound
and upper bound of the interval are then given by the esti-
mated counts for the noise realizations that are the first and
last, respectively, of m realizations that fall within the range
of the prediction interval. This range is chosen such that
(m —1)/(M + 1) = 95%. In this manner, the next counting re-
sult has a probability of 95% to fall within this prediction
interval.

The interval is visualized in Figure 3a for the atomic col-
umns of the simulated Au rod indicated by the black box in
Figure 1e and provides a range within which the true number
of atoms is expected to fall. This prediction interval was ob-
tained based on 50 noise realizations. In this manner, it pro-
vides a clear and quantitative visualization of the uncertainty
on the counting results. Note that the range of this prediction
interval is rather large in this case, due to the low electron dose
and high confidence level of 95%.

Gz0z Jaquieldag | uo Jesn AusiaAlun 1esseH Aq 89G5/869/7/€/1/6Z/o10nie/wew/wod dno olwapese//:sdiy Woll papeojumoc]



378

(a)

Microscopy and Microanalysis, 2023, Vol. 29, No. 1

30 b) eessessssses . (0
666066666666 -
25 606666666666
660666666666 | 5 \
5 666666666666
20 € 660666666666 B ..
£ 666606666666 g
5 5
a E
§ 10 2
10 2 L

0
® ® 0000 009000
000000000000 000000000000
000000000000 000000000000
000000000000 000000000000
:........... B 000900000000

Fig. 3. Approach 2. (a) 95% prediction interval on the number of atoms for each atomic column of the simulated Au nanorod from Figure 1. (b) Sample
distribution from which the 95% prediction interval was estimated. (¢) Magnified view of the pie charts used to statistically represent the counting results

for each atomic column.
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Fig. 4. Approach 3. (a) ICL criterion with the region of interest for combining different models highlighted. The inset shows the weights used to average
the different models. (b) Scatter pie plot showing the possible counting results by combining the different models for the example from Figure 1. (¢)
Magnified view of the pie charts used to statistically represent the counting results for each atomic column.

However, the different thicknesses enclosed by the predic-
tion interval are not equally likely to correspond to the true
thickness. Therefore, as an alternative representation, the
whole sample distribution can be visualized for each atomic
column using a pie chart, similar in interpretation to the re-
sults shown in the previous section for the first approach.
This is shown in Figure 3b. Note that the information on the
absolute range of possible counting results is the same in
both representations for each atomic column. However, the
scatter pie plot shows more nuance in the probability distribu-
tion over the different options to be considered, as compared
with the wide prediction interval representation of Figure 3a.

In order to validate this second approach for representing
the uncertainty on the atom-counting results, nested noise
realizations were performed. The starting point was a ground
truth number of atoms known from the structure of the simu-
lated Au nanorod of Figure 1. The first set of 30 noise realiza-
tions serves to mimic the range that can be present in any
experiment in case the ground truth is unknown. Based on
each noise realization, a new set of 50 noise realizations was
created based on the parameter estimates and counts. Each
noise realization of this second set is then analyzed to obtain
counting results that form a sample distribution for the count-
ing results corresponding to the initial noise realization. The
final goal of this analysis is to confirm whether the initial
ground truth number of atoms is included in the final sample

distribution, starting from an estimated Gaussian mixture
model. We conclude that this second approach is indeed a re-
liable manner to achieve a statistical representation of the
counting results, since the average percentage of atomic col-
umns for which the true number of atoms falls within the
95% prediction interval—obtained based on 50 noise realiza-
tions—is expected to fluctuate around 95%, and was esti-
mated equal to 99% for this set of only 30 noise realizations
corresponding to an incident electron dose of 103 e~ /A%

Approach 3: Tackling Uncertainty in the
Selection Criterion Based on the Concept of
Model Averaging

