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aUniversity of Zagreb, Faculty of Electrical Engineering and Computing, Department of
Applied Mathematics, Unska 3, 10000 Zagreb, Croatia

bHasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590 Diepenbeek,
Belgium

Abstract

In this paper we initiate the study of the Minkowski dimension, also called
the box dimension, of degenerate spiral trajectories of a class of ordinary
differential equations. A class of singularities of focus type with two zero
eigenvalues (nilpotent or more degenerate) has been studied. We find the
box dimension of a polynomial degenerate focus of type (n, n) by exploiting
the well-known fractal results for α-power spirals. In the general (m,n)
case, we formulate a conjecture about the box dimension of a degenerate
focus using numerical experiments. Further, we reduce the fractal analysis
of planar nilpotent contact points to the study of the box dimension of a slow-
fast spiral generated by their “entry-exit” function. There exists a bijective
correspondence between the box dimension of the slow-fast spirals and the
codimension of contact points. We also construct a three-dimensional vector
field that contains a degenerate spiral, called an elliptical power spiral, as a
trajectory.
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1. Introduction

A fractal-dimensional analysis of the weak focus of a planar vector field
(−y+ . . . ) ∂

∂x
+(x+ . . . ) ∂

∂y
has been completed in [30, 32] using a box dimen-

sion approach. The box dimension of trajectories spiralling around a weak
focus has been computed. Furthermore, an explicit relation between the box
dimension and the leading power in the asymptotic expansion of the Poincaré
map of the weak focus has been obtained (for more details see [30, 32]). The
box dimension of spiral trajectories changes from trivial to nontrivial for pa-
rameter values at which some bifurcations occur (Hopf-Takens bifurcations
[30], Bogdanov-Takens bifurcations [12, 13], discrete saddle-node and period
doubling bifurcations [6, 11], etc.) The quality and the quantity of the ob-
jects born in the bifurcation is related to the box dimension of a trajectory
at the bifurcation parameter.

Our paper is a natural continuation of [30]. We deal with a class of planar
singular points of focus type (we assume that the linear part has both eigen-
values equal to zero) and compute their box dimension. Degenerate spirals
near such singular points (hence spirals different from weak focus spirals)
appear in complex swirling flows. We cite [2]: “Most naturally occurring
spirals are anisotropic, developing in systems with inherent asymmetry, such
as elliptical whirlpools forming in a flowing body of water. Another sim-
ple example arises in Newtonian mechanics: suppose a weight attached to
an elastic band is rotated about an axis parallel to the ground. At high
velocities the centripetal force dominates gravity and the orbit is circular.
However, if the system is allowed to decelerate, the weight will follow a spiral
trajectory that will become increasingly elongated in the vertical direction
as the relative contribution of gravitational force grows.” (Burrell, [2], p. 1)

We focus on a particular deformation (to be specified later) of X =
−ny2n−1 ∂

∂x
+mx2m−1 ∂

∂y
, withm,n ∈ N\{0} andm+n > 2, or Y = (y−x2n) ∂

∂x

with n ∈ N \ {0}. The vector field X has a center at (x, y) = (0, 0), with
H(x, y) = x2m + y2n as a first integral, while Y has the curve of singularities
C = {y = x2n} and horizontal regular orbits (see Figure 1). We say that a
vector field X is degenerate if m > 1 and n > 1, while in the case m = 1
or n = 1 the vector field X is said to be nilpotent. The vector field Y has a
nilpotent singularity at the origin. The fractal-dimensional analysis of such
a deformation is far more difficult than the analysis of weak foci due to ab-
sence of “regularity” of spiral trajectories. For example, the r-component of
a point on any given spiral near the weak focus, is a decreasing function of
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time (see Theorem 5 of [30]). This is not true if we deal with the degenerate
or nilpotent case. Moreover, the Poincaré map near the focus of the pertur-
bation of X with m ̸= n has two different asymptotics, one along the x-axis
and the other one along the y-axis. For some other examples of “irregular”
spiral trajectories and the calculation of their box dimensions and Minkowski
content see e.g. [2, 18, 20, 24, 27, 26].

(b)

C

(a)

Figure 1: (a) A phase portrait of the vector field X. (b) Dynamics of Y with indication
of the curve of singularities C.

In this paper we will often speak about a trajectory “near the origin
(x, y) = (0, 0)”. This stands for its part spiraling around the origin and
contained in an open disk centered at the origin.

When m = n and n is odd in X, then we prove the following result (see
Theorem 1 in Section 3):

• Let k be a positive integer. Then any trajectory of the vector field

Xn := X ± n

(
xnyn−1(x2n + y2n)k

∂

∂x
+ xn−1yn(x2n + y2n)k

∂

∂y

)
(1)

near the origin (x, y) = (0, 0) is Minkowski nondegenerate and its box
dimension is equal to 2− 2

1+2kn
. If k = 0, any trajectory of (1) near the

origin is Minkowski measurable and its box dimension is equal to 1.

This has been proved in [30] for n = 1 (see also Section 2). When the sign in
Xn is negative (resp. positive), we deal with a stable (resp. unstable) focus
at the origin. When n is even, then the origin is a center (see Remark 1 in
Section 3.1). In the proof of Theorem 1, we construct a bi-Lipschitz map
between spiral trajectories of (1) and α-power spirals [28] with a well-known
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box dimension. We use the fact that bi-Lipschitz maps preserve the box
dimension (see Section 2). Such (degenerate) focus of type (n, n) has the
same asymptotic of the Poincaré map in each radial direction (see [23]).

Based on [2] (Remark 4 in Section 4.1) and extensive numerical observa-
tions (Section 4.2), in the general case (m and n may be different) we propose
the following conjecture:

• Let k be a positive integer, m ≥ n and let m,n be odd. Then any
trajectory of

Xm,n := X ±
(
nxmyn−1(x2m + y2n)k

∂

∂x
+mxm−1yn(x2m + y2n)k

∂

∂y

)
(2)

near the origin (x, y) = (0, 0) is Minkowski nondegenerate and its box

dimension is equal to 2− 1+ n
m

1+2nk
.

Note thatXn,n = Xn. Whenm is even (resp. n is even), then the systemXm,n

is invariant under the symmetry (x, t) → (−x,−t) (resp. (y, t) → (−y,−t))
and has a center at the origin (x, y) = (0, 0) (see Remark 2 in Section 4.1).
In the rest of the paper we assume that m and n are odd. A spiral trajectory
of (2) cannot be (bi-Lipschitz) mapped onto some regular α-power spiral,
for m ̸= n, due to the presence of different asymptotic expansions of the
Poincaré map of (2) depending on the radial direction.

In the case of k = 0 in (2) we refer to Theorem 2 in Section 4.1.

We obtain Xm,n after applying transformation Fm,n : R2 → R2, defined
by

(x, y) 7→ (x̄, ȳ) = ((sign x)|x|1/m, (sign y)|y|1/n),
toX1, and using multiplication bymn|x̄|m−1|ȳ|n−1. The map Fm,n transforms
spiral trajectories of X1 to spiral trajectories of Xm,n. It is clear that Fm,n is
not bi-Lipschitz as (x, y) → (0, 0), and the box dimension is not necessarily
preserved.

The main advantage of working with the model (2) is that in polar co-
ordinates the vector field can be reduced to a Bernoulli or linear differential
equation which can be solved. When m = n (resp. m ̸= n), we use the stan-
dard (resp. generalized) polar coordinates. See Section 3.1 (resp. Section
4.1).

