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Abstract 
A decade ago, a statistics-based method was introduced to count the number of atoms from annular dark-field scanning transmission electron 
microscopy (ADF STEM) images. In the past years, this method was successfully applied to nanocrystals of arbitrary shape, size, and 
composition (and its high accuracy and precision has been demonstrated). However, the counting results obtained from this statistical 
framework are so far presented without a visualization of the actual uncertainty about this estimate. In this paper, we present three 
approaches that can be used to represent counting results together with their statistical error, and discuss which approach is most suited for 
further use based on simulations and an experimental ADF STEM image.
Key words: model averaging, quantitative electron microscopy, scanning transmission electron microscopy, statistical parameter estimation theory, statistical 
uncertainty

Graphical Abstract 

General Introduction
Nowadays, an increasing amount of interest is focused on the 
reliable quantification of electron microscopy images of nano
materials. For this intended purpose, a statistical approach to 
the quantitative analysis of atomic-resolution electron micros
copy images has been pioneered at the beginning of this cen
tury (den Dekker et al., 2005; Van Aert et al., 2005, 2009). 
Using statistical parameter estimation theory, we can current
ly locate the atomic column positions with picometer precision 
(Van Aert et al., 2012), determine the chemical composition of 
materials (Martinez et al., 2014), and count the number of 

atoms in an atomic column (Van Aert et al., 2011, 2013; De 
Backer et al., 2013). Counting the number of atoms from an 
annular dark-field scanning transmission electron microscopy 
(ADF STEM) image has been shown to be a promising alterna
tive to electron tomography to get insight in the 3D atomic ar
rangement of the atoms (De Backer et al., 2017, 2022). Indeed, 
by performing an energy minimization of an initial 3D atomic 
model based on the counting results, an estimated 3D atomic 
structure can be achieved from a single ADF STEM projection.

Such a precise characterization is of crucial importance, 
since a nanomaterial’s properties are heavily dependent on 
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its shape and size (Chithrani et al., 2006; Grassian, 2008; He 
et al., 2013; Hua et al., 2015; Cui et al., 2018; Shafiqa et al., 
2018; Yang et al., 2019). Synthesis procedures can benefit 
from a reliable quantification of this shape and size in an itera
tive process. Furthermore, calculations based on the expected 
and actual atomic structure can lead to the targeted develop
ment of a new nanomaterial with desired properties. Many ef
forts have been made to enable quantitative electron 
microscopy of the materials as synthesized, imaged at lower 
incident electron doses where electron beam damage can be 
avoided (Migunov et al., 2015; Mittelberger et al., 2018; 
Egerton, 2019; Van Aert et al., 2019; Nicholls et al., 2020). 
Furthermore, the field of electron microscopy for material sci
ence is strongly evolving toward more in situ studies, where 
environmental conditions greatly complicate image acquisi
tion (De Backer et al., 2017; Haimei & Yimei, 2017; 
Vanrompay et al., 2018; Gavhane et al., 2021). Both these 
evolutions entail more noisy electron microscopy images, 
leading to a larger amount of uncertainty in the interpretation. 
So far, atom-counting results are mainly represented without 
their statistical uncertainty which will become more important 
for such challenging experiments. In this paper, we will discuss 
different approaches for a statistical representation of the un
certainty on the counting results.

When counting the number of atoms, the scattering cross- 
section is quantified for each atomic column. This scattering 
cross-section is a measure for the total intensity of electrons 
scattered from an atomic column and has a monotonic de
pendence on the number of atoms and atomic mass number 
in the atomic column (De Backer et al., 2013; E et al., 
2013). For counting the number of atoms, different methods 
exist, where the simulation-based method is the most straight
forward, since it directly compares the experimental scattering 
cross-sections to detailed image simulations (LeBeau et al., 
2010; Jones, 2016). Alternatively, a statistics-based method 
can be used (Van Aert et al., 2011, 2013; De Backer et al., 
2013), or a so-called hybrid method for atom-counting, which 
cautiously includes some prior knowledge from image simula
tions in the statistical framework (De wael et al., 2017).

The latter two methods for atom-counting use statistical 
parameter estimation theory to estimate the joint probability 
distribution of the scattering cross-sections. The motivation 
for this approach is that the scattering cross-sections are inher
ently random in nature as a consequence of various noise con
tributions such as electron counting statistics, instabilities of 
the microscope, different vertical onset of columns of the 
same number of atoms, vacancies, relaxation at the boundar
ies, contamination, intensity transfer between columns, and 
the influence of neighboring columns of different number of 
atoms. Scattering cross-sections corresponding to various 
atomic columns with a given number of atoms will therefore 
not be identical, but fluctuate around an average scattering 
cross-section. In the statistics-based method, these average 
scattering cross-sections are estimated freely, while in the hy
brid method, they depend on the simulated scattering cross- 
sections via a linear scaling relation. In the remainder of this 
paper, we will focus on the statistics-based method for atom- 
counting, although the results can also be applied to the hybrid 
method.