The two approaches presented so far in fact assume that the se-
lected local minimum from the order selection criterion corre-
sponds to the correct model. In some situations, however, this
assumption becomes difficult to justify objectively. The ICL cri-
terion can present itself with a very shallow local minimum,
where the values for G or G + 1 components are barely signifi-
cantly different, making it impossible to reliably distinguish be-
tween those models. In this situation, the concept of model
averaging can be a solution (Burnham & Anderson, 2002).
Instead of selecting a single best model, it is argued that
there is also an uncertainty in the model selection process.
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Approach 1

Fig. 5. (a) Experimental ADF STEM image of an Au nanorod. (b) Most likely counting results obtained using the conventional statistics-based
atom-counting approach. (¢) Enlarged view of the most likely counting results. (d—f) Scatter pie plots corresponding to the same enlarged area, obtained
using the three approaches for statistically representing the counting results. Additionally, further magnified views of the pie charts used to statistically
represent the counting results for each atomic column are shown. All counting results are presented using the same color scale, indicated in (b).

Therefore, results from multiple models are combined. In
order to combine the different models, first a range of possible
component numbers is selected, as indicated by the highlighted
region in Figure 4a. The ICL values for these component num-
bers determine the weights with which the different models are
combined, as follows:

exp[—(1/0)ICL(G) — minf—g,,...,(ICL(F)))]

we

(1)

with wg the weight for the model corresponding to G compo-
nents, while considering the models from G; until Gy compo-
nents. This equation was based on the expression given for an
Akaike Information Criterion (AIC) from (Claeskens, 2016).
The factor 2 has been changed to a scaling parameter ¢, chosen
equal to the minimum difference between subsequent ICL

values in the considered range. The value of the ICL criterion
at G components, ICL(G), is calculated according to equation
(A.6) of the Appendix.

The weights for the selected region are shown in the inset of
Figure 4a. The most likely counting results following from the
different models are then joined for each atomic column, ac-
cording to the weights from equation (1). The (weighted) pro-
portions for the different possible thicknesses obtained in this
manner, then provides us with a statistical representation for
the atom-counts. This is shown using a scatter pie plot in
Figure 4b for the atomic columns of the simulated Au rod in-
dicated by the black box in Figure 1e.

Discussion Using an Experimental Example

In order to compare and discuss the three proposed approaches
in more detail, they are applied to the quantification of an
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Fig. 6. (a) ICL criterion for the experimental ADF STEM image from Figure 5a. The highlighted region indicates the models considered for weighting the
different models, according to the weights shown in the inset. (b) Scattering cross-sections as a function of thickness for the different models which are
combined. The considered models have an agreement between the estimated and simulated scattering cross-sections within 5%.

experimental ADF STEM image of an Au nanorod, shown in
Figure Sa. The image was taken at an aberration-corrected
ThermoFisher Scientific Titan operated at 300 kV, using a
probe convergence angle of 20 mrad and detector collection an-
gles 115-157 mrad. The incident electron dose used to acquire
the image was 5.5 x 10* e~ /A?. The results obtained via the
conventional procedure for atom-counting are shown in
Figures 5b, 5c, while the results of the three approaches pre-
sented in this paper are shown for comparison in Figures 5d-5f.

It is clear that the three approaches yield different statistical
representations of the uncertainty on the estimated counting
results. This is to be expected and can be explained since the
three approaches account for statistical uncertainty at a differ-
ent level. In the first approach, only the uncertainty on the as-
signment of the counting result to one of the estimated
Gaussian components is evaluated. In the second approach,
the fluctuation of the estimated model at a given number of
components itself is simulated. Finally, in the third approach,
several models are combined, to account for uncertainty with-
in the ICL order selection criterion.

The first approach is the most straightforward and least
computationally expensive. However, the uncertainty pre-
sented in this manner is usually limited to +1, as can be seen
from the rather small color variation in Figure 5d. The second
approach covers a larger variation in the final atom-counts,

but is also more computationally expensive, since it requires
repeated creation and analysis of noise realizations based on
the estimated model. This approach is especially useful when
the number of atomic columns per thickness is small, since
in this case it is more challenging to reliably estimate the model
parameters correctly (De Backer et al., 2013).