If k = 0 (resp. k > 0) in Xn or Xm,n, then trajectories near the origin are
comparable with exponential spirals (resp. α–power spirals). As it will be
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clear in Theorem 1 and Theorem 2, comparability with an α–power spiral is
not sufficient to say something about the box dimension of the trajectories
near the origin.

The curve of singularities C of Y is divided into a normally attracting
part x > 0, a normally repelling part x < 0 and a nilpotent contact point
(x, y) = (0, 0) between them. To study dynamics of a smallO(ϵ)-perturbation
Yϵ of Y (ϵ ≥ 0 is a small singular perturbation parameter), one typically uses
geometric singular perturbation theory due to Fenichel [8] (Fenichel describes
the dynamics of Yϵ near normally hyperbolic parts). Near the contact point
where the normal hyperbolicity is lost one uses family blow-up (see [4, 21]).
The deformation Yϵ (often called slow-fast system), with ϵ > 0, may have
spiral trajectories (i.e., a focus) near the origin and a natural question arises:
How to compute the box dimension of the spiral and does the box dimension
tell us something about the type of the contact point (the codimension,
cyclicity, etc.)? Instead of computing the box dimension of the spiral at level
ϵ > 0, it is more natural to calculate the box dimension of a slow-fast spiral
when ϵ → 0 (see Definition 1 in Section 5). Such slow-fast spiral is a union
of a geometric chirp (see [22]) and a part of the curve C near the origin.
The geometric chirp is defined using fast and slow subsystems of Yϵ and so-
called entry-exit relation [1, 3] (see Section 5). We find the box dimension of
the slow-fast spiral and establish a bijective correspondence between its box
dimension and the codimension of generic or non-generic contact points (see
Theorem 3 in Section 5). One of the reasons why it is more convenient to
work with slow-fast spirals (ϵ = 0) instead of regular spirals at level ϵ > 0 is
that then we don’t have to use the family blow-up. We point out that a box
dimension approach has already been used in the planar slow-fast setting to
study limit cycles configurations Hausdorff close to so-called canard cycles
(hence, not contact points). See [14, 17, 15].

As far as we know, the ideas we use to find the box dimension of a
degenerate focus (Theorem 1) and the box dimension of a slow-fast spiral
(Theorem 3) are original and novel.

Although, for the sake of readability, in this paper we develop techniques
for the specific perturbations of X and Y , we believe that similar ideas can
be used in a more general framework.

In Section 2 we recall some of the properties of the box dimension that
will be often used throughout the paper. Section 3 is devoted to the study of
the box dimension of (1) and numerical examples. In Section 4 we find the
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box dimension of spiral trajectories of (2) for k = 0 and numerically verify the
conjecture for different values of m, n and k. Our numerical method in Sec-
tion 3 and Section 4 is based on a so-called decomposition of ϵ-neighborhoods
into tail and nucleus (see [28]). For some other numerical techniques (e.g.
differential box counting methods) we refer to [25] and references therein.
The fractal analysis of planar nilpotent turning points is given in Section 5.
In Section 6 we construct a 3-dimensional vector field having an elliptical
power spiral as a trajectory. The conclusion can be found in Section 7.

2. The box dimension and its properties

In this section we briefly recall the notion of box dimension in RN (for
more details we refer the reader to [7, 22, 28] and references therein). For
a bounded set A ⊂ RN we define the ε-neighbourhood of A as Aε := {y ∈
RN : d(y, A) < ε}. By the lower s-dimensional Minkowski content of A, for
s ≥ 0, we mean

Ms
∗(A) := lim inf

ε→0

|Aε|
εN−s

,

and analogously for the upper s-dimensional Minkowski content M∗s(A) (we
replace lim infε→0 with lim supε→0). If M∗s(A) = Ms

∗(A), the common value
is called the s-dimensional Minkowski content of A, and denoted by Ms(A).
The lower and upper box dimensions of A are

dimBA := inf{s ≥ 0 :Ms
∗(A) = 0}

and analogously dimBA := inf{s ≥ 0 :M∗s(A) = 0}. If these two val-
ues coincide, we call it simply the box dimension of A, and denote it by
dimB A. The upper box dimension is finitely stable, i.e. dimB(A1 ∪ A2) =
max{dimBA1, dimBA2}, with A1, A2 ⊂ RN . If 0 < Md

∗(A) ≤ M∗d(A) < ∞
for some d, then we say that A is Minkowski nondegenerate. In this case
obviously d = dimB A. In the case when the lower or upper d-dimensional
Minkowski content of A is equal to 0 or ∞, where d = dimB A, we say that A
is degenerate. If there exists Md(A) for some d such that Md(A) ∈ (0,∞),
then we say that A is Minkowski measurable.

Suppose that F : A ⊂ RN → RM is a Lipschitz map. Then

dimBF (A) ≤ dimBA, dimBF (A) ≤ dimBA.
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If F : A ⊂ RN → RM is a bi-Lipschitz map (i.e., there exist constants κ1 > 0
and κ2 > 0 such that κ1 ∥x− y∥ ≤ ∥F (x)− F (y)∥ ≤ κ2 ∥x− y∥, for every
x, y ∈ A), then

dimBA = dimBF (A), dimBA = dimBF (A).

If F is a bi-Lipschitz map and A is Minkowski nondegenerate, then F (A) is
Minkowski nondegenerate (see Theorem 4.1 in [31]).

We use the following notation in Section 5. For any two sequences of
positive real numbers (al)l∈N and (bl)l∈N converging to zero we write al ≃ bl,
as l → ∞, if there exist positive constants Ã < B̃ such that al/bl ∈ [Ã, B̃]
for all l ∈ N.

A spiral r = f(φ) of focus type is said to be comparable with the α-power
spiral r = φ−α if f(φ)/|φ|−α ∈ [Ã, B̃] for some positive constants Ã and B̃
and for all φ ∈ [1,∞) (resp. φ ∈ (−∞,−1]) if the spiral has positive (resp.
negative) orientation. Similarly, we say that a spiral r = f(φ) of focus type
is comparable with the exponential spiral r = e−βφ if f(φ)/e−βφ ∈ [Ã, B̃] for
positive constants Ã and B̃, a positive (resp. negative) constant β and for
all φ ∈ [0,∞) (resp. φ ∈ (−∞, 0]) if the spiral has positive (resp. negative)
orientation. In Section 3.1 (resp. Section 4.1) (r, φ) denotes the standard
(resp. generalized) polar coordinates.

Let Γ̃ be a trajectory of the vector field

−y
∂

∂x
+ x

∂

∂y
± (x2 + y2)k

(
x
∂

∂x
+ y

∂

∂y

)
, k ≥ 0,

near the origin (x, y) = (0, 0), expressed in (standard) polar coordinates as
r = f(φ). If k ≥ 1, then Γ̃ is comparable with the power spiral r = φ−1/2k and
dimB Γ̃ = 4k

2k+1
. If k = 0, then Γ̃ is comparable with the exponential spiral

r = e±φ and hence dimB Γ̃ = 1. In both cases Γ̃ is Minkowski measurable.
See Theorem 9 of [30].