So far, results of these methods were presented as if the es
timated results are known without any form of uncertainty. 
However, the benefit of such a statistical approach—over a 
purely simulation-based comparison—is that it can also 

quantify the uncertainty on the estimated results. This benefit 
has not yet been fully exploited in the field of quantitative 
ADF STEM. Different sources of uncertainty actually exist. 
Atom-counting results are assigned from an estimated distri
bution, from which a most likely thickness is chosen. These 
results are based on noisy data, resulting in parameter uncer
tainty. Moreover, the atom-counting results are typically 
based on a single model, chosen from a set of possible mod
els. First, the statistics-based atom-counting method is briefly 
reviewed. Then, we introduce three approaches for the stat
istical representation of the atom-counting errors for a simu
lated Au nanorod. Next, the methodology is applied to an 
experimental example. Finally, the conclusions of this work 
are summarized.

Introduction to Statistics-Based 
Atom-Counting
The procedure for atom-counting using a statistical frame
work is illustrated in Figure 1 for a simulated ADF STEM 
image of a Au nanorod. The simulation parameters are sum
marized in Table 1. Atom positions for this Au nanorod cor
respond to a relaxed crystal lattice, obtained from molecular 
dynamics simulations at room temperature employing the 
gold embedded atom method (EAM) potential (Grochola 
et al., 2005), performed using the GPU Lammps package 
(Plimpton, 1995; Brown et al., 2011). Figure 1a shows the si
mulated ADF STEM image with Poisson noise corresponding 
to an electron dose of 103 electrons/angstrom2. In order to 
quantify the intensities in the ADF STEM image, a parametric 
imaging model is fitted to the ADF STEM image, shown in 
Figure 1b. This parametric imaging model is described in 
more detail in Van Aert et al. (2009) and De Backer et al. 
(2013, 2016, 2021) and can be fitted using the open-source 
software package StatSTEM. In this manner, a reliable esti
mate is obtained for the scattering cross-section of each atomic 
column in the image. The scattering cross-section quantifies 
the total intensity of electrons scattered from the atomic col
umn toward the detector, and depends on the thickness and 
composition of the atomic column (De Backer et al., 2013; E 
et al., 2013). For single element atomic columns, and at high 
enough inner detector angles, the scattering cross-sections in
crease monotonically with the number of atoms in the atomic 
column. As a result, the scattering cross-sections can be used 
for atom-counting in monatomic nanomaterials.

To this purpose, the distribution of the scattering cross- 
sections corresponding to atomic columns with the same num
ber of atoms is modeled as a Gaussian distribution for each 
thickness g present in the sample (Van Aert et al., 2011, 
2013; De Backer et al., 2013, 2021). Together, this results in 
a Gaussian mixture model with G Gaussian components, 
where G is the number of different thicknesses present in the 
sample. This is visualized in Figure 1c. More details can be 
found in the Appendix.

Due to the noise, it is impossible to accurately determine the 
correct number of components G based on a visual interpret
ation of the set of scattering cross-sections displayed in the 
histogram. Furthermore, this would be subjectively dependent 
on the chosen number of bins to represent the scattering cross- 
sections in the histogram. Therefore, an order selection criter
ion which balances the model likelihood against the model 
complexity is introduced to select the correct number of 
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components G. Ideally, the true model order corresponds to a 
local minimum in the order selection criterion evaluated as a 
function of the number of components. The Integrated 
Classification Likelihood (ICL) criterion has been shown to 
have the best performance for atom-counting (De Backer 
et al., 2013) and is evaluated in Figure 1d. Multiple local min
ima can occur in the ICL criterion. The relevant local min
imum can be selected by taking into account some prior 
knowledge about the system’s geometry and/or sample thick
ness, or by comparing to image simulations, provided that the 

experimental images have been normalized with respect to the 
incident electron beam (De Backer et al., 2013; Jones, 2016).

Next, counting results—shown in Figure 1e—are obtained 
by assigning the scattering cross-section of each atomic col
umn to the component of the estimated probability distribu
tion with the largest probability for this scattering 
cross-section. The precision of the counting results is, there
fore, limited by the overlap between the Gaussian compo
nents. In this and all following visualizations of the counting 
results, a perpetually uniform, linear colormap from 
ColorCET was used (Kovesi, 2015).

Approach 1: Showing the Inherent Uncertainty 
in the Gaussian Mixture Model
In fact, the counting result that is estimated using the statistics- 
based atom-counting is only the most likely counting result. By 
displaying this as the “true” estimate can be misleading in the 
sense that the feeling for the precision of the counting results is 
lost. This precision is, however, captured within the Gaussian 
mixture model, and is determined by the estimated width of 
the Gaussian components. Therefore, the first approach to 
present the counting results in a more representative manner, 
exploits all the information captured within the estimated 
Gaussian mixture model.

This can be done using a probability matrix, as shown in 
Figure 2a. The probability matrix summarizes the probability 
for each atomic column’s scattering cross-section to corres
pond to the different thicknesses (De Backer et al., 2022). 

Fig. 1. Schematic representation of the statistical atom-counting methodology, shown for a simulated ADF STEM image of a Au nanorod corresponding 
to a low electron dose of 103 electrons/angstrom2 (a). A parametric imaging model (b) is fitted to the ADF STEM image, in order to obtain the scattering 
cross-sections for each atomic column. Based on the total set of scattering cross-sections, a Gaussian mixture model is estimated (c), corresponding to 
the number of components selected from the ICL order selection criterion (d). Then, the most likely number of atoms resulting from the Gaussian mixture 
model is assigned to each atomic column (e). The black square in (e) indicates the region which is magnified and represented in Figures 2, 3, and 4.