In this second approach, we implicitly assume that the one
model selected from the ICL order selection criterion to base
these noise realizations on, can correspond to a correct model.
For the experimental example discussed in this section, how-
ever, the ICL criterion exhibits a very shallow valley-like local
minimum, as shown in Figure 6a. The local minimum occurs
at G = 47 components, but the ICL value for 44 components
until 49 components are similar. A good match with simula-
tions—within a range of 5%, which is a reasonable deviation
for a small amount of sample tilt or a slightly mismeasured in-
ner detector angle (De wael et al., 2017)—could be found for
44 components until 48 components, as shown in Figure 6b.
Therefore, this is the range considered for combining the dif-
ferent models, as indicated by the highlighted region in
Figure 6a. The inset of Figure 6a shows the corresponding
weights, determined using equation (1), used to obtain the re-
sult visualized in Figure 5f. Note that the agreement between
the estimated locations—i.e., the average scattering cross-
sections—for the different models and the library of simulated
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scattering cross-sections is achieved by including an offset.
This means that the first component estimated by the Gaussian
mixture model does not correspond to a set of atomic columns
with 1 atom thickness, but with a higher number of atoms.

Conclusion

The conventional representation of the atom-counts obtained
from the statistics-based atom-counting procedure, shows the
most likely estimated counts. However, this representation ne-
glects unavoidable uncertainties in the atom-counting results.
In reality, there is variability on the estimated counting results.
This variability can have different origins: uncertainty within
the estimated Gaussian mixture model, uncertainty on the esti-
mated model parameters, or even uncertainty on the order of
the Gaussian mixture model itself. This paper introduces three
approaches that each deal with a different source of variability,
and statistically represent the counting results.

The most obvious uncertainty is inherent to the Gaussian
mixture model, since the Gaussian components have a finite
width and overlap each other. This uncertainty on the assigned
number of atoms can be represented using the first approach
described in this paper. In this manner, the advantage of the
statistical framework for atom-counting—a quantification of
the counting precision—is explicitly shown. Of the three ap-
proaches presented in this paper, this first approach is the least
computationally expensive. It does not provide a full view of
the uncertainty present in the estimated model, but already sig-
nificantly improves upon reporting the counting results as a
point estimate.

The second approach presented here, improves upon this
first approach, by simulating the uncertainty on the estimated
model parameters using noise realizations, which is the goal of
the second approach discussed in this paper. By generating a
new set of scattering cross-sections based on the estimated pa-
rameters, and consecutively analyzing that set of scattering
cross-sections again using the statistics-based method for
atom-counting, including model order selection, we achieve
a sample distribution representative of the actual number of
atoms in each atomic column. From this sample distribution,
an interval can be estimated, rather than a point estimate.

Another situation that can occur is that the order selection
criterion is especially unclear. Different options for the number
of components can yield similar values in the criterion. In this
case, an important source of variability on the counting results
is the model order. The concept of model averaging is an ideal
technique for dealing with this type of uncertainty. In this case,
the weighted average of the counting results of models with dif-
ferent orders that can not be significantly distinguished is used
to represent the uncertainty on the atom-counting results. In
principle, approaches 2 and 3 could also be combined to ac-
count for the various types of uncertainty on the estimated re-
sults at the same time. This could be especially relevant in
case the lowest or highest model order considered when com-
bining the different models corresponds to the actual under-
lying model. Note that the third approach is not especially
relevant in case of an order selection criterion that has a very
pronounced local minimum. In those cases, the selection of
the number of components is not the largest source of uncer-
tainty, and approaches 1 or 2 are more appropriate.