3. Box dimension of degenerate focus of type (n, n) and numerical
examples

In Section 3.1 we provide a complete study of the box dimension of spiral
trajectories of Xn. Section 3.2 is devoted to numerical examples.
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3.1. The box dimension of degenerate focus

In this section we prove a result about the box dimension of trajectories
of Xn near the origin. We have

Theorem 1. Let n ≥ 1 be odd and let Γ̃ be a trajectory of Xn, given in (1),
near the origin. The following statements are true.

1. If k = 0, then the spiral Γ̃ is comparable with the exponential spiral
r = e±φ/n, dimB Γ̃ = 1, and Γ̃ is Minkowski measurable.

2. If k > 0, then the spiral Γ̃ is comparable with the power spiral r =
φ−1/2nk,

dimB Γ̃ = 2− 2

1 + 2kn
, (3)

and Γ̃ is Minkowski nondegenerate.

Proof. We prefer to work with the system

ẋ = −y2n−1 ± xnyn−1(x2n + y2n)k

ẏ = x2n−1 ± xn−1yn(x2n + y2n)k,
(4)

obtained by dividing Xn by n (the trajectories near the origin remain un-
changed after division by a nowhere zero factor). It suffices to prove Theorem
1 for (4) with the negative sign (stable focus). The case with the positive
sign in (4) (unstable focus) can be reduced to the negative sign by reversing
the time and applying the coordinate change (x, y) → (y, x). Thus, in the
rest of the proof we focus on the system

ẋ = −y2n−1 − xnyn−1(x2n + y2n)k

ẏ = x2n−1 − xn−1yn(x2n + y2n)k,
(5)

with arbitrary but fixed trajectory Γ̃ near the origin, given by the initial con-
dition (x0, y0) ̸= (0, 0). In the polar coordinates Θ(r, φ) = (r cosφ, r sinφ)
system (5) becomes

ṙ = r2n−1
(
cos2n−1 φ sinφ− sin2n−1 φ cosφ

)
−r2nk+2n−1 sinn−1 φ cosn−1 φ

(
sin2n φ+ cos2n φ

)k
φ̇ = r2n−2

(
sin2n φ+ cos2n φ

) (6)

and the initial condition corresponds to (r0, φ0), where φ0 > 0. The spiral
Γ̃ is given in polar coordinates by r = r̃(φ), φ ∈ [φ0,∞), and r̃(φ0) = r0.
Dividing the first by the second equation in the system (6) we get the equation

r′(φ) + p(φ)r(φ) = q(φ)r(φ)2nk+1, (7)
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where functions p and q are given by

p(φ) = sin2n−1 φ cosφ−cos2n−1 φ sinφ
sin2n φ+cos2n φ

,

q(φ) = − sinn−1 φ cosn−1 φ
(
sin2n φ+ cos2n φ

)k−1
.

(8)

When k = 0 (resp. k > 0), in (7) we deal with a linear equation (resp.
Bernoulli differential equation). First we prove Statement 2.
Statement 2. Suppose that k > 0. The idea of the proof is to construct
a bi-Lipschitz equivalence between Γ̃ and some regular α-power spiral [28]
(Section 2), with a well known box dimension, and to use the invariance of the
box dimension under bi-Lipschitz mappings. We divide the proof into three
parts. In the first part we explicitly find the function r̃(φ). In the second
part we introduce a radial map which we use to define the bi-Lipschitz map,
and the third part is devoted to conclusions.

(a) Finding the spiral r = r̃(φ). Using substitution z = r−2nk we trans-
form (7) to the linear equation

− z′(φ)

2nk
+ p(φ)z(φ) = q(φ). (9)

We solve (9) using standard techniques and get the solution

z(φ) =
(
sin2n φ+ cos2n φ

)k
(I(φ) + C), (10)

with C ∈ R and

I(φ) = 2nk

φ∫
0

sinn−1 τ cosn−1 τ

sin2n τ + cos2n τ
dτ. (11)

Now, we can write the function I from (11) in the form

I(φ) = Kφ+ P (φ), (12)

where K := I(2π)/(2π). Because n is odd, it easily follows that K > 0. The
function P is given by

P (φ) = 2nk

φ−2lπ∫
0

sinn−1 τ cosn−1 τ

sin2n τ + cos2n τ
dτ −K(φ− 2lπ), (13)

where l = l(φ) is the largest integer such that 2lπ ≤ φ, that is, l = ⌊φ/(2π)⌋,
and we used the 2π-periodicity of the subintegral function. It follows from
(12) and (13) that P is an analytic and 2π-periodic function, thus bounded.
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Now respecting substitution z = r−2nk, (10) and (12) we get the solution
of (7),

r(φ) =
(
sin2n φ+ cos2n φ

)− 1
2n (Kφ+ P (φ) + C)−

1
2nk . (14)

Introducing K2 := K− 1
2nk , P2(φ) := P (φ)/K and C2 := C/K we rewrite (14)

in the form

r(φ) = K2

(
sin2n φ+ cos2n φ

)− 1
2n (φ+ P2(φ) + C2)

− 1
2nk . (15)

Thus, r̃(φ) from the definition of Γ̃ is given by (15) with C2 uniquely defined
by the initial condition (r0, φ0).

(b) Constructing a bi-Lipschitz map S. We take the α-power spiral Γ̂
from [28], given in polar coordinates by

r̂(φ) = (φ+ Ĉ)−α, (16)

with α := 1
2nk

∈ (0, 1) and Ĉ := C2. We define a radial map T : (0,∞) ×
[0, 2π) → (0,∞)× [0, 2π) by

T (r, φ) := (rH(r, φ), φ), (17)

where the map H : (0,∞)× [0, 2π) → (0,∞) is defined by

H(r, φ) := K2

(
sin2n φ+ cos2n φ

)− 1
2n (1 + P2(φ)r

2nk)−
1

2nk . (18)

The functions T in (17) and H in (18) are chosen in such a way that the
composition S := Θ ◦T ◦Θ−1 : R2 \ (0, 0) → R2 \ (0, 0) maps Γ̂ to Γ̃, because
P2(φ) is a 2π-periodic function.

Also, notice that function H in (18) is bounded and bounded away from
zero for r sufficiently small and partial derivatives

∂H

∂r
(r, φ) = −r2nk−1P2(φ)(1 + P2(φ)r

2nk)−1H(r, φ),

∂H

∂φ
(r, φ) =

(
sin2n φ+ cos2n φ

)−1
(cos2n−1 φ sinφ− cosφ sin2n−1 φ)H(r, φ)

− 1

2nk
r2nkP ′

2(φ)(1 + P2(φ)r
2nk)−1H(r, φ)

exist and are bounded for sufficiently small r, as from (11) and (12) it follows
that P ′

2 is also bounded. Now, all of the conditions of Lemma 1 are satis-
fied, so we see that function S is a bi-Lipschitz map in a sufficiently small
neighborhood of the origin.
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(c) Conclusions. As box dimension and Minkowski nondegeneracy is
invariant under the bi-Lipschitz mapping (see Section 2), it follows from [28]
and Theorem 6.1 in [29] that

dimB Γ̃ = dimB Γ̂ = 2− 2α

α + 1
= 2− 2

1 + 2kn
, (19)

and that Γ̃ is Minkowski nondegenerate. Since P2 is bounded and the term
in front of (φ + · · · )−1/2nk in (15) is bounded and bounded away from zero,
it is clear that the spiral Γ̃ is comparable with the power spiral r = φ−1/2nk,
as φ → ∞. This completes the proof of Statement 2.