Table 1. Parameters Used for the Multislice Simulations of the Au 
Nanoparticle from Figure 1.

Parameter Value

Acceleration voltage 200 kV
Spherical aberration Cs 0.001 mm
Defocus C1 15.836 Å
Simulation box size (x × y) 145 × 145 Å2

Probe convergence angle α 24 mrad
Annular detector inner angle 60 mrad
Annular detector outer angle 165 mrad
Number of phonon configurations 15
Spatial incoherence of source FWHM 1 Å
Pixel size of simulated image 0.125 Å
Pixel size to sample atomic potential 0.0472 Å
Pixel size to sample reciprocal space 0.0069 Å−1

Maximum reciprocal lattice vector 10.6 Å−1

Slice thickness 2.039 Å
Zone axis [100]

376                                                                                                                                      Microscopy and Microanalysis, 2023, Vol. 29, No. 1
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/article/29/1/374/6987568 by H
asselt U

niversity user on 10 Septem
ber 2025



This is further explained in the Appendix. In Figure 2, darker 
colors correspond to higher probabilities. In this representa
tion, it becomes clear that some atomic columns are assigned 
a counting result with high probability. However, in many 
cases, the probabilities for assigning an atomic column to g 
or g+ 1 atoms are similar, as visualized in the inset in 
Figure 2a. Especially, in these cases, it is useful to represent 
the counting results in a more statistical manner.

The representation chosen for this purpose is a scatter pie 
plot, where for each atomic column, the different possible thick
nesses are visualized with their corresponding probability using 
a pie chart. The result is shown in Figure 2b for the atomic col
umns of the simulated Au rod indicated by the black box in 
Figure 1e. To allow a straightforward visual comparison, the 
counts are represented on the same color scale as the results 
shown for the next two approaches for this simulated Au nano
rod. Note that both representations—probability matrix and 
scatter pie plot—in fact, contain the same information, but 
with the spatial context represented differently: via an arbitrary 
atomic column index or via the estimated atomic column posi
tions, respectively. Visualizing the probabilities linked to the 
atomic column positions makes this approach especially useful 
in order to gain more insight in the counting uncertainty.

Approach 2: Sampling the Actual Distribution 
of the Atom Counts
The approach described in the previous section shows the un
certainty quantified by the width of the Gaussian components 
of the estimated Gaussian mixture model. Importantly, there 
is also uncertainty on the estimated parameters of the 
Gaussian mixture model. Therefore, we propose an approach 
based on sampling the actual distribution of the atom counts 
via noise realizations.

The starting point of this approach are the most likely 
counts, together with the average scattering cross-sections 
and the width of the Gaussian components of the estimated 
Gaussian mixture model. A noise realization is then generated 
by performing a random draw, for each atomic column, from 
the Gaussian distribution corresponding to the estimated most 
likely number of atoms. It was previously shown that the 
width of the Gaussian mixture model can be underestimated 

in some cases (De Backer et al., 2013). Therefore, in order 
to avoid inaccuracies in the set of noise realizations due to 
underestimation of the width of the Gaussian components in 
the initial analysis, the maximum of the estimated width σ 
and the dose-dependent width σD = μg/D was used, with μg 
the estimated average scattering cross-section corresponding 
to the gth component and D the electron dose (Van Aert 
et al., 2019). From a specific noise realization, we obtain a 
new set of scattering cross-sections, corresponding to the esti
mated model. This set of scattering cross-sections is then ana
lyzed using the statistical framework as previously described 
in the introduction to statistics-based atom-counting. Note 
that this implies that also for each noise realization the ICL cri
terion is evaluated to select the relevant number of compo
nents G. The set of most likely counting results for many of 
these noise realizations then constitute the sample distribution 
of the atom counts. This is a bootstrap procedure to quantify 
the uncertainty in the estimation process.

Based on this bootstrap sample distribution, a 95% predic
tion interval can be constructed for each atomic column, with
out any assumption on the type of distribution underlying the 
sample counting results (Geisser, 1993). The prediction inter
val for a given atomic column is obtained by ranking the esti
mated counts from the M different noise realizations for that 
atomic column in ascending order. The 95% prediction inter
val is chosen such that it is centered around the median of the 
estimated counts from the noise realizations. The lower bound 
and upper bound of the interval are then given by the esti
mated counts for the noise realizations that are the first and 
last, respectively, of m realizations that fall within the range 
of the prediction interval. This range is chosen such that 
(m − 1)/(M+ 1) = 95%. In this manner, the next counting re
sult has a probability of 95% to fall within this prediction 
interval.

The interval is visualized in Figure 3a for the atomic col
umns of the simulated Au rod indicated by the black box in 
Figure 1e and provides a range within which the true number 
of atoms is expected to fall. This prediction interval was ob
tained based on 50 noise realizations. In this manner, it pro
vides a clear and quantitative visualization of the uncertainty 
on the counting results. Note that the range of this prediction 
interval is rather large in this case, due to the low electron dose 
and high confidence level of 95%.