With these three approaches, this paper aims to be a first
step toward an even more statistical representation of the
atom-counting results from ADF STEM images.
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Appendix

Gaussian Mixture Model

The distribution of the scattering cross-sections corresponding
to atomic columns with the same number of atoms can be
modeled as a Gaussian distribution for each thickness g pre-
sent in the sample (Van Aert et al., 2011, 2013; De Backer
et al., 2013, 2021). Together, this results in a Gaussian mix-
ture model with G Gaussian components, where G is the num-
ber of different thicknesses present in the sample. The
Gaussian mixture model is given by:

G
iV 1¥6) = YN (Vultgs o). (A1)
g=1

with

N(Valpg o) = & _”g)z) (A2)

1
N o 25
the Gaussian components, visualized in Figure 1c.

In these expressions, u, represents the location, i.e., the aver-
age scattering cross-section value, of the gth component in the
mixture model and o represents the width of the components,
while V,, represents the stochastic variable related to the nth scat-
tering cross-section. The stochastic variables for all scattering
cross-sections are summarized in the vector V. The mixing pro-
portion 7, of the gth component indicates which fraction of the
columns in the image have a specific number of atoms corre-
sponding to the gth component, i.e., the weight of the gth com-
ponent in the Gaussian mixture model. The vector ¥ is the
parameter vector containing all unknown parameters to be esti-
mated in a Gaussian mixture model with G components:

Y = (1, ... . U, o). (A.3)

The joint probability density function of all scattering cross-
sections is obtained starting from the Gaussian mixture model
of equation (A.1) by taking the product over all atomic columns
n, since the scattering cross-sections are independent from each
other:

sy TG—1, Mq5 ---

N G

p(VI¥e) =]

n=1g=

ngj\/(vn | g, 0). (A.4)
1

The parameters W¢ of the probability distribution of the scat-
tering cross-sections are estimated, by maximizing the likelihood
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function. The expression for the likelihood function has the same
functional form as the joint probability density function, but is
evaluated as a function of the parameters rather than as a func-
tion of the stochastic variables related to the observed data.
Specifically for this expression, the observed scattering cross-

sections V are inserted:

N

LOPE) = p(V [ WE) = [ [ i (Vi | ). (A.S)
n=1

The parameter estimates are iteratively calculated using the

expectation maximization (EM) algorithm (Dempster et al.,
1977).

ICL Criterion

So far, we have considered the estimation of the probability
distribution of the scattered intensities presuming a specific
number of components G. However, due to the noise, it is im-
possible to accurately determine the correct number of compo-
nents based on a visual interpretation of the set of scattering
cross-sections displayed in the histogram. Furthermore, this
would be subjectively dependent on the chosen number of
bins to represent the scattering cross-sections in the histogram.
Therefore, an order selection criterion which balances the
model likelihood against the model complexity is introduced
to select the correct number of components G. The model or-
der corresponds to a local minimum in the order selection cri-
terion evaluated as a function of the number of components.
Many different information criteria exist (McLachlan &
Peel, 2000), but the Integrated Classification Likelihood
(ICL) criterion (Biernacki et al., 2000) has been shown to
have the best performance for atom-counting (De Backer
et al., 2013). The ICL criterion is expressed as follows:

ICL(G) = —2log L(¥s) + 2EN() + dlog N, (A.6)
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with —2 log L(¥¢) the likelihood term depending on the esti-
mated parameters ¥ and 2EN(%) + dlog N the penalty term
depending on the sample size N, the number of parameters
d = 2G and an entropy term:

EN@) = —
g

2o (V,s |'6) log 7 (Vs | W),

G N
(A.7)
=1

n=1

with tg(Vn |W¢) the posterior probability that the estimated

scattering cross-section of the nth column V, belongs to the
gth component. This entropy term favors mixture models
with well-separated components, in order to estimate physic-
ally relevant Gaussian mixture models.

Probability Matrix

A different manner of representing the estimated Gaussian
mixture model from equation (A.1) is by using a probability
matrix. This matrix summarizes the posterior probability
for each atomic column’s scattering cross-section to corres-
pond to the different thicknesses. This can be understood
via the Bayes’ theorem, as also discussed in De Backer
et al. (2022):

oy p(@p(Valg)
PV = e @)

: (A.8)

- — ' (A.9)

= 7,(V | ¥6). (A.10)

An example of such a probability matrix is shown in

Figure 2a, where p(g| V) is evaluated for all possible thick-
nesses g and for all atomic columns 7.
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