Statement 1. Let k = 0 and let n ≥ 1 be odd. Using (7) the spiral Γ̃ is
given by

r̃(φ) = Ce−
∫ φ
0 (p(τ)−q(τ))dτ (20)

where C = r0e
∫ φ0
0 (p(τ)−q(τ))dτ and p and q are given in (8). Since the function

p is odd and 2π-periodic, it follows that the integral
∫ φ

0
p(τ)dτ is even and

2π-periodic (thus, bounded). On the other hand, the integral −
∫ φ

0
q(τ)dτ is

equal to the integral given in (11) and can therefore be written as (12), for

some new positive constant K := −
∫ 2π

0
q(τ)dτ/(2π) and a new 2π-periodic

function P (for the exact value of K see the end of the proof of Statement
1). Now, the expression in (20) changes into

r̃(φ) = Ce−(Kφ+R(φ)) (21)

where K is given above and the function R is 2π-periodic and thus bounded.
It follows directly from (21) that the spiral Γ̃ is comparable with the expo-
nential spiral r(φ) = e−Kφ as φ → ∞. Further, the derivative of (20) is equal
to

r̃′(φ) = (q(φ)− p(φ))r̃(φ). (22)

Using (21), (22) and the fact that p and q are bounded, we get

|r̃′(φ)| ≤ Me−Kφ

where M is a positive constant. This, together with (21), implies that the
length of the spiral Γ̃ is finite. Thus, dimB Γ̃ = 1 and Γ̃ is Minkowski measur-
able (see [7] and [28, p. 106]). Notice that the function τ 7→ 1

n
arctan (tann τ)

is a primitive function of −q(τ), and this implies that K = 1
n
. This completes

the proof of Statement 1.
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Remark 1. Notice that for n even and k > 0 (resp. k = 0) it follows from
(14) (resp. (20)) that r̃(φ) is 2π-periodic, so the system (5) only has closed
periodic trajectories and the fixed point at the origin is of center type.

In the rest of this section we prove the following lemma used in the proof
of Theorem 1.

Lemma 1. Let T : (0,∞)× R → (0,∞)× R be a radial map, i.e.,

T (r, ϕ) = (rH(r, ϕ), ϕ),

where H : (0,∞) × R → (0,∞) is a differentiable function. Suppose that
there exist positive real constants r1, C1 and C2 such that

A. C1 ≤ H(r, ϕ) ≤ C2 for r ∈ (0, r1];

B. the partial derivatives ∂H
∂r
(r, ϕ) and ∂H

∂ϕ
(r, ϕ) are bounded for r ∈ (0, r1].

Then the map S : R2 \ (0, 0) → R2 \ (0, 0), defined by S := Θ◦T ◦Θ−1, where
Θ(r, ϕ) = (r cosϕ, r sinϕ), has an inverse map S−1 and both S and S−1 are
Lipschitz maps in some punctured neighborhood of the origin.

Proof. It is easy to see that T−1 exists and S−1 = Θ◦T−1◦Θ−1. To finish the
proof we need to see that all of the components of the Jacobian matrices JS
and JS−1 are bounded. It is sufficient to prove that S and S−1 are Lipschitz
maps on the intersection of some punctured neighborhood of the origin and
the half-plane R+ × R. As the rotation in the plane is isometry, it follows
that S and S−1 are Lipschitz maps on the intersection of some punctured
neighborhood of the origin and any half-plane given by an arbitrary rotation
around the origin of the R+ × R half-plane. So, by rotating this half-plane
around the origin, we can cover a neighborhood of the origin by a finite
number of such bi-Lipschitz maps, which proves the Lemma.

We proceed by computing partial derivatives of S = (S1, S2) in respect
to variables x and y, on a half-plane R+ × R, where Θ−1 is explicitly given
by

Θ−1(x, y) =
(√

x2 + y2, arctan
(y
x

))
.

12



After meticulous calculation we get

∂S1

∂x
(x, y) = H(r, ϕ)

(x
r
cosϕ+

y

r
sinϕ

)
− ∂H

∂ϕ
(r, ϕ)

y

r
cosϕ+

∂H

∂r
(r, ϕ)x cosϕ,

(23)

∂S1

∂y
(x, y) = H(r, ϕ)

(y
r
cosϕ− x

r
sinϕ

)
+

∂H

∂ϕ
(r, ϕ)

x

r
cosϕ+

∂H

∂r
(r, ϕ)y cosϕ,

(24)

∂S2

∂x
(x, y) = H(r, ϕ)

(
−y

r
cosϕ+

x

r
sinϕ

)
− ∂H

∂ϕ
(r, ϕ)

y

r
sinϕ+

∂H

∂r
(r, ϕ)x sinϕ,

(25)

∂S2

∂y
(x, y) = H(r, ϕ)

(x
r
cosϕ+

y

r
sinϕ

)
+

∂H

∂ϕ
(r, ϕ)

x

r
sinϕ+

∂H

∂r
(r, ϕ)y sinϕ,

(26)

where we write r :=
√
x2 + y2 and ϕ := arctan

(
y
x

)
. As x, |y| ≤ r, from as-

sumptions A and B we see that terms in expressions (23)–(26) are bounded on
the punctured ball B(0; r1), so it follows that all components of the Jacobian
JS are bounded on the punctured ball B(0; r1).

To prove the boundness of JS−1 , we use the inverse function theorem. It
suffices to see that all of the components of the matrix [JS]

−1 are bounded.
This follows by an elementary computation using well known formula for the
inverse of 2× 2 matrix and using the fact that

det JS = H(r, ϕ)

(
H(r, ϕ) + r

∂H

∂r
(r, ϕ)

)
is bounded away from zero for sufficiently small r, using assumptions A and
B.

3.2. Numerical examples

In this section we develop a numerical estimate of the box dimension of
trajectories of Xn near the origin. The exact theoretical result has already
been proven in the Section 3.1. Here we verify that result numerically and lay
ground for later developing numerical verification of conjecture formulated
in Section 1.

13



3.2.1. Numerical estimate of the box dimension

Our goal here is to design a numerical scheme for estimating the box
dimension of trajectory Γ̃ of Xn, from Theorem 1. We focus on k > 0 (the
numerical computation of the box dimension of Γ̃ when k = 0 is similar to
the case where k > 0). We proceed by dividing trajectory Γ̃ to L disjoint
parts Γ̃j such that

Γ̃j := Γ̃ ∩ Kj, ∀j, 1 ≤ j ≤ L,

where Kj is an unbounded circular sector between angles 2(j−1)π
L

and 2jπ
L
.

Next, we estimate the box dimension Dj of set Γ̃j for a fixed j. The first
step is to estimate the area of ϵ-neighborhood of Γ̃j, which we designate by
|Γ̃j,ϵ|. Notice that Γ̃j is actually a disjoint union of countably many curves
of finite length, each curve spanning between two rays:

Rj−1 . . . φ =
2(j − 1)π

L
,

Rj . . . φ =
2jπ

L
.