Fig. 2. Approach 1. A probability matrix (a) summarizes the probability for each atomic column’s scattering cross-section to correspond to the different 
thicknesses. It is a different manner to display the estimated Gaussian mixture model, and can be used to represent the counting results using a scatter 
pie plot (b), rather than only showing the most likely counting result. (c) Magnified view of the pie charts used to statistically represent the counting results 
for each atomic column.
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However, the different thicknesses enclosed by the predic
tion interval are not equally likely to correspond to the true 
thickness. Therefore, as an alternative representation, the 
whole sample distribution can be visualized for each atomic 
column using a pie chart, similar in interpretation to the re
sults shown in the previous section for the first approach. 
This is shown in Figure 3b. Note that the information on the 
absolute range of possible counting results is the same in 
both representations for each atomic column. However, the 
scatter pie plot shows more nuance in the probability distribu
tion over the different options to be considered, as compared 
with the wide prediction interval representation of Figure 3a.

In order to validate this second approach for representing 
the uncertainty on the atom-counting results, nested noise 
realizations were performed. The starting point was a ground 
truth number of atoms known from the structure of the simu
lated Au nanorod of Figure 1. The first set of 30 noise realiza
tions serves to mimic the range that can be present in any 
experiment in case the ground truth is unknown. Based on 
each noise realization, a new set of 50 noise realizations was 
created based on the parameter estimates and counts. Each 
noise realization of this second set is then analyzed to obtain 
counting results that form a sample distribution for the count
ing results corresponding to the initial noise realization. The 
final goal of this analysis is to confirm whether the initial 
ground truth number of atoms is included in the final sample 

distribution, starting from an estimated Gaussian mixture 
model. We conclude that this second approach is indeed a re
liable manner to achieve a statistical representation of the 
counting results, since the average percentage of atomic col
umns for which the true number of atoms falls within the 
95% prediction interval—obtained based on 50 noise realiza
tions—is expected to fluctuate around 95%, and was esti
mated equal to 99% for this set of only 30 noise realizations 
corresponding to an incident electron dose of 103 e− /A2.

Approach 3: Tackling Uncertainty in the 
Selection Criterion Based on the Concept of 
Model Averaging
The two approaches presented so far in fact assume that the se
lected local minimum from the order selection criterion corre
sponds to the correct model. In some situations, however, this 
assumption becomes difficult to justify objectively. The ICL cri
terion can present itself with a very shallow local minimum, 
where the values for G or G+ 1 components are barely signifi
cantly different, making it impossible to reliably distinguish be
tween those models. In this situation, the concept of model 
averaging can be a solution (Burnham & Anderson, 2002).

Instead of selecting a single best model, it is argued that 
there is also an uncertainty in the model selection process. 

Fig. 3. Approach 2. (a) 95% prediction interval on the number of atoms for each atomic column of the simulated Au nanorod from Figure 1. (b) Sample 
distribution from which the 95% prediction interval was estimated. (c) Magnified view of the pie charts used to statistically represent the counting results 
for each atomic column.

Fig. 4. Approach 3. (a) ICL criterion with the region of interest for combining different models highlighted. The inset shows the weights used to average 
the different models. (b) Scatter pie plot showing the possible counting results by combining the different models for the example from Figure 1. (c) 
Magnified view of the pie charts used to statistically represent the counting results for each atomic column.
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Therefore, results from multiple models are combined. In 
order to combine the different models, first a range of possible 
component numbers is selected, as indicated by the highlighted 
region in Figure 4a. The ICL values for these component num
bers determine the weights with which the different models are 
combined, as follows:

wG =
exp[− (1/c)(ICL(G) − minF=Gi,...,Gf

(ICL(F)))]
􏽐Gf

H=Gi
exp[− (1/c)(ICL(H) − minF=Gi,...,Gf

(ICL(F)))]
,

(1) 

with wG the weight for the model corresponding to G compo
nents, while considering the models from Gi until Gf compo
nents. This equation was based on the expression given for an 
Akaike Information Criterion (AIC) from (Claeskens, 2016). 
The factor 2 has been changed to a scaling parameter c, chosen 
equal to the minimum difference between subsequent ICL 

values in the considered range. The value of the ICL criterion 
at G components, ICL(G), is calculated according to equation 
(A.6) of the Appendix.

The weights for the selected region are shown in the inset of 
Figure 4a. The most likely counting results following from the 
different models are then joined for each atomic column, ac
cording to the weights from equation (1). The (weighted) pro
portions for the different possible thicknesses obtained in this 
manner, then provides us with a statistical representation for 
the atom-counts. This is shown using a scatter pie plot in 
Figure 4b for the atomic columns of the simulated Au rod in
dicated by the black box in Figure 1e.

Discussion Using an Experimental Example
In order to compare and discuss the three proposed approaches 
in more detail, they are applied to the quantification of an 

Fig. 5. (a) Experimental ADF STEM image of an Au nanorod. (b) Most likely counting results obtained using the conventional statistics-based 
atom-counting approach. (c) Enlarged view of the most likely counting results. (d–f) Scatter pie plots corresponding to the same enlarged area, obtained 
using the three approaches for statistically representing the counting results. Additionally, further magnified views of the pie charts used to statistically 
represent the counting results for each atomic column are shown. All counting results are presented using the same color scale, indicated in (b).