For the purpose of computing |Γ̃j,ϵ|, from (15) it follows that for sufficiently
large L and sufficiently close to the origin, we can successfully approximate
these countably many curves with parts of circular arcs between rays Rj−1

and Rj. We denote this set of arcs with Aj, so it approximately holds that
|Γ̃j,ϵ| ≈ |Aj,ϵ|, for any small ϵ > 0, that is, the area of ϵ-neighborhood of Γ̃j is
approximately the same as the area of ϵ-neighborhood of Aj. To get the radii
of these circular arcs we compute r(φ) from (15), by taking φ = φj + 2iπ,
for every i ∈ N0, where φj :=

2jπ
L
. By using 2π-periodicity of trigonometric

functions and function P2, from (15) we get

r(φ) = K2

(
sin2n φj + cos2n φj

)− 1
2n (φj + 2iπ + P2(φj) + C2)

− 1
2nk . (27)

Next, we define new constants:

α :=
1

2nk
,

K5 :=
φj + P2(φj) + C2

2π
,

K6 := K2

(
sin2n φj + cos2n φj

)− 1
2n 2π−α,

14



so we can rewrite (27) as

r(φ) = K6(i+K5)
−α. (28)

Now each i ∈ N0 indexes a single circular arc having the radius equal to

ri := r(φj + 2iπ) = K6(i+K5)
−α. (29)

We generalize the approach from [28], where the concept of nucleus and
tail part of ϵ-neighborhood was introduced. For a fixed ϵ > 0, we define
critical i1 = i1(ϵ) as the smallest integer i such that ri − ri+1 ≤ 2ϵ. This
critical i1 divides the tail part from the nucleus part of the ϵ-neighbourhood
of the set Aj. The tail part corresponds to ϵ-neighbourhood of all arcs from
Aj having indices i ≤ i1. These arcs all have disjoint ϵ-neighbourhoods. On
the contrary, the nucleus part corresponds to ϵ-neighbourhood of all arcs
from Aj having indices i > i1. These arcs have overlapping ϵ-neighborhoods.

To proceed, we first solve the equation rβ − rβ+1 = 2ϵ, allowing β ≥ 0 to
be a real number, and then taking i1 := ⌈β⌉. We rewrite the equation as

f(β +K5)− f((β +K5) + 1) =
2ϵ

K6

, (30)

where f(x) = x−α. As function f is an analytic function for all x > 0, and
we can make K5 arbitrarily large by choosing the initial condition close to
the origin and ϵ close to 0, we can develop the second term on the left hand
side of (30) in Taylor series around point x0 = β +K5. By taking only the
first two terms in this Taylor series, we get an approximate form of equation
(30),

α(β +K5)
−α−1 ≈ 2ϵ

K6

, (31)

which can easily be solved. Notice that it is not possible to find solution β of
the original equation (30) in closed form. We get the approximate solution
β and compute

i1 = ⌈β⌉ =

⌈(
αK6

2ϵ

) 1
α+1

−K5

⌉
. (32)

Last, we estimate the area of the tail and nucleus part of |Aj,ϵ|. The sum
of this tail and nucleus is then approximately equal to |Γ̃j,ϵ|.

To get the area of the tail part we first have to compute the sum Sj :=
i1∑
i=0

ri. As i1 could be very large and thus impossible for exact summation,

15



we approximate Sj using method of the interval test for convergence, where
we compute the approximation error to be smaller than K6/(K5)

α. We can
take K5 to be sufficiently large, as before, so the approximation error can be
made arbitrarily small. For sum Sj, we get

Sj ≈ K6

i1+1∫
0

dt

(t+K5)α
= K6

(i1 + 1 +K5)
1−α −K1−α

5

1− α
. (33)

The area of the tail part is equal to the sum of ϵ-neighborhoods of all circular
arcs in the tail part of Aj. We approximate ϵ-neighborhood of every circular
arc in tail part arc using the ϵ-neighborhood of a segment having the same
length as the arc. As all of this ϵ-neighborhoods are disjoint, we compute
the total sum of this ϵ-neighborhoods to be Sj(2π/L) ·2ϵ+(i1+1)ϵ2. On the
other hand, the area of the nucleus part is equal to (ri1)

2π/L. Finally, using
(33) we get

|Γ̃j,ϵ| ≈
(
K6

(i1 + 1 +K5)
1−α −K1−α

5

1− α

)
4π

L
ϵ+ (i1 + 1)ϵ2 + (ri1)

2 π

L
. (34)

We estimate the box dimension of set Γ̃j using a standard formula from
[7],

Dj := dimB Γ̃j = 2− lim
ϵ→0

log |Γ̃j,ϵ|
log ϵ

. (35)

Precisely, we approximate Dj by evaluating (35) for some fixed ϵ0 > 0, that
is very close to zero,

Dj ≈ 2− log |Γ̃j,ϵ0|
log ϵ0

. (36)

Using the area of the tail and the nucleus part from (34) and substituting
to (36), we compute

Dj ≈ 2−
log

[(
K6

(i1+1+K5)1−α−K1−α
5

1−α

)
4π
L
ϵ0 + (i1 + 1)ϵ20 + (ri1)

2 π
L

]
log ϵ0

. (37)

Finally, we use estimates Dj from (36) of the box dimension of Γ̃j to
estimate upper and lower bounds on the box dimension of Γ̃. We assume
that dimB Γ̃j exists and is approximately equal to previously obtained Dj.
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We use monotonicity of the upper and lower box dimension, and also finite
stability of the upper box dimension (see [7]) to compute required estimates.
For the estimate on the upper bound, we have

dimBΓ̃ = max
1≤j≤L

dimBΓ̃j ≈ max
1≤j≤L

Dj. (38)

For the lower bound we first see that

Dj ≈ dimBΓ̃j ≤ dimBΓ̃, ∀j, 1 ≤ j ≤ L,

from which follows that

max
1≤j≤L

Dj ≈ max
1≤j≤L

dimBΓ̃j ≤ dimBΓ̃. (39)

Using estimates (39) and (38), as dimBΓ̃ ≤ dimB Γ̃ ≤ dimBΓ̃, we finally see
that

dimB Γ̃ ≈ max
1≤j≤L

Dj. (40)

3.2.2. Implementation details and test results

We implemented the algorithm for computing our numerical estimate
of the box dimension using Wolfram Mathematica, version 12. See https:

//github.com/FRABDYN/DegenerateSpirals where our code is available for
download. All computations have been done symbolically, using exact frac-
tions where appropriate, having essentially infinite numerical precision. The
box dimension results were only numericalized in step (37) when computing
Dj.

We present numerically computed dimension for different examples hav-
ing different values of n and k in Table 1. The rest of the comments in this
section refer specifically to cases when k > 0. Case k = 0 is similar. Refer
to the Mathematica code for more information.

We used the initial condition values of r0 = 1/10 and φ0 = 0, correspond-
ing to the constant C from (10) equal to 100nk. By computing the integral
I from (11) we get that constant K = 2k. Furthermore, to speed up the cal-
culation we approximate constant K5 by C2/(2π) as φj + P2(φj) is at least
1010 times less than C2.

For all test cases we decided to use ϵ0 = 10−10000 and L = 1000. Using
this values we produced results having high numerical precision compared to
the theoretical result from Theorem 1 and computations last no more than
few seconds on a modern PC computer. For even higher precision, value
of ϵ could be further decreased and L increased, which would increase the
computation time.
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n k
theoretical
dimension

numerical
dimension

3 0 1 1.00000 0.99982
11 0 1 1.00000 0.99986
21 0 1 1.00000 0.99988
3 2 24/13 1.84615 1.84593
3 11 132/67 1.97015 1.96992
11 2 88/45 1.95556 1.95534
11 11 484/243 1.99177 1.99155
21 2 168/85 1.97647 1.97625
21 11 924/463 1.99568 1.99546

Table 1: Theoretical and numerical box dimensions computed for different values of n and
k.

4. Box dimension of degenerate focus of type (m,n)

In Section 4.1 we introduce generalized polar coordinates and show that
for k = 0 the box dimension of spiral trajectories of Xm,n is equal to one
(Theorem 2). In Section 4.2 we illustrate the method used in Section 4.1
with numerical examples, and (numerically) verify the conjecture formulated
in Section 1 for different values of m, n and k.

4.1. Generalized polar coordinates

We study the box dimension of spiral trajectories of Xm,n–given in (2)–
near the origin. We write the system as

ẋ = −ny2n−1 ± nxmyn−1(x2m + y2n)k

ẏ = mx2m−1 ±mxm−1yn(x2m + y2n)k.
(41)

We introduce (see [9, 10]) the (n,m)–polar coordinates

(x, y) = (rnCs(φ), rmSn(φ))

where Cs(φ) and Sn(φ) are a generalization of cosφ and sinφ, and satisfy

Ċs(φ) = −nSn2n−1(φ), Ṡn(φ) = mCs2m−1(φ)
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and (Cs(0), Sn(0)) = (1, 0). Notice that Cs2m(φ)+Sn2n(φ) = 1, Cs(φ) (resp.
Sn(φ)) is even (resp. odd) and both are T -periodic, with

T =
2

mn

Γ( 1
2m

)Γ( 1
2n
)

Γ( 1
2m

+ 1
2n
)
,

where Γ is the gamma function. In these polar coordinates system (41)
becomes

dr

dφ
= ±Snn−1(φ)Csm−1(φ)r2mnk+1, (42)

upon division of ṙ by φ̇. We use the following simple lemma (see [9]) in the
proof of Theorem 2.

Lemma 2. Let T be the period of the functions Cs(φ) and Sn(φ). The
following statements are true.

1. If either m or n is even, then
∫ T

0
Snn−1(φ)Csm−1(φ)dφ = 0.

2. If both m and n are odd, then
∫ T

0
Snn−1(φ)Csm−1(φ)dφ = 2π

mn
.

Theorem 2. Let T be the period of the functions Cs(φ) and Sn(φ). If both
m and n are odd, then the following statements are true for a spiral trajectory
Γ̃ of (41) near the origin.

1. If k = 0, then the spiral Γ̃ is comparable with the exponential spiral
r = e±

2π
Tmn

φ, dimB Γ̃ = 1, and Γ̃ is Minkowski measurable.

2. If k > 0, then spiral Γ̃ is comparable with the power spiral r = φ−1/2mnk.

Proof. First we prove Statement 1. When k = 0, then the spiral Γ̃ is given
by

r̃(φ) = Ce±
∫ φ
0 Snn−1

(τ)Csm−1
(τ)dτ (43)

where the constant C > 0 is uniquely determined by the initial condition on
Γ̃. We used (42). Now we proceed exactly as in the proof of Theorem 1. We
have∫ φ

0

Snn−1(τ)Csm−1(τ)dτ =

(
1

T

∫ T

0

Snn−1(τ)Csm−1(τ)dτ

)
φ+ P (φ), (44)

with

P (φ) =

∫ φ−lT

0

Snn−1(τ)Csm−1(τ)dτ − 1

T

∫ T

0

Snn−1(τ)Csm−1(τ)dτ (φ− lT ) ,
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where l is the largest integer such that lT ≤ φ, that is, l = ⌊φ/T ⌋ (we use
that the integrand function is T -periodic). The function P is bounded and
T -periodic. Now, using this, Lemma 2.2, (43) and (44), we have that Γ̃ is

comparable with the exponential spiral r = e±
2π

Tmn
φ. Since Cs(φ) and Sn(φ)

are bounded, the length of Γ̃ is finite. This completes the proof of Statement
1.

To prove Statement 2, it suffices to notice that the spiral Γ̃ is given by

r̃(φ) =

(
∓2mnk

∫ φ

0

Snn−1(τ)Csm−1(τ)dτ + C

)− 1
2mnk

(45)

and to use (44).

Remark 2. If either m or n is even, then the first statement of Lemma 2
implies that system (41) has a center at the origin.

Remark 3. When n = m, then we deal with the (n, n)–polar coordinates
(x, y) = (rnCs(φ), rnSn(φ)). Notice that in Section 3, instead of these gen-
eralized polar coordinates, we worked with the standard polar coordinates in
which the α–power spirals [28] are expressed. This was important in the proof
of Theorem 1 when k > 0.

Remark 4. In [2] it is proved that the box dimension of the planar elliptical
spiral (x(φ), y(φ)) = (φ−p0 cosφ, φ−q0 sinφ), 1 < φ < ∞, with 0 < p0 ≤ q0
and p0 < 1, is equal to 2 − p0+q0

1+q0
. If we replace Cs(φ) and Sn(φ) with

cosφ and sinφ, in the definition of (n,m)–polar coordinates, and (45) with

r̃(φ) = φ− 1
2mnk , then we obtain a natural candidate for the box dimension of

the spiral Γ̃ when k > 0 and m ≥ n, which is equal to 2 − 1+ n
m

1+2nk
. Note that

p0 =
1

2mk
and q0 =

1
2nk

.

4.2. Numerical verification of Conjecture

Let m > n and k > 0. To verify the conjecture formulated in Section 1,
we use a method similar to that used in Section 3.2.1. Instead of using the
(n,m)–polar coordinates introduced in Section 4.1, from a numerical point
of view it is better to express a spiral trajectory Γ̃ of (41) in r, φ where
(x, y) = (rn cosφ, rm sinφ). In this way, we avoid the computation of Cs(φ)
and Sn(φ). Like in Section 3.2.1, we numerically compute the box dimension

of Γ̃ in sectors Kj (Kj between φ = (2(j−1)+1)π
L

and φ = (2j+1)π
L

, 1 ≤ j ≤ L).
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We find ri which has a form similar to (29). This corresponds to circular arcs
having the radius equal to Ri where (R, θ) are the standard polar coordinates
(x, y) = (R cos θ, R sin θ). Ri can also be brought into the form (29). The
length ∆θi of the circular arc with the radius Ri can be expressed in terms
of ri and φj. Finally, we compute the tail part and the nucleus part, like in
Section 3.2.1.

m n k
conjectured
dimension

numerical
dimension

5 3 2 122/65 1.87692 1.87287
11 3 2 272/143 1.90210 1.89615
21 3 2 174/91 1.91209 1.90574
21 11 2 1858/945 1.96614 1.96561
5 3 11 662/335 1.97612 1.97581
11 3 11 1460/737 1.98100 1.98063
21 3 11 930/469 1.98294 1.98255
21 11 11 10174/5103 1.99373 1.99355

Table 2: Conjectured and numerical box dimensions computed for different values of m,
n and k.

Similarly as in Section 3.2.2, in Table 2 we present numerically computed
dimension for different values of m, n and k. We also include our Mathemat-
ica code available for download.

For the initial condition we used again r0 = 1/10 and φ0 = 0. For
computing the ϵ-neighborhood to approximate limit from (35), we used ϵ0 =
10−10000 and we divided Γ̃ in L = 1000 sectors. Using these values we were
able to compute dimension to high precision compared to the conjectured
result.