Annelies De wael et al.                                                                                                                                                                                     379
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/article/29/1/374/6987568 by H
asselt U

niversity user on 10 Septem
ber 2025



experimental ADF STEM image of an Au nanorod, shown in 
Figure 5a. The image was taken at an aberration-corrected 
ThermoFisher Scientific Titan operated at 300 kV, using a 
probe convergence angle of 20 mrad and detector collection an
gles 115–157 mrad. The incident electron dose used to acquire 
the image was 5.5 × 104 e− /A2. The results obtained via the 
conventional procedure for atom-counting are shown in 
Figures 5b, 5c, while the results of the three approaches pre
sented in this paper are shown for comparison in Figures 5d–5f.

It is clear that the three approaches yield different statistical 
representations of the uncertainty on the estimated counting 
results. This is to be expected and can be explained since the 
three approaches account for statistical uncertainty at a differ
ent level. In the first approach, only the uncertainty on the as
signment of the counting result to one of the estimated 
Gaussian components is evaluated. In the second approach, 
the fluctuation of the estimated model at a given number of 
components itself is simulated. Finally, in the third approach, 
several models are combined, to account for uncertainty with
in the ICL order selection criterion.

The first approach is the most straightforward and least 
computationally expensive. However, the uncertainty pre
sented in this manner is usually limited to ±1, as can be seen 
from the rather small color variation in Figure 5d. The second 
approach covers a larger variation in the final atom-counts, 

but is also more computationally expensive, since it requires 
repeated creation and analysis of noise realizations based on 
the estimated model. This approach is especially useful when 
the number of atomic columns per thickness is small, since 
in this case it is more challenging to reliably estimate the model 
parameters correctly (De Backer et al., 2013).

In this second approach, we implicitly assume that the one 
model selected from the ICL order selection criterion to base 
these noise realizations on, can correspond to a correct model. 
For the experimental example discussed in this section, how
ever, the ICL criterion exhibits a very shallow valley-like local 
minimum, as shown in Figure 6a. The local minimum occurs 
at G = 47 components, but the ICL value for 44 components 
until 49 components are similar. A good match with simula
tions—within a range of 5%, which is a reasonable deviation 
for a small amount of sample tilt or a slightly mismeasured in
ner detector angle (De wael et al., 2017)—could be found for 
44 components until 48 components, as shown in Figure 6b. 
Therefore, this is the range considered for combining the dif
ferent models, as indicated by the highlighted region in 
Figure 6a. The inset of Figure 6a shows the corresponding 
weights, determined using equation (1), used to obtain the re
sult visualized in Figure 5f. Note that the agreement between 
the estimated locations—i.e., the average scattering cross- 
sections—for the different models and the library of simulated 

Fig. 6. (a) ICL criterion for the experimental ADF STEM image from Figure 5a. The highlighted region indicates the models considered for weighting the 
different models, according to the weights shown in the inset. (b) Scattering cross-sections as a function of thickness for the different models which are 
combined. The considered models have an agreement between the estimated and simulated scattering cross-sections within 5%.
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scattering cross-sections is achieved by including an offset. 
This means that the first component estimated by the Gaussian 
mixture model does not correspond to a set of atomic columns 
with 1 atom thickness, but with a higher number of atoms.

Conclusion
The conventional representation of the atom-counts obtained 
from the statistics-based atom-counting procedure, shows the 
most likely estimated counts. However, this representation ne
glects unavoidable uncertainties in the atom-counting results. 
In reality, there is variability on the estimated counting results. 
This variability can have different origins: uncertainty within 
the estimated Gaussian mixture model, uncertainty on the esti
mated model parameters, or even uncertainty on the order of 
the Gaussian mixture model itself. This paper introduces three 
approaches that each deal with a different source of variability, 
and statistically represent the counting results.

The most obvious uncertainty is inherent to the Gaussian 
mixture model, since the Gaussian components have a finite 
width and overlap each other. This uncertainty on the assigned 
number of atoms can be represented using the first approach 
described in this paper. In this manner, the advantage of the 
statistical framework for atom-counting—a quantification of 
the counting precision—is explicitly shown. Of the three ap
proaches presented in this paper, this first approach is the least 
computationally expensive. It does not provide a full view of 
the uncertainty present in the estimated model, but already sig
nificantly improves upon reporting the counting results as a 
point estimate.

The second approach presented here, improves upon this 
first approach, by simulating the uncertainty on the estimated 
model parameters using noise realizations, which is the goal of 
the second approach discussed in this paper. By generating a 
new set of scattering cross-sections based on the estimated pa
rameters, and consecutively analyzing that set of scattering 
cross-sections again using the statistics-based method for 
atom-counting, including model order selection, we achieve 
a sample distribution representative of the actual number of 
atoms in each atomic column. From this sample distribution, 
an interval can be estimated, rather than a point estimate.

Another situation that can occur is that the order selection 
criterion is especially unclear. Different options for the number 
of components can yield similar values in the criterion. In this 
case, an important source of variability on the counting results 
is the model order. The concept of model averaging is an ideal 
technique for dealing with this type of uncertainty. In this case, 
the weighted average of the counting results of models with dif
ferent orders that can not be significantly distinguished is used 
to represent the uncertainty on the atom-counting results. In 
principle, approaches 2 and 3 could also be combined to ac
count for the various types of uncertainty on the estimated re
sults at the same time. This could be especially relevant in 
case the lowest or highest model order considered when com
bining the different models corresponds to the actual under
lying model. Note that the third approach is not especially 
relevant in case of an order selection criterion that has a very 
pronounced local minimum. In those cases, the selection of 
the number of components is not the largest source of uncer
tainty, and approaches 1 or 2 are more appropriate.

With these three approaches, this paper aims to be a first 
step toward an even more statistical representation of the 
atom-counting results from ADF STEM images.

Acknowledgments
This project has received funding from the European Research 
Council (ERC) under the European Union’s Horizon 2020 re
search and innovation programme (Grant Agreement No. 
770887 and No. 823717 ESTEEM3). The authors acknow
ledge financial support from the Research Foundation 
Flanders (FWO, Belgium) through grants to A.D.w. and 
A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 
30489208. S.V.A. acknowledges TOP BOF funding from the 
University of Antwerp. The authors are grateful to L.M. 
Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing 
the samples.

Conflict of interest
The authors declare that they have no competing interest.

References
Biernacki C, Celeux G & Govaert G (2000). Assessing a mixture model 

for clustering with the integrated classification likelihood. IEEE 
Trans Pattern Anal Mach Intell 22, 719–725.

Brown WM, Wang P, Plimpton SJ & Tharrington AN (2011). 
Implementing molecular dynamics on hybrid high performance 
computers—Short range forces. Comput Phys Commun 182, 
898–911.

Burnham KP & Anderson DR (2002). Model Selection and Multimodel 
Inference. A Practical Information-Theoretic Approach. New York, 
NY: Springer.

Chithrani BD, Ghazani AA & Chan WCW (2006). Determining the size 
and shape dependence of gold nanoparticle uptake into mammalian 
cells. Nano Lett 6, 662–668.

Claeskens G (2016). Statistical model choice. Annu Rev Stat Appl 3, 
233–256.

Cui Z, Feng Y, Xue Y, Zhang J, Zhang R, Hao J & Liu J (2018). Shape 
dependence of thermodynamics of adsorption on nanoparticles: A 
theoretical and experimental study. Phys Chem Chem Phys 20, 
29959–29968.

De Backer A, Fatermans J, den Dekker AJ & Van Aert S (2021). 
Quantitative atomic-resolution electron microscopy. In Advances 
in Imaging and Electron Physics, vol. 217. Cambridge, MA: 
Academic Press.

De Backer A, Jones L, Lobato I, Altantzis T, Goris B, Nellist PD, Bals S 
& Van Aert S (2017). Three-dimensional atomic models from a sin
gle projection using Z-contrast imaging: Verification by electron 
tomography and opportunities. Nanoscale 9, 8791–8798.

De Backer A, Martinez GT, Rosenauer A & Van Aert S (2013). Atom 
counting in HAADF STEM using a statistical model-based ap
proach: Methodology, possibilities, and inherent limitations. 
Ultramicroscopy 134, 23–33.

De Backer A, Van Aert S, Nellist P & Jones L (2022). Procedure for 3D 
atomic resolution reconstructions using atom-counting and a 
Bayesian genetic algorithm, arXiv:210505562v2.

De Backer A, van den Bos KHW, Van den Broek W, Sijbers J & Van Aert 
S (2016). StatSTEM: An efficient approach for accurate and precise 
model-based quantification of atomic resolution electron micros
copy images. Ultramicroscopy 171, 104–116.

Dempster A, Laird N & Rubin D (1977). Maximum likelihood from in
complete data via the EM algorithm. J R Stat Soc Ser B 39, 1–38.

den Dekker AJ, Van Aert S, van den Bos A & Van Dyck D (2005). 
Maximum likelihood estimation of structure parameters from high 
resolution electron microscopy images. Part I: A theoretical frame
work. Ultramicroscopy 104, 83–106.

De wael A, De Backer A, Jones L, Nellist PD & Van Aert S (2017). 
Hybrid statistics-simulations based method for atom-counting using 

Annelies De wael et al.                                                                                                                                                                                     381
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/article/29/1/374/6987568 by H
asselt U

niversity user on 10 Septem
ber 2025



scanning transmission electron microscopy. Ultramicroscopy 177, 
69–77.

E H, MacArthur KE, Pennycook TJ, Okunishi E, D’Alfonso AJ, Lugg 
NR, Allen LJ & Nellist PD (2013). Probe integrated scattering cross 
sections in the analysis of atomic resolution HAADF STEM images. 
Ultramicroscopy 133, 109–119.

Egerton RF (2019). Radiation damage to organic and inorganic speci
mens in the TEM. Micron 119, 72–87.