5. The box dimension of slow-fast spirals near nilpotent contact
points

Notation n,C, k, . . . that we will use in this section has nothing to do
with n,C, k, . . . used in Sections 3 and 4. We consider a C∞-smooth family
of Liénard slow-fast systems

ẋ = y − x2n

ẏ = ϵ(a+ F (x, ρ)) +O(ϵ2)
(46)
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where ϵ ≥ 0 is a (small) singular parameter, a ∼ 0 ∈ R, ρ ∼ 0 ∈ Rm,
n ≥ 1 is an integer, F (x, ρ) and O(ϵ2) are C∞-functions and F (x, ρ) =
−x2n−1+O(x2n). We denote system (46) byXϵ,a,ρ. When ϵ = 0, systemXϵ,a,ρ

has a curve of singularities given by C = {y− x2n = 0}. All the singularities
are normally hyperbolic (i.e. precisely one eigenvalue of the linear part of
X0,a,ρ at p ∈ C is zero). An exception is the point p = (0, 0) ∈ C which is
a nilpotent singularity (i.e., the normal hyperbolicity at the origin is lost).
When n = 1 (resp. n > 1), we call the origin in Xϵ,a,ρ a generic (resp. non-
generic) contact point (see e.g. [16]). We focus on the fractal analysis of the
slow-fast spirals near the contact point (see Definition 1) in both generic and
non-generic case. We use the notion of box dimension in two dimensional
ambient space and geometric chirps.

y0

y1

y2

Figure 2: The geometric (δ1, δ2)-chirp, with δ1 := 1
2n and δ2 := 2(k−n)+1

2n , defined near the
contact point of Xϵ,a,ρ with codimension k (k ≥ n).

We denote by Σ a section inside {x = 0}, parametrized by y ≥ 0, y ∼
0 (y = 0 corresponds to the origin (x, y) = (0, 0)). We define the slow
divergence integral along the attracting part {x > 0, x ∼ 0} (resp. the
repelling part {x < 0, x ∼ 0}) of C:

J−(y, ρ) :=

∫ 0

ω(y)

−(2nx2n−1)2dx

F (x, ρ)
< 0(

resp. J+(y, ρ) :=

∫ 0

α(y)

−(2nx2n−1)2dx

F (x, ρ)
< 0

)
where (y, ρ) ∼ (0, 0), y > 0 and ω(y) = y

1
2n > 0 (resp. α(y) = −y

1
2n < 0) is

the ω-limit (resp. α-limit) of the fast horizontal orbit of X0,a,ρ through y ∈ Σ.
The divergence of X0,a,ρ is given by −2nx2n−1 and the slow dynamics along
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C is dx
dτ

= F (x,ρ)
2nx2n−1 where τ is the slow time. Note that J± are well-defined

(i.e. finite) because the leading term of F is x2n−1.

We assume that (J− − J+)(y, 0) ̸= 0 for all y ∼ 0 and y > 0. (In the
limit y = 0, we have (J− − J+)(0, 0) = 0 because α(0) = ω(0) = 0.) If
(J− − J+)(y, 0) < 0 for y ∼ 0 and y > 0 (resp. (J− − J+)(y, 0) > 0 for y ∼ 0
and y > 0), then the orbit O = {y0, y1, y2, . . . }, defined recursively by

J−(yl+1, 0) = J+(yl, 0) (resp. J−(yl, 0) = J+(yl+1, 0)) , l ≥ 0, (47)

with y0 > 0 small and fixed, is decreasing and converges to zero. This is a
simple consequence of the fact that the integrand in J± changes sign as x
varies through x = 0.

Using the orbit O we define a geometric chirp near the contact point of
Xϵ,a,ρ (at level (ϵ, a, ρ) = (0, 0, 0)):

U =
⋃
yl∈O

Ul ⊂ R2, Ul = (α(yl), ω(yl))× {yl}. (48)

The geometric chirp U is the union of horizontal open intervals (α(yl), ω(yl))
at level y = yl (see Figure 2). The type (δ1, δ2) of the geometric chirp U is
given in Theorem 3.

Definition 1. Let (J− − J+)(y, 0) < 0 (resp. > 0), for y ∼ 0 and y > 0,
and let O = {y0, y1, y2, . . . } be the orbit with the initial point y0 > 0 defined
in (47). The unstable (resp. stable) slow-fast spiral of the contact point of
Xϵ,a,ρ, for (ϵ, a, ρ) = (0, 0, 0), is the union of the geometric chirp U , defined
in (48), and the part of the curve of singularities C between α(y0) and ω(y1)
(resp. α(y1) and ω(y0)). See Figure 3.

Remark 5. Following Definition 1, the stable slow-fast spiral consists of the
intervals Ul, pointing from the left to the right, and a part of C. We follow
U0 until we hit C in x = ω(y0) (entry). Then we follow the curve C from
x = ω(y0) to x = α(y1) (exit), then U1, the curve C from x = ω(y1) (entry) to
x = α(y2) (exit), etc. This way we “spiral” around the origin (x, y) = (0, 0)
(and approach the origin). We call this “spiral” the slow-fast spiral because
it contains fast and slow intervals of Xϵ,a,ρ in the limit ϵ → 0 (thus, the
“spiral” is not regular). The unstable slow-fast spiral can be explained in
similar fashion.
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y0

y1

y2

y3

y0 ω(y0)
y1 ω(y1)
y2

ω(y2)
y3

α(y1)

α(y2)

ω(y1)

ω(y2)

α(y0)

α(y1)

α(y2)

(b)(a)

Figure 3: Slow-fast spirals with x = ω(yl) as entry and x = α(yl) as exit for all l ∈ N. The
slow segments are contained in the critical curve C and the slow dynamics along C points
from the right to the left. (a) The stable slow-fast spiral. (b) The unstable slow-fast spiral.

Remark 6. The upper box dimension of the stable or unstable slow-fast spiral
from Definition 1 is equal to the upper box dimension of the geometric chirp U
defined in (48) because the upper box dimension is finitely stable (see Section
2), dimB C = 1 and dimBU ≥ 1. In the rest of this section we therefore focus
on the computation of the upper box dimension of U .

Let denote by fi(ρ), i ≥ 2n, the coefficients of the Taylor expansion of
F at x = 0, i.e. j∞F (x, ρ) = −x2n−1 +

∑∞
i=2n fi(ρ)x

i. If there exists a
nonzero even coefficient f2k(0), we say that Xϵ,a,ρ has a finite codimension
(the smallest k ≥ n with this property is the codimension of the contact point
in Xϵ,a,ρ). In the generic case (n = 1), a similar definition of the codimension
can be found in [5].

Theorem 3. Let y0 > 0 be small and fixed and let O = {y0, y1, y2, . . . }
be the orbit defined by (47) tending monotonically to y = 0. Suppose that
the codimension of the contact point in Xϵ,a,ρ is finite and equal to k. Then

we have yl ≃ l−
2n

2(k−n)+1 as l → ∞, yl − yl+1 ≃ l−
2k+1

2(k−n)+1 as l → ∞ and
dimB O = 2(k−n)+1

2k+1
∈ (0, 1). Moreover, U is the geometric (δ1, δ2)-chirp,

with δ1 := 1
2n

and δ2 := 2(k−n)+1
2n

, and dimBU = 4k−2n+1
2k+1

∈ [1, 2). The box
dimensions are independent of the initial point y0.