Gavhane DS, van Gog H, Thombare B, Lole G, Post LC, More MA & 
van Huis MA (2021). In situ electron microscopy study of structural 
transformations in 2D CoSe2. NPJ 2D Mater Appl 5, 24.

Geisser S (1993). Predictive Inference: An Introduction. London: 
Chapman and Hall.

Grassian VH (2008). When size really matters: Size-dependent proper
ties and surface chemistry of metal and metal oxide nanoparticles 
in gas and liquid phase environments. J Phys Chem C 112, 
18303–18313.

Grochola G, Russo PS & Snook IK (2005). On fitting a gold embedded 
atom method potential using the force matching method. J Chem 
Phys 123, 204719.

Haimei Z & Yimei Z (2017). Perspectives on in situ electron micros
copy. Ultramicroscopy 180, 188–196.

He X, Zhong W, Au C & Du Y (2013). Size dependence of the magnetic 
properties of Ni nanoparticles prepared by thermal decomposition 
method. Nanoscale Res Lett 8, 446.

Hua T, Chandra K, Dam DHM, Wiederrecht GP & Odom TW (2015). 
Shape-dependent nonlinear optical properties of anisotropic gold 
nanoparticles. J Phys Chem Lett 6, 4904–4908.

Jones L (2016). Quantitative ADF STEM: Acquisition, analysis and in
terpretation. IOP Conf Ser: Mater Sci Eng 109, 012008.

Kovesi P (2015). Good colour maps: How to design them, 
arXiv:1509.03700.

LeBeau JM, Findlay SD, Allen LJ & Stemmer S (2010). Standardless 
atom counting in scanning transmission electron microscopy. 
Nano Lett 10, 4405–4408.

Martinez GT, Rosenauer A, De Backer A, Verbeeck J & Van Aert S 
(2014). Quantitative composition determination at the atomic level 
using model-based high-angle annular dark field scanning transmis
sion electron microscopy. Ultramicroscopy 137, 12–19.

McLachlan G & Peel D (2000). Finite Mixture Models, Wiley Series in 
Probability and Statistics. New York: John Wiley and Sons, Inc.

Migunov V, Ryll H, Zhuge X, Simson M, Strüder L, Batenburg JK, 
Houber L & Dunin-Borkowski RE (2015). Rapid low dose electron 
tomography using a direct electron detection camera. Sci Rep 5, 
14516.

Mittelberger A, Kramberger C & Meyer JC (2018). Software electron 
counting for low-dose scanning transmission electron microscopy. 
Ultramicroscopy 188, 1–7.

Nicholls D, Lee J, Amari H, Stevens AJ, Mehdi BL & Browning ND 
(2020). Minimising damage in high resolution scanning transmis
sion electron microscope images of nanoscale structures and proc
esses. Nanoscale 12, 21248–21254.

Plimpton S (1995). Fast parallel algorithms for short-range molecular 
dynamics. J Comput Phys 117, 1–19.

Shafiqa AR, Aziz AA & Mehrdel B (2018). Nanoparticle optical prop
erties: Size dependence of a single gold spherical nanoparticle. IOP 
Conf Ser: J Phys 1083, 012040.

Van Aert S, Batenburg KJ, Rossell MD, Erni R & Van Tendeloo G 
(2011). Three-dimensional atomic imaging of crystalline nanopar
ticles. Nature 470, 374–377.

Van Aert S, De Backer A, Jones L, Martinez GT, Béché A & Nellist PD 
(2019). Control of knock-on damage for 3D atomic scale quantifica
tion of nanostructures: Making every electron count in scanning 
transmission electron microscopy. Phys Rev Lett 122, 066101.

Van Aert S, De Backer A, Martinez GT, Goris B, Bals S, Van Tendeloo G 
& Rosenauer A (2013). Procedure to count atoms with trustworthy 
single-atom sensitivity. Phys Rev B 87, 064107.

Van Aert S, den Dekker AJ, van den Bos A, Van Dyck D & Chen JH 
(2005). Maximum likelihood estimation of structure parameters 

from high resolution electron microscopy images. Part II: A practical 
example. Ultramicroscopy 104, 83–106.

Van Aert S, Turner S, Delville R, Schryvers D, Van Tendeloo G & Salje 
EKH (2012). Direct observation of ferrielectricity at ferroelastic do
main boundaries in CaTiO3 by electron microscopy. Adv Mater 24, 
523–527.

Van Aert S, Verbeeck J, Erni R, Bals S, Luysberg M, Van Dyck D & Van 
Tendeloo G (2009). Quantitative atomic resolution mapping using 
high-angle annular dark field scanning transmission electron micros
copy. Ultramicroscopy 109, 1236–1244.

Vanrompay H, Bladt E, Albrecht W, Béché A, Zakhozheva M, 
Sánchez-Iglesias A, Liz-Marzán L & Bals S (2018). 3D characteriza
tion of heat-induced morphological changes of Au nanostars by fast 
in situ electron tomography. Nanoscale 10, 22792–22801.

Yang L, Zhou Z, Song J & Chen X (2019). Anisotropic nanomaterials 
for shape-dependent physicochemical and biomedical applications. 
Chem Soc Rev 48, 5140–5176.