Proof. Suppose that the assumptions of Theorem 3 are satisfied. The func-
tion J− − J+, for ρ = 0, can be written as

(J− − J+)(y, 0) =

∫ y
1
2n

−y
1
2n

4n2x2n−1dx

D(x)
(49)
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where y > 0, y ∼ 0, fi := fi(0), k ≥ n is the codimension of Xϵ,a,ρ (f2k ̸= 0)

and D(x) = −1 +
∑k−1

i=n f2i+1x
2(i−n+1) + f2kx

2(k−n)+1 + O(x2(k−n+1)). The
integrand function in (49) has the following form:

4n2x2n−1

−1 +
∑k−1

i=n f2i+1x2(i−n+1)
− 4n2f2kx

2k(1 +O(x)), (50)

where the first term is an odd function. From (49) and (50) follows now that

(J− − J+)(y, 0) = − 8n2

2k + 1
f2ky

2k+1
2n (1 + o(1)) (51)

where o(1) tends to zero when y → 0. In the rest of the proof we assume
that (J− − J+)(y, 0) < 0 for y ∼ 0 and y > 0, i.e. f2k > 0 (the case where
(J− − J+)(y, 0) > 0 for y ∼ 0 and y > 0 (f2k < 0) can be treated in a similar
way). We have

(J− − J+)(yl, 0) =

∫ y
1
2n
l

−y
1
2n
l

(2nx2n−1)2dx

F (x, 0)

=

∫ y
1
2n
l

−y
1
2n
l

(2nx2n−1)2dx

F (x, 0)
−

∫ y
1
2n
l+1

−y
1
2n
l

(2nx2n−1)2dx

F (x, 0)

=−
∫ y

1
2n
l+1

y
1
2n
l

(2nx2n−1)2dx

F (x, 0)

=

∫ yl+1

yl

2n(1 + o(1))du (52)

where in the second step we use (47) (
∫ y

1
2n
l+1

−y
1
2n
l

= 0) and in the last step we use

the coordinate change x2n = u (the o(1)-term in the last integral tends to
zero as u → 0). Note that the integrand function in (52) is positive and at
least continuous in u ≥ 0 and u ∼ 0. Finally, The Mean Value Theorem for
Integrals, (51) and (52) imply

yl − yl+1 ≃ y
2k+1
2n

l , l → ∞. (53)

Since γ := 2k+1
2n

> 1 (k ≥ n), Theorem 1 of [6] implies that

yl ≃ l−
2n

2(k−n)+1 , l → ∞. (54)
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This together with (53) implies

yl − yl+1 ≃ l−
2k+1

2(k−n)+1 , l → ∞.

Using Theorem 1 of [6] once more we get

dimB O = 1− 1

γ
=

2(k − n) + 1

2k + 1
∈ (0, 1).

The results are clearly independent of the chosen y0 > 0 (see [6]).

It remains to find the upper box dimension of the geometric chirp U . We
write U = U1 ∪ U2 where

U1 =
⋃
yl∈O

(−y
1
2n
l , 0]× {yl}, U2 =

⋃
yl∈O

[0, y
1
2n
l )× {yl}.

From Section 3.6.1 in [22] and (54) follows that U1 and U2 are geometric

(δ1, δ2)-chirps where δ1 :=
1
2n

and δ2 :=
2(k−n)+1

2n
. Now we have (see [22] once

more)

dimBU1 = dimBU2 = max

{
1, 2− 1 + δ1

1 + δ2

}
=

4k − 2n+ 1

2k + 1
∈ [1, 2).

This completes the proof of Theorem 3 since dimBU = max
{
dimBU1, dimBU2

}
.

Remark 7. Let n ≥ 1 be fixed. Following Theorem 3, there is a one-one
correspondence between dimB O (or dimBU) and the codimension k of the
contact point of Xϵ,a,ρ. When k → ∞, then dimB O → 1 and dimBU → 2.

Remark 8. In [15] it has been proved that dimB O = 2k−1
2k+1

in the generic
case.

6. Box dimension of 3-dimensional spiral

Using results from [2] for the planar elliptical spiral Γ̃

x(t) = t−p0 cos t
y(t) = t−q0 sin t,

(55)

where 0 < p0 ≤ q0 ≤ 1, we can obtain the box dimension of trajectory of
3-dimensional systems. We formulate this result as an example; a general-
ization is possible combining the results from [2, 19].
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Example 1. The spiral (55) is the projection of a trajectory of the system

ẋ = −y − p0xz
q0−p0+1

ẏ = xz2(q0−p0) − q0yz
q0−p0+1 (56)

ż = −z2+q0−p0 ,

to the (x, y)-plane. The system (56) is obtained by computing the derivative
of (55), using z = t−1, and multiplying it by zq0−p0 > 0. The parametrization
of the initial curve has been changed, but not the curve itself, so the box
dimension of (55) has been preserved, and equal to (see [2])

dimB Γ̃ = 2− p0 + q0
1 + q0

.

Using the parametrization

x(t) = t−p0 cos t

y(t) = t−q0 sin t (57)

z(t) = t−1,

obtained before the time rescaling, we can compute the invariant surface
x2

z2p0
+ y2

z2q0
= 1 containing the trajectories of (56). Derivatives ∂z

∂x
and ∂z

∂y

are bounded, so the map z(x, y) is Lipschitz. Using [31] we can conclude that
the 3-dimensional trajectory of the system (56) has the same box dimension
as the projection curve Γ̃.

The projection Γ̃xz of the trajectory of (56) to the (x, z)-plane is a curve
called chirp x(z) = zp0 cos 1/z, for z > 0 small. We use (see [28])

Xα,β(τ) = τα sin(τ−β).

For 0 < α ≤ β we have

dimB Xα,β = 2− α + 1

β + 1
,

and obtain

dimB Γ̃xz =
3

2
− p0

2
.

Analogously, the projection Γ̃yz of the trajectory of (56) to (y, z)-plane is
y(z) = zq0 sin 1/z, with the box dimension

dimB Γ̃yz =
3

2
− q0

2
.
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7. Conclusion

In this paper we have studied the box dimension and Minkowski nonde-
generacy/measurability of degenerate spiral trajectories in a class of ordinary
differential equations. We give a complete analysis of a polynomial degener-
ate focus of type (n, n) by connecting it with α-power spirals (see Theorem
1). We also numerically verify this box dimension result. We partially solve
the (m,n) case (see Theorem 2) and formulate a conjecture about the box
dimension based on numerical experiments. We introduce the notion of slow-
fast spiral for planar contact points and find its box dimension (see Theorem
3). We give an example of a 3-dimensional differential equation in presence
of an elliptical power spiral as a trajectory.

Acknowledgments

This research was supported by: Croatian Science Foundation (HRZZ)
grant PZS-2019-02-3055 from “Research Cooperability” program funded by
the European Social Fund.

References
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[15] R. Huzak, V. Crnković, and D. Vlah. Fractal dimensions and two-
dimensional slow-fast systems. J. Math. Anal. Appl., 501(2):Paper No.
125212, 21, 2021.

[16] R. Huzak and D. Rojas. Period function of planar turning points. Elec-
tron. J. Qual. Theory Differ. Equ., pages Paper No. 16, 21, 2021.

[17] R. Huzak and D. Vlah. Fractal analysis of canard cycles with two break-
ing parameters and applications. Commun. Pure Appl. Anal., 18(2):959–
975, 2019.

29
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tems with spiral trajectories in R3. Electron. J. Differential Equations,
pages No. 276, 19, 2015.
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