Appendix

Gaussian Mixture Model
The distribution of the scattering cross-sections corresponding 
to atomic columns with the same number of atoms can be 
modeled as a Gaussian distribution for each thickness g pre
sent in the sample (Van Aert et al., 2011, 2013; De Backer 
et al., 2013, 2021). Together, this results in a Gaussian mix
ture model with G Gaussian components, where G is the num
ber of different thicknesses present in the sample. The 
Gaussian mixture model is given by:

fmix Vn |ΨG( ) =
􏽘G

g=1

πgN Vn | μg, σ
􏼐 􏼑

, (A.1) 

with

N Vn | μg, σ
􏼐 􏼑

=
1
���
2π
√

σ
exp −

(Vn − μg)
2

2σ2

􏼠 􏼡

, (A.2) 

the Gaussian components, visualized in Figure 1c.
In these expressions, μg represents the location, i.e., the aver

age scattering cross-section value, of the gth component in the 
mixture model and σ represents the width of the components, 
while Vn represents the stochastic variable related to the nth scat
tering cross-section. The stochastic variables for all scattering 
cross-sections are summarized in the vector V. The mixing pro
portion πg of the gth component indicates which fraction of the 
columns in the image have a specific number of atoms corre
sponding to the gth component, i.e., the weight of the gth com
ponent in the Gaussian mixture model. The vector ΨG is the 
parameter vector containing all unknown parameters to be esti
mated in a Gaussian mixture model with G components:

ΨG = (π1, . . . , πG− 1, μ1, . . . , μG, σ)T. (A.3) 

The joint probability density function of all scattering cross- 
sections is obtained starting from the Gaussian mixture model 
of equation (A.1) by taking the product over all atomic columns 
n, since the scattering cross-sections are independent from each 
other:

p(V |ΨG) =
􏽙N

n=1

􏽘G

g=1

πgN Vn | μg, σ
􏼐 􏼑

. (A.4) 

The parameters ΨG of the probability distribution of the scat
tering cross-sections are estimated, by maximizing the likelihood 
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function. The expression for the likelihood function has the same 
functional form as the joint probability density function, but is 
evaluated as a function of the parameters rather than as a func
tion of the stochastic variables related to the observed data. 
Specifically for this expression, the observed scattering cross- 
sections V̂ are inserted:

L(Ψstat
G ) = p(V̂ |Ψstat

G ) =
􏽙N

n=1

fmix V̂n |Ψstat
G

( 􏼁
. (A.5) 

The parameter estimates are iteratively calculated using the 
expectation maximization (EM) algorithm (Dempster et al., 
1977).

ICL Criterion
So far, we have considered the estimation of the probability 
distribution of the scattered intensities presuming a specific 
number of components G. However, due to the noise, it is im
possible to accurately determine the correct number of compo
nents based on a visual interpretation of the set of scattering 
cross-sections displayed in the histogram. Furthermore, this 
would be subjectively dependent on the chosen number of 
bins to represent the scattering cross-sections in the histogram. 
Therefore, an order selection criterion which balances the 
model likelihood against the model complexity is introduced 
to select the correct number of components G. The model or
der corresponds to a local minimum in the order selection cri
terion evaluated as a function of the number of components. 
Many different information criteria exist (McLachlan & 
Peel, 2000), but the Integrated Classification Likelihood 
(ICL) criterion (Biernacki et al., 2000) has been shown to 
have the best performance for atom-counting (De Backer 
et al., 2013). The ICL criterion is expressed as follows:

ICL(G) = − 2 log L(Ψ̂G) + 2EN(τ̂) + d log N, (A.6) 

with − 2 log L(Ψ̂G) the likelihood term depending on the esti
mated parameters Ψ̂G and 2EN(τ̂) + d log N the penalty term 
depending on the sample size N, the number of parameters 
d = 2G and an entropy term:

EN(τ̂) = −
􏽘G

g=1

􏽘N

n=1

τg V̂n | Ψ̂G
( 􏼁

log τg V̂n | Ψ̂G
( 􏼁

, (A.7) 

with τg(V̂n | Ψ̂G) the posterior probability that the estimated 
scattering cross-section of the nth column V̂n belongs to the 
gth component. This entropy term favors mixture models 
with well-separated components, in order to estimate physic
ally relevant Gaussian mixture models.

Probability Matrix
A different manner of representing the estimated Gaussian 
mixture model from equation (A.1) is by using a probability 
matrix. This matrix summarizes the posterior probability 
for each atomic column’s scattering cross-section to corres
pond to the different thicknesses. This can be understood 
via the Bayes’ theorem, as also discussed in De Backer 
et al. (2022):

p g | V̂n
( 􏼁

=
p g
( 􏼁

p V̂n | g
( 􏼁

􏽐G
h=1 p h

( 􏼁
p V̂n |h
( 􏼁 , (A.8) 

=
π̂gN V̂n | μ̂g, σ̂

􏼐 􏼑

􏽐G
h=1 π̂hN V̂n | μ̂h, σ̂

( 􏼁 , (A.9) 

= τg V̂n | Ψ̂G
( 􏼁

. (A.10) 

An example of such a probability matrix is shown in 
Figure 2a, where p(g | V̂n) is evaluated for all possible thick
nesses g and for all atomic columns n.